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Abstract 

Based on all electron relativistic density functional theory (DFT) calculations, the properties of 

single oxygen vacancies in TiO2 nanoparticles have been obtained using a suitable representative 

model consisting of an octahedral (TiO2)84 nanoparticle of ~3 nm size terminated with (101) facets. 

This nanoparticle can be safely considered at the onset of the so-called scalable regime where 

properties scale linearly with size towards bulk like limit and hence results can be more directly 

compared to experiment. A set of reduced Ti84O167 nanoparticles are selected to investigate the 

geometrical, energetical and electronical properties by using PBE semi-local functional with three 

different amounts of Fock exchange 0% (PBE), 12.5% (PBEx) and 25% (PBE0). In particular, 

using the PBEx hybrid functional, previously validated for bulk anatase and rutile, it is predicted 

that the highly (three)-coordinated oxygen atom, located in the subsurface, and the least coordinated 

one at top sites are energetically the most suitable candidate for generating the oxygen vacancy. The 

subsurface case is in line with conclusions from experiments carried out on (101) single crystal 

anatase surfaces. The electronic structure of the reduced particles suggests that these would have 

better photocatalytic activity than their stoichiometric counterparts. Nevertheless, several properties 

of reduced TiO2 NPs are strongly affected by the choice of the exchange-correlation functional 

implying that, in absence of validation by comparison to experiment, predictions must be taken with 

caution 
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Introduction 

Titanium dioxide (TiO2), a semiconducting metal oxide, is widely used as a photocatalyst 

because of its chemical stability, low cost, and nontoxicity.1-4 Both rutile and, especially, anatase 

nanostructures catalyze the overall splitting of water into molecular hydrogen and oxygen when 

illuminated with ultraviolet (UV) light.5-8 This photocatalytic process represents a promising clean 

and sustainable alternative to fossil fuels.9,10 However, applications of TiO2 show a low quantum 

yield (QY) and limited harvesting of visible light which is a direct consequence of the too large 

band gap of this material. Moreover, fast recombination of photogenerated electron-hole pairs 

represents an additional problem. To tackle the above obstacles, several strategies have been 

applied to modify TiO2, like depositing noble metals (e.g. Pt),11 doping with transition-metal ions 

(e.g. Cu) or nonmetal elements (e.g. N),12 adding electron carriers (e.g. graphene)13 or coupling to 

small band gap quantum dots (e.g. PdS).14 In addition, TiO2 nanostructuring with specific 

morphologies and crystal facets has emerged as a promising way to improve the QY with visible 

light.15,16  

Alternatively, engineering defects on the TiO2 nanostructures appears as another 

encouraging way to circumvent the aforementioned low QY of TiO2.17 It has been reported that 

creating a highly disordered surface layer and a large amount of oxygen vacancies (Ov) in TiO2 not 

only improves visible and near-infrared light absorption but also leads to a superior activity in 

photocatalytic degradation of organic pollutants and H2 evolution from H2O.18 From simple electron 

counting and assuming formal oxidation states, one neutral oxygen vacancy, Ov, provides two 

excess electrons to the TiO2 system, and these electrons are available for the reduction of Ti4+ to 

Ti3+. Indeed, the formation of Ti3+ center has been confirmed by experiments such as photoelectron 

spectroscopy and electron paramagnetic resonance (EPR).19,20 Recently, it has been shown that Ti3+ 

self-doped TiO2 nanocrystals with a 1:80 Ti3+:Ti4+ ratio exhibit a remarkable enhancement of the 

photocatalytic efficiency; this is precisely ascribed to the presence of Ti3+ centers and concomitant 

Ov point defects.21 The combination of Ov and Ti3+ centers leads to specific electronic structure 

features usually referred to as trapped electrons. These states appear around 1.0 eV below the 

conduction band minimum (CBM), which induces band gap narrowing. Engineering Ti3+/Ov sites 

can favorably promote CO2 activation and conversion to CO under visible light.22 Several 

computational studies have focused on these systems and reported the properties of Ov in bulk, 

surface and subsurface TiO2 sites.23-25 Experiments and calculations show that formation energy of 

neutral oxygen vacancy is lower when defect site is located in the subsurface of anatase (101) and 

(001) surfaces, whereas the surface site is the most stable site in rutile (110) surface. Similar 
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information on TiO2 nanostructures is so far lacking except for a recent study on a (TiO2)35 

representation of an octahedral nanoparticle.26 This is indeed the smallest TiO2 NP compatible with 

Wulff construction, yet metastable with respect to non-crystalline structures27 as further commented 

below. 

The electronic properties of TiO2 nanoparticles (NPs) have been discussed in the light of 

experiments reporting that the control of the shape and size of titania NPs modulates the 

photoactivity.15 The understanding of TiO2 NP properties is particularly attractive because its size 

and shape are appropriate to rationalize the experimental evidences.28 However, experimentally, it 

is difficult to discern between the different effects of size and shape and those introduced by the 

synthetic conditions. The difficulties encountered by experiments to separate complex factors are 

not present when employing computational models in which one can represent different 

morphologies for a given composition or vary the composition for a given morphology.27,29-31 For 

instance, the analysis of the atomic structure of TiO2 small clusters and NPs of increasing size 

allows one to estimate the dimensions for emergence of crystallinity and scrutiny of electronic 

properties of well defined nanoparticles allows one to identify the size-limit of titania NP at which 

the properties show an asymptotic trend towards bulk-like behavior.30 In particular, it has been 

shown that the realistic (TiO2)84 anatase NP is at the start of the scalable regime limit above which 

properties of titania NPs scale linearly towards bulk limit values. Assuming spherical shape32 one 

would get an estimate size of 3 nm for the octahedral (TiO2)84 NP, a value which nicely fits with the 

predicted height from a linear relationship between the largest vertex to vertex distance in 

octahedral TiO2 NPs and the cubic root of the number of TiO2 units.30 From both arguments one can 

conclude that (TiO2)84 anatase NP is an appropriate model system to investigate the changes 

induced by the generation of Ov in their electronical and structural properties and hence in its 

photocatalytic activity. 

Herein, using state of the art density functional theory (DFT) based methods, we 

systematically investigate the properties of oxygen vacancies in an initially stoichiometric (TiO2)84 

anatase NP. To facilitate the study and handle the numerous possible isomers resulting from the 

creation of a single Ov in this quite large NP, we follow the strategy developed in a preliminary 

study on a smaller (TiO2)35 anatase NP.26 We have already mentioned that this is the smallest size 

for a bulk cut octahedral NP exhibiting (101) facets although in terms of total energy per TiO2 unit 

it is clearly metastable.27 This fact can affect the conclusions regarding reduction and ask for 

subsequent studies on a more realistic model. This is precisely the main reason to undertake the 

present work on the properties of oxygen vacancies on the (TiO2)84 NP. Several possible sites for 
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oxygen vacancy formation are evaluated according to the position and the coordination number 

(CN), using results for oxygen vacancy in (TiO2)35 as a convenient guide.26  

Computational Details 

First of all, it must be recalled that standard density functionals within the Generalized 

Gradient Approach (GGA) fail to provide even a qualitatively correct description of electronic 

properties in stoichiometric and reduced TiO2 systems due to an exceedingly large effect of the so-

called self-interaction error inherent to the Kohn-Sham practical implementation of DFT.33,34 To 

correctly describe the partial occupation and appropriate localization of states arising from Ti3+ sites 

hybrid functionals are required where a given percent of Fock exchange is mixed into a given 

exchange GGA functional. Assuming that the Kohn-Sham energy levels provide an estimate of the 

binding energies of quasiparticles, previous studies have shown that modifying the PBE0 (25% 

Fock)35,36 functional so as to contain 12.5% of Fock exchange (PBEx) reproduces successfully 

experimental band gap of anatase and rutile polymorphs whereas the commonly used PBE0 hybrid 

functional35 significantly overestimates them.23 In addition, PBEx functional describes properly the 

properties of the Ov in both rutile and anatase TiO2 bulk phases.23 

In the present study DFT based calculations have been carried with the PBEx hybrid 

functionals. However, in the view of the strong influence of the exchange-correlation functional on 

the outcome of the calculation, results from more traditional approaches such as PBE36 and PBE035 

are included for comparison. Another aspect regarding the accuracy of the density functional 

methods chosen concerns the contribution of dispersion terms. For the atomic structure of bulk 

anatase and rutile, Deringer and Scányi37 found rather small changes in the predicted lattice 

parameters when taking into account these effects on top of results obtained from PBE. The changes 

are similar those encountered when going from PBE to PBEx. Consequently, the contribution of 

dispersion has not been further considered. 

All calculations explicitly include all electrons and the electron density is described through 

a numerical atom-centered (NAO) orbital basis set, as implemented in the Fritz Haber Institute ab 

initio molecular simulations (FHI-aims) package.38 The light grid and tier-1 basis set are selected, 

the numerical accuracy of this basis set for TiO2 systems is similar to that of a valence triple-ζ plus 

polarization Gaussian type orbitals (GTO) basis.30 Recent studies have further assessed the quality 

of the light tier-1 NAO basis set on the stability and electronic properties of TiO2 NPs.31 The 

convergence threshold for atomic forces in relaxation of pristine and reduced (TiO2)84 NPs is set to 

10-2 eV Å-1. The presence of a transition element like Ti requires the inclusion of relativistic effects 
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to properly ensure sufficient accuracy for calculated properties. In the present work, relativistic 

effects are included through the zero order regular approximation (ZORA).39,40  

A series of reduced Ti84O167 NPs has been considered which differ in the position where the 

oxygen vacancy has been created. The considered NPs have all formally two Ti3+ centers and hence 

involve two excess electrons leading to different electronic states¾ closed shell singlet, open shell 

singlet and triplet¾ depending on the spin coupling. Hereby, closed-shell singlet and open-shell 

triplet states are considered as in previous work.26 The oxygen vacancy formation energy, 𝐸"#, is 

calculated as: 

 𝐸"# = 𝐸(𝑇𝑖()𝑂+,-) +
+
0
𝐸(𝑂0) − 𝐸(𝑇𝑖()𝑂+,()  (1) 

where. 𝐸(𝑂0) stands for the energy of O2 molecule in its triplet ground state and 𝐸(𝑇𝑖()𝑂+,-) and 

𝐸(𝑇𝑖()𝑂+,() correspond to the total energies of a given reduced Ti84O167 NP and of the pristine 

(TiO2)84 one. In all cases, the structure of the NP is fully relaxed for each one of the functionals 

employed in this study. According to definition of Eq. (1), a positive value of 𝐸"# is associated with 

the extra energy required for removing a neutral single oxygen. We also define the vertical energy 

(Ev) which is calculated as in Eq. (1) but using the energy of the non-relaxed reduced Ti84O167 NP 

and the relaxation energy (Erel) defined as Erel = Ev – 𝐸"#. Further details about the definition of 

energies are schematically given in Supporting Information. 

Results and Discussion 

It is necessary to insist on the fact that the contribution of non-local, exact, Fock exchange to 

the exchange-correlation potential has a marked influence in predicted properties of oxides in 

general and of TiO2 related systems, in particular. Precisely, this is an especially delicate issue for 

the properties of Ov containing systems exhibiting unpaired electrons strongly localized at Ti3+ 

centers but with the degree of localization depending on the choice of the exchange-correlation 

potential. To rigorously tackle this problem and to avoid any particular bias, this section is divided 

into two parts. In the first one, properties of Ov on reduced Ti84O167 NPs are discussed in light of 

results obtained with the PBEx functional which, as pointed out above, properly describes 

stoichiometric and reduced bulk TiO2. In the second part the influence of the Fock exchange 

contribution in the exchange-correlation potential is analyzed in some details so as to reach 

unbiased conclusions regarding the interpretation on vacancy defect states in the Ti84O167 NPs. To 

this end, results have been obtained from the PBE and PBE0 functionals. Results from the later are 

explicitly discussed here whereas the former are reported in the Supporting Information. 
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Properties of Ov@Ti84O168 as described from the PBEx functional 

The optimized structure of the realistic (TiO2)84 NP obtained from a Wulff construction41,42 

and featuring the most stable (101) facets43 is shown in Figure 1. To systematically examine the 

effect of a single oxygen vacancy one would need to consider all possibilities which, even 

exploiting symmetry, faces a combinatorial explosion. Therefore, we rely on results obtained from 

an earlier systematic study on the smaller (TiO2)35 NP26 and choose the most favorable sites for Ov 

as candidates for (TiO2)84 NP. This is justified because both NPs have the same octahedral shape, 

symmetry and exposed (101) facets.26,28 Figure 1 displays the fully optimized atomic structure of 

the stoichiometric (TiO2)84 and of different reduced Ti84O167 NPs that are obtained after removal of 

a selected single oxygen atom. The vacancy sites considered are classified according to the 

following notation: top (T), edge (E), facet (F), and inside (I) types which clearly define the position 

of the removed oxygen. To further identify each single O vacancy, we use the X-m notation where 

X and m designate domain type (T, E, F or I) and CN (1, 2 or 3) respectively. For instance, F-3 

corresponds to the removing an oxygen atom coordinated to three Ti atoms (CN = 3) in the facet (F) 

domain. Note also that an additional digit (1 or 2) is used to distinguish two I-3 analog sites. 

We start analyzing two different optimized structures of the pristine (TiO2)84 NP, which just 

depend on the orientation of apical oxygen atoms: (i) almost linear, straight tip, or (ii) bent to 

opposite sides, bent tip (see Figure 3 in Ref. [30]). The bent tip structure depicted in Fig. 1a is 

energetically more stable by around 0.011 eV per TiO2 unit (0.96 eV in absolute terms) for all 

employed DFT functionals, consistent with the previous analysis over (TiO2)35 NP where a similar 

favorable energetic stability for bent tip structure was found (1.06 eV in absolute terms).26 We 

assume that the difference between straight and bent tip structures tends to be negligible by 

increasing the size of TiO2 NP although this is not an important issue. In fact, despite their slight 

structural difference, the electronic band gap (Egap), evaluated as the difference between the highest 

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is 

almost the same. This value, however, strongly depends on the exchange-correlation potential used 

to describe the electronic structure and PBEx functional nicely reproduces23 the experimental Egap 

of 3.20 eV of bulk anatase phase.44 For the stoichiometric (TiO2)84 NP, the PBEx functional 

calculated Egap is 3.49 and 3.61 eV for straight and bent tip structures, respectively. Here, it is noted 

that for small nanoparticles Egap depends significantly on the geometrical structure29 although the 

effect fades away for larger particles in the scalable regime.30  

To avoid any possible artifacts, the properties of Ov in (TiO2)84 NP are studied by removal 

of one neutral oxygen atom from the bent tip structure (Figure 1). Six oxygen sites are selected and 
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systematically removed one at a time. This set of Ti84O167 reduced nanoparticles represents the 

structures that have the lowest 𝐸"# in each one of the domains based on our previous study of 

(TiO2)35 NP26 having the same morphology and exhibing the same facets as commented above. 

Table 1 reports the values of Ev, Erel, 𝐸"# and the energy level of the oxygen vacancy defect state 

below LUMO (Sv-1 and Sv-2) calculated at the PBEx level. Note that the oxygen vacancy sites with 

just a Sv-1 energy correspond to a closed-shell singlet state which is found to be the electronic 

ground state after geometry optimization. This is quite an unexpected result since spin polarized 

solutions are the ground state for Ov in bulk anatase and comes from the differences in structural 

relaxation that are possible in the NP as compared to the bulk or extended surfaces. In fact, the 

rather broad range of  𝐸"# values for the different sites appears to be due to differences in the 

structural relaxation of the reduced Ti84O167 NPs. The vacancy formation is largely determined by 

the structural features around the oxygen vacancy site. For the PBEx functional, 𝐸"# appears in the 

3.56–4.27 eV range, a prediction fully consistent with those previously reported using the same 

PBEx functional for anatase bulk phase, with 𝐸"# values in the 4.21–4.65 eV range, and for the 

(TiO2)35 NP, although in this case 𝐸"# involves a broader range (2.27–5.15 eV).23,26  

Figure 2 displays trends for 𝐸"# in the Ti84O167 nanoparticle, I-3-2 site has the lowest 𝐸"# 

value of 3.56 eV (see Table 1). Note, however, that the T-1 domain is energetically competitive 

showing an energy difference of 0.02 eV only. Another highlighted energetic parameter is the 

vertical energy Ev (Table 1). It is observed that Ov formation at I-3-2 site features the lowest vertical 

energy value (4.29 eV) whereas the largest one (5.26 eV) corresponds to the formation of the 

unrelaxed Ov at F-2 site. On the other hand, for the I-3-2 and F-2 site, Erel values of ~0.72 and ~1.31 

eV, respectively are obtained. Note that, except for the F-2 site, Erel varies in a narrow range of 0.7–

0.9 eV so that, within 0.2 eV, the stability of the different possible single oxygen vacancies is hence 

dominated by the Ev energy. This energetic analysis confirms that the Ov formation is preferentially 

located inside the nanoparticle in the subsurface region instead of directly at surface terraces. 

According to experimental evidences, surface oxygen vacancies are not present on freshly 

cleaved anatase (101) samples.45,46 A reduced anatase (101) crystal shows isolated as well as 

ordered intrinsic subsurface defects in scanning tunneling microscopy (STM), consistent with DFT 

calculations for surface slab models which predict that Ov at subsurface and bulk sites are 

significantly more stable than on the surface.45,46 Note that Ov at T-1 site is essentially as stable as at 

I-3-2 site but, it is a feature that (i) is not present in extended crystalline (101) anatase surfaces and 

(ii) unique to the morphology of the nanoparticle, thus it would not be found in extended surfaces. 
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The prediction from the present all electron relativistic DFT based calculations for realistic TiO2 NP 

are in agreement with the experimental evidence and provides further support to the claim that 

(TiO2)84 corresponds to a particle size in the scalable regime and hence representative of the large 

NPs used in the experiments. This provides additional support to the choice of the PBEx hybrid 

functional as appropriate to investigate the properties of stoichiometric and reduced realistic TiO2 

NP as suggested from previous studies.23,26,31  

We discuss now in some detail the structural changes around the first neighbor titanium 

atoms to each of the investigated Ov sites (Figure 3). The reorganization of the structure around the 

vacant space and the presence of the Ti3+ sites arising from the two excess electrons are the major 

factors in the relaxation of the reduced Ti84O167 NPs. To understand the quantitative analysis of 𝐸"# 

(Table 1), we carefully analyze the geometrical differences between pristine and reduced (TiO2)84 

anatase NPs for each one of the Ov. Oxygen vacancy at the T-1 and I-3-2 sites show the lowest 𝐸"#, 

3.56 and 3.58 eV respectively, that is consistent with the negligible variation of Ti-O distance once 

the oxygen vacancy is created (Figures 3a, 3e). Contrarily, Ov at the I-3-1 site (Figure 1a) shows 

noticeable structural changes requiring 0.47 eV more than the Ov at the I-3-2 site although this 

energy difference is already present in the values of Ev. Accordingly, this extra energy requirement 

cannot be attributed to the noted changes in the structural properties (Figure 3a). Assuming these 

arguments, the most favorable domains to accommodate Ov are mainly dictated by the initial 

structure with the atomic reorganization around the vacant space playing a minor role. Considering 

both effects, the ranking of site for Ov ordered from the lowest to the highest oxygen formation 

energy is I-3-2 ~ T-1 < F-2 < E-2 < I-3-1 < F-3.  

Finally, we consider the effect of the presence of Ti3+ ions in reduced TiO2 NP in the resulting 

electronic structure. The existence of Ti3+ can be regarded as one type of n-type doping of TiO2 
samples. From a theoretical point of view, the description of Ti3+ centers in TiO2 systems is not 

straightforward since PBE predicts physically meaningless fully delocalized whereas hybrid 

functionals predict a variety of near degenerate solutions with different degrees of localization as 

described in the literature.47 Nevertheless, upon Ov formation a band gap narrowing is observed in 

all cases.19,21,26 In bulk samples, experiments show that the defect state appears at around 1 eV 

below CBM, a feature which is reproduced by the PBEx functional.22 Figure 4 presents the PBEx 

molecular orbital energy level diagram of Ti84O167 NP for a total of six Ov sites . Note that here all 

energy (quasi band) levels are referenced with respect to the vacuum.48 The defect states are 

reported as singly (triplet state) or doubly (singlet state) occupied molecular orbitals. Only spin-up 

eigenvalues are shown because molecular energy levels of spin-up and spin-down singlet and triplet 
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states are similar. The spin-unrestricted triplet state is competitive with the closed-shell singlet one 

in reduced TiO2 NPs, a feature which is specific of the reduced NPs and does not appear in the bulk 

anatase. It is clearly shown that the defect states appear between HOMO and LUMO and that, not 

surprisingly, the Egap and Sv values vary with Ov site. The presence of the Ov defect also affects the 

position of the HOMO and LUMO energy levels so that new electronic transitions both from 

HOMO and defect states to LUMO and from HOMO to defect states become possible.  

Effect of the amount of Fock exchange on the Properties of Ov@Ti84O168  

We discuss now in detail the effect of percentage of Fock contribution on vacancy defect 

states comparing PBEx and PBE0 results. The pure GGA type PBE functional has also been 

considered for completeness although given the shortcomings of this approach in describing the 

electronic structure of oxides, the corresponding results are reported in the Supporting Information. 

We start by describing the effect of the functional on the calculated values of Ev, Erel and 

𝐸"#	. The contribution of Fock exchange has a relatively low influence on Ev as one can readily see 

by comparing PBEx and PBE0 results in Tables 1 and 2. The largest Ev difference between these 

two hybrid functionals is of 0.7 eV and corresponds to the F-3 and I-3-2 domains. On the other 

hand, significantly larger differences are encountered for Erel ranging now between 2.44 and 3.34 

eV which make the 𝐸"# values calculated by the PBE0 functional significantly smaller than those 

obtained from calculations using PBEx functional. The fact that PBE0 functional with a larger 

(25%) contribution of the Fock exchange involves a larger contribution to the energy gain upon 

relaxation of the reduced Ti64O167 NP is consistent with a larger degree of localization of trapped 

electrons in the Ti3+ centers with a concomitant larger structural relaxation; for instance, the F-3 

domain increases in 0.7 and 2.18 eV for Ev and Erel, respectively. This is indeed the main energetic 

term that leads to 𝐸"# below 3.0 eV (see Figure 2 and Table 2). Although PBE0 calculated 𝐸"#	 

values are smaller than those predicted from PBEx, the stability of the different possible single 

oxygen vacancies continues to be governed by the Ev quantity following the same argument 

explained at PBEx level earlier. The PBE0 calculations predict that the most preferential site to 

form the Ov is located at tip (T-1) and facet domain (F-2). The T-1 case is not so surprising as this is 

also the preferred site for Ov in ceria nanoparticles,49,50 the larger localization induces a larger 

relaxation and the final result is perhaps as expected, the lowest coordinated O atom is the easiest to 

remove. This is also in agreement with the results obtained with the PBEx functionals which 

predicts that Ov is almost equally favorable at T-1 and I-3-2 sites. The F-2 case is harder to 

understand and it is not consistent with the experimental findings for extended surfaces perhaps due 
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to its proximity to the nanoparticle edge (see Figure 1).45,46 In any case, it is important to point out 

that the differences in 𝐸"#	 for the different most stable sites are of the order of 0.3 eV only and this 

is perhaps in the error bar of this type of DFT based calculations for this property. Nevertheless, the 

final 𝐸"#	calculated values are much smaller with PBE0 functional implying that TiO2 appears to be 

more reducible than predicted with PBEx. Unfortunately, without a guide from experiment it is hard 

to assess which of the two functionals better describes TiO2 reduced nanoparticles and, in the view 

of the better performance of PBEx functional for stoichiometric and reduced rutile and anatase one 

is tempted to suggest that this will be also the case for the reduced NPs even if some feature is 

counterintuitive. 

Although the experimental indications are not completely corresponding with predictions 

from the PBE0 functional, this approach reproduces the degree of localization on the neighboring Ti 

atoms, which are reduced to Ti3+ in the I-3-2 site, which is not always observed by using PBEx 

functional (see Figure 4). Note that whereas PBEx functional gives the most favorable site at I-3-2 

site consistent with the experiments for extended anatase (101) surfaces, it does not appropriately 

reproduce the oxygen vacancy defect state below LUMO (Figure 4) promoting a doubly (singlet 

state) occupied molecular orbital. This issue is solved when the percentage of Fock contribution 

increases (PBE0 functional) giving singly (triplet state) occupied molecular orbitals as shown in 

Figure 5. 

Therefore, one must conclude that the appropriate selection of the exchange-correlation 

functional to investigate the properties of reduced TiO2 NPs requires a thorough examination of a 

range of properties and to analyze how the amount of Fock exchange affects them. In the case of Ov 

in TiO2 NPs there is a certain degree of incertitude on determining exactly the most stable one 

although one can for sure make more reliable predictions by focusing on a range of formation 

energies including various possibilities. This is supported by analysis of Figure 2 clearly showing 

that PBEx and PBE0 functionals exhibit similar trends regarding the energy formation of different 

Ov and that this is clearly different from the trend predicted by PBE functional. Also, describing 

properly the stability and the electronic structure of Ov related states is far from being a solved 

problem since the amount of Fock exchange required to accurately describe the gap is insufficient 

to produce the expected localization. The latter remains, nevertheless, to be confirmed by 

experiments on suitable nanoparticles. 
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Conclusions 

The properties of neutral single oxygen vacancy in realistic anatase nanoparticles have been 

investigated by choosing a suitable model and making use of all electron relativistic DFT based 

calculations within the PBEx hybrid functional previously optimized to reproduce the structure and 

electronic properties of bulk, stoichiometric and reduced, anatase and rutile.23 The model chosen is 

a (TiO2)84 anatase nanoparticle of ~3 nm size terminated with (101) facets which is at the onset of 

scalable regime and a total of six different sites have been systematically investigated to analyze the 

structural and electronic properties of various isomers of the reduced Ti84O167 nanoparticle. 

The oxygen vacancy formation and the energy levels of the defect state are quite dependent 

on the site from which the oxygen atom is removed. From energy arguments, the most favorable 

oxygen vacancy is the three-coordinated domain located at the subsurface region, being in nice 

accordance with experimental evidences observed in anatase well defined surfaces.45,46 The latter is 

an additional argument in support of the claim that this particle size is well in the scalable regime 

and can be taken as representative of larger nanoparticles for future studies involving for instance 

hydroxylation and/or doping. Nevertheless, the formation of a vacancy produced by removing the 

least coordinated O atom is almost as favorable and becomes the most favorable one according to 

calculations with the PBE0 functional. 

The present calculations predict a HOMO-LUMO gap for the pristine nanoparticle of 3.61 

eV and the presence of defect states in the reduced nanoparticle in the 0.49–1.68 eV range below 

the LUMO energy level, which are mostly due to the presence of Ti3+ cations. In some cases, the 

PBEx electronic ground state of the reduced nanoparticles appears to be a closed singlet, even 

optimizing structures with atomic displacements around OV (see I-3-2 site in Figures 3 and 4) which 

is at variance with the behavior found for bulk anatase and its extended surfaces. Here, PBE0 

functional predicts that the electronic ground state is a triplet with two singly occupied orbitals 

located in two Ti3+ cations more in line with expectations from chemical intuition and with 

experiments in bulk and extended surfaces. Therefore, although we rely mostly on the conclusions 

based on the results obtained from calculations with the PBEx hybrid functional, one must admit 

that the influence of the functional is large and, in some cases, the site predicted to lead to the most 

stable reduced nanoparticle and the character of the oxygen vacancy containing nanoparticles 

electronic ground state can vary with the amount of Fock. The fact that PBEx functional reproduces 

most of the quantities related to stoichiometric and reduced anatase and rutile provides support to 

the present conclusions for the reduced nanoparticles but also points out that the choice of the DFT 

based method is far from being a settled problem. The positive part is, however, that many 
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qualitative trends are less dependent on the functional. The overall reduction of the band gap of the 

reduced nanoparticle together with the presence of defect states suggest that reduced nanoparticles 

would be better suited to harvest light in the visible. However, the standard redox analysis does not 

clearly confirm that reduced TiO2-x NPs can be applied to visible light absorbing photocatalyst for 

the water splitting photocatalytic process. 

Although the realistic TiO2 NP studied here seems appropriate to unravel the features of 

reduced nanoparticles, further studies are required to shed light on the photoreactivity of reduced 

TiO2 NPs towards water splitting considering for instance multi-oxygen vacancy effects, migration 

of oxygen vacancies and solvation effects. Note that the present study may be extended to 

investigate reduced photocatalysts which show ability to directly utilize solar energy for producing 

solar fuels such as H2, CH4 or CH3OH.51  
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Table 1. Vertical energy (Ev), relaxation energy (Erel), oxygen vacancy formation energy (𝐸"#) and 

energy level of oxygen vacancy defect state below LUMO (Sv-1 and Sv-2) as predicted from DFT 

based calculations with the PBEx hybrid functional. All values are in eV units and the lowest 𝐸"# 

values are highlighted in bold type. “CN” is number of first neighbor titanium atoms to remove 

oxygen atom and “site” is the combination of position and CN number. 

 

Position CN Site Ev Erel 𝑬𝒇𝑶 Sv-1 Sv-2 

Tip 1 T-1 4.48 0.89 3.58 0.64 0.49 

Edge 2 E-2 4.71 0.70 4.01 1.68 0.53 

Facet 2 F-2 5.26 1.31 3.95 1.15 0.69 

 3 F-3 5.02 0.75 4.27 0.56 0.53 

Inside 3 I-3-1 4.73 0.69 4.03 1.63 - 

 3 I-3-2 4.29 0.72 3.56 0.37 - 
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Table 2. Vertical energy (Ev), relaxation energy (Erel), oxygen vacancy formation energy (𝐸"#) and 

energy level of oxygen vacancy defect state below LUMO (Sv-1 and Sv-2) as predicted from DFT 

based calculations with the PBE0 hybrid functional. All values are in eV units and the lowest 𝐸"# 

values are highlighted in bold type. “CN” is number of first neighbor titanium atoms to removed 

oxygen atom and “site” is the combination of position and CN number. 

 

Position CN Site Ev Erel 𝑬𝒇𝑶 Sv-1 Sv-2 

Tip 1 T-1 4.35 2.86 1.48 0.51 0.28 

Edge 2 E-2 4.87 2.88 1.99 2.94 2.43 

Facet 2 F-2 5.27 3.34 1.92 2.69 2.21 

 3 F-3 5.72 2.93 2.78 1.88 1.70 

Inside 3 I-3-1 4.73 2.44 2.28 2.60 - 

 3 I-3-2 4.99 2.80 2.19 1.74 1.57 
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Figure 1. (a) Side and top views of the pristine (TiO2)84 NP. (b) Side and top views of the different 

reduced Ti84O167 NPs. Blue, red and black spheres denote titanium, oxygen and first neighbor 

titanium atoms to the Ov site, respectively. Note that the reduced NP labeled as I-3-2 is slightly 

tilted to show clearly the region of Ov site in the subsurface. 
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Figure 2. Oxygen vacancy formation energy (𝐸"#) for single oxygen vacant Ti84O167 nanoparticle at 

PBE, PBEx and PBE0 levels depicted with black, red and blue navy colors, respectively. Note that 

dashed gray line indicates that the oxygen vacancy in I-3-2 site is the most favorable domain to 

create the oxygen vacancy at PBEx level. 𝐸"# values for PBE, PBEx and PBE0 functionals are 

compiled in Tables S1, 1 and 2, respectively.  
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Figure 3. Stoichiometric and reduced (TiO2)84 NP motifs that correspond to the first neighbor 

titanium atoms to the Ov site depicted in black at Figure 1: (a) T-1 and I-3-1, (b) E-2, (c) F-3, (d) F-

2 and (e) I-3-2 and calculated at PBEx level. Blue and red spheres denote titanium and oxygen 

atoms, respectively.  
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Figure 4. Kohn-Sham orbital energy level diagram of Ti84O168 and reduced Ti84O167 NPs at obtained 

from calculations with the PBEx functional. The triplet state energy levels are for spin-up 

eigenvalues. The red dotted lines correspond to the standard redox potentials for water splitting at 

pH = 0 (H+/H2 = -4.44 eV and O2/H2O = -5.67 eV). The singly and doubly occupied defect states 

are denoted in blue and green for triplet and singlet states, respectively. Other occupied and 

unoccupied molecular orbitals are represented with black lines. 
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Figure 5. Kohn-Sham orbital energy level diagram of Ti84O168 and reduced Ti84O167 NPs at PBE0 

level. The triplet state energy levels are for spin-up eigenvalues. The red dotted lines correspond to 

the standard redox potentials for water splitting at pH = 0 (H+/H2 = -4.44 eV and O2/H2O = -5.67 

eV). The singly and doubly occupied defect states are denoted in blue and green for triplet and 

singlet states, respectively. Other occupied and unoccupied molecular orbitals are represented with 

black lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 
 

References 
 

1 Fox, M. A.; Dulay, M. T. Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341-357. 
2  Xu, H.; Ouyang, S.; Liu, L.; Reunchan, P.; Umezawa, N.; Ye, J. Recent advances in TiO2-

based photocatalysis. J. Mater. Chem. A 2014, 2, 12642-12661. 
3  Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 photocatalysis: a historical overview and future 

prospects. Jpn. J. Appl. Phys. 2005, 44, 8269-8285. 
4  Fujishima, A.; Zhang, X.; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. 

Surf. Sci. Rep. 2008, 63, 515-582. 
5  Maeda, K. Direct splitting of pure water into hydrogen and oxygen using rutile titania 

powder as a photocatalyst. Chem. Commun. 2013, 49, 8404-8406. 
6 Maeda, K. Photocatalytic properties of rutile TiO2 powder for overall water splitting. Catal. 

Sci. Technol. 2014, 4, 1949-1953. 
7 Tang, J.; Durrant, J. R.; Klung, D. R. Mechanism of photocatalytic water splitting in TiO2. 

Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for 

four-hole chemistry. J. Am. Chem. Soc. 2008, 130, 13885-13891. 
8  Banno, H.; Kariya, B.; Isu, N.; Ogawa, M.; Miwa, S.; Sawada, K.; Tsuge, J.; Imaizumi, S.; 

Kato, H.; Tokutake, K.; Deguchi, S. Effect of TiO2 crystalline diameter on photocatalytic 

water splitting rate. Green Sustainable Chem. 2014, 4, 87-94. 
9  Davis, S. J.; Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl. 

Acad. Sci. USA 2010, 107, 5687-5692. 
10  Dodman, D. Blaming cities for climate change? An analysis of urban greenhouse gas 

emissions inventories. Environ. Urban. 2009, 21, 185-201. 
11 Wang, W. N.; An, W. K.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; 

Gangopadhyay, S.; Biswas, P. Size and structure matter: enhanced CO2 photoreduction 

efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. 

Soc. 2012, 134, 11276-11281. 
12 Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-

light-sensitive photocatalyst: designs, developments, and Prospects. Chem. Rev. 2014, 114, 

9824-9852. 
13 Liang, Y. T.; Vijayan, B. K.; Gray, K. A.; Hersam, M. C. Minimizing graphene defects 

enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar 

fuel production. Nano Lett. 2011, 11, 2865-2870. 



22 
 

 

14 Wang, C.; Thompson, R. L.; Baltrust, J.; Matranga, C. Visible light photoreduction of CO2 

using CdSe/Pt/TiO2 heterostructured catalysts. J. Phys. Chem. Lett. 2010, 1, 48-53. 
15  Liu, G.; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q.; Cheng, H. M. Titanium dioxide 

crystals with tailored facets. Chem. Rev. 2014, 114, 9559-9612.  
16 Wang, X.; Li, Z.; Shi, J.; Yu, Y. One-dimensional titanium dioxide nanomaterials: 

nanowires, nanorods, and nanobelts. Chem. Rev. 2014, 114, 9346-9384. 
17 Pan, X.; Yang, M. Q.; Fu, X.; Zhang, N.; Xu, Y. J. Defective TiO2 with oxygen vacancies: 

synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601-3614. 
18 Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; 

Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in 

black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600-7603 
19 Sekiya, T.; Yagisawa, T.; Kamiya, N.; Das Mulmi, D.; Kurita, S.; Murakami, Y.; Kodaira, 

T. Defects in anatase TiO2 single crystal controlled by heat treatments. J. Phys. Soc. Jpn. 

2004, 73, 703-710. 
20 Amano, F.; Nakata, M.; Yamamoto, A.; Tanaka, T. Effect of Ti3+ ions and conduction band 

electrons on photocatalytic and photolectrochemical activity of rutile titania for water 

oxidation. J. Phys. Chem. C 2016, 120, 6467-6474. 
21 Qiu, M.; Tian, Y.; Chen, Z.; Yang, Z.; Li, W.; Wang, K.; Wang, L.; Wang, K.; Zhang W. 

Synthesis of Ti3+ self-doped TiO2 nanocrystals based on Le Chatelier´s principle and their 

application in solar light photocatalysis. RSC Adv. 2016, 6, 74376-74383. 
22 Liu, L.; Jiang, Y.; Zhao, H.; Chen, J.; Cheng, J.; Yang, K.; Li, Y. Engineering coexposed 

{001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 

photoreduction under visible light. ACS Catal. 2016, 6, 1097-1108. 
23 Ko, K. C.; Lamiel-García, O.; Lee, J. Y.; Illas, F. Performance of a modified hybrid 

functional in the simultaneous description of stoichiometric and reduced TiO2 polymorphs. 

Phys. Chem. Chem. Phys. 2016, 18, 12357−12367. 
24 Wang, M.; Feng, M.; Lu, Y. Ab initio study of the anion vacancy on anatase TiO2 (101) 

surface. Mod. Phys. Lett. B 2014, 28, 1450076 (1-8).  
25 Li, H.; Guo, Y.; Robertson, J. Calculation of TiO2 surface and subsurface oxygen vacancy 

by the screened exchange functional. J. Chem. Phys. C 2015, 119, 18160-18166. 
26 Kim, S.; Ko, K. C.; Lee, J. Y.; Illas, F. Single oxygen vacancies of (TiO2)35 as a prototype 

reduced nanoparticle: implication for photocatalytic activity. Phys. Chem. Chem. Phys. 

2016, 18, 23755-23762.   



23 
 

 

27 Lamiel-García, O.; Cuko, A.; Calatayud, M.; Illas, F.; Bromley, S. T. Predicting size-

dependent emergence of crystallinity in nanomaterials: titania nanoclusters versus 

nanocrystals. Nanoscale 2017, 9, 1049-1058. 
28  Liu, G.; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q. M.; Cheng, H. M. Titanium dioxide 

crystals with tailored facets. Chem. Rev. 2014, 114, 9559−9612. 
29 Cho, D.; Ko, K. C.; Lamiel-García, O.; Bromley, S. T.; Lee, J. Y. Effect of size and 

structure on the ground-state and excited-state electronic structure of TiO2 nanoparticles. J. 

Chem. Theory Comput. 2016, 12, 3751-3763. 
30 Lamiel-García, O.; Ko, K. C.; Lee, J. Y.; Bromley, S. T.; Illas, F. When anatase 

nanoparticles become bulklike: Properties of realistic TiO2 nanoparticles in the 1−6 nm size 

range from all electron relativistic density functional theory based calculations. J. Chem. 

Theory Comput. 2017, 13, 1785−1793. 
31 Morales-García, A.; Valero, R.; Illas, F. Performance of the G0W0 method in predicting the 

electronic gap of TiO2 nanoparticles. J. Chem. Theory Comput. 2017, 13, 3746-3753. 
32 Almquist, C. B.; Biswas, P. Role of synthesis method and particle size of nanostructured 

TiO2 on its photoactivity. J. Catal. 2002, 212, 145-156. 
33 Cococcioni, M.; de Gironcoli, S. Linear response approach to the calculation of the effective 

interaction parameters in the LDA+U method. Phys. Rev. B 2005, 71, 035105 (1-16). 
34 Mori-Sánchez, P.; Cohen, A. J.; Yang, W. Localization and delocalization errors in density 

functional theory and implications for band-gap prediction. Phys. Rev. Lett. 2008, 100, 

146401 (1-4). 
35 Adamo, C; Barone, V. Toward reliable density functional methods without adjustable 

parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158-6169  

36 Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. 

Phys. Rev. Lett. 1996, 77, 3865−3868  

37  Deringer, V.L.; Csányi, G. Many-Body Dispersion Correction Effects on Bulk and Surface 

Properties of Rutile and Anatase TiO2. J. Phys. Chem. C 2016, 120, 21552-21560 
38  Blum, V.; Gehrke, R.; Hanke, P.; Havu, P.; Havu, V.; Ren, X.; Reuter, K.; Scheffler, M. Ab 

initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 

2009, 180, 2175-2196. 
39  Chang, C., Pelissier, M.; Durand, M. Regular two-component Pauli-like effective 

hamiltonians in Dirac theory. Phys. Scr. 1986, 34, 394-404 



24 
 

 

40 van Lenthe, E.; van Leeuwen, R.; Baerends E. J.; Snijders J. G. Relativistic regular 

two-component hamiltonians Int. J. Quantum Chem. 1994, 57, 281-293. 
41 Wulff, G. On the question of speed of growth and dissolution of crystal surfaces. Z. 

Kristallogr. 1901, 34, 449−530. 
42  Bromley, S. T.; Moreira, I. De P.R.; Neyman, K.-M.; Illas, F. Approaching nanoscale 

oxides: models and theoretical methods. Chem. Soc. Rev. 2009, 38, 2657−2670. 
43  Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and energetics of stoichiometric TiO2 

anatase surfaces. Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 63, 155409. 
44 Kavan, L.; Grätzel, M.; Gilbert, S. E.; Klemenz, C.; Scheel, H. J. Electrochemical and 

photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 1996, 118, 

6716-6723. 
45 He, Y.; Dulub, O.; Cheng, H.; Selloni, A.; Diebold U. Evidence for the predominance of 

subsurface defect on reduced anatase TiO2 (101). Phys. Rev. Lett. 2009, 102, 106105 (1-4). 
46 Scheiber, P.; Fidler, M.; Dulub, O.; Schmid, M.; Diebold, U.; Hou, W.; Aschauer, U.; 

Selloni, A. (Sub)Surface mobility of oxygen vacancies at the TiO2 anatase (101) surface. 

Phys. Rev. Lett. 2012, 109, 136103 (1-5). 
47  Finazzi, E.; Di Valentin, C.; Pacchioni, G.; Selloni, A. Excess electron states in reduced bulk 

 anatase TiO2: Comparison, of standard GGA, GGA+U, and hybrid DFT calculations. J. 

 Chem. Phys. 2008, 129, 154113 (1-9). 

48 Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments 

in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable 

Sustainable Energy Rev. 2007, 11, 401-425. 
49  Migani, A.; Vayssilov, G. N.; Bromley, S. T.; Illas, F.; Neyman, K. M. Greatly facilitated oxygen 

vacancy formation in ceria crystallites at nanoscale. Chem. Commun. 2010, 5936-5938 

50  Migani, A.; Vayssilov, G. N.; Bromley, S. T.; Illas, F.; Neyman, K. M. Dramatic reduction 

of the oxygen vacancy formation energy in ceria particles: A possible key to their 

remarkable reactivity at the nanoscale. J. Mater. Chem., 2010, 20, 10535-10546 

51 Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Al-Ghamdi, A. A.; Yu. J. A review of direct Z-

scheme photocatalysts. Small Methods 2017, 1, 1700080 (1-21). 

 

 



25 
 

 

 

 

 TOC Graphics 

 


