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Abstract 

Objective 

-secretase/-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a key enzyme involved 

in Alzheimer’s disease that has recently been implicated in insulin-independent glucose uptake in 

myotubes. However, it is presently unknown whether BACE1 and the product of its activity, soluble 

APPsAPPcontribute to lipid-induced inflammation and insulin resistance in skeletal muscle cells.  

 

Materials/Methods 

Studies were conducted in mouse C2C12 myotubes, skeletal muscle from Bace1-/-mice and mice 

treated with sAPP and adipose tissue and plasma from obese and type 2 diabetic patients. 

 

Results 

We show that BACE1 inhibition or knockdown attenuates palmitate-induced endoplasmic reticulum (ER) 

stress, inflammation, and insulin resistance and prevents the reduction in Peroxisome Proliferator-

Activated Receptor  Co-activator 1 (PGC-1) and fatty acid oxidation caused by palmitate in myotubes. 

The effects of palmitate on ER stress, inflammation, insulin resistance, PGC-1 down-regulation, and fatty 

acid oxidation were mimicked by soluble APP in vitro. BACE1 expression was increased in subcutaneous 

adipose tissue of obese and type 2 diabetic patients and this was accompanied by a decrease in PGC-1 

mRNA levels and by an increase in sAPPplasma levels of obese type 2 diabetic patients compared to 

obese non-diabetic subjects. Acute sAPP administration to mice reduced PGC-1 levels and increased 

inflammation in skeletal muscle and decreased insulin sensitivity.  

 

Conclusions 

Collectively, these findings indicate that the BACE1 product sAPP is a key determinant in ER stress, 

inflammation and insulin resistance in skeletal muscle and gluconeogenesis in liver.  
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1. Introduction 

The primary site of insulin stimulated glucose disposal is skeletal muscle, which can account for up to 90% 

of glucose clearance [1]. As a result, loss of skeletal muscle insulin sensitivity is believed to be critical in 

the pathogenesis of type 2 diabetes mellitus (T2DM) [2,3]. In fact, one of the earliest detectable defects in 

individuals at risk of T2DM is impaired skeletal muscle insulin sensitivity [4,5]. A range of evidence 

suggests that insulin resistance in skeletal muscle is induced by increased levels of plasma non-esterified 

free fatty acids (NEFAs) [6,7] and/or changes in adipokine levels caused by obesity [8]. It has long been 

recognized that elevated plasma NEFA levels cause insulin resistance in humans [9]. The mechanisms 

underlying the association between elevated NEFA and insulin resistance are currently unclear, but 

accumulating evidence points to a link between enhanced NEFA levels and activation of a chronic low-

level inflammatory process [8,10]. Elevated saturated NEFA can induce inflammation, and thus insulin 

resistance, through several mechanisms, including accumulation of fatty acid (FA) derivatives (such as 

ceramide and diacylglycerol) due to an increased FA flux in skeletal muscle cells that exceeds their -

oxidation capacity [11,12], activation of toll-like receptors [13], and endoplasmic reticulum (ER) stress 

[14,15]. Of note, all these mechanisms converge in the activation of pro-inflammatory signaling pathways, 

including Ikinase --nuclear factor (NF)-B, which has been linked to FA-induced impairment 

of insulin action in skeletal muscle [16,17]. Thus, IKK- phosphorylates IRS-1 on serine residues, 

attenuating the insulin signaling pathway, whereas once activated, NF-B regulates the expression of 

multiple inflammatory mediators, including interleukin 6 (IL-6), monocyte chemoattractant protein 1 

(MCP-1), and tumor necrosis factor  (TNF-, which also contribute to insulin resistance [10]. Recent 

evidence also points to a possible defect in mitochondrial function induced by FA overload. For instance, 

short-term exposure to high circulating FA impairs the mitochondrial membrane potential [6] and tissue 

culture studies demonstrate that palmitate overload induces mitochondrial dysfunction associated with 

reduced oxidative capacity [17]. Mitochondrial function is transcriptionally controlled by peroxisome 

proliferator-activated receptor  co-activator 1(PGC-1) [18] and plays a critical role in skeletal muscle 

metabolic function. Some [19,20] but not all [21] studies indicate a reduction in PGC-1 expression and or 
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function in the skeletal muscle of prediabetic and diabetic subjects. Collectively, these data indicate a 

possible molecular link between elevated circulating FA and the impaired mitochondrial function 

sometimes noted in the skeletal muscle of those at risk of T2DM. 

 

Interestingly, some Alzheimer’s disease (AD) patients exhibit impaired glucose metabolism, 

hyperinsulinemia, and insulin resistance [22,23], suggesting that some common pathways may be involved 

in the development of both diseases. -secretase/-site amyloid precursor protein (APP)-cleaving enzyme 1 

(BACE1) is a key enzyme involved in AD that has recently been implicated in insulin-independent glucose 

metabolism [24]. APP is first cleaved by either BACE1 or g-secretase enzyme, generating extracellular 

soluble APPく (sAPPく) or sAPPg, respectively. Following BACE1 cleavage, the APP C-terminal fragment 

C99 can be cleaved by け-secretase, raising the levels of amyloid-く (Aく) peptides and leading to amyloid 

aggregation and plaque formation [25]. It has been reported that BACE1-deficient mice are protected 

against high-fat diet (HFD)-induced glucose intolerance [26], although the mechanisms involved remain 

unclear. More recently, it has been shown that inhibition of muscle BACE1 activity increases insulin-

independent glucose uptake and GLUT4 translocation [24]. Of note, the saturated FA palmitate and 

ceramide increase BACE1 protein levels in C2C12 myotubes [24], probably by post-translational 

stabilization of the protein [27], suggesting that -secretase might contribute to the effects of saturated 

NEFA on inflammation and insulin resistance in skeletal muscle cells. In the present study, we examined 

whether BACE1 activity and its product sAPP contribute to insulin resistance in skeletal muscle.  
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2. Materials and Methods 

2.1. Cell culture  

Mouse CβC1β myoblasts (ATCC) were maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS), 50 units/ml penicillin and 50 mg/ml streptomycin. 

When cells reached confluence, the medium was switched to the differentiation medium containing 

DMEM and 2% horse serum, which was changed every other day. After 4 additional days, the 

differentiated C2C12 cells had fused into myotubes. Lipid-containing media were prepared by conjugation 

of non-esterified fatty acids (NEFA) with NEFA-free bovine serum albumin. Briefly, palmitic acid was 

dissolved in ethanol and diluted 1:100 in DMEM containing 2% (w/v) NEFA-free bovine serum albumin. 

Myotubes were incubated in serum-free DMEM containing 2% bovine serum albumin in either the 

presence (palmitate-treated cells) or absence (control cells) of NEFA. Cell viability was assessed using the 

LDH Cytotoxicity Assay Kit from Thermo Scientific (Waltham, MA, USA). 

Human LHCN-M2 myoblasts were maintained, grown and differentiated to myotubes as previously 

described [28].  

2.2. Mice  

Male Bace1-/-mice and wild-type (WT) littermate controls on the C57Bl6/J background were sacrificed 

under isoflurane anesthesia. WT and Bace1-/- mice were fed a standard diet or a high-fat diet (HFD) 

containing, by energy, 45% fat, 20% protein and 35% carbohydrate (catalogue number 58V8, TestDiet®, 

Purina Mills) for 20 weeks. Skeletal muscle (gastrocnemius) and epididymal adipose tissue samples were 

frozen in liquid nitrogen and then stored at -80ºC. For quantification of sAPP plasma and skeletal muscle 

were obtained from mice fed a standard diet or a HFD (Research Diets D08061110) for 3 months. For 

quantification of sAPP and A42, plasma of these mice was concentrated (30 kDa Amicon Ultra 15 ml 

filter) by centrifugation and subjected to SDS-PAGE. 

In a second study male C57BL/6 mice were randomly distributed into two groups (n=6 each) and 

intramuscular (gastrocnemius) injection of vehicle (PBS plus 4% urea) or 5 µg of sAPPwas performed. 

Twelve hours later animals were sacrificed and the skeletal muscle gastrocnemius was excised. 
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In a third study male C57BL/6 mice were randomly distributed into two groups (n=6 each) and vehicle or 

10 µg of sAPPwas administered (i.p.) twice (20.00 h and 8.00 h) before starting either a glucose 

tolerance test (GTT) or an insulin tolerance test (ITT). In the GTT animals received 2 g/Kg body weight of 

glucose by ip injection, and blood was collected from the tail vein after 0, 15, 30, 60 and 120 min. In the 

ITT each animal received 0.5 IU/Kg of body weight of insulin.  

All animal care, experimental protocols and procedures were performed in accordance to the Animal 

Scientific Procedures Act (1986), with approval of the University of Barcelona and Dundee ethics 

committees.  

 

2.3. Subjects  

Subjects were recruited by the Endocrinology Department at the University Hospital Joan XXIII 

(Tarragona, Spain) in accordance with the Helsinki Declaration (2008). All participants gave their 

informed consent and the study was approved by the respective local Ethic Committee review board of the 

participating Hospital. Donors were classified as lean or obese based on body mass index (BMI) following 

World Health Organization criteria (WHO). T2D subjects were diagnosed according WHO criteria. All 

patients had fasted overnight before collection of blood samples. Anthropometric and biochemical 

variables from the two cohorts used are presented in Supplementary Tables S1 and S2. All subjects were of 

white origin and reported that their body weight had been stable for at least 3 months prior to the study. 

They had no systemic disease other than obesity, and all had been free of infection in the previous month 

before the study. Primary liver disease, cardiovascular disease, arthritis, acute inflammatory disease, 

infectious disease, neoplastic and renal diseases were specifically excluded by biochemical evaluation. 

Serum was immediately separated by centrifugation and stored at −80º C until analysis. Subjects were 

stratified according to age, gender and BMI. The hospital ethics committee approved the study and 

informed consent for biobanking surgically removed tissue was obtained from all participants in 

accordance with the Declaration of Helsinki. All patients had fasted overnight before collection of adipose 

tissue and blood. Visceral (VAT) and subcutaneous (SAT) adipose tissue was obtained during scheduled 

non-acute surgical procedures including laparoscopic surgery for hiatus hernia repair or cholecystectomies. 
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Serum fasting glucose, insulin, triglycerides, total cholesterol and high-density lipoprotein were determined 

by standard enzymatic methods. Insulin resistance was estimated using homeostasis model assessment 

index-insulin resistance (HOMA-IR). For clinical and anthropometrical variables, normal distributed data 

were expressed as mean value±SD, and variables with no Gaussian distribution values were expressed as 

median (25th–75th quartiles). For analysis of expression variables that do not follow a Gaussian 

distribution, values were analyzed by non-parametrical tests (Kruskal-Wallis). When data were normally 

distributed, differences in clinical variables, laboratory parameters or expression variables between groups 

were compared by ANOVA with post hoc Scheffe correction. 

Total RNA was extracted from adipose tissue using the RNeasy Lipid Tissue Midi Kit (Qiagen Science, 

Hilden, Germany). Total RNA quantity was measured at 260 nm and purity was assessed by the 

OD260/OD280 ratio. One microgram of RNA was reverse transcribed with random primers using the 

Reverse Transcription System (Applied Byosistems, Foster City, CA). Quantitative gene expression was 

evaluated by Real-time PCR (qPCR) on a 7900HT Fast Real-Time PCR System using TaqMan Low 

Density Arrays (Applied Biosystems, micro fluidic cards) (BACE1   Hs01121195_m1 and PPARGC1A  

Hs01016719_m1). Results were calculated using the comparative Ct method (2- DD Ct), and expressed 

relative to the expression of the housekeeping genes cyclophilin 1A (PPIA) (Hs 04194521_s1) and 18S (Hs 

03928985_g1). 

For western blot analysis of sAPP in human serum samples, serum albumin and the major subclasses of 

gamma globulin (IgG) were removed using Amicon Ultra-0.5 centrifugal Filter devices (Millipore) 

following Pierce Albumin/IgG Removal Kit (Pierce Biotechnology, Boston, MA). 

 
 

2.4. RNA preparation and quantitative Real-Time RT-PCR  

The relative levels of specific mRNAs were assessed by Real Time RT-PCR, as previously described [28]. 

Primer sequences used are displayed in supplemental Table S3. 
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2.5.  Immunoblotting  

Isolation of total and nuclear extracts was performed as described elsewhere [28]. Western blot analysis 

was performed using antibodies against total and phospho-Akt (Ser473), adenylate cyclase, BACE1, CHOP, 

total and phospho-CREB (Ser133), total and phospho-eIF2, GRP78/BiP, insulin receptor -subunit 

(IRNRF1, total and phospho-PKA (Thr197), total and p-STAT3 (Tyr705)(Cell Signaling Technology 

Inc., Danvers, MA), OXPHOS (Mito Sciences, Eugene, OR), A42 (Biolegend), sAPP (Covance, 

Alnwick, UK), PGC-1Abcam, Cambridge, United Kingdom), GAPDH, IBlamin B, Oct-1, p65, 

PPAR, PPAR/, prohibitin (Santa Cruz), total and phospho-IRS-1 (Ser307) (Millipore, Billerica, MA) 

and -actin (Sigma, St. Louis, MO). Detection was achieved using the Western Lightning® Plus-ECL 

chemiluminescence kit (PerkinElmer, Waltham, MA). The equal loading of proteins was assessed by 

Ponceau S staining. The size of detected proteins was estimated using protein molecular-mass standards 

(Bio-Rad, Hercules, CA).  For validation, we used a protein marker (Precision Plus Protein Dual Color 

Standards 1610374; Bio-Rad, Hercules, CA, USA), on the same blots. All of these commercially available 

antibodies showed a single distinct band at the molecular weight indicated in the datasheets.  

 

2.6. Electrophoretic mobility shift assay (EMSA)  

The electrophoretic mobility shift assay (EMSA) was performed as previously described [28].  

 

2.7. Fatty acid oxidation (FAO) assay  

Total FAO was measured as previously described [29].  

 

2.8. Protein kinase A (PKA) activity and cAMP levels  

Commercial kits were used to assess PKA activity (Enzo Life Sciences, Farmingdale, NY) and cAMP 

levels (Biovision, Milpitas, CA). 

2.9. Deoxy-D-glucose,2-[1,2-3H(N)] uptake experiments  
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Cells were starved for 24 h and washed twice with HEPES buffer (20 mmol/l HEPES [pH 7.4], 140 mmol/l 

NaCl, 2.5 mmol/l MgSO4, 5 mmol/l KCl, 1 mmol/l CaCl2). Cells were preincubated with HEPES buffer 

for 1 h and incubated for 30 min in the presence or absence of 100 nmol/l insulin, followed by treatment 

with deoxy-D-glucose,2-[1,2-3H(N)]  (37,000 Bq/ml; Amersham Biosciences) for 20 min. The uptake was 

stopped by adding 10 たmol/l cytochalasin B. After washing with ice-cold 0.9% NaCl three times, cells 

were lysed with 0.1 mol/l NaOH. Non-specific uptake was measured in the presence of 10たmol/l 

cytochalasin B and was subtracted from all the values. 

 

2.10. Pyruvate tolerance test (PTT) 

For PTT analysis, mice were fasted for 15 h and intraperitoneally injected with pyruvate (2 g /Kg). Blood 

was taken from tail vein at 0, 15, 30, 45, 60, 75, 90, 105, and 120 min after pyruvate injection and blood 

glucose was measured with a glucometer. 

 

2.11. Statistical Analyses 

 Results were normalised to levels in control groups and are expressed as means  S.D. Significant 

differences were established by either the Student’s t test or one-way and two-way ANOVA, according to 

the number of groups compared, using GraphPad Prism software (GraphPad Software Inc. V4.03, San 

Diego, CA). When significant variations were found by two-way ANOVA, the Tukey-Kramer multiple 

comparison post-test was performed. Differences were considered significant at P<0.05. 
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3. Results 

3.1. Palmitate increases Bace1 expression through an NF-B-dependent mechanism 

It has been previously reported that palmitate treatment increases BACE1 protein levels in C2C12 

myotubes through post-translational stabilization of BACE1 protein caused by palmitate and ceramide 

[24,27]. However, it was unknown whether transcriptional mechanisms were involved. Interestingly, 

palmitate increased Bace1 mRNA levels in C2C12 myotubes (Figure 1A). Since palmitate increases NF-B 

activity in myotubes [12] and Bace1 is under the transcriptional control of NF-B [30], we evaluated 

whether palmitate-induced NF-B activation was responsible for the increase in Bace1 expression by using 

the NF-せB inhibitor parthenolide [31]. Parthenolide prevented the palmitate-induced increase in Bace1 

mRNA levels (Figure 1B), suggesting that palmitate increases its expression by activating NF-B. 

Therefore, the observed increase in BACE1 protein levels following palmitate exposure (Figure 1C) might 

be the result of the reported post-translational stabilization of BACE1 protein [24,27], but also of Bace1 

increased expression. When mice were fed a HFD we also observed an increase in the mRNA and protein 

levels of BACE1 in the skeletal muscle and white adipose tissue of these mice compared to those fed a 

standard diet (Figure 1D-G), suggesting that the transcriptional mechanism may also operate in vivo.  

 

3.2. BACE1 inhibition prevents palmitate-induced ER stress, inflammation, and insulin resistance 

Next, we hypothesized that BACE1 might contribute to some of the deleterious effects of palmitate, 

including ER stress, inflammation, and insulin resistance. To elucidate this, we used the BACE1 inhibitor 

Merck-3 (M3), reported to inhibit BACE1 activity in C2C12 cells [24,27]. M3 treatment significantly 

attenuated the palmitate-mediated increase in the expression of ER stress markers (sXbp1, Atf3, Chop, and 

Bip) (Figures 2A and B). Given the association of ER stress with inflammation and insulin resistance [15], 

we also evaluated the effect of M3 on palmitate-induced Tnf- and Il-6 expression. The increase in IL-6 

and Tnf- expression caused by palmitate was significantly blunted in the presence of M3 (Figure 2B). As 

expected, palmitate exposure reduced protein levels of the NF-B inhibitor IB, whereas in the presence 

of palmitate plus M3, this reduction was blunted (Figure 2C). Consistent with this, the nuclear protein 
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levels of the NF-B subunit p65 were raised by palmitate, but this increase was abolished when cells were 

co-incubated with the FA and M3 (Figure 2C). Likewise, NF-B DNA-binding activity increased (complex 

I) in nuclear extracts from palmitate-exposed cells, whereas the binding activity in cells co-incubated with 

palmitate and M3 was similar to that observed in control cells (Figure 2D).  

When we evaluated the insulin signaling pathway, we observed that, in agreement with a previous study 

reporting that ER stress reduced insulin receptor (IR) levels in adipocytes [32], protein levels of IRwere 

reduced in palmitate-exposed cells, which was prevented by M3 (Figure 2E). In line with activation of the 

NF-B pathway, IRS1 phosphorylation at Ser307 was increased in palmitate-exposed cells and this was 

blocked by M3 (Figure 2E). Finally, palmitate reduced insulin-stimulated Akt phosphorylation, whereas 

this reduction was reversed in cells co-incubated with palmitate and M3 (Figure 2F).  

 

3.3. BACE1 inhibition prevents the reduction in Pgc-1 expression caused by palmitate 

PGC-1 regulates the activity of several transcription factors that control the expression/function of genes 

involved in FAO, including PPAR and PPAR/. Since palmitate increases BACE1 protein levels 

and we reported that this FA reduces the expression of Pgc-1, we next evaluated whether BACE1 

inhibition prevented the reduction in Pgc-1 levels. Palmitate caused a reduction in Pgc-1 mRNA levels 

that was prevented by M3 (Figure 2G). Similarly, PGC-1 protein levels showed a significant reduction in 

palmitate-exposed cells, but this reduction was not observed when cells where co-incubated with palmitate 

plus M3 (Figure 2H). In agreement with these changes, palmitate induced a reduction in the mRNA and 

protein levels of PPARand PPAR/, which in turn regulate Pgc-1 expression [34], but their levels 

were restored in cells co-incubated with palmitate plus M3 (Figure 2G and H). The expression of PPAR-

target genes such as Acox, Cpt-1 and Mcad, as well as IB, which is also under the transcriptional 

control of PPAR, were reduced by palmitate (with the exception of Cpt-1) and restored when cells 

were incubated with the FA plus M3 (Figure 2I). Given that PGC-1regulates PPARg transcriptional 

activity [36], we assessed the DNA-binding activity of this transcription factor by performing EMSA. 

PPARg DNA-binding activity (complex I) was reduced by palmitate, in agreement with the reduction in 
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PGC-1 protein levels, whereas this reduction was partially prevented in cells co-incubated with palmitate 

and M3 (Figure 2J). It is worth pointing out that incubation of the cells only with the M3 compound 

significantly increased mRNA levels of Ppar, Ppar/, Pgc-1, and the PPAR-target gene Cpt-1 

(Supplementary Figure 1A), suggesting that basal expression of these genes may be repressed by BACE1 

activity.  

 

3.4. Bace1 knockdown increases PGC-1 in myotubes and skeletal muscle 

To clearly demonstrate that BACE1 modulates PGC-1 we used genetic approaches. Knockdown of 

Bace1 by siRNA transfection in C2C12 cells (Supplementary Figure 1B and C) led to a significant increase 

in the expression and the protein levels of PGC-1, PPAR and PPAR/ (Figure 3A and B). In addition, 

expression of the PPAR-target genes Cpt-1, Acox and Mcad was significantly increased by Bace1 

knockdown, whereas expression of Chop, Tnf- and Mcp-1 were reduced (Figure 3C). Moreover, IB 

and IR protein levels were also increased, whereas phospho-IRS1 (Ser307) levels were decreased (Figure 

3D). In agreement with this, a significant increase in PGC-1expression and protein levels in skeletal 

muscle from Bace1-deficient mice was observedFigures 3E and FMoreover, PPAR and PPAR/ 

expression and protein levels were also enhanced. Likewise, the expression of Ib, Cpt-1, Acox, and 

Mcad was increased in Bace1-deficient mice, whereas Mcp-1, Tnf- and Chop expression was decreased 

compared with wild-type littermates (Figure 3G). Similarly, the protein levels of IB and IR were 

increased in the skeletal muscle of Bace1-deficient mice compared with wild-type littermates, whereas 

phospho-eIF2, which induces Chop levels, and phospho-IRS1 (Ser307) were decreased (Figure 3H).  

 

3.5. Bace1 knockdown prevents the reduction in PGC1 expression and the inflammatory process 

caused by a HFD in skeletal muscle 

When we evaluated the effects of a HFD in the skeletal muscle of wild-type and BACE1-deficient mice, a 

reduction in Pgc-1 expression was observed in wild-type mice fed a HFD, but the increase in the 

expression of this co-activator displayed in BACE1-/- mice prevented the reduction in Pgc-1 mRNA levels 
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when these mice were fed a HFD (Figure 3I). Consistent with the reduction in Pgc-1 expression, Ppar 

mRNA levels were also down-regulated in the skeletal muscle of wild-type mice fed a HFD, whereas this 

reduction was prevented in BACE1-/- mice fed the HFD. Likewise, the HFD reduced Ibexpression, 

whereas that of Tnf- and Il -6 was increased in wild-type mice and these changes were prevented in 

BACE1-deficient mice fed a HFD (Figure 3I). 

 

3.6. sAPP mimics the effects of palmitate 

BACE1 cleaves APP releasing sAPP, which we hypothesized might be responsible for the effects caused 

by BACE1 in palmitate-exposed cells. sAPP concentration was selected after performing curve-

concentration studies (Supplementary Figures 1D-G). sAPPcaused a reduction similar to that caused by 

palmitate in Pgc-1 mRNA (Figure 4A) and protein levels (Figure 4B). In agreement with this, the mRNA 

levels of Ppar and Ppar/ and several of their target genes involved in FAO, including Cpt-1, Acox 

and Mcad were decreased by sAPP (Figure 4A). The effect of sAPP on the expression of these genes 

differed from that of palmitate only in the case of Cpt-1 expression. No changes were observed in the 

expression levels of Cpt-1, Acox, Mcad and Ppar/ when myotubes were exposed to sAPP, whereas, 

in contrast to sAPP, Pgc-1 and Ppar expression was increased (Supplementary Figure 2A). Consistent 

with the reported regulation of mitochondrial oxidative phosphorylation (OXPHOS) genes by PGC-

1, palmitate and sAPP reduced the protein levels of complexes I, II, III , IV and V (Figure 4C). In 

addition, sAPPelicited a significant increase in the expression of Atf3, Chop, Tnf- and IL-6, whereas 

I expression was reduced (Figure 4D). Likewise, sAPP caused an increase in nuclear p65 protein 

levels, a reduction in IR an increase in phospho-IRS1 (Ser307) and a consequent reduction in insulin-

stimulated Akt phosphorylation, identical to that observed for palmitate (Figures 4E-H). No changes were 

observed in the expression or protein levels of ER stress and inflammation markers following sAPP 

treatment (Supplementary Figures 2B and C). Consistent with the reduction in the attenuation of the insulin 

signaling pathway, sAPP also reduced insulin-stimulated glucose uptake, whereas sAPP did not (Figure 

4I). Since our findings indicate that BACE1 activity and sAPP regulate the expression of genes involved 
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in FAO, we next determined whether the changes in the expression of these genes affected FAO in 

myotubes exposed to palmitate in the presence or absence of M3 and to sAPP. Palmitate significantly 

reduced FAO and this effect was blunted by co-incubation with M3, while sAPP caused a reduction in 

FAO similar to that observed for palmitate (Figure 4J). 

 

3.7. BACE1 expression and plasma sAPP levels are increased in type 2 diabetic patients 

Next, we explored whether the relationship between BACE1 and PGC-1 was also observed in humans. In 

subcutaneous white adipose tissue (WAT) BACE1 expression was increased in obese and especially in type 

2 diabetic patients compared with lean subjects (Figure 5A). Interestingly, this increase was accompanied 

by a reduction in PGC- mRNA levels. These changes were not observed in visceral WAT, where the 

expression of BACE1 was higher than in subcutaneous WAT (Supplementary Figures 2D). Interestingly, 

mice fed a HFD exhibited higher plasma sAPP levels compared to mice fed a standard diet, whereas no 

changes were observed in A42 (Figure 5B). In humans, although no changes were observed between 

obese and lean subjects (Figure 5C), a significant increase was observed in plasma sAPP levels from type 

2 diabetic patients compared with obese non-diabetic subjects (Figure 5D). Interestingly, a unique 

intramuscular injection of sAPP in gastrocnemius muscle resulted in an increase in the expression of 

Chop and Atf3, whereas BiP levels were not affected (Figure 5E). sAPP also upregulated Tnf and Il-6 

expression (Figure 5F), whereas a reduction in Pgc-1 and Ppar mRNA levels was observed (Figure 5G). 

Likewise, PGC-1and protein levels were decreased in skeletal muscle following in situ 

administration of sAPP, while phospho-eIF2 and BiP protein levels were enhanced (Figure 5H). 

 

3.8. sAPP administration to mice induces ER stress, inflammation and reduces PGC-1  

Surprisingly, intraperitoneal acute administration of sAPP (10 µg/mouse) before (20.00 h) and after (8.00 

h) an overnight fasting to conduct a GTT resulted in a reduction in blood glucose levels (Figure 6A) and 

decreased the AUC of plasma glucose levels in the GTT (Figure 6B). In contrast, the AUC of plasma 

glucose levels was increased by sAPP in the ITT, indicating a reduction in insulin sensitivity (Figure 6B). 
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sAPP administration caused an increase in the plasma levels of this peptide (Supplementary Figure 2E) 

similar to that caused by HFD and this led to upregulation of Atf3, Tnf and IL-6 expression in skeletal 

muscle, whereas no significant changes were observed in BiP and Chop (Figure 6C). Consistent with the 

increased expression of inflammatory markers, the protein levels of IB were decreased by sAPP 

administration, whereas BiP protein abundance was increased (Figure 6D). sAPP administration also 

reduced Pgc-1expression and protein levels and the mRNA abundance of Ppar in skeletal muscle 

(Figures 6E-F). Consistent with the reduction in insulin sensitivity suggested by the ITT, IR protein 

abundance was reduced and the levels of phospho-IRS1 (Ser307) were enhanced by sAPP in skeletal 

muscle (Figure 6G). In epididymal white adipose tissue we observed similar changes to those reported in 

skeletal muscle following sAPP treatment (Supplementary Figure 2H). Given the discrepancy between 

the GTT and the ITT, we examined sAPPeffects in liver. Hepatic Pgc-1 Ppar and Ibexpression, 

protein levels of PGC-1 and of its downstream transcription factor nuclear respiratory factor 1 (NRF-1), 

and proteins of the insulin signaling pathway, were reduced by sAPP (Figure 6H-J). In contrast, Bip, 

Chop and Tnf expression was upregulated (Figure 6H). PGC-1 promotes hepatic gluconeogenesis by 

regulating the expression of rate-limiting gluconeogenic genes such as PEPCK and G6Pase [38] and in 

agreement with the reduction in plasma glucose levels and in hepatic Pgc-1 expression in mice treated 

with sAPP, these mice also exhibit a reduction in hepatic Pepck and G6Pase expression (Figure 6H). To 

clearly demonstrate that sAPPく affects gluconeogenesis in liver we performed a PTT. As shown in Figure 

6K, sAPPく repressed glucose synthesis from pyruvate.  

  

3.9. BACE1 regulates CREB phosphorylation 

Next, we focused on the potential mechanisms by which BACE1 and sAPP regulate the expression of 

Pgc-1, since its reduction seems to be the main step driving the changes caused by palmitate-induced up-

regulation of -secretase. Pgc-1 expression is regulated by the transcription factor CREB [39,40]. CREB 

is activated following phosphorylation at Ser133 by PKA, which is allosterically activated by cAMP [41]. 

Phosphorylated CREB then interacts with the transcription co-activator CREB-binding protein to initiate 
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the transcription and translation of CREB-target genes, such as Pgc-1. Of note, it has previously 

been reported that elevated BACE1 protein levels reduce CREB phosphorylation, PKA activity, and cAMP 

levels in neuroblastoma cells and rat primary cortical neurons, contributing to memory and cognitive 

deficits typical of AD [42]. We hypothesized that palmitate-induced BACE1 protein levels might affect 

CREB phosphorylation, leading to decreased Pgc-1 expression, which contributes to reduce FAO, 

thereby exacerbating inflammation and insulin resistance. First, we examined whether BACE1 inhibition 

and sAPP affected the PKA/CREB pathway. Exposure to palmitate and sAPP reduced phospho-CREB 

(Ser133) levels, whereas the reduction caused by palmitate was prevented by pre-treatment with M3 

(Figures 7A and B). Consistent with this, increased levels of phospho-CREB were observed following 

Bace1 knockdown in myotubes and in skeletal muscle of BACE1-/- mice (Figures 7C and D). Exposure to 

palmitate reduced phospho-protein levels (Thr197) of the catalytic subunit of PKA (Figure 7E), which is 

required for full catalytic activity of this kinase [43], and this reduction was blunted by M3. sAPPcaused 

a stronger reduction in phospho-PKA protein levels than that observed for palmitate (Figure 7F). Likewise, 

Bace1 knockdown in myotubes and BACE1-deficiency in skeletal muscle resulted in increased levels of 

phospho-PKA (Figure 7G and H). In addition, PKA activity was reduced following exposure to sAPP and 

palmitate, the latter being reversed by pre-treatment with M3 (Figure 7I). Finally, cells exposed to 

palmitate and sAPP also showed a reduction in cAMP levels, whereas M3 pre-treatment prevented the 

reduction caused by the FA (Figure 7J). Moreover, Chen et al. [42] demonstrated that BACE1 may also 

reduce the cAMP/PKA/CREB pathway by interacting with adenylate cyclase. To examine whether 

palmitate affects the interaction between BACE1 and adenylate cyclase, we performed protein co-

immunoprecipitation. In agreement with the increase in protein levels caused by palmitate, this FA raised 

the interaction between adenylate cyclase and BACE1, whereas this increase was prevented in cells 

exposed to palmitate plus M3 (Figure 7K). 

We then examined whether sAPP also affected the interaction between BACE1 and AC. Interestingly, 

mice treated with sAPP showed an increase in the protein levels of BACE1 in skeletal muscle (Figure 

8A),  suggesting that it has a similar effect to that shown for palmitate. In addition, sAPP enhanced the 
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expression of Bace1 and reduced the mRNA levels of Pgc-1 in C2C12 myotubes and these changes were 

prevented by the NF-B inhibitor parthenolide, suggesting that they were dependent on the activation of 

this transcription factor (Figure 8B). Likewise, the protein levels of both BACE1 and PGC-1 showed the 

same behavior (Figure 8C). Finally, co-immunoprecipitation studies demonstrated that C2C12 myotubes 

exposed to sAPP showed enhanced interaction between BACE1 and AC and that this interaction was 

prevented by parthenolide (Figure 8D). Moreover, this interaction was also increased in the skeletal muscle 

of mice treated with sAPP (Figure 8E).  

 

4. Discussion 

The findings of the present study indicate that the increase in BACE1 levels caused by palmitate can 

contribute to lipid-induced ER stress, inflammation, and insulin resistance in skeletal muscle cells and 

these effects can be attenuated by BACE1 inhibition. Our findings demonstrate that the BACE1 product 

sAPP mimicked most of the effects of palmitate. This is the first time these network interactions have 

been demonstrated and add an important dimension to the mechanisms driving insulin resistance.    

 

The changes caused by palmitate and sAPP might be the result of the reduction in PGC-1. Furthermore, 

the effects observed in skeletal muscle from Bace1-deficient mice confirmed that BACE1 contributes to 

reduce PGC-1 levels. This transcriptional co-activator preserves OXPHOS genes [37] and co-activates 

and increases the expression of transcription factors involved in FAO, such as PPAR and PPAR/ 

[33,34]. Therefore, the reduction in PGC-1 levels caused by palmitate and sAPP may reduce FAO, 

increasing the amount of palmitate available and ultimately exacerbating ER stress, inflammation, and 

insulin resistance. In addition, PGC-1 has a role in inflammation in skeletal muscle. For instance, PGC-

1 knockout mice show higher basal mRNA expression of Tnf- and Il -6 in skeletal muscle compared with 

wild-type mice [44-46].  
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Although it has been reported that A42 induces hepatic insulin resistance by activating the 

JAK2/STAT3/SOCS1 pathway [47], we did not observe changes in these pathway in C2C12 myotubes 

exposed to sAPP or in mice treated with this peptide (Supplementary Figure 3).  

 

On the other hand, despite it has been previously reported that PGC-1 regulates Bace1 promoter in 

neurons [48], in myotubes this mechanism does not seem operate, since when Pgc-1 was overexpressed 

in human LHCN-M2 cells, no changes were observed in the expression of Bace1 (Supplementary Figure 

4). On the other hand, CREB binding to the PGC-1 promoter plays a key role in activating PGC-1 

expression in skeletal muscle [33], and a previous study reported that BACE1 reduces CREB 

phosphorylation in neurons [42]. In addition, CREB is phosphorylated by PKA following activation by 

cAMP. Our findings suggest that BACE1 activity down-regulates PGC-1 levels by attenuating the cAMP-

PKA-CREB pathway. In neurons, there are conflicting results about whether the effects of BACE1 on the 

cAMP/PKA/CREB pathway are dependent on its enzymatic activity and A levels [42,49]. Tong et al. [49] 

reported that A-(1-42) suppressed CREB phosphorylation in cortical neurons. In contrast, Chen et al. [42] 

demonstrated that enhanced BACE1 levels reduced CREB phosphorylation, PKA activity, and cAMP 

content in neurons and mouse brains, and that these effects were independent of BACE1 activity and A 

levels. These latter authors reported that BACE1 interacts via its transmembrane domain with adenylate 

cyclase to inactivate the cAMP/PKA/CREB pathway. Our findings also show that palmitate exposure, 

likely as the result of the increase in BACE1 protein levels, enhances its interaction with adenylate cyclase, 

a mechanism that may also contribute to reduce cAMP levels, as previously reported [42]. Although it has 

been reported that endogenous carnitine stores in L6 myotubes are low [50] and this may lead to cytotoxic 

responses of the myocytes when incubated for 24 with palmitate alone, we did not observe differences in 

cell viability or in some of the parameters analyzed in the absence or in the presence of carnitine for 16 h 

(Supplementary Figure 5). 
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The levels of sAPP were increased in plasma of mice fed a HFD, which is consistent with the reported 

increase in myotubes incubated with the FA-derivative ceramide [24], whereas the levels of A-42 were 

not altered. In humans we found that BACE1 expression was increased in the subcutaneous WAT of obese 

and, especially in type 2 diabetic patients compared with lean subjects and this increase was accompanied 

by a reduction in PGC-1 mRNA levels. In agreement with the increase in BACE1 expression in 

subcutaneous WAT, sAPP plasma levels were also enhanced in obese type 2 diabetic patients compared 

with obese non-diabetic subjects. The lack of increase in obese subjects compared with lean subjects 

suggests that the increase in the levels of plasma sAPP might be associated with the transition from 

obesity to T2DM. Acute administration of sAPP to mice elicited similar effects to those observed in vitro, 

causing an upregulation of the markers of ER stress, inflammation and insulin resistance in skeletal muscle.  

Interestingly, our findings show that sAPP mimics the effects of palmitate and both increase the levels of 

BACE1 through an NF-B-dependent mechanism. In fact, it has been reported that NF-B increases 

BACE1 expression by promoter transactivation [30]. Moreover, inhibition of NF-B prevented the 

interaction between BACE1 and AC. Therefore, these data suggest that palmitate and sAPP increase the 

protein levels of BACE1 and as a result of this increase BACE1 binds and inhibits the activity of AC, 

ultimately leading to the reduction of the cAMP-PKA-CREB pathway and the reduction in Pgc-1 

expression (Figure 8E).  

 

Mice treated with sAPP showed a reduction in insulin sensitivity in the ITT, but surprisingly, plasma 

glucose levels were reduced by sAPP administration. No significant changes were observed in insulin 

levels during the GTT (Supplementary Figure 6). In liver, PGC-1 promotes hepatic gluconeogenesis [43], 

and sAPP reduced hepatic PGC-1 levels and the expression of genes regulated by this transcriptional co-

activator involved in gluconeogenesis. Since PGC-1 has opposite effects on hepatic and muscle insulin 

sensitivity [51], and gluconeogenesis strongly contributes to sustain plasma glucose levels under fasting 

conditions, for instance when glycogen stores are low after an overnight fast, the net result of a decrease in 

PGC-1 levels following sAPP treatment is a reduction in plasma glucose levels.  
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On the basis of our findings, we propose that BACE1 and its product sAPPcontribute to lipid-induced 

ER stress, inflammation, and insulin resistance in skeletal muscle, and that targeting BACE1 may provide a 

new therapeutic option for the prevention and treatment of insulin resistance and T2DM.  
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Figure legends 

FIG. 1. Palmitate modulates Bace1 mRNA expression in myotubes. A, mRNA abundance of Bace1 from 

mouse C2C12 myotubes incubated in the presence or absence (Ct: control, white bars) of 0.5 mM palmitate 

(Pal, black bars) for different times. The graphs show quantification of the aprt-normalized mRNA levels, 

expressed as a percentage of control samples ± SD of six independent experiments. B, Bace1 mRNA levels 

in mouse C2C12 myotubes incubated in the presence or absence (Ct: control) of 0.5 mM palmitate (Pal) or 

0.5 mM palmitate plus 10 M parthenolide (Parth) for 8 h. Data are means samples ± SD of six 

independent experiments. C, Cell lysates from C2C12 myotubes incubated in the presence or absence (Ct: 

control) of 0.5 mM palmitate (Pal) for 8 and 16 h were assayed for Western-blot analysis with antibodies 

against BACE1 and -actin. The graphs show quantification of normalized protein levels expressed as a 

percentage of control samples ± SD of four independent experiments. Skeletal muscle and white adipose 

tissue from male mice fed a standard diet (Control, CT) or a high-fat diet (HFD) (n=5 per group) for 12 

weeks. mRNA abundance (D) and protein levels (E) of BACE1 in skeletal muscle. mRNA abundance (F) 

and protein levels (G) of BACE1 in white adipose tissue. ***p<0.001, **p<0.01 and *p<0.05 vs. control. 

###p<0.001 vs. palmitate-exposed cells.  

 

FIG. 2. BACE1 inhibition attenuates palmitate-induced ER stress, inflammation, and insulin resistance in 

myotubes. Mouse C2C12 myotubes were incubated in the presence or absence (Ct: control) of 0.5 mM 

palmitate (Pal) or palmitate 0.5 mM plus 100 nM Merck 3 (M3) for 16 h. A, spliced Xbp1 (sXbp1) mRNA 

levels. uXBP1, unspliced XBP1. B, Atf3, Chop, Tnf-, Il -6, and BiP mRNA levels. The graphs show 

quantification of aprt-normalized mRNA levels, expressed as a percentage of control samples ± SD of six 

independent experiments. C, Cell lysates were subjected to Western blot analysis with antibodies against 

IB and p65. The graphs show quantification of normalized protein levels expressed as a percentage of 

control samples ± SD of four independent experiments. D, Autoradiograph of EMSA performed with a 32P-

labeled NF-せB nucleotide and crude nuclear protein extract (NE) from CβC1β myotubes. Two main 

specific complexes (I and II) based on competition with a molar excess of unlabeled probe are shown. The 
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supershift immune complex (IC) obtained by incubating NE with an antibody (Ab) directed against the p65 

subunit of NF-せB is also shown. Competition and supershift studies demonstrated that band I was specific 

and mainly consisted of the p65 subunit of NF-B. Cell lysates were subjected to Western blot analysis 

with antibodies against IR, phospho-IRS1 (Ser307) (E) and total and phospho-Akt (Ser473) (F). Where 

indicated, cells were incubated with 100 nM insulin (Ins) for the last 10 min. The graphs show 

quantification of normalized protein levels expressed as a percentage of control samples ± SD of four 

independent experiments. G, Pgc-1 Ppar and Ppar/ mRNA levels. The graphs show quantification 

of aprt-normalized mRNA levels, expressed as a percentage of control samples ± SD of six independent 

experiments. H, PGC-1, PPARand PPAR/protein levels. I, I, Acox, Mcad and Cpt-1 mRNA 

levels (n=6). J, Autoradiograph of EMSA performed with a 32P-labeled PPRE nucleotide and crude nuclear 

protein extract (NE) from C2C12 myotubes. Two main specific complexes (I and II) based on competition 

with a molar excess of unlabeled probe are shown. The supershift immune complex (IC) obtained by 

incubating NE with an antibody (Ab) directed against PPAR is also shown. PPRE, Peroxisome 

proliferator response element.***p<0.001, **p<0.01 and *p<0.05 vs. control, ###p<0.001, ##p<0.01 and 

#p<0.05 vs. palmitate-exposed cells. †p<0.05 vs. control cells incubated with insulin.  

 

 

FIG. 3. BACE1 deficiency increases PGC-1 levels. C2C12 cells were transfected with control or BACE1 

siRNA for 24 hours and the expression (A) and protein levels (B) of PGC-1, PPAR and PPAR/ were 

examined (n=4). C, Chop, Tnf-, Mcp-1, Cpt-1, Acox and Mcad mRNA levels in C2C12 cells transfected 

with control or BACE1 siRNA for 24 hours (n=5). D, Cell lysates from C2C12 cells transfected with 

control or BACE1 siRNA for 24 hours were subjected to Western blot analysis with antibodies against 

IB and IRand phospho-IRS1 (Ser307). The graphs show quantification of normalized protein levels 

expressed as a percentage of control samples ± SD of four independent experiments. ***p<0.001, 

**p<0.01 and *p<0.05 vs. control. Skeletal muscle from Bace1-deficient mice show increased expression 

and protein levels of genes involved in FA metabolism, inflammation and insulin signaling. Skeletal 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 27 

muscle from male wild-type and BACE1-null mice was used (n=6 per group). mRNA abundance (E) and 

protein levels (F) of PGC-1PPAR and PPAR/. G, mRNA levels of IB, Mcp-1, Tnf-, Chop, Cpt-

1, Acox and Mcad. The graphs show quantification of aprt-normalized mRNA levels, expressed as a 

percentage of control samples ± SD of six independent experiments. H, Cell lysates from wild-type and 

BACE1-null mice were subjected to Western blot analysis with antibodies against IB, total and 

phospho-eIF2, IRand phospho-IRS1 (Ser307). The graphs show quantification of normalized protein 

levels expressed as a percentage of control samples ± SD (n=5). ***p<0.001, **p<0.01 and *p<0.05 vs. 

control. I, Bace1 knockdown prevents the reduction in Pgc-1 expression caused by an HFD in skeletal 

muscle. Skeletal muscle from wild-type and BACE1-null mice fed with a regular chow diet and HFD for 

20 weeks. mRNA abundance of Pgc-1, Ppar, Ib, Tnf- and Il -6. The graphs show quantification of 

aprt-normalized mRNA levels, expressed as a percentage of control samples ± SD (n=5). ***p<0.001, 

**p<0.01 and *p<0.05 vs. wild-type mice fed a regular chow diet, ###p<0.001 and ##p<0.01 and vs. wild-

type mice fed an HFD. 

 

FIG. 4. sAPP mimics the effects of palmitate exposure on ER stress, inflammation, and insulin 

resistance. Mouse C2C12 myotubes were incubated in the presence or absence (Ct: control) of 0.5 mM 

palmitate (Pal) for 16 h or 20 nM sAPP for 24 plus 16 h. A, Pgc-1, Ppar, Ppar/, Cpt-1, Acox and 

Mcad mRNA levels. The graphs show quantification of aprt-normalized mRNA levels, expressed as a 

percentage of control samples ± SD of six independent experiments. Cell lysates were subjected to 

Western blot analysis with antibodies against (PGC-1) (B) or different members of the OXPHOS 

complexes (n=4) (C). D, Atf3, Chop, Tnf-, Il -6 and IBmRNA levels. Cell lysates were subjected to 

Western blot analysis with antibody against the p65 subunit of NF-せB (E), IR (F), phospho-IRS1 (Ser307) 

(G) and phospho-Akt (Ser473) (H) (n=4). Where indicated, cells were incubated with 100 nM insulin (Ins) 

for the last 10 min. The graphs show quantification of normalized protein levels expressed as a percentage 

of control samples ± SD of four independent experiments. I, 2-DG uptake was assessed without or with 

insulin (n=6). cells were incubated with 20 nM sAPP or sAPP for 24 plus 16 h. *p<0.05 vs. control. 
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###p<0.001 vs. insulin-stimulated cells. J, BACE1 inhibition and sAPP regulate FAO oxidation (FAO) in 

C2C12 myotubes. Total FAO rate represented as the sum of acid-soluble products plus CO2 oxidation. 

Mouse C2C12 myotubes were incubated in the presence or absence (Ct: control) of 0.5 mM palmitate 

(Pal), incubated with 100 nM Merck 3 alone for 24 plus 16 h (M3), pre-incubated with Merck3 for 24 h 

and then incubated with palmitate 0.5 mM plus 100 nM Merck3 for 16 h (Pal+M3) or cells were incubated 

with 20 nM sAPP for 24 plus 16 h (n=4). ***p<0.001, **p<0.01 and *p<0.05 vs. control. ###p<0.001, 

##p<0.01 and #p<0.05 vs. palmitate-exposed cells, †††p<0.001 vs. control cells incubated with insulin. 

 

 
FIG. 5. Increased BACE1 expression in subcutaneous adipose tissue is accompanied by enhanced plasma 

levels of sAPP in type 2 diabetic subjects. A, qRT-PCR analysis of BACE1 and PGC-1 in subcutaneous 

adipose tissue of lean (n=18), obese (n=21) and type 2 diabetic patients (T2D) (n=23). The mRNA 

expression of each gene was normalized to GAPDH. Values are reported as mean ± SEM. B, sAPP and 

A42 in the plasma of mice fed a control diet (Ct, white bars) or a HFD (black bars) for 3 weeks. Ponceau 

S staining served as loading controls. ***p<0.001 vs. mice fed a regular diet. Representative images of 

plasma sAPP levels in obese and lean subjects (C) and type 2 diabetic (T2D) and obese subjects (D). 

Ponceau S staining served as loading controls. *p<0.05 vs. obese subjects. Intramuscular (i.m.) injection of 

sAPP in the gastrocnemius muscle of mice reduces PGC-1 levels. E, Chop, Atf3, BiP, Tnf-, and Il -6 

mRNA levels. F, Pgc-1a, and Ppar mRNA abundance. The graphs show quantification of aprt-

normalized mRNA levels, expressed as a percentage of control samples ± SD (n=6 per group). G, Protein 

extracts from gastrocnemius muscle of mice treated with sAPP (i.m.injection) or vehicle were subjected 

to Western blot analysis with antibodies against PGC-1, BiP, total and phospho-eIF2 and IB. The 

graphs show quantification of normalized protein levels expressed as a percentage of control samples ± SD 

(n=6 per group). ***p<0.001, **p<0.01 and *p<0.05 vs. control mice treated with vehicle. 
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FIG. 6. sAPP administration to mice reduces PGC-1 in skeletal muscle and liver, reduces insulin 

sensitivity and lowers basal glucose levels. sAPP or vehicle was administered to mice (i.p.) (10 

µg/mouse) before (20.00 h) and after (8.00 h) an overnight fasting to conduct either a GTT or a ITT. A, 

plasma basal glucose levels 6 hours later the last administration of sAPP(n=6 per group). B, GTT and 

ITT and area under the curve (AUC). Data are presented as the mean ± S.D. (n=6 per group). C, Atf3, BiP, 

Chop, Tnf-, and IL-6 mRNA levels in skeletal muscle from mice treated with vehicle or sAPP. The 

graphs show quantification of aprt-normalized mRNA levels, expressed as a percentage of control samples 

± SD (n=6 per group). D, IB and BiP protein levels in skeletal muscle from mice treated with vehicle or 

sAPP(n=5 per group). E, Pgc-1a, and Ppar mRNA abundance. PGC-1, phospho-CREB (Ser133), 

phospho-PKA (Thr197) (F), IR, and phospho-IRS1 (Ser307) (G) protein levels in skeletal muscle from mice 

treated with vehicle or sAPP(n=5 per group). H, Pgc-1, Ppar Atf3, BiP, Chop Tnf-, IL-6, 

Pepck, and G6Pase mRNA abundance in liver from mice treated with vehicle or sAPP(n=6 per group). I, 

PGC-1 and NRF-1 protein levels in liver from mice treated with vehicle or sAPP(n=5 per group). J, 

IR, and phospho-IRS1 (Ser307) protein levels in liver from mice treated with vehicle or sAPP(n=5 per 

group). K, Pyruvate tolerance test and AUC (n=4 per group). ***p<0.001, **p<0.01 and *p<0.05 vs. 

control. 

 

 

FIG. 7. BACE1 regulates the cAMP-PKA-CREB pathway in myotubes. Mouse C2C12 myotubes were 

incubated in the presence or absence (Ct: control) of 0.5 mM palmitate (Pal) or pre-incubated with 100 nM 

Merck 3 (M3) for 24 h and then incubated with palmitate 0.5 mM plus 100 nM M3 for 16 h or cells were 

incubated with 20 nM sAPP for 40 h. A, B, Cell lysates were subjected to Western blot analysis with 

antibodies against total and phospho-CREB (Ser133). Phospho-CREB (Ser133) protein levels in C2C12 cells 

transfected with control or BACE1 siRNA for 24 hours (C) or in skeletal muscle from wild-type and 

Bace1-deficient mice (D) (n=4-6 per group). Phospho-PKA (Thr197) protein levels in C2C12 myotubes 

exposed to palmitate or palmitate plus M3 (E) or exposed to sAPP (F) (n=4-6 per group). Phospho-PKA 
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(Thr197) protein levels in C2C12 cells transfected with control or BACE1 siRNA for 24 h (G) or in skeletal 

muscle from wild-type and Bace1-deficient mice (H). The graphs show quantification of normalized 

protein levels expressed as a percentage of control samples ± SD (n=4-6 per group). PKA activity (I) and 

cAMP levels (J) (n=5). K, C2C12 protein extracts were immunoprecipitated using an adenylate cyclase 

antibody and then subjected to SDS-PAGE and immunoblotted with an anti-BACE1 antibody. No 

immunoprecipitation was observed with the unrelated antibody OCT1, indicating that the effect of the anti-

BACE1 antibody was specific. ***p<0.001, **p<0.01 and *p<0.05 vs. control, ###p<0.001, ##p<0.01 and 

#p<0.05 vs. palmitate-exposed cells. 

 

 

FIG. 8. sAPP increases BACE1 levels and its interaction with AC. A, BACE1 protein levels in skeletal 

muscle from mice treated with vehicle or sAPP(i.p.) (10 µg/mouse) twice in a day. PGC-1 and BACE1 

mRNA (B) and protein (C) levels in mouse C2C12 myotubes incubated in the presence or absence (Ct: 

control) of 20 nM sAPP for 24 plus 16 h or 20 nM sAPPplus 10 M parthenolide (Parth). The graphs 

show quantification of the aprt-normalized mRNA levels, expressed as a percentage of control samples ± 

SD of six independent experiments. ***p<0.001 vs. control. ###p<0.001 vs. sAPP-exposed cells. C2C12 

myotubes (D) and skeletal muscle from mice treated with vehicle or sAPP (E) protein extracts were 

immunoprecipitated using an adenylate cyclase antibody and then subjected to SDS-PAGE and 

immunoblotted with an anti-BACE1 antibody. No immunoprecipitation was observed with the unrelated 

antibody OCT1, indicating that the effect of the anti-BACE1 antibody was specific. FProposed 

mechanism by which the lipid-induced increase in BACE1 and sAPP reduce PGC-1 and exacerbates 

lipid-induced ER stress, inflammation and insulin resistance in skeletal muscle and reduce gluconeogenesis 

in liver. 
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