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Abstract
Wepresent a pedagogical review of the swelling thermodynamics and phase transitions of polymer
gels. In particular, we discuss how features of the volume phase transition of the gel’s osmotic
equilibrium are analogous to other transitions described bymean-fieldmodels of binarymixtures,
and the failure of this analogy at the critical point due to shear rigidity.We then consider the phase
transition at fixed volume, a relatively unexplored paradigm for polymer gels that results in a phase-
separated equilibrium consisting of coexisting solvent-rich and solvent-poor regions of gel. Again, the
gel’s shear rigidity is found to have a profound effect on the phase transition, here resulting in
macroscopic shape change at constant volume of the sample, exemplified by the tunable buckling of
toroidal samples of polymer gel. By drawing analogies with extrememechanics, where large shape
changes are achieved viamechanical instabilities, we formulate the notion of extreme thermodynamics,
where large shape changes are achieved via thermodynamic instabilities, i.e.phase transitions.

1. Introduction

Within the realmof amorphous, rigidmaterials without crystalline symmetries, polymer gels possess an
interesting duality, having a rubber-like elasticity whilst being able to undergo large volume changes due to
mixingwith a solvent. Thesematerials are soft, being composed of largemacromolecules whose interactions are
often governed by thermal fluctuations. There are three essential ingredients:polymers, solvent, and cross-links.

Polymers are composed ofmany short segments (i.e., monomers) that are typically chemically bonded end-
to-end, as shown infigure 1(a).Whilst there are energetically favorable bond angles between successive
monomers, there often are severalmonomer–monomer bond conformations that are at comparable energies
[1]. As the number  ofmonomers that constitute a polymer is typically in the order of 103–104, there aremany
differentmutually accessible polymer conformations, within a small energywindow, that a polymermay be
found in. Thus, polymers are said to have static flexibility [2]. Furthermore, there aremodest energy barriers
between bond angles, enabling frequent transitions that are driven by thermal fluctuations, causing the polymer
to exploremany different conformations over time. As such, polymers are also said to have dynamic flexibility.

Quite generally, as a consequence of such static and dynamic flexibility, correlations betweenmonomer–
monomer bond angles decaywith distance along the backbone of the polymer. Beyond a certain persistence
length, bond angles are barely correlated. Therefore, conformations of polymers that spanmany persistence
lengths have the formof a ‘randomwalk,’ an example of which is shown infigure 1(b). The radius of gyration
Rg specifies the characteristic size of the polymer, as also illustrated infigure 1(b); for large  ,Rg scales with the
number ofmonomers as  n , where ν=1/2 for a random-walk polymer, or ‘ideal chain,’ for which the
excluded volume interaction between polymer segments is neglected.More realistically, an isolated polymer
does not intersect with itself, resulting in statistics of a self-avoiding (as opposed to ideal) randomwalk, for
which ν≈3/5 in three dimensions, reflecting the swelling of the polymer sequence. This is indeed the situation
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when the polymer is immersed in a ‘good’ solvent, one inwhich the polymer ismiscible, as opposed to the case of
immiscibility in a ‘poor’ solvent, where the polymer radius is decreased and a compact structure is formed due to
the high energetic penalty for themixing of the polymer and solvent. An intermediate case is theϑ-solvent,
where the radius decrease due to amildly poor solvent counteracts the radius increase due to the self-repulsion
of the polymer, resulting in ideal-chain scaling, for which ν=1/2 (see, e.g., [1]).

Now consider a solution ofmany such polymers. Focusing on the case where all polymers are composed of
roughly the same  that are chemically identical, the solution can be brought to a polymer concentration for
which individual polymer coils overlap spatially in equilibrium. In this case, application of a static stress induces
steady state flow, since after a short-time elastic response, where the polymer coils deform, they are able to
rearrange in space continually. Rigidity results from the introduction of cross-links between neighboring
polymers, since cross-linkedmolecules can no longer individually undergo substantial rearrangement relative to
cross-linked partners. If there is sufficient linking of different polymers then a container-spanning, percolating,
network of linked polymer coils forms; this constitutes a gel [1]. In a gel, the cross-linked clusters of polymers are
thus localized in space relative to one another, unable to explore the volume of their container via Brownian
motion; such ergodicity breaking of the polymers due to the formation of a percolating polymer network is a
hallmark of the onset of rigidity [3], at least in spaces of dimension d>2.

Despite the large variety of cross-links that can be formed, they are generally classified according to two
categories: physical and chemical6. Examples of physical cross-links include entangled polymers aswell as
noncovalent bonds, such as ionic (i.e., electrostatic) bonds. Physical cross-links enable an elastic response over
potentially extended timescales; however, they are not truly rigid, as they allowflow at sufficiently long times due
to the reversible nature of the cross-linking process. Instead, we shall focus our attention on gels formed from
chemical cross-links, which are typically induced by the introduction of small—when compared to the typical
polymer size—cross-linkingmolecules that form covalent bonds between polymers, as depicted infigure 1(c).
Chemical cross-linksmay be regarded as permanent so that the network topology of the gel is frozen in after
cross-linking,much like the cross-links in rubber, resulting in a thermodynamically rigidmaterial [4].
Moreover, unlike amorphous elasticmaterials, such as glasses, these gels are in awell-defined, equilibrium solid
phase; unlike conventional solids, gels lack long-range order. Thus, gels are equilibrium amorphous solids [3, 5].

However, unlike rubber, polymer gels are typically cross-linked in the presence of a solvent, which
permeates the polymer network of the gel. Themagnitude of the osmotic pressureΠ due to themixing of
polymerwith the solvent is set by the thermal energy scale kB T, and is thus on the same scale as the entropic
elastic stresses of the polymer network. As a result, both are important in determining themacroscopic
equilibrium state of the gel. This is especially true for gels having low cross-link densities, which have the
signature ability to undergo largemacroscopic volume changes in response to varying solvent conditions. In the
presence of a good solvent, the polymer network is wellmixedwith solventmolecules, and the gel incorporates a
large volume of solvent and is said to be swollen; in the presence of a poor solvent, the polymer network is
essentially segregated from the solventmolecules and is said to be deswollen. Suitably prepared gels have a
remarkably large volume response, capable of swelling to an equilibrium volume on the order of 103 times their
deswollen volume by absorbing solvent [9].Whilst a variety of different swollen volumes can be achieved by
continuous changes in solubility (as induced, e.g., via temperature), certain gels can exhibit a discontinuous
change in volume. For example, poly(N-isopropylacrylamide) (pNIPAM) gels inwater gradually deswell under
heating until∼32 °C. Beyond this, due to a change in solvent nature from good to poor, they abruptly expelmost
of their solvent [9]. In fact, there is a first-order phase transition betweenwell-defined swollen and deswollen

Figure 1. (a)A sequence ofmonomer units joinedwith randomly sampled bond angles. (b)Example of an ‘ideal chain’ consisting of
 = 104 monomers that form a static random-walk conformationwith radius of gyrationRg. (c)Pairs of polymers (gray curves) are
permanently joined bymolecular cross-links (purple dots) to form a polymer network.

6
Note that we do not consider here polymer rings thatmay be topologically linked to form rigid ‘Olympic’ gels [1, 6] or other knotted

polymer networks [7, 8].
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phases of gel. This phase transition is confirmed by varying the osmotic pressure, leading to a phase diagram
having afirst-order transition region separating the two phases, terminating at a critical point [10, 11].

In addition to swelling, polymer gels can undergo shape changes.Mechanical constraints, such as
attachment to a stiff substrate, can frustrate homogeneous deswelling, resulting in inhomogeneous deswelling of
the gel, which can lead to the formation of surface ripples [12, 13]. Gels that are subject to inhomogeneous
swelling are of particular interest, as the resulting deformations typically cannot be realized inflat space [14],
resulting in a variety of buckled shapes [15, 16], some ofwhichmirror patterns found in nature [17–19]. This has
led to origami-inspired [20] and biology-inspired [21] searches for ways to program certain shapes that are
actuated upon swelling.

In this topical review, we first discuss in section 2 the thermodynamic description of polymer gel swelling.
We give a brief outline of the statisticalmechanical treatment by Flory andRehner [22, 23] andmention some
subtleties that arise in describing the rubber-like elasticity of the gel [4].We then present a pedagogical review of
phase transitions in section 3, to develop an intuition for the volume phase transition and the critical behavior of
gels in analogywith the van derWaals theory of the liquid–vapor phase transition. Continuingwith this analogy,
we consider in section 4 how a transition to phase coexistence between swollen and deswollen phases can be
achieved by arresting the deswelling transition of a swollen gel. In section 5, we showhow the equilibriumphase-
coexistent gel is characterized by a large deformation of themacroscopic gel shape that is distinct from the usual
volume phase transition. Drawing on analogies with the extrememechanics of shape-changingmaterials through
programmedmechanical instability [24, 25], we propose that phase-coexistent gels provide a route to large
deformation via thermodynamic instability. To provide an illustrative example of these extreme thermodynamics,
we give a detailed description of the phase-coexistent equilibriumof gel toroids and the accompanying shape-
buckling transition, which has been realized in experiments. Finally, in section 6, we summarize some of the
open problems in thefield and highlight some of the gaps in the understanding of polymer gels that have yet to
befilled.

2. Swelling thermodynamics

The thermodynamic description of polymer gels is based on that of nonideal fluids, inwhich interactions
between particles give rise to equations of state, such as the van derWaals equation, that differ from the
universal, ideal gas description. To begin, we consider the state functions that are required to describe the
macroscopic state of the gel. Thenwe turn to themicroscopic description and outline the Flory–Rehner [22, 23]
mean-field theorywhich yields approximate equations of state of the gel that are analogous to the van derWaals
equation of state. Next, just as the van derWaals equation predicts that a fluid expands with increasing
temperature at constant pressure, we showhow the Flory–Rehner equation of state predicts gel deswellingwith
increasing temperature. Finally, we examine the breakdown of thermodynamic stability predicted by the Flory–
Rehner theory, highlighting analogies and differences with phase transitions influids.

2.1. State functions and thermodynamic potentials
Macroscopicmaterials, such as polymer gels, are composed of a vast number ofmicroscopic degrees of freedom
that are in continual flux, i.e., are thermallyfluctuating. In a thermodynamic description of suchmaterials, these
many fluctuatingmicroscopic degrees of freedom are averaged over time and space to yield state functions (see,
e.g., [26]). For example, in afluid consisting ofN identical particles occupying afixed volumeV, bothV andN
are state functions.Whilst the spacings between particles are notfixed, there are, on average, ρ≡N/V particles
per unit volume. If thefluid is isolated then its total energy E isfixed, as are the total numberN of particles in the
fluid aswell as its total volumeV. These three state functions are sufficient for characterizing themacroscopic
equilibrium state of the system. In order to quantify what happenswhen themacroscopic degrees of freedom
(E,V,N) are changed, one employs a thermodynamic potential. The entropy ( )S E V N, , is one example of a
thermodynamic potential, which has the fundamental property that if the energy, volume, or number
constraints are relaxed, the equilibrium state that the system eventually attains corresponds to one ofmaximum
entropy. Note that entropy is also a state function, corresponding to the number ofmicrostates of the fluid that
give rise to afixedmacrostate (E,V,N). At times, it is useful to use the entropy as a state-characterizing function,
exchanging it with the total energyE, which can then take the role of the thermodynamic potential,
corresponding to amacroscopic description (S,V,N).

It is often convenient to consider interactions between thefluid and amuch larger ‘bath,’whose state is
effectively unaffected by the presence of thefluid. If we imagine that the fluid is kept in a container that allows
heat toflowbetween the fluid and the surrounding bath then the energy of the fluid and that of the bath are
allowed to change. The total entropy = +S S Sfluid bath ismaximizedwhen the temperatureT of thefluid
matches that of the bath, which characterizes a state of thermal equilibrium. This container can eithermaintain a
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fixed volumeV of the fluid or beflexible, inwhich casemechanical equilibrium is reachedwhen the pressure P of
particles in the fluid is balanced by a similar pressure from the bath. Similarly, the container can either be
impermeable,maintaining a constant numberN of particles, or it can be permeable, so that chemical equilibrium
is reachedwhen the chemical potentialμ of thefluidmatches that of the surrounding bath. In this way, the
paired state functions (S,T), (V,P), and (N,μ) are considered conjugate to one another.Much like the density ρ
of the fluid, (T,P,μ) are intensive state functions that characterizematerial properties of the fluid, whereas
(S,V,N) are extensive state functions.Whilst there is freedom in choosing the three state functions that describe
themacroscopic state of the fluid,7 let us consider the temperatureT and the number of particlesN as specified
properties, i.e., constraints imposed on the fluid. There are two representations that can be considered: the
Gibbs representation (T,P,N) and theHelmholtz representation (T,V,N), with corresponding thermodynamic
potentialsG, theGibbs free energy, and F, theHelmholtz free energy. Changes in constraints lead to changes in
the thermodynamic potential, described by aGibbs equation for each representation, namely

m= - + + ( )G S T V P N ad d d d , 1

m= - - + ( )F S T P V N bd d d d , 1

fromwhichwe see that the two potentials are related via a Legendre transform, resulting in the
relationG=F+PV.

Now consider a sample of gel that is allowed to exchange solvent with its surroundings but contains a
constant number ofmonomers (i.e., polymer segments). The gel is composed of ns solventmolecules, nm
monomers, and nc cross-linkingmolecules. Thus, it is natural to assume that in theGibbs representation the
state of the gel is characterized by the state functions ( )T P n n n, , , ,s m c . However, wewill assume that each
molecule andmonomer occupy volumes vs and vm, respectively, so that the volumeV of the system is
approximately given by

» + ( )V n v n v , 2s s m m

i.e., we have neglected the very small contribution due to the cross-linkingmolecules since the number of cross-
links is typically orders ofmagnitude smaller than the number of solventmolecules andmonomers. Therefore,
changing the pressure P acts to change the volume per solventmolecule (vs) and the volume permonomer (vm).
This, however, only happens at very high pressures and is not of significance in the situations of interest here.We
will instead focus on the effect thatmixing these two chemical species has on themacroscopic properties of
polymer gels, and treat vs and vm as constants; for simplicity, we assume that they have the same value, namely
vs≈vm≡v. The pressure P is thus not a state function of the gel. Furthermore, the number ofmonomers nm
and the number of cross-links nc are imposed at the formation of the gel, and are also assumed constant. Thus,
we are left with the state functions (T, ns), where the volumeV is determined as a function of ns via equation (2);
this state characterization then amounts to aHelmholtz representation of the gel.

Unlike fluids, however, polymer gels possess a nonzero rigidity with respect to elastic deformations.
Therefore, in addition to occupying a volumeV, the gel is able tomaintain a deformed shape indefinitely when
subjected to stress.We therefore require additional state functions to account for this fact. One such
deformation is the change in the three side lengths {L1, L2, L3} of the box-shaped sample of gel shown infigure 2
to lengths ¢ = LL Li i i. The deformation of the gel at constant volume is therefore set by the dimensionless ratios
of length {Λ1,Λ2,Λ3} such thatΛ1Λ2Λ3=1.Note that specifying the side lengths of a parallelepiped region of
gel is but one example deformation that can be achieved. For general gel shapes, it ismore appropriate to
examine how the distance between any twopoints r and +r rd is altered upon deformation of the gel, which
takes rd to Rd . For example, it is useful to imagine r and +r rd as two neighboring cross-links. Assuming affine

Figure 2.Representative sample of a cross-linked polymer networkwith linear dimensions L1 and L2 and distance between two
arbitrary cross-links given by rd (a) prior to deformation, in reference configuration , and (b) after affine deformation, in target
configuration  , prescribed by deformationmatrixΛ.

7
Recall, however, that due to theGibbs–Duhem equation, which provides a link between the intensive parameters, at least one of the state

functionsmust be extensive.
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deformations, for which the changes in lengths between representative points in the gel are independent of
position, all lengths are transformed by a deformationmatrixΛ, such that = LR rd di ij j, wherewe use and adopt
Einstein’s summation convention over repeated indices. Deformed volume elements Rd3 are related to the
undeformed ones via = L( )R rd det d3 3 , so Ldet is the ratio of the deformed volume to the undeformed
volume. Thus, deformations thatmaintain the gel volume are characterized by detΛ=1. Alternatively, we are
free to choose a reference state, whichwe shall refer to as a reference configuration, where the volume of the gel
is given byV0, such that after a deformation of the gel, the volume of the deformed state, whichwe shall refer to
as a target configuration  , is given by

= L( ) ( )V V det . 30

Therefore, the determinant (detΛ)may be expressed in terms of the amount of solvent ns in configuration
 via equations (2) and (3). As cross-links undergo Brownianmotion, some care has to be taken in relating
macroscopic affine deformation to a correspondingmicroscopic deformation.However, it has been found [5]
that average cross-link positions indeed undergo affine deformation.

In order to account for the effect of deformation on the equilibrium thermodynamics of the gel, it is
necessary to introduce the deformationmatrixΛ as a state function.However, by equation (3), the deformation
matrix determines the volume of the gel. To account for this redundancy in state functions, wemay express the
Helmholtz free energy as

l lL = L + L -( ) ( ) [ ( )] ( )F T n F T n V V n, , ; , , det , 4s s s0

whereλ a Lagrangemultiplier accounting for the constraint associated to equation (3). In this form, the Lagrange
multiplierλ is an additional state function and the constraint is an equation of state.

It is useful to define the polymer volume fractionf via

f º
+

( )n v

n v n v
, 5m m

s s m m

i.e., the fraction of the gel volume that is occupied by polymer;f=1 corresponds to a gel that is completely
devoid of solvent, whereasf=0 is the limit of an infinitely dilute gel. Noting that since F is a homogeneous
first-order function in its extensive parameters [26], we can define L = L( ) ( )F T n V T n V, , , ,s s , where 
is a free energy density. Therefore, in terms of the polymer volume fractionf, we have


f

f= L( ) ( )F
vn

T , , , 6m

wherewe have used the assumption » ºv v vs m .
Inasmuch asP andV are conjugate to each other for afluid, for a gel there is a state function that is paired

with the polymer volume fractionf. This is the osmotic pressureΠ. If the gel is in equilibriumwith a solvent
bath, the chemical potential of the solvent in the gel,μ(T, P), equals the chemical potential of the solvent in the
bath,μ0(T,P), plus a contributionΔμ accounting for the presence of the polymer network. Then m =( )T P,
m m+ D( )T P,0 . In addition, wemay regard the boundary of the polymer network as a semipermeable
membrane. Equilibrium then requires an additional pressure in order tomaintain the imbalance in solvent
concentration in and out of the gel, m m+ P =( ) ( )T P T P, , ;0 this additional pressureΠ is, by definition, the
osmotic pressure. It can be shown (see, e.g., [27]) that the osmotic pressureΠ is related toΔμ viaΠ=−Δμ/v,
where v is the solvent particle volume.

The thermodynamics of the polymer gel is determined by howpolymermixes with solvent. Just asΔμ is the
change in the chemical potential of the solvent due to the presence of the polymer network, we can decompose
the total free energy F as

= + D ( )F F F, 7sol

where Fsol is the part of the free energy due to solvent, without the effect of the polymer network. Therefore,
mD = ¶D ¶ L( )F ns T , . Then, using the relation between ns and the volume fractionf as well as equation (6), the

osmotic pressureΠ is given by


f

f
f

P L = -
¶ D
¶

-

-
L

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
( )T , , , 8

T

1

1
,

where it is evident that ifΠ is analogous to a pressure then 1/f plays the role of volume.Note that, since the
determinant of the deformationmatrixΛ depends on the polymer volume fraction via the volume-deformation
relation (3), it is important to enforce the Lagrangemultiplier constraint in equation (4)when computing the
osmotic pressure. AsΔF is the part of the free energy that describes gel deformation, such as swelling, we shall
refer to it as the deformation free energy.
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2.2. Flory–Rehner equation of state
Just as we enumerated a set ofmacroscopic descriptors of the gel, let us consider somemicroscopic ones. The gel
is amixture of ns solventmolecules, nmmonomers, and nc cross-links.Whilst the solventmoleculesmay have
multiple internal degrees of freedom, e.g., rotational and vibrational, let us focus only on the center-of-mass
degrees of freedom and treat them as point particles at positions s{ }i , each occupying a volume v, where i runs
from1 to ns. Rather than treating each of the nmmonomers as individual particles, wewill group them into
polymers. For simplicity, assume that (i)we can ignore any ‘free-ends’ or ‘loops’ of polymers in the polymer
network and consider only segments whose endpoints are cross-linked to other segments, and (ii) each of these
segments, whichwe shall refer to as ‘chains,’ are composed of  monomers.Much like the simple
representation of solventmolecules, we opt for a simple representation of chains as one-dimensional curves
{Rj(s)}, where s is the arclength parameter, running from0 to chain length »L vch

1 3 , and j runs from1 to
the number of chains º »n n n2ch c m .

In order to link thesemicroscopic degrees of freedom to themacroscopic properties of the system, one
approach is tofix temperature bº[ ( )]T k1 B and the number of particles of each species in the system, and
determine the canonical partition functionZ, given by

ò ò s d= b
= =

-

=

[ ] [ ( )] ( ) ( )Z s eR fd , 9i i
n

j j
n E

k

n

k
3

1 1
1

3
networks ch

c

where E is the total potential energy of the system. The network topology is set by a collection of constraints on
the =n n2 4ch c ends of the chains { ( ) ( )}LR R, 0i ch i . At each cross-link there are 4 ends that coincide; wemay
choose these ends such that 2 are at s=0 and 2 are at s=Lch. However for each cross-link there are only three
independent constraints; the fourth is automatically satisfied. For example, if a cross-link consists of the chains
ends { ( ) ( ) ( ) ( )}L LR R R R, , 0 , 0ch ch1 2 3 4 then enforcing the constraints =( ) ( )LR R 0ch1 3 , =( ) ( )LR R 0ch1 4 , and

=( ) ( )LR R 0ch2 3 automatically implies that the fourth constraint =( ) ( )LR R 0ch2 4 is satisfied. Therefore, there
are Therefore, there are nc independent vector degrees of freedom that describe the configuration of the network
underfixed connectivity; these degrees of freedomdescribe the positions of the cross-links in space. Thus, for
each of the nc cross-links, there are 3 constraint equations that can bewritten as

åº - =
¹

[ ( ) ( )] ( )a Lf R R 00 , 10k
i j

n

k
ij

i ch j
network

ch

for =k n1 ... 3 c, where ak
ij is an adjacencymatrix that is 1 when the two polymer ends are joined by a cross-link

and is 0 otherwise. These constraints are enforced by including a product of Dirac delta functions
dP ( )fk k

network in the integrand of the partition function, ensuring that the only contributions to the sum over
states are those where =f 0k

network for all k. Note that these topological constraints pose a considerable
technical difficulty in the evaluation of the partition functionZ and the free energy = -F k T ZlnB , due to the
lack of a periodic structure. Amesoscopic representation of such a networkwith ‘quenched disorder’ is shown
in figure 1(c). However, for sufficiently large gels, there aremany differentmesoscopic network structures.
Thus, instead of summing over polymer configurations with a certain fixed network topology, one can instead
sample from a distribution ofmesoscopic network structures, with the idea that they all appear somewhere in
the gel; this is known as self-averaging. The partition function is then evaluated via the replica trick, where
many copies or ‘replicas’ of the gel are treated as new interacting degrees of freedom to be integrated over
[3–5, 28].

However, instead of seeking a direct evaluation of the partition functionZ in equation (9), we consider the
classical construction of Flory andRehner [22, 23], which amounts to amean-field approximation. In particular,
we seek a description of the deformation free energyD = D - DF E T S, whereΔE is the change in the energy
andΔS is the change in the entropy due to themixing of the solvent and polymer. The total potential energyE
describes themicroscopic interaction energy and is approximated by the sumof three contributions: -Um m is the
energy ofmonomer–monomer interactions, -Us s is the energy of solvent–solvent interactions, and -Um s is the
energy ofmonomer–solvent interactions (see [1]), with each of these terms depending on particle positions. For
example, -Um m contains an excluded-volume interaction ò ò d -( ) ( ( ) ( ))v s s s sR R2 d dm i j i i j j between chains i
and j (including self-interactions, corresponding to the case i= j). In themean-field approximation, the
interaction energy depends only on local densities of solvent andmonomer, resulting in a simple form for the
mean energy density  , namely

 c r c r r c r» + +- - -[ ] ( )vk T

2
2 , 11B

m m m m s m s s s s
2 2

where r º[ ]n Vm m and r º[ ]n Vs s are number densities ofmonomer and solvent and c -{ m m, c -m s , c - }s s
are the various interaction strengths, relative to kB T, associated to van derWaals, excluded volume, and
hydrophobic interactions [1]. Rewriting in terms off, themonomer density is ρm=f/v and the solvent density
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is ρs=(1−f)/v so that

 c f c f f c f» + - + -- - -[ ( ) ( ) ] ( )k T

v2
2 1 1 . 12B

m m m s s s
2 2

Each particle, independent of identity, shares the samemean energy density; the total energy E is therefore
V . The quantity of interest is the change in energyΔE due tomixing, which is - -E E Es m, where =Es

 f =( )n v 0s is the total energy of afictitious systemhaving the same number ns of solventmolecules butwithout
anymonomers, so thatf=0; similarly,  f= =( )E n v 1m m is a systemofmonomers alone. Introducing the
total numberN=ns+nm of solventmolecules andmonomers, themixing energyΔE is simply

cf fD = -( ) ( )E Nk T 1 , 13B

where c c c cº - -- - -[ ]2 2m s m m s s is the so-called Flory parameter [1]. Ifχ<0 the interaction energy is
minimizedwhenf=1/2, corresponding to equal parts of solvent and polymer. Since this case occurs when
c c c< +- - -( ) 2m s m m s s , it describes a regime inwhich the energetic cost ofmonomer–solvent interactions is
less the average cost of puremonomer–monomer and pure solvent–solvent interactions.

Deformations of the polymer network generally result in changes in the contact interactions between chains.
At themean-field level, these interactions are incorporated in themixing energyΔE throughf alone. For
anisotropic deformations atfixedf, however, wewill assume that interactions between polymers are somewhat
less important and approximate the polymer network via a phantom chainmodelwhere the chain conformations
are allowed to overlap one another, leading to random-walk ‘ideal’ polymers.We thus focus on single-chain
deformations, implicitly assuming that this is themain contribution to the entropic cost of stretching the
polymer networkΔSnet. Although some degree of realism is lost, the problem gains tractability whilst retaining
the essential physics—the free energy cost of elastic deformations is simple to derive and has a form that reduces
to the classical rubber elasticitymodel (see e.g., [29]) in the unswollen limit.With this assumption, the elastic
free energy of the gel is approximated as proportional to the net conformational entropy change due to
deforming nch independent polymer chains. Thus, we require knowledge of (i) howdeformations affect the
conformational entropy of a single chain and (ii) how to determine the effect on an ensemble ofmany such
chains. It should be noted, however, that this construction is limited in scope and fails to accurately capture the
elastic free energy in the large shear-strain regime, where correlations between polymer fluctuations gain
importance [30].

To begin, consider a single chain of length Lwith one terminal end at position r and the other at the origin, as
shown infigure 3(a). In order to determine the entropy of the chain,first note that within the phantom chain
model, all randompaths offixed length Lhave the same energy. Therefore, the entropy ( )S r1 of a single chain
with end-to-end vector r is given by = W( ) ( )S kr rlnB1 1 , where W ( )r1 is the total number ofmicrostates available
to the chain.We canmodel chain conformations by considering a latticemodel inwhich each lattice site has
length a and each component ri of the vector r can be expressed as = -r a n N2i i i, where ni is the displacement
along the lattice along one axis andNi is the total number of steps taken along that axis. The number of
microstatesω(ri) for this one-dimensional randomwalk is given by -! ( !( )!)/N n N ni i i i . Then W ( )r1 is simply
the product w w w( ) ( ) ( ) ( )V v r r r1 2 3 , whereV/v is the number of possible locations for =r 0, and is given by

W =
=

+ -( ) ( )( ) !
! !

( )V

v

N
r , 14

i

i

N a r

a

N a r

a

1
1

3

2 2
i i i i

Figure 3. (a)Example of a single ideal chainwith end-to-end vector r . (b)Collection of chains in the polymer networkwith end-to-
end vectors { }ri .
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which can be simplified in the limit of largeNi by taking advantage of Stirling’s approximation, yielding

åW » + -
+ +

-
- -⎡

⎣⎢
⎤
⎦⎥ ( )V

v
N N

N a r

a

N a r

a

N a r

a

N a r

a
ln ln ln

2
ln

2 2
ln

2
. 15

i
i i

i i i i i i i i
1

Assuming that the polymer explores 3D space isotropically,N1=N2=N3=N/3, whereN is the total number
ofmonomer units. Furthermore, we note that the polymer ismost likely to be foundwith end-to-end distance ∣ ∣r
to bemuch smaller than its contour lengthNa. Expanding Wln 1 in powers of ∣ ∣ ( )Nar , the leading order
contribution is

W » + -
∣ ∣ ( )V

v
N

R

r
ln ln ln 2

3

2
, 161

2

0
2

where =R N a0 [1]. The entropy ( )S r1 for a single chain is therefore given by

= - +( ) ∣ ∣ ( )S S
k

R
k

V

v
r

r3

2
ln 17B

B1 0

2

0
2

where S0 is a constant that depends on the number ofmonomers in each chain. Now consider a process that
stretches the chain, resulting in a new end-to-end vector ¢r , and hence a new entropy ¢ ¢( )S r .Writing the
displaced vector as ¢ = Lr ri

ij
j, where Lij is a deformationmatrix, the change in entropyD ( )S r1 for a single

chain is given by

dD = - L L - + ¢( ) ( ) ( ) ( )S
k

R
r r k V Vr

3

2
ln . 18B

ki kj ij
i j

B1
0
2

Next, consider a collection of nch chains that are cross-linked to form a polymer network. Themacrostate of
these chains, prior to deformation, is specified by the collection of end-to-end vectors ¼{ }r r r, , , n1 2 ch

,
corresponding to vectors between cross-links as shown infigure 3(b). If this network undergoes affine
deformation, as illustrated infigure 2, then all end-to-end vectors are transformed by the same deformation
matrixΛ. Therefore, the change in entropy for this collection of chains,DSnch

, is simply given by a sumover
independent entropy contributions (18), namely

dD = - L L - + + + L( )( ) ( )S
k

R
r r r r n k

3

2
ln det , 19n

B
ki kj ij

i j
n
i

n
j

ch B
0
2 1 1ch ch ch

wherewe have assumed that all chains have the same length and thus the same value ofR0 and used the relation
= ¢ L( )V V det for affine deformations. This is the change in entropy for a given network, represented by the

collection of end-to-end vectors. Sincewe restrict our attention to chemical gels, the network topology is set
upon cross-linking, and the same collection of end-to-end vectors describes the polymer network for all
processes.While each network has a distinct topology, we assume that (i) the polymer networks are sufficiently
large that the same collection of end-to-end vectors is represented throughout every network, albeit in a possibly
different arrangement (by the self-averaging property), and (ii) cross-linking occurs when a collection of
polymers in solution are brought to a concentrationwhere they overlap but not to the point where theywould
deformdue to steric repulsion. Then the change in entropyΔSnet representative of a polymer network composed
of nch chains offixedR0 is found by averaging equation (19) over the equilibrium values of r r... n1 ch

before
deformation. In order to do this, note that the probability P1(r) that a single polymerwill have an end-to-end
vector r is given by = W( ) ( )P Zr r1 1 1, where ò= W ( )Z r rd1

3
1 . Note that in the phantom chainmodel, the energy

is then equal to zero. Using the result that

ò dá ñ = =( ) ( )r r r P r r
R

rd
3

, 20i j i j ij
3

1
0
2

the change in entropyD º áD ¼ ñ( )S S r r, ,n n1net ch ch
due to deforming a polymer network is given by

D = - L L - - L[ ] ( )S n k
1

2
tr 3 2 ln det . 21ch B

T
net

However, we still have not arrived at ourfinal result forΔSnet. Since chemically cross-linked chains share a
common endpoint, some of the chain degrees of freedommust be eliminated [23, 31]. This will causeΔSnet, as
expressed in equation (21), to decrease. To estimate this reduction, note that within the phantom chain
assumption, the endpoint r of a chain is free to lie within any point in the volumeV of the gel, irrespective of the
location of where the polymer is based. After deformation,  L( )V Vdet so the change in entropy due to the
change in the volume of the gel that is accessible to the endpoint is given by Ln k ln det ;ch B this exactly cancels
the last term in equation (21). However, each cross-link between two chains, say chain i and chain i+1,
constrains the endpointmotion of the chains; as a result, there is a constraint function =+( )f r r, 0i i i 1 for these
two chains. Since there are nc=nch/2 such constraints, there is an additional reduction of the total entropy by

L( )n k 2 ln detch B . Thus, the overall entropy change due to deformations of the polymer network is
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D = - L L - - L[ ] ( )S n k
1

2
tr 3 ln det , 22ch B

T
net

which is attributed to Flory andWall [29]. NoteD µS nchnet and is independent of chain length.
We emphasize, however, that the argument for reduction in entropy due to cross-linking, as presented

above, is somewhat flawed. In the seminal paper ofDeam andEdwards [4], it was shown that this argument
relies on the assumption that the cross-linked ends of the chains are free to explore the entire volumeV of the gel.
However, the cross-linked ends of the chains, whilst able to undergo thermalmotion, are localized to amuch
smaller volumeωwhen the gel is formed. Furthermore, whereas the volumeV of the gel depends on the affine
deformationΛ, the volumeω of the localization is amuchweaker function ofΛ owing to non-affinefluctuations
of the cross-linked endpoints. Therefore, the Lln det term in the Flory–Wall entropy (22) is not completely
justified. In addition, since the term can be rewritten as ln (f0/f), it only depends on the polymer volume
fraction. Since, as wewill see below, themixing of solvent and polymer results in a similar contribution to the
total entropy, it is nevertheless difficult to assess the accuracy of the inclusion of this term in the Flory–Wall
entropy.

There is an additional contribution to the entropy coming from themixing of solvent and the polymer
network:ΔSmix. To estimateΔSmix, wemodel the space occupied by the gel by a lattice, as shown infigure 4, ofN
sites, each occupied by either a solventmolecule or amonomer; because the system is denselyfilled, there are ns
solventmolecules and = -n N nm s monomers. By fixing the total number ofmonomer and solventmolecules,
the entropy Slatt of arrangingmonomers and solvent into the lattice is given by = WS k lnBlatt , whereΩ is the
number of possible lattice arrangements.Wemust therefore count the number of ways that the lattice can be
filledwith solvent andmonomers, where themonomers (i) are arranged into polymers that (ii) belong to a cross-
linked network that spans space.Wewill start with the simple case of ‘free’monomers that are unassociated into
larger polymermolecules, all able to explore space independently and recover the entropy of Bragg–Williams
theory [32]. Subsequently, wewill progressively introduce the necessary constraints by associating the
monomers into polymers and then introducing the cross-linking constraints.

Consider a binary system, consisting of nA and nB particles of species ‘A’ and ‘B’, respectively; ‘A’ could, for
example, represent solvent and ‘B’ could represent freemonomers, as shown infigure 4(a). The total number of
microstates of the lattice is given by

W =
!

! !
N

n n
,

A B

so that the entropy, using Stirling’s approximation, is

» - -[ ]S k N N n n n nln ln ln .B A A B Blatt

Recalling that the volume fractionf=nB/N,

f f f f» - - - +[( ) ( ) ]S Nk 1 ln 1 ln ,Blatt

fromwhichwe find that the state ofmaximumentropy corresponds tof=1/2, which further corresponds to a
mixed state composed equally of both species of particles.

We now associatemonomers into polymers that are free to explore the entire space, whilst localizing
individualmonomers tomuch smaller volumes around the centers ofmass of the polymers, as illustrated in
figure 4(b). Let each polymer consist of  monomers such that =n np m is the total number of polymers.
Whilst the individualmonomers have the adjacency condition, polymers are allowed full translational freedom
on the lattice. Thus, the entropy of the localizedmonomers is negligible comparedwith the translational entropy
of the polymers. The entropy Slatt is therefore dominated by the translational entropy of the solvent and the
polymers such that

Figure 4. Lattice calculation of themixing entropy. Each cell occupies a volume v. Solvent is represented bywhite cells. (a)Bragg–
Williams case inwhich themonomer units (orange) are uncorrelated. (b) Flory–Huggins case wheremonomers are identifiedwith
mobile polymers of degree  . (c) Flory–Rehner casewheremonomer translational freedom is frozen; cross-links between
independent polymers are shown in black.
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 
f f

f f
» - - - +

⎡
⎣⎢

⎤
⎦⎥( ) ( )S Nk 1 ln 1 ln .Blatt

To obtain themixing entropyDSmix,first define an entropy density  = S V . Following the definition of the
mixing energyΔE, themixing entropy is given by

  



f f f

f f
f

f

D = - = - =

»- - - +
⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )

( ) ( ) ( )

S V vn vn

Nk

0 1

1 ln 1 ln , 23

s m

B

mix

which corresponds to the Flory–Huggins result [1, 33] for polymer solutions.
Finally, we consider the case inwhich permanent cross-links are introduced, localizing polymers to small

regions about the cross-link sites (see figure 4(c)). In this case, the polymers have constraints that reach all the
way to the sample boundary, resulting in rigidity. Therefore, the translational entropy of polymers is negligible
comparedwith the entropy of the solvent. The resultmay be found by considering the limit of the Flory–
Huggins theory for infinitely long polymer, i.e., taking   ¥. The result is

f fD » - - -( ) ( ) ( )S Nk 1 ln 1 , 24Bmix

which is independent of network details [1, 23, 31].
The deformation free energyΔF can finally be decomposed as

l
f
f

D = D + D + L -
⎡
⎣⎢

⎤
⎦⎥ ( )F F F det , 25elastic mix

0

where the elastic deformation free energy

D = - D = L L - - L[ ] ( )F T S n k T
1

2
tr 3 ln det , 26ch B

T
elastic net

arises from the entropy change due to deformation of the polymer network, and themixing free energy,

f f cf fD = D - D = - - + -[( ) ( ) ( )] ( )F E T S Nk T 1 ln 1 1 , 27Bmix mix

is the net change in the free energy due tomixing polymer and solvent. In the last term of equation (25), the
constantf0 corresponds to the volume fraction in the reference state of the gel, usually taken to be the
volume fraction at which cross-linking is performed, or occasionally the volume fraction of a completely
dry gel, namelyf0=1. Notice that both the elastic andmixing free-energies scale with the thermal energy
kB T—the only term that presents a nonlinear scaling with temperature is the Flory parameter term since
χ is a function of temperatureT. It is therefore convenient to rescale the total free energyΔF by the thermal
energy, i.e.,DF k TB , fromwhich we find that the equilibrium state of polymer gels is determined byχ(T)
alone.

Amore careful and detailed look at the theory of gel elasticity confirms that the affine-deformation
picture of classical rubber elasticity is inaccurate [5].While the average cross-link positions in space undergo
affine transformation under a homogeneous deformation of the gel at its boundaries, there are in fact
large fluctuations in cross-link positions due to thermalmotion as well as network inhomogeneities. In fact,
these fluctuations are on the order of themean cross-link spacing, which wouldmelt ordinary solids,
according to the Lindemann criterion, further highlighting the strangeness of thesematerials. Additionally,
the separation of the total free energy into a contribution due to the network elasticity and a contribution due
to solvent-polymermixing ultimately fails due to these large fluctuations, which renormalize both
contributions. Thus, while wewill use the Flory–Rehner equation of state to illustrate the thermodynamics
of polymer gels, it should be regarded as a semi-empiricalmodel that over-simplifies the truemicroscopic
state of the gel.

2.3. Isotropic swelling
When allowed to equilibrate with a solvent bath, the amount of solvent in a polymer gel balances the osmotic
pressure due to the thermalmotion of the polymer networkwith the entropic cost of stretching this network.
Changes in this equilibrium state can be brought about by changing the solvent quality, as characterized by the
Flory parameterχ.With the Flory–Rehner free energy (25) in hand, let us determine the equilibrium volume
fractionf(T) in the case of an isotropic gel. Applying the volume constraint, viz.,∂ΔF/∂λ=0, we readily
obtain that the deformationmatrixΛ is given by


f
f

L =
⎛
⎝⎜

⎞
⎠⎟ .0

1 3
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The free energy density D of the gel is therefore


n f
f

f
f

f
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f f cf fD = - - + - - + -
⎡
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3 3 ln 1 ln 1 1 , 28B
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0

0
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0

where n º n Vch0 0 is the density of chains in the reference state of the gel. The osmotic pressure follows from
ΔF and is given by

f n
f
f

f
f

f f c fP = - - - - -
⎡
⎣
⎢⎢
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⎝
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⎤
⎦
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v T,

2
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0
0 0
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wherewe have taken the Flory parameterχ to be a function only of temperatureT. Equation (29) is the Flory–
Rehner equation of state relating the osmotic pressureΠ to the volume fractionf and temperature (viaχ).
Contours of variable volume fractionf and Flory parameterχ at constant osmotic pressureΠ are shown in
figure 5(a). ForΠ=0, the volume fractionf decreases with decreasingχ, corresponding to a gel that is swollen
(lowf) for a good solvent (χ<0.5) and that deswells as the solvent becomes poor. Positive values of osmotic
pressure can be obtained through the addition of a solute to the surrounding solvent; equilibriumosmotic
isobars for positive values ofΠ are also shown infigure 5(a).

We can understand the behavior of the osmotic isobars in analogywith isobars from the van derWaals
equation of state

r
r r

r=
-

- ( )P
k T

a
1

, 30B

0

2

which relates the pressure P to the density ρ of particles, as shown in figure 5(b). Note that for lowdensity, these
curves asymptotically approach their ideal gas form r ~- -P k TB

1 1 . For sufficiently large positive pressure, the
density ρ decreases with increasing temperature, corresponding to an expanding gas. However, for low pressures
and temperatures, the density is amulti-valued function of temperature. In the case of the van derWaalsfluid,
the emergence of themulti-valued region is indicative of a loss of thermodynamic stability and the development
of distinct liquid and gas phases. Therefore, wemight expect that the Flory–Rehner theory of gels has a similar
phase transition separating a distinct lowf swollen phase and a highf deswollen phase. Such a phase transition
indeed exists for gels, even though the Flory–Rehner equation of state requires a slight alteration to correctly
capture it [34].

3. Phase transitions

While there is a useful analogy thatmay be drawn between the isotropic swelling of polymer gels, asmodeled by
the Flory–Rehner theory, and the thermal expansion of afluid, asmodeled by the van derWaals equation of
state, there is also a key difference. Examining the isobars infigure 5(b), onefinds that for sufficiently low
temperature and pressure P, the r =- V N1 versusT plot ismulti-valued. The value of pressure for which the
well-defined, single-valued expansion curve becomesmulti-valued is called the critical pressure.We highlight the
situation infigure 6(a), which shows three different isobars: P<Pc,P=Pc, andP>Pc. For P>Pc, afluid that
is quasistatically heated fromhigh density (low ρ−1) becomes lower density (higher ρ−1); this process is easily
reversed upon cooling. For P=Pc, while the equilibriumheating and cooling paths remain the same, the change

Figure 5. (a)Osmotic pressure ‘isobars’ from the Flory–Rehner equation of state (29) in units of thermal energy density k T vB with
chain fraction n = -v 100

4 characterizing the connectivity of the polymer network and f = -100
1. (b) Isobars, corresponding to P=

0, 1, 2, 4, 8 in arbitrary units, from the van derWaals equation of state with ρ0=10 and a=0.5. Dashed lines represent the ideal gas
limit, r=P k TB , realizedwhen ρ is small.
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in density with temperature diverges at a certain critical temperature Tc. However, for P<Pc, a high-density fluid
can be quasistatically heated so that the density traces the lower part of the curve shown infigure 6(a) until the
curve folds back on itself. Heating beyond this transition temperatureT> results in a discontinuous jump to a
much lower density and the ensuing thermal expansion follows the upper branch of the isobar. Cooling the fluid
from lowdensity and high temperature, however, traces the upper branch, until the discontinuity is
encountered at a lower transition temperatureT< . The low-density and high-density values of the fluid for
P<Pc distinguish separate fluid phases, whichwe recognize as the gas phase and the liquid phase, respectively.
Thus, this appearance of (i) a discontinuous jump influid density that (ii) depends on the heating path is not a
failure of the van derWaalsmodel but rather a successful description of a first-order phase transition.

Interestingly, experiments on certain polymer gels, notably pNIPAM, reveal similar discontinuous behavior
in the equilibrium swelling curves [35, 36]. For low temperatures, when the polymer network ismiscible in the
solvent, the gel is swollen. Slowly increasing temperature increases the cost of polymer–solvent interaction, i.e.,
increasesχ, leading to gradual deswelling. Above a certain temperature, roughly 32 °C for pNIPAM, the gel
suddenly expelsmost of its solvent into the surrounding bath, reducing its volume by orders ofmagnitude, and
becomes opaque. This discontinuity hints at a similar first-order phase transition of polymer gels and
distinguishable swollen and deswollen phases. However, the osmotic pressure of the Flory–Rehnermodel,
equation (29), does not exhibit themulti-valued behavior of the van derWaalsmodel.Wewill discuss the
Erman–Flory extension of the Flory–Rehnermodel that allows for such a phase transition.However, wewillfirst
briefly discuss the theory of phase transitions and critical phenomenamore broadly.

3.1. Preliminaries: general aspects of phase transitions
In order to understand phase transitions, let usfirst consider thermodynamic stability.While this discussion is
generalizable, wewill continue to use the example of the van derWaalsmodel offluids.We plot the constitutive
relation between pressure P and inverse density ρ−1 forfixed temperature infigure 6(b). Evidently, if we are able
tofix the temperatureT of afluid and specify the total number of particlesN and volumeV, then equation (30)
tells us the pressure of thefluid, assuming that the density ρ of particles is uniform everywhere. Of course, at
finite temperature, particles in the fluid undergo thermalfluctuations and the density ρ varies in space and time.
Themicroscopic length scale over which spatial variations in particle density can be resolved is the correlation
length ξ. To connect tomacroscopic physics, state functions like ρ are found by coarse-graining, or averaging
overmany particles in a certain region of space, the size of which is set by a coarse-graining length scaleℓ. By
takingℓξ, thermal fluctuations are averaged out andwemay approximate the state functions of each coarse-
grained region by their thermodynamic limit. For example, if we label a certain region by a position x so that the
local coarse-grained density is r ( )x then the local pressure ( )P x can be approximated by the van derWaals
equation of state (30).

Now consider a disturbance to thefluid, such as a vibration or incident soundwave. The result of such an
external influence is a spatialmodulation in density, typically of a longer length scale than ξ. One coarse-grained
regionmay have a slightly lower density of particles than its surroundings, whichmay have a slightly higher
density of particles. Consulting figure 6(b), wefind that for the higher temperature isotherms, pressure increases
monotonically with density. Therefore, assuming that thefluid ismaintained atfixed temperature, the higher
density regions are at higher pressure and the lower density regions are at lower pressure. Subsequently, due to
this pressure difference, particles willmigrate fromhigher density to lower density in order to re-establish

Figure 6. (a) Isobars of the van derWaals equation of state for three values of pressureP greater than, equal to, and less than the critical
pressure Pc. The value of temperature forwhich the isobar becomesmulti-valued,Tc, is shown, alongwith the corresponding density
r-c

1. Also shown, a heating process starting at high density, which jumps to low density at a temperatureT> and the reverse process
with a density jump atT< . (b) Isotherms for three temperaturesT greater than, equal to, and less thanTc. Two processes are shown in
which pressure is increased and decreased, leading to density jumps atP> andP<.
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equilibrium. The higher density region and the lower density regions eventually settle to a uniformdensity,
namelyN/V. This resilience to perturbations is known as thermodynamic stability. Per this argument, the
essence of Le Chatelier’s Principle, thermodynamic stability requires

r
r r

¶
¶

= >-
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )P

K T , 0, 31
T

1

whereK is the bulkmodulus, which is the inverse of the isothermal compressibilityκT [26]. As long as the
temperatureT>Tc, whereTc is the critical temperature, the constitutive relation P(ρ) obeys this stability
requirement.However, atTc, there is a critical pressure Pc at which r¶ ¶ =( )P 0T . This critical pointmarks the
loss of thermodynamic stability and the onset of different physics. The zero value of the bulkmodulusK, or
diverging compressibilityκT, at the critical point is one example of the critical phenomena that one encounters.

Saving the discussion of critical phenomena for later, let us address the consequences of thermodynamic
instability. IfT<Tc andP<Pc then there are certain values of ρwhere r¶ ¶ <( ) 0P T so the bulkmodulusK is
negative. Higher density regions are at lower pressure than the lower density region, so there ismass flow away
from low-density regions. As a result, density fluctuations grow and the ultimate fate of such a fluid is phase-
separation into regions of low density and regions of high density. However, density variations cannot grow
forever: eventually, the high density and low-density regions leave the unstable region offigure 6(b) and enter
stable regions of positive compressibility. The difference between the higher and lower densities growswith the
distance of the fluid from the critical point, characterized by a reduced temperature º - <( )t T T T 0;c c for
large enough values of ∣ ∣t , these two densities describe well-defined, distinguishable phases. Eventually, these two
fluid phases attain a phase-coexistent equilibrium.

Instead of using the van derWaals equation of state to determine the pressure at a given density, now
consider it as away to determine density at a given pressure.Much like the ρ−1(T) isobars infigure 5(b), the
ρ−1(P) isotherms aremulti-valued graphs forT<Tc. Thus, a high-density, liquid-phase fluid atT<Tc

undergoes afirst-order phase transition to a low-density, gas-phase fluid for sufficiently low pressure. However,
we have shown that there should also be cases where the fluid is in a phase-coexistent equilibriumbetween liquid
and gas phases. In order for these phases to coexist in equilibrium, theymust (i) have the same temperatureT, (ii)
the same pressure P, and (iii) the same chemical potentialμ; that is, theymust be in thermal,mechanical, and
chemical equilibrium.WhileT andP are specified,μmust be determined.We can take advantage of theGibbs–
Duhem relation m = - +N S T V Pd d d , which, at constant temperature, can be expressed as m r= - Pd d1

[26]. Therefore, chemical equilibrium is realizedwhen


òm m m rD = - = =- ( ) ( )ℓ P Pd 0, 32g

1

1

where 1 is the path along the isotherm, shown infigure 7(a), that connects the point *r-( )ℓ P,1 to *r-( )P,g
1 ,

where ρℓ and ρg are the respective densities of the liquid and gas phases. Joining these two points by a constant-
pressure line 2, we can define a loop   È= 1 2 as the union of these two paths; this is called a ‘van derWaals
loop.’ Integrating equation (32) by parts,

Figure 7. (a)An example isotherm below the critical temperatureTc exhibiting an unstable S-shaped region (1), alongwith the
rectifying path (2). This rectifying path gives a set of coexistent densities at a certain pressureP

* atfixed temperatureT. (b)Part of the
phase diagram for a fluid described by the van derWaalsmodel. The locus of values of pressure and temperature (T,P*) that yield
coexistence is shown and separates well-defined liquid and gas phases. This curve ends in a critical point (Tc,Pc)where the fluid is
single phase.
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we therefore find that coexistent phases are in equilibriumwhen the net area enclosed by the van derWaals loop
 is 0. The line 2 that joins coexisting densities ρℓ and ρg gives the equilibriumpressure and replaces the
S-shaped curve 1. This ‘Maxwell construction’ correctsmulti-valued isotherms in the van derWaals equation
of state [26].

Furthermore, in the two-dimensional P Tversus phase diagramoffluids, we can identify a one-
dimensional locus of coexistent equilibria consisting of the single pressure P that yields coexistence for each
isothermT. This coexistence curve in the phase diagram terminates at the critical point (Tc,Pc). Afluidmay be
brought around the critical point without passing through the coexistence curve via appropriate temperature
and pressure change protocols.Whilst points on the coexistence curve describe coexistence between gas and
liquid phases, points immediately to one side or the other are in the single-phase region. Passage through the
coexistence curve results in afirst-order phase transition, a discontinuous jump between high-density and low-
density fluids. Therefore, the only way to distinguish between gas and liquid phases offluids is to pass through
the coexistence curve. In fact, the ability for a system to support coexisting densities in equilibrium is the defining
feature of distinct phases that are separated by a first-order phase transition.

3.2. The common tangent construction in phase-separating systems
The phase diagram 7(b) shows a phase-coexistent region for a particular set of temperatures and pressures. To
land on this curve, one requires precise control over temperature and pressure, suggesting that coexistent phases
are rarely realized. As it turns out, one can readily achieve phase coexistence at constant temperature, volume,
and number of particles ( )T V N, , .

Rather thanworkingwith the pressure-density equationof state, consider theHelmholtz free energyF(T,V,N).
SinceF is a thermodynamic potential, it is a homogeneousfirst-order function inV andN. Therefore,we can
writeF in termsof its density  as  r= -( ) ( )F T V N N T, , , 1 , defined in terms ofN. If the free energy density
 describes a thermodynamically stable system then the requirement for positive isothermal compressibility is
satisfied for  r¶ ¶ >-( ( ) ) 0T

2 1 2 and there is a single free energyminimum *r-( )1 forfixed values ofT, as
illustrated in the inset infigure 8.However, forT<Tc, the free energyhas a regionofnegative compressibility
where  r¶ ¶ <-( ( ) ) 0T

2 1 2 and  is concavewhenplotted againstρ−1. In this case, the free energy supports two

Figure 8.An exampleHelmholtz free energy density  r-( )1 at temperatureT<Tc that possesses two localminima and a single local
maximum is shown. The common tangent line has a slope of−P and an intercept ofμ and describes two equilibrium coexistent
densities. Note that the positive slope indicates that pressure is negative, which is predicted to exist in the van derWaals equation of
state owing to the attractive force that causes particles to condense into the liquid phase. In contrast, if a liquid is heated such that the
high-density liquid phase becomesmetastable, the formation of a low-density gaseous phase results in a positive pressure, and the
tangent linewould thus have a negative slope. Inset: shows exampleHelmholtz free energy density at temperatureT>Tc, where it
exhibits a singleminimum.
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localminima, separated by a localmaximum, as shown infigure 8. In the absence of a volumeconstraint, the system
canuniformly changedensity and seek tominimize the free energy so that a localminimumthat is not the global
free energyminimumis consideredmetastable: eventually, given sufficient time, thermalfluctuationswill drive the
system to the global free energyminimum.For example, it is possible to ‘superheat’ a homogeneous liquid-phase
fluid above the transition temperature for phase coexistence, keeping thefluid in its liquid phase, ametastable
equilibrium, for a prolonged period of time. Todo this requires careful preparation, removing any possible
nucleation sites for the gas phase from the liquid at, for example, small pockets of trapped gas. The introduction
of a nucleation site, e.g., via disturbing thefluid, lowers the free energy barrier locally and allows a portionof the
liquid to transition to the gas phase.Without the introductionof a nucleation site fromexternal influence, the
superheated liquidnevertheless has afinite, albeitmuch longer, lifespan as a significantly largedensityfluctuation,
driven by thermalfluctuations,will eventually provide a suitable nucleation site. Since the gas phase is of lower
density than the liquidphase, it occupies a larger volume than the samemass of liquid-phasefluid.However, if the
total volumeof thefluid is constrained to remain constant, then even though the free energy associatedwith the gas
is lower than that of the liquid, not all of the liquid can freely transition to the gas phase. Instead, a portionof the
liquid can transition to the gas phase, at the expense of increasing the density of the liquidphase, achieving a phase-
coexistent equilibrium.

In order to determine the conditions for equilibriumphase coexistence at constant volume, recall that the
equilibrium stateminimizes the global free energy F. Let ρℓ and ρg be the densities of the liquid and gas phases,
consisting ofNℓ andNg particles, respectively. By conservation ofmass, the total number of particles in the
container remains unchanged:Nℓ+Ng=N. Therefore, we can define a fraction ºf N Ng of particles that
are in the gas phase; bymass conservation, the fraction of particles that are in the liquid phase is (1−f ).
Furthermore, the total volume of particles in the liquid and gas phases are given by r= -

ℓ ℓ ℓV N1 and

r= -V Ng g g
1 . Volume conservation requires thatVℓ+Vg=V; dividing byN, this conservationmay be

expressed as r r r+ - =- - -( ) ℓf f1g
1 1 1, where ρ≡N/V is the nominal density of thefluid, as if it were in a

single phase. Therefore, the fraction f of particles in the gas phase is given in terms of the equilibriumdensities by

r r

r r
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a result known as the Lever rule.
The phase-coexistent equilibrium is determined byminimizing the totalHelmholtz free energy F,
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which is the sumof free energy contributions from each phase, where  r= -( )F Ng g g
1 and  r= -( )ℓ ℓ ℓF N1 ,

subject to the volume constraint, enforced by a Lagrangemultiplierλ. Theminimization condition dF=0
requires that partial derivatives of the total free energywith respect to ρg

−1, r-ℓ
1, f, andλ are all equal to 0. This

results in the Lever rule (34), alongwith three additional equilibrium equations, namely
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Consider an example free energydensity  r-( )1 at low enough temperature that it has two localminima, as plotted
infigure 8. Thefirst two equilibriumequations (36a), (36b) show that the slopes of the free energy density  r-( )1

at r-g
1 and r-ℓ

1 are the same. The third equation (36c), after taking into account thatλ is the slope of the lines that
are tangent to the free energy at the equilibriumdensities, shows that the two tangent lines overlap.Thus, the
equilibriumdensities satisfy a common tangent construction: the values r-g

1 and r-ℓ
1 can be found graphically by

drawing a straight line that is tangent to  r-( )1 at twopoints. As long as the free energyhas two stable equilibria
that are separated by anunstable equilibrium, this construction yields unique values for the equilibriumdensities,
and thus the fraction f via theLever rule (34). Importantly, appreciate how the equilibriumdensities are not at the
localminimaof  . Instead, r-g

1 and r-ℓ
1 are close to thoseminima, as can be seen infigure 8.

There is a physical rationale behind the equilibrium equations. Note that the pressure = - ¶ ¶ =( )P F V T N,

 r- ¶ ¶ -( )T
1 so that the first two equations (36a), (36b) yield the interpretation ofλ, a generalized force that

maintains the volume constraint, as the pressure P of the two phases, which are inmechanical equilibrium. To
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interpret the third equation (36c), note that lr+ = + =- ( )/ /F F PV N G N1 , whereG is theGibbs free
energy. Therefore, we have that = ℓ ℓG N G Ng g , a balance of theGibbs free energy density for each phase.
Noting thatG=μN, this is also a balance between chemical potentialsμg andμℓ, so the two phases are in
chemical equilibrium. This result details a robust way to achieve equilibriumphase coexistence: as long as the
temperatureT is low enough for the system to be thermodynamically unstable for certain values of the state
functions, then there is equilibriumbetween coexistent phases at constantN andV.

3.3. A note on critical phenomena
While wewill not linger on the rich subject of physics near a critical point, a discussion of phase transitions
requires at least a cursorymention of critical phenomena. Until this point, we have focused on equilibrium
thermodynamics in the vicinity of the coexistence curve. Crossing this coexistence curve results in a first-order
phase transition, which allows us to distinguish phases, such as the gas and liquid phase of afluid. Sitting on the
coexistence curve, the system is not a single homogeneous phase but rather an admixture of two phases that are
in equilibriumwith each other. The critical point is the endpoint of this coexistence curve and thusmarks the
onset of distinction between the two phases; equivalently, coexistence breaks down as this end of the curve is
reached and the two phases lose distinction.

To study thermodynamics close to a critical point, it is helpful to define an order parameterj that is zero
when only a single phase exists (off of the coexistence curve) and is nonzerowhenmultiple phases exist. For a
fluid, a choice of order parameter is the reduced density, namely

j
r r
r

=
-

( ), 37c

c

where ρc is the average density of the fluid at the critical point. For the van derWaals equation of state (30), the
critical temperature is given by r=T a8 27c 0 and the critical pressure is r= /P a 27c 0

2 so the critical density is
ρc=ρ0/3. For small negative values of the reduced temperature t=(T−Tc)/Tc along the critical isochore,
where thefluid at the critical density ρc is in unstable equilibrium, there are two new locally stable equilibria, one
with ρ>ρc and another with ρ<ρc; there is a positive and a negative value ofj. Defining a reduced pressure
p=(P−Pc)/Pc and expanding the van derWaals equation of state (30) yields a linear leading-order
dependence of pwithj for smallj, that is p≈rj, where the coefficient r∝t. Noting that this implies that

j¶ ¶ µp t , wefind stability via the LeChatelier principle for t>0 and instability for t<0. To recover the
appearance of two new locally stable equilibria, there needs to be a dependence onj added to p that yields
positive bulkmodulus for sufficiently large values of j∣ ∣. The simplest addition that stabilizes the reduced
equation of state is a cubicj3 dependence, yielding j j= +p r u 3, where u>0.We can integrate the pressure
tofind an approximate formof the free energy density  near the critical point, namely

 j j» + ( )r u
1

2

1

4
. 382 4

One immediate consequence of this approximation is that the equilibrium values of the new phases close to the
critical point, i.e.small ∣ ∣t , are given by

j =  µ
∣ ∣ ∣ ∣ ( )r

u
t , 391 2

which are symmetric about the unstable equilibriumj=0.Note that this symmetry between the two phases
holds only close to the critical point: further away, odd powers ofj appear in the free energy. Still, close to the
critical point, we find that the separation in density between the liquid and gas phases, *r r r j- =( ) ∣ ∣ℓ 2g c ,

wherej* is aminimumof  , scales with b∣ ∣t withβ=1/2 along the critical isochore. The exponentβ is one
example of a critical exponent. There are a variety of critical exponents for different thermodynamic quantities,
such as the isothermal compressibility k ~ g-∣ ∣tT . Since k jµ- d dT

1 2 2, we find that γ=1 along the critical
isochore. These critical exponents are used to characterize the behavior of a systemnear a critical point.

The problemwith the above analysis is that it does not yield good predictions for critical exponents that are
measured in the lab. Themeasured value ofβ is actually close to 1/3, but does not seem to be a rational number
[37]. Even though the van derWaals equation of state workswell for describing equilibriumphysics of liquid and
gas phases offluids formuch of the phase diagram, it seems to fail near the critical point. As it turns out, the root
of the problem lies in the assumption that thermal fluctuations are not important. The key assumptionwas that
thermalfluctuations, characterized by a correlation length ξ, are important only over small length-scales. Tofind
the large length-scale physics, recall that in defining ρ and other state functions as descriptions of the
macroscopic state of a system, therewas a coarse-graining length scaleℓintroduced over which themicroscopic
details, such as thermal fluctuations, were averaged over. This coarse-graining lengthℓwas taken to be at least as
large as the correlation length ξ. Since fluctuations are ignored in the resulting description of the
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thermodynamics, this is referred to as amean-field theory. The predicted critical exponents aremean-field critical
exponents, which, owing to the simple structure ofmean-field theories, are always rational numbers.

In order to correctmean-field theory, we need to properly incorporate this coarse-graining length scale and
investigate corrections due to thermalfluctuations in the order parameterj. To do this, we canmodel a
fluctuating order parameter near the critical point by amodel free energy

ò j j j=  + +
⎡
⎣⎢

⎤
⎦⎥∣ ∣ ( )F x c r ud

1

2

1

2

1

4
, 40d 2 2 4

where the coefficient c sets the energy cost of spatial variations inj, and d is the dimensionality of the space in
which properties of thematerial vary. Note that this is completely phenomenological: the presence of the
gradient term j∣ ∣2 simply provides a positive free energy cost for spatial variation. This term is necessary for
the development of the coarse-grainedmodel of the fluid as it describes a lower cutoff length for thewavelength
of spatial fluctuations in the order parameter fieldj. To see this, letλ represent thewavelength of afluctuation in
j. Then there is an energetic cost of this fluctuation that scales as j l∣ ∣c 2 2 so that as the length scaleλ of the
spatial variation inj decreases in size, the cost of thisfluctuation grows.

To see how adjusting c affects the length ξ over which fluctuations dj ( )x ofj ( )x about the equilibrium
*j º  ∣ ∣r u are correlated in space, we can determine the functional formof the fluctuation correlations,

namely dj djá ñ( ) ( )x 0 . To leading order influctuations δj, the change δF in the free energy is given by
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where = - ( )F r V u40
2 is the free energy corresponding to the homogeneous equilibrium *j . The probability

of realizing a particular fluctuation dj ( )x is weighted by the Boltzmann factor bd dj-( [ ])Fexp , where
b = -( )k TB

1. Therefore, the fluctuation correlations are determined by
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where ò dj[ ]d represents a sumover all possiblefluctuations dj of the order parameter field. Integrating the
free energyfluctuation (41) by parts to yield
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we recognize that the functional integrals in (42)have aGaussian form and are thus simple to evaluate. The
fluctuation correlations are given by
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and thus satisfy theGreen’s function equation [32]
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where d ( )x is theDirac delta function in d dimensions. Therefore, the position dependence of the fluctuation
correlations is given by
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where x º ( ∣ ∣)c r2 defines the correlation lengthbetween thermalfluctuations in the coarse-grainedfieldj [37].
As long as >∣ ∣r 0, the isothermal compressibility k ~ -rT

1 isfinite, andwe can always therefore coarse-grain to a
length-scaleℓ larger than the correlation length ξ.However, as  -r 0 on the approach to the critical point, this
length-scale is ill-definedbecause ξdiverges!Therefore,fluctuations cannot be ignored andmean-field theory is
destined to fail. Indeed, this is confirmed in experiment via thephenomenonof ‘critical opalescence’ [38]. As an
otherwise transparentfluid, such aswater, approaches the critical point, it turns opaque.Whereas normally, the
correlation length ξ is shorter than thewavelengthof visible light, on the approach to the critical point, it lengthens to
thepoint that thermalfluctuations in thedensity of thefluid can scatter light. The color of thefluid is amilkywhite,
revealing that all visiblewavelengths are scattered, so thatfluctuations exist atmany length-scales concurrently.
Furthermore, this opacity lingers even as ξ increases in length closer to the critical point, confirming thatfluctuations
at visiblewavelengths remain, even as ξmoves into the infrared andbeyond, eventually stopping at themacroscopic
length-scale ~L V1 3 of the container. Essentially, near the critical point, thefluctuations become scale-free.

Interestingly, while themean-field theory predicts one set of critical exponents, in reality, critical exponents
can vary from system-to-system.However, there are certain, seemingly unrelated, systems that share sets of
critical exponents. For example, fluids, ferromagnets, and binary alloys all have approximately the same critical
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exponents [37]. This commonality of critical exponents amongst diverse systemsmeans that their critical
behavior is similar, even though themicroscopic physics at play is very different, a phenomenon known as
universality. Universality amongst systems is due to symmetry rather thanmicroscopic physics. The order
parameterj that we introduced forfluids represents a density difference. It works just as well for ferromagnets,
which are described bymagnetic dipoles that either point up or down; here, positive values ofj correspond to an
averagemagnetic dipolemoment that is up and negative represents an average that is down. Similarly, for binary
mixtures consisting of species labeledA andB,j represents the difference in densities of speciesA and speciesB.
Regardless of the underlyingmicroscopic physics, the formof the free energy at the critical point is identical, and
the result is identical critical exponents, evenwhen fluctuations are accounted for. Systems represented by other
types of order parameters typically lie in other universality classes. The universality class offluids, ferromagnets,
and binary alloys is the three-dimensional Isingmodel, owing to the discrete+ - symmetry of the free energy
 , namely,  j j- = +( ) ( ). If, for example,jwas a complex order parameter instead of a real scalar and if 
was invariant under continuous transformation of the form jqei , the corresponding critical phenomenawould
fall into the XYmodel universality class. For example,many systemswith a polar order parameter s that exhibit
continuous rotational symmetry, such as superfluids, certain superconductors, and hexatic liquid crystals, lie in
the universality class described by theXYmodel. The predictive power of the dimensionality of space, the
dimensionality of the order parameter, and the symmetries of the system allow usefulmodels of the behavior
near the critical point via Landau theory, where a simple free energy, such as (40), is constructed based on these
considerations alone [32, 37].

3.4. Swelling–deswelling phase transition in polymer gels
Whilstmanypolymer gels undergo continuous changes in their polymer volume fraction due to changes in solvent
conditions, e.g., via changes in temperature, certain gels exhibit a seemingly discontinuous change in volume
fractionf, jumping between a low-f swollen state to a high-fdeswollen state. Aswehave illustratedwith our
discussion aboutfluids, a discontinuous change indensity in response to changing other state functions, e.g.,
temperature andpressure, indicates afirst-order phase transition between a low-density and ahigh-density phase.
Forfluidsmodeled by the vanderWaals equation of state, these are the gas and liquidphases, respectively.
Furthermore, little distinctionbetween gas and liquidphases canbe seenmicroscopically—unlike crystalline
phases, there is nobroken symmetry that distinguishes the twophases. The only sureway to distinguish these two
phases is passage through a coexistence curve in the phase diagram that either crosses through the discontinuous
transition or ends in a state of equilibriumphase coexistence. Therefore, we are led to conclude that polymer gels
can havedistinguishable swollen anddeswollen phases.However, unlike in the vanderWaalsmodel offluids, the
Flory–Rehnermodel of polymer gels does not predict a discontinuous change inf for physically reasonable
parameters. Furthermore,within the formulationof theFlory–Rehnermodel for theosmotic pressure that has
beenpresented thus far, not all values ofχ yield a corresponding equilibriumvalue offwhenΠ is negative.One
way of achievingΠ<0 is by applying amechanical pressure to the boundary of the gel, leading to solventflowout
of the gel via ‘reverse osmosis.’ Interestingly, negative osmotic pressure states are typically thermodynamically
unstable, favoring de-mixing of a solution intopure solute andpure solvent [39], i.e., phase-separation. This lack of
general applicability suggests that equation (29) is an incomplete equation of state.

The Flory–Rehnermodel describes a rather simple picture of polymer gels inwhich the osmotic pressureΠ
is expressed as two separate contributions:Πmix, which is due to the thermalmotion of polymers amongst
solventmolecules, andΠel, which is due to the elasticity of the polymer network. For ionic gels, thermalmotion
of free counterions contributeΠion to the osmotic pressure. This addition, which can be simply approximated as
an ideal gas of counterions within the gel, is enough to theoretically obtain a discontinuous transition in the
context of the Flory–Rehnermodel [40]. Ionic gels are indeed known to exhibit a discontinuous transition
between swollen and deswollen phases. However, some neutral gels, such as pNIPAM, can also undergo a
discontinuous transition yet do not have another obvious osmotic pressure contribution that is not captured
within the Flory–Rehnermodel (29). Hence, as we have already emphasized, the Flory–Rehnermodel should be
regarded as semi-empirical. This, in part, is due to the important role of thermodynamic fluctuations aswell as
static inhomogeneities in the polymer network. In the presence of a poor solvent, it has been shown [5] that,
beyond a straightforward renormalization of the elastic and osmotic contributions, the presence of network
inhomogeneities can lead to phase-separation, either at highwavenumber (microphase separation) or at low
wavenumber (macrophase separation).

It is possible to extend the Flory–Rehnermodel such that it describes a phase transition. This is accomplished
by altering themixing energy between polymer and solventmolecules, which is controlled by the Flory
parameterχ. This termdescribes a two-bodymean-field interaction between polymer and solventmolecules.
To see this, expand themixing contributionΠmix to the osmotic pressure in powers of the polymer volume
fractionf:
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where the sum is the remainder of the power series expansion of f-( )ln 1 . This expansion has the formof a
virial expansion of the pressure P of afluid in terms of its density ρ, namely

r r r= + + +[ ] ( )P k T b b ... , 48B 2
2

3
3

where the leading order term is the ideal gas contribution and the higher-order terms are corrections due to
interactions between particles, which become important with increasing density ρ [41]. In particular, the virial
coefficient b2 captures the effect of two-body interactions. For the van derWaals equation of state, =b2

r -- -( )a k TB0
1 1, which is positive for sufficiently high temperatures,meaning that two-body interactions

contribute an additional pressure to the independent-particle ideal gas term. This ismuch like the low-χ regime
of polymer gels, which corresponds to the swollen phase.However for low temperatures, the two-body terms
contributes a negative pressure, which drives particles to condense to a liquid phase,much as the polymer gel
deswells for high-χ. Note that atχ=1/2, the two-body termdisappears in the Flory–Rehnermodel, describing
aϑ-solvent; this is analogous to the Boyle temperature of the van derWaalsmodel rºk T aB b 0 , for which
b2=0.

Whereas the virial expansion for the van derWaalsmodel has two parameters, ρ0 and a, the virial expansion
for the Flory–Rehnermodel only has one,χ, which is taken to be independent of polymer volume fractionf.
However,measurements ofχ have shown a nonlinear dependence onf [42–48]. In general, the Flory parameter
is a function off and can be expanded as a power series, namely

c c c f c f + + + ( )... 491 2 3
2

and yields amore general virial expansion for themixing contribution,
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Using this expansion, Erman and Flory [34]have shown that a discontinuous transition aswell as a critical point
can be recovered by tuning c1 andχ2, and ignoring all other terms, i.e., c º> 0m 2 . In particular, acceptablefits
to experimental swelling data can be found byfixingχ2>1/3 and varyingχ1 with solvent quality, that is, taking
χ1 to be a function of temperature only. It is important to emphasize that this expansion is purely
phenomenological and does not assign specificmicroscopicmeaning to the values of cm 2 [49]. In this
phenomenologicalmodel of polymer gels, there are now two independent parameters,χ1 andχ2, in the virial
expansion of the osmotic pressure,much like the two parameters of the van derWaalsmodel.

Example osmotic isobars (Π=const.) are shown infigure 9(a) and curves of constantχ1, corresponding to
isotherms, are shown infigure 9(b).Much like the analogous processes shown for the van derWaalsmodel in
figure 6, there are continuous and discontinuous swelling processes, alongwith an identifiable critical point.
This critical point occurs atχ1=χc andΠ=Πc, determined by the condition that the osmotic bulkmodulusK
vanishes, i.e.,
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Figure 9.Plots of themodified Flory–Rehner equation of state with c = 0.562 (see [49]). (a)Three osmotic isobars are shown as a
function ofχ1 with values ofΠ greater than, equal to, and less than the critical osmotic pressureΠ. Also shown are the critical value the
Flory parameterχc and the critical polymer volume fractionfc. Similar to the hysteresis seen in the van derWaalsmodel, there is
hysteresis forΠ<Πc. (b)Three curves of constantχ1 are shown forχ1<χc,χ1=χc, andχ1>χc. The analog of the van derWaals
loop is shown for the last, alongwith a rectifying line that describes coexistent volume fractions.
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and that the osmotic pressure isotherm isflat at the critical point, i.e.,
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Note that these conditions are equivalent to requiring f¶P ¶ =c( ) 0
c

and f¶ P ¶ =c( ) 02 2
c

. Indeed,
measurements of the bulkmodulusKnear the phase transition show a dramatic softeningwhen comparedwith
the shearmodulusμ of the gel [49, 50]. The breakdown of thermodynamic stability can be rectified by the
existence of equilibriumphase coexistence between swollen and deswollen regions at some constant value ofΠ
by theMaxwell construction, namely


ò fP P =- ( ) ( )d 0, 531

1

where 1 is portion of the S-shaped curve beginning and ending at the equilibrium value ofΠ in the
thermodynamically stable region, as shown infigure 9(b). Therefore,much like the phase diagrampredicted by
the van derWaalsmodel, there is a similar phase diagram for polymer gels described via the Erman–Florymodel,
with a coexistence curvewith a terminal critical point, as shown infigure 10. The phase diagramof polymer gel
swelling is similar to that of afluidmodeled by the van derWaals equation of state. Note that the coexistence
curve is to the right of the critical point, whereas the curve infigure 7(b) is to the left. This is because the gas-like
low-density phase, the swollen phase, occurs at low values ofχ1, whereas the liquid-like high-density phase, the
deswollen phase, occurs at higher values ofχ1. To understand the negative slope of the coexistence curve, we
turn to theClapeyron relation [26], which relates this slope to the discontinuity change in volume and entropy
that occurs when crossing the curve. For fluids, the positive slope >P Td d 0 shown infigure 7(b) tells us that
the increase in volume per particle that occurs when a liquid evaporates and becomes a gas accompanies a
corresponding increase in entropy. Conversely, the negative slope cP <d d 01 for the gel coexistence curve
indicates that there is a decrease in entropy as the gel passes from the deswollen phase to the swollen phase. This
is to be expected of elastomericmaterials in general: an increase in volume stretches polymer chains, decreasing
their configurational entropy. Indeed, if one stretches a rubber band, the decrease in entropy of the polymer
chains necessitates of heat transfer from the band into its surroundings,making itmomentarily feel warm.

It is instructive to examine the behavior of the free energy near the coexistence curve and the critical point.
However, the Erman–Flory virial expansion has tofirst be incorporated into themixing free energyDFmix. The
power series expansion of the Flory parameterχ (49) cannot be directly substituted into themixing free energy
as the calculated osmotic pressureΠmix is inconsistent with that given in equation (50). Instead, start with the
Erman–Florymixing osmotic pressure in (50) and integrate the relation f f fP = ¶ D ¶( ( ) )mix

2
mix tofind

themixing free energy density D mix, up to an integration constant. Sincewe require that themixing free energy
be zerowhen the gel is either purely polymer,f=1, or in the limit where it is infinitely dilute, f  0, the
integration constant isfixed, yielding

Figure 10.Phase diagrampredicted by the Flory–Rehnermodel for a polymer gel withf0=0.1, n = -v 100
4, andχ2=0.56. The

coexistence curve separates well-defined swollen and deswollen phases. Also shown is theGibbs free energyG(f−1) at the critical
point, and along the coexistence curve, showing two localminimawith the same value ofG. Two plots ofG are shown at equal
distances from the coexistence curve one in the swollen phase, the other in the deswollen phase, each displaying a single, well-defined
absoluteminimum.
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where the original formof themixing free energy (27) is recovered if onlyχ1 is retained.With this alteration to
the total free energyΔF, there are values ofχ1 andχ2 that causeΔF to be a nonconvex function of the polymer
volume fractionf. This has the implication that the osmotic equilibrium
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may be satisfied formultiple values off. Transforming to an analog of theGibbs free energyG=ΔF+ΠV,
whereV=vf−1, the osmotic equilibrium condition is
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so that coexistent equilibrium volume fractions correspond to localminimia ofG(f), as illustrated in figure 10.
Plots ofG(f) are shown for sample values of (χ1,Π) on the phase diagram in the samefigure; note that the
inverse polymer volume fractionf−1 is plotted on a logarithmic scale, reflecting the large scale of the volume
changes that occur. At the critical point (χc,Πc), the free energyminimum is broad, reflecting vanishing
curvature f¶ ¶ =c

-
P( ( ) )G 02 1 2

,1
, i.e., diverging isothermal compressibility. Along the coexistence curve, two

degenerateminima ofG emerge, corresponding to the two coexistent phases. As predicted fromLandau theory,
via themodel free energy (40), close to the critical point, these twominima emerge symmetrically from the
equilibrium value off−1 at the critical point and their separation grows continuously as the parameters (χ1,Π)
are tuned along the coexistence curve; this is reflective of a continuous phase transition at the critical point.
Instead, if (χ1,Π) are tuned transverse to the coexistence curve, the degeneracy of the free energyminima is lifted
and there is an absoluteminimumeither for lowf−1 (deswollen phase) or for highf−1 (swollen phase). In this
case, as the coexistence curve is reached, the free energy difference between the twominima goes to 0,marking
the cross-over between the two phases. This crossover is a discontinuous jumpbetween values off−1 thatmark
the localminima ofG, indicating afirst-order phase transition. However, physically, the gelmay not
immediately switch to the new absoluteminimum. For example, if the gel is brought from the swollen phase
across the coexistence curve to the deswollen phase, then the swollen phase still has a local free energyminimum;
it ismetastable. There is a free energy barrier for the gel to leave thismetastable equilibrium and attain the global
free energyminimum.Given sufficient time, thermal fluctuationswill cause the gel to surmount this barrier.
However, practically, the gel remains in the swollen phase until (χ1,Π) is tuned sufficiently far from the
coexistence curve so that the free energy barrier disappears. Therefore, the observed values * *c P( ),1 at which the
transition occurs are not typically on the coexistence curve, but rather to the right of it. Similarly, for the reverse
process of starting from the deswollen phase and passing to the swollen phase, the transition typically occurs to
the left of the coexistence curve. These states that linger past the phase coexistence transition are the polymer gel
analogies of the superheated liquid and supercooled gas states of afluid. This explains and generalizes the
hysteresis that is shown in the osmotic isobars offigure 9.

3.5. Fluctuations and criticality in polymer gels
So far, we have discussed how the swelling thermodynamics of polymer gels share features in commonwith
fluids. In discussing isotropic gels that undergo homogeneous changes in state, we have ignored the rigidity of
thesematerials. At the critical point and along the coexistence curve, however, the gel is inhomogeneous, either
undergoing large thermal fluctuations or possessing two equilibrium volume fractions. Here, the rigidity of the
gel proves to have a profound effect on the equilibrium thermodynamics: since the polymer network is
maintained by permanent chemical cross-links, its connectivity should not change under deformation.
Therefore, unless the gel is torn, the polymer network should remain contiguous evenwhile supporting
coexistent phases, as shown infigure 11. Spatial inhomogeneities inf therefore result in anisotropic stretching
of the polymer network. The phase diagram infigure 10 is thus a simplistic picture of swelling thermodynamics,
starting from the placement of the critical point. The remainder of this Topical Review is concernedwith the
consequences of rigidity for the swelling phase behavior.

We beginwith the fate of thermodynamic stability and how elastic effects alter the critical point of the gel.
Consider again the picture presented by LeChatelier’s principle, where spatial variation in density at positive
compressibility results in a spatial variation in pressure, which causesmass-flow that corrects the spatial
variation. Conversely, for negative compressibility, low-density regions have increased pressure comparedwith
high-density regions, leading to runawaymass-flow that causes density variations to grow. In an isotropic
polymer gel, this runawaymass-flow that occurs for negative compressibility leads to spatial variation in the
polymer volume fractionf. In order to remain contiguous, the polymer network deforms inhomogeneously,
which has a free energy cost that is not accounted for in the classical analysis presented so far. In fact, the gel is
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stable for small, negative values of the compressibility, as confirmed by light-scatteringmeasurements [51]. It
should be noted thatmaterials with negative bulkmodulus are generically unstable, since such amaterial will
increase in volume under applied pressure. Hence, unless thematerial can become inhomogeneous, as in the
case of ferroelasticmaterials that can develop alternating ‘bands’ of coexistentmicrostructures, this instability
cannot develop; thus conventional solids do not have negative bulkmodulus [52, 53].

In order to concretely formulate this discussion, let us construct the coarse-grained free energy F of an
inhomogeneous polymer gel, given a reference state with homogeneous polymer volume fractionf0. This
free energy is given by



ò f f= + L

⎡
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2
, , , 573 2

where thefirst term represents the free energy cost of spatial variations inf and is related to the correlation length
ξoffluctuations in the volume fractionf, i.e., x~c 2. The free energydensity ̃ is a densitywith respect to the
reference state rather than the current state of the gel; the two are related by  f f=˜ ( )0 . Fluctuations in the
state of the gel take points r in the reference state to points d= +R r r in the current state of the gel. The
homogeneous gel is stable if these smallfluctuations always increase the total free energy. Therefore, stability is
determined by the second variations of the free energy δ2F.

Thefluctuations dr are represented by a displacementfield º -( ) ( )u r R r r. The deformationmatrix can
therefore bewritten as

dL = ¶ = + ¶ ( )R u , 58ij j i ij j i

fromwhich the polymer volume fraction f f= L( )det0 can be approximated as

f f» - ¶( ) ( )u1 , 59i i0

so the variation of the volume fraction is given by df f= - ¶ ui i0 . Therefore, the second variation of the free
energy is given by
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where Eijkl is the elasticity tensor, found by expanding ̃ to second order in ¶ ui j, and is thus a function of
temperatureT and volume fractionf0. As the reference configuration corresponds to a homogeneous, isotropic
gel, the elasticity tensor has the form
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whereμ is the shearmodulus andK is the bulkmodulus. Note that the bulkmodulus is given by =K
f f¶ ¶ f( ˜ )∣0

2 2 2
0
, which can adopt negative valueswhen themixing part of the free energy is near a local

maximumwith respect tof0. If we take the approximation that the gel occupies all of space, then it is useful to
use the Fourier representation of the displacement field,
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and the second variation in the free energy becomes:
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Wecan then decompose the displacement field u into a longitudinal part ˆℓu kk and a transverse part ´ ˆu kt
k ,

which yields two independent contributions to d F2 , namely that due to longitudinal fluctuations,

Figure 11.Cartoon of a polymer networkwith different polymer volume fractionsf at points r1 and r2 . In order for the polymer
network to interpolate continuously in size between these two points, theremust be anisotropic deformation.
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and that due to transverse fluctuations,
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There is a correlation length x f mº +[ ( )]ℓ c K 4 30
2 1 2 associatedwith longitudinal fluctuations, whereas the

transverse fluctuations do not have an associated length scale. Since the longitudinal fluctuations correspond to
fluctuations in the polymer volume fractionf, the longitudinal fluctuation correlation length xℓ also describes
the polymer volume fraction correlation length. Therefore, we can conclude that whereas the critical point for
fluids is at vanishing bulkmodulusK=0, the critical point for polymer gels is at vanishing longitudinal modulus
K+4μ/3=0 [54]. Note that for the classical rubber elasticity used in the Flory–Rehnermodel, the shear
modulusμ is always positive. However, as we have shown, the osmotic bulkmodulusK=f∂Π/∂f can be
negative.Whereas a negative bulkmodulusmarks the loss of stability forfluids and homogeneous elastic solids,
polymer gels lose thermodynamic stability only whenK<−4μ/3. The stabilizing effect of the shear rigidity
near the critical point is an effect of inhomogeneity produced by thermal fluctuations. It is remarkable that the
critical behavior of polymer gels, amorphous solids primarily composed of liquid, should share some
fundamental similarities with exotic solid state alloys that undergo structural phase transitions, such as
ferroelastic andmartensitic transformations, and are also capable of exhibiting negative elasticmoduli [55].

Aswe have shown, there are features of the swelling behavior of gels that can be understood in analogywith
the phase behavior offluids.However, as we have alluded to, there are key differences due to effects of shear
rigidity.While there is loss of stability for longitudinal fluctuations when m+K 4 3 0, it should be
remembered that the transverse fluctuations retain stability sinceμ>0 [56]. The fact that criticalfluctuations in
the gel are not seen atK=0means that the gel cannot be simplymodeled by the Landau theory used forfluids,
summarized in equation (40). Instead, as shownbyGolubović and Lubensky in [57], there is an additional term
of the form òm f( )xd3 2

thatmust be added to themodel free energy. Since this term is nonlocal,meaning that it

cannot be folded into a free energy density, it yields a departure from the Landau theory of simple isotropic
fluids. Furthermore, it is long-ranged,meaning that the equilibrium value of the field f ( )x depends on the value
off at all other points in the gel.More concretely, we can see the effect of this long-range interactionwhen one
considers equilibriumphase coexistence between swollen and deswollen phases of gels, where the gel shape plays
a role in determining the equilibrium values off. This is a notable departure from the behavior that we expect
fromfluids, where the density of thefluid at any point in its bulk is independent of the shape of the container.8

4. Arrested deswelling: an exotic way to phase-separate

Whilst the transition between swollen and deswollen gels is inmanyways similar to the transition between gas
and liquid phases, shear rigidity alters some key characteristics of the transition. As demonstrated in the previous
section, the definition of the swelling critical point for gels ismodified due to the stabilizing effect that shear
rigidity has on thermal fluctuations. Shear rigidity also has profound consequences for the phase-coexistent
equilibria of polymer gels, as themechanical equilibrium condition requires balance of a generally anisotropic
stress tensor, reflecting that different directions experience different amounts of stress. Thus, particularly in the
case ofmacrophase separation, wheremacroscopic domains of swollen and deswollen gel give rise to such an
anisotropic stress distribution, the result is a deformation of the gel at similarly long length scales. As the
response of a solid to an applied stress distribution depends on the shape of the solid, we expect that the
conditions and configurations of the phase coexistent equilibrium states depend on the shape of the gel.

Experiments on cylindrical samples of an ionic polymer gelhave demonstrated phase coexistence at constant
ambient osmotic pressure [49]. Themass of swollen compared to deswollen gel in a single sample is controlled
by temperature, which is similar to coexistent gas and liquid phases. However, there is indeed a noticeable
dependence on shape. If an unconstrained cylinder-shaped gel, initially in the swollen phase, is brought to the
coexistence regime, the deswollen phase nucleates at the two ends, as shown infigure 12(a); similarly, a swollen
phasewill grow from the ends of a deswollen cylinder. However, if such a gel is instead stretched uniaxially, the
newphase nucleates from the center, as shown infigure 12(b).

Demonstrating phase coexistence in neutral gelshas proven elusive due to the relatively narrow temperature
range of equilibriumphase coexistence, spanning less than 0.1 °C, at constant osmotic pressureΠ [49].
However, it has been shown that this temperature range can be broadened through the application of

8
The density of a fluid, as well as itsfluctuations, do depend on shapewhen one considers finite samples and points near the boundary of the

fluid [58]. However, forfluids, which have only local interactions, these boundary effects decay as points in the bulk are considered, and are
therefore distinctly different than the shape-dependence that is seen in gels.
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mechanical stress. For example, equilibriumphase coexistence has been demonstrated in cylindrical samples of
neutral gels that are stretched via amechanical constraint applied to the ends of the gel [59–61], as shown in
figure 12 (b). This is another realization of the effect of shear rigidity: since the equation of state for the osmotic
pressure depends on the deformationmatrixΛ, osmotic isobars are affected by anisotropic deformation.

Phase coexistence has been carefully achieved at constant osmotic pressure. However, phase coexistence at
constant volume remains relatively unexplored, likely because it is potentially challenging to fabricate a volume-
constrainingmaterial grafted onto the boundary of the gel. One alternative approach is to take advantage of the
rich deswelling kinetics of polymer gels.Matsuo andTanaka [9] studied the equilibration of 0.1 to 1millimeter-
radius spherical samples of neutral pNIPAMunder heating and cooling through thefirst-order phase transition
at zero osmotic pressure. In their experiments, they observed that spheres, initially swollen at low temperature,
that are rapidly heated past the deswelling transition temperature at∼32 °Chave a two-step deswelling process.
Immediately after the rapid heating process, there is some deswelling over thefirst few seconds, after which
deswelling halts for tens of seconds. During this pause in deswelling, referred to as the ‘plateau period,’ there is a
thin skin of deswollen-phase gel at the boundary of the sample that is effectively impermeable to the solvent.
Towards the end of the plateau period, the deswollen skin appears thinner in some regions and thicker in others.
These thicker regions form a network-like structure of edges and vertices, with the thinner regions as the faces,
reminiscent inmorphology to a foam, that spans the surface of the gel. The resulting inhomogeneous stress
distribution about the skin causes the thinner-skinned regions to balloon outward, whereas the thicker-skinned
regions are creased inward. As a result of the ballooning, the thinner-skinned regions experience a large
extensional strain tangential to the surface of the gel, facilitating the passage of solvent out of the gel. This allows
the gel to resume deswelling, eventually equilibrating and becoming a spherical deswollen gel. Similar
experiments on cylindrical [62–65] and toroidal [66] samples of pNIPAMgel reveal even richer phenomena. In
addition to the eventual formation of similar balloon-shapes on the surface of the gel near the end of the plateau
period, which lasts forminutes in the experiments on toroidal gels, there is also a dramatic shape change, where
the torus adopts, in some cases, a saddle-like or ‘PringleTM’-likemorphology.

The plateau period after rapid heating is a prolonged time duringwhich the volume of the polymer gel is
essentially unchanging. During this time, the interior of the gel is trapped in the swollen phase, even though it is
at a temperature where the deswollen phase is an absoluteminimumof the free energy. If we ignore the small
initial solvent loss in forming the very thin deswollen skin, this interior is effectively under a constant-volume
constraint and is in a state that is far from the free energyminimum.Much like a fluid in similar conditions, we
expect that the gel will phase-separate, forming a high polymer volume fraction region at the expense of also
forming a low polymer volume fraction region. Since the plateau period is a relatively long-lasting part of the
deswelling kinetics of the polymer gel, it is reasonable to assume that the phase-separationwill approach an
equilibriumphase-coexistent state before solvent starts to leak out at an appreciable rate. Equilibriumphase
coexistence in this situation ismade possible because the thin deswollen skin is effectively impermeable, so the
swollen interior is out of chemical equilibriumwith the solvent bath, as illustrated infigure 13. Thus, the rapid
heating accomplishes (i) a quench across thefirst-order phase transition, which takes the gel far from global
equilibrium, (ii) the introduction of a volume constraint for the swollen interior, and (iii) a prolonged period
duringwhich the swollen interior can reach a phase-separated state.

4.1. Revisiting the common tangent construction
Todetermine the phase coexistent equilibria for polymer gels of some given geometry, we need tominimize the
total deformation free energyΔF under the constraint that the total volumeV remains constant. For
convenience, take the reference configuration to be the swollen gel immediately before phase-separation,

Figure 12. (a)Phase coexistence in ionized pNIPAMcylindrical gel at two different temperatures close to the transition temperature.
The sample in the bottom image is 0.7 °Cwarmer than the top panel. The diameter of the swollen portion is around 3 mm. Figure (a)
from [49] 1994, reprinted by permission of the publisher (Taylor& Francis Ltd, http://www.tandfonline.com.). (b) Stress-induced
swelling and phase coexistence in neutral cylindrical gels. Figure reproduced from [59], with the permission of AIP Publishing.
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where the gel is at a homogeneous polymer volume fractionf0.We adopt the following general form for the free
energy density D ˜ of the gel in the reference state,

 f m fD L = L L + D˜ ( ) ˆ ( ) ( )T Tr r, , ;
1

2
tr , ; , 66T

0

where m0 is the shearmodulus corresponding to the reference state. Note that the first term is a general form for
the elastic contribution, originating from classical theory of rubber elasticity [29], appearing in the Flory–Rehner
model, as well as inmore sophisticated descriptions [5]. The free energy density  fD ˆ ( )T , is the remaining part
of the free energy density that only depends on the polymer volume fraction f ( )r at each point in space. Note
that in expressing D ˜ in terms of the Flory–Rehner theory, D ˆ contains themixing part of the free energy, as
well as the additional terms of the Flory–Wall network entropy describing translational degrees of freedomof
the chains; the shearmodulus is given by m = n k Tch B0

0 , where n0ch is the chain density in the reference state of the
gel. The total free energyΔF, given by
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incorporates a constant-volume constraint, enforced by the Lagrangemultiplier p. Sincewe seek a description of
macroscopic phase-separation, we do not include the free energy cost ofmicroscopic variation, f∣ ∣c 2, as in
equation (57); this amounts to neglecting thermal fluctuations of the state functions, which is justified as long as
the gel is sufficiently far from the critical point.

Now consider phase-separation that forms a solvent-poor regionwith polymer volume fractionfp at the
cost of forming a solvent-rich regionwith polymer volume fractionfr. Starting from a swollen phase with
0<f0=1, we expect that a quench deep into the deswollen phase will result in f f f- - -p r

1
0

1 1.

Furthermore, the solvent-poor and solvent-rich regions are distinct phases assuming that the gel is far enough
from the critical point. Therefore,fp andfrwill take the values of their respective phases. Ignoring these
deviations, the volume conservation condition is given by
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where f is the fraction of gel in the reference configuration that will be solvent poor.We can solve for the fraction
f, yielding
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which is identical to the Lever rule of phase coexistence influids, equation (34).

Figure 13.A swollen-phase polymer gel sphere shown (a) in equilibriumwith the surrounding solvent bath due to its ability to pass
solvent through its permeable boundary and (b) after rapid heating, where solvent exchange is cut off due to the presence of a dense,
effectively impermeable, thin, deswollen skin. In (b), due to the inability to exchange solvent, the swollen interior of the gel is out of
equilibriumwith the surrounding solvent bath.
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Now consider a spherical gel, such as that in the experiment ofMatsuo andTanaka [9].We use spherical
coordinates (r, θ,f) in the reference configuration and (R,Θ,Φ) in the target configuration, such that reference
configuration points are = ˆrr r and target configuration points are = ˆRR R. Due to the symmetry of the
sphere, we expect that the phase-coexistent equilibriummaintains the spherical symmetry; broken symmetry
may arise from instability of this equilibrium. Therefore, pointsR in the phase coexistent state depend only on
the radial coordinate r in the reference state; the deformed sphere is expressed entirely in terms ofR(r), whereR
is the radial coordinate of the phase coexistent configuration. Consequently, deformationsmaintain conformal
symmetry so that we can takeΘ=θ andΦ=f and q f q f q= =ˆ ˆ ( )R r sin cos , sin sin , cos . The transpose of
the deformationmatrixΛ, as expanded in spherical coordinates, is given by
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In the reference geometry, let a be the outer radius of the sphere and let b represent the radius of the interface
between solvent-rich and solvent-poor regions, as infigure 14(a). Given that the sphere starts swollen and that in
the experiments, there is a thin deswollen-phase skin on the boundary of the sphere, wewill assume that the
solvent-poor region grows from the deswollen-phase skin, inward. Thereforewewill take the region r<b to be
solvent-rich and the region b<r<a to be solvent-poor. In general,R(r) is a continuous function since the gel
must remain connected throughout the deformation. However, it is expected that there is a change in the
behavior of R rd d at the interface r=b becausewhereas the solvent-rich layer should increase in radius,
implying thatR(b)>b, the solvent-poor layer should become thinner after deformation, so - >a b

-( ) ( )R a R b , or - > -( ) ( )R b b R a a. Therefore, we expect that R rd d is typically greater than 1 for r<b
and is typically less than 1 for b�r<a. If the solvent-poor region is taken to bemuch smaller than the solvent-
rich region, i.e., f=1, then (a−b)/b=1, andR(r) adopts a piecewise-linear functional form,
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L <
L + L - <

⎧⎨⎩( )
( )

( )R r
r r b
b r b b r a
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1 2

whereΛ1>1, reflecting the further swelling of the swollen interior, and 0<Λ2<1, reflecting the deswelling
of the shell region. The deformationmatrix in the solvent rich region is given by dL » L ;ij ij1 since L =det
f f0 , we find that f fL = ( )r1 0

1 3. In the solvent-poor region, wefind that the deformationmatrix is both
inhomogeneous and anisotropic, withΛRr≈Λ2 and L = L » Lq fQ F 1, with r-dependence appearing at higher
order in (a−b)/b. Therefore, we have that f fL L = p1

2
2 0 , giving the result f f fL = ( )r p2 0

2 1 3 . The total

Figure 14. (a)A sphere immediately after rapid heatingwith a deswollen skin is shown in the reference state, where the interior is at
a homogeneous polymer volume fractionf0 and after phase-separation, in target state  , where the solvent-rich spherical portion is
atfr<f0 and the solvent-poor spherical shell is atfp>f0. In the reference state, points are described in spherical coordinates by
= ˆrr r , where the outer radius of the sphere is at r=a and the location of the phase-interface is r=b. Note that the schematic is not

to scale; we expect - ( )a b b. In the target configuration, points are given by = ˆRR R . A simple linear approximation toR(r) is
also shownwith slopesΛ1>1 andΛ2<1. Continuity of this function ensures that the components of the deformationmatrix
tangent to the phase interface,ΛΘθ andΛΦf, are given byΛ1, as shown in the inset to the lower right. (b)Equilibrium values off for
f = ´ -10, 15, 20 100

3 as a function ofχ1. For small enough values ofχ1, there is no phase-separation, whereas above transition
values ofχ1, there are coexistent values off that are in equilibriumwith each other; values offp are easily seen (solid). The inset shows
a blow-up of the small-f region, showing equilibrium values offr (dashed). (c)Values of the fraction f occupied by solvent-poor gel, as
predicted by the lever rule, equation (69), as a function ofχ1. Note that at the transition values ofχ1, f increases continuously from0.
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deformation free energy for the sphereΔFsphere, consisting of contributions from the swollen core and deswollen
shell, is given by
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Minimizing Fsphere with respect tofr,fp, p, and f yields three equilibrium equations, namely
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aswell as the lever rule. However, the result cannot be cast as a common tangent construction, as evidenced by
the dependence of p on f in equation (74b). Ultimately, this results from the anisotropic stress of the solvent-
poor region, which comes about through the coherency strain: as the polymer network remains contiguous, the
components of the deformationmatrix that are tangent to the phase interface, namelyΛΘθ andΛΦf, must be
continuous through the interface. Therefore, the deformationmatrix for the solvent-poor region shares two of
its three components with the solvent-rich region; the third component,ΛRr, which is normal to the phase
interface, is discontinuous and therefore takes on two independent values for the two regions. Note that this is
alleviated for effectively 1D gels: a gel that is constrained to undergo uniaxial deformation normal to the phase
interface does not experience coherency strain at the interface and therefore the phase-coexistent equilibrium
obeys the common tangent construction [67].

For a concrete prediction, we use the Flory–Rehnermodel to provide a functional form for ̂ andminimize
the free energy in equation (73)numerically. As shown infigure 14(b), coexistence between separate swollen and
deswollen phases happens above certain transition values ofχ1, depending on the value off0. For values ofχ1

greater than the transition points, the equilibrium volume fraction bifurcates into a high-f branch,
corresponding to solvent-poor gel of volume fractionfp, as well as a low-f branch, corresponding to solvent-
rich gel of volume fractionfr.Whereas there is a discontinuous jump from the initial volume fractionf0 to
solvent-poor gelfp, the solvent-rich volume faction decreases continuously fromf0 above the transition. The
reason for this is attributed to themanner at which phase-separation occurs, namely a formof heterogeneous
nucleation. Since the solvent-poor gel grows from the boundary of the gel, inward, the fraction f of solvent-poor
gel grows continuously, as shown infigure 14(c). As the growth of solvent-poor gel comes at the cost of diluting
the solvent-rich region, the continuous growth of the solvent-poor shell results in continuous solvent addition
to the core-region; thereforefr decreases continuously as f andfp grow. This continuous growth of the solvent-
poor region is consistent with predictions seen elsewhere, in the context of solvent-poor phase growing around a
hole [68]. Note that the transition value ofχ1 shifts to higher values asf0 decreases. For decreasing values off0,
the gel becomesmore dilute. Hence there is less polymer relative towater and consequently the total interaction
energy between polymer and solvent decreases. Correspondingly, the strength of the interaction needed to
destabilize the homogeneous gel phase, that is, the value ofχ1,must therefore increase with decreasingf0.

5. Large shape change via thermodynamics

The characteristic swelling behavior of polymer gelsmakes thempractical formany applications. Their ability to
absorb and retain solvent enables them to remove unwanted liquids, such aswater,making themattractive for
cleaning applications [69]. At the same time, the ability to expel a liquid given certain stimuli has led to drug-
delivery applications [70–72]. Furthermore, aswe have outlined, the equilibrium swelling thermodynamics of
polymer gels is wellmodeled by the Flory–Rehnermodel, given certainfitting parameters.However, aswehave
discussed in the previous section, there are interesting consequences that emergewhen a polymer gel is brought to
a state inwhichhaving a single, homogeneous polymer volume fractionf corresponds to a thermodynamically
unstable situation, leading to a phase-coexistent equilibrium.Moreover, due to themechanismof skin formation
after a rapid quench from the swollen phase to the deswollen phase, this situation is attainable if the volume
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phase transition is approached rapidly. Thus, while the phase-coexistent state remains relatively unexplored,
understanding it is potentially of considerable practical importance, as it dramatically alters the expected
behavior of a gel.While inmany cases, the deswelling-arrested, phase-coexistent state of a polymer gelmaybe an
unwanted, troublesome feature of the polymer gel thermodynamics thatmust be avoided, it is possible that phase
coexistence and the accompanying shape change can be useful, and seen as a potential design feature. This is not
without precedent, as exemplified by extrememechanics, inwhichmechanical instability, traditionally regarded as
a nuisance to be avoided, is harnessed in the designof novelmaterial properties and responses to achieve shape
change that would otherwise be unattainable.

5.1. Preliminaries: extrememechanics
Unlikemany other rigidmaterials, the immutable network topology of polymer gels and other elastomeric
materials enables them to undergo large elastic deformations. As swollen polymer gels are primarily composed
of solvent byweight, they are very softmaterials that are comparable to soft biological systems. Indeed, changes
in the swelling state of a polymer gel can be used tomimic the growth of soft tissues. This combination of
elasticity and swelling enables experiments on growth-induced instabilities as seen in nature. In particular,
swelling of polymer gels or othermaterials that are tethered to a rigid substrate exhibit a wide range of surface
patterns, ranging fromwrinkles, resemblingfingerprints, to folds and creases,much like the sulci of brain tissue
[12, 13, 17–19, 73, 74]. Interestingly, the appearance of these patterns are seemingly chosen at random, given the
underlying symmetry of the substrate. Such spontaneous symmetry breaking of gels and other elasticmaterials
under some sort ofmechanical constraint is typically the result ofmechanical instability [75, 76]. Furthermore,
the result of such pattern formation often yields new, and perhaps a priori unexpectedmechanical responses [25,
77–80].

Perhaps themost famous example ofmechanical instability, due to its analytical tractability and appearance
in structural engineering and nature, isEuler buckling. For concreteness, wewill consider a three-dimensional
material that is described by an isotropic linear elastic energy
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where E is the Young’smodulus, ν is the Poisson ratio, and º ¶ + ¶ + ¶ ¶( · )u u u u u 2ij i j j i i j is thefinite
symmetric strain tensor, corresponding to the displacementfield ( )u r . The nonlinear terms in the strain tensor,
which are usually neglected, are retained here in order to properly compute the second variation of the elastic
energywhen determining stability. If thismaterial is formed into a slender columnof length L and circular cross-
section radius a=L that is under a compressive stress s p= - ( )/T azz

2 , as illustrated infigure 15(a), then the
total energy is given by

= + D ( )E E T L, 76tot el

whereΔL is the a change in length. Assuming that the rod is symmetric about the z-axis, the deformationwill
also be axisymmetric so that the strainwill have longitudinal uzz and transverse u⊥⊥ parts that, in the slender rod
approximation, can be approximated as constants, i.e., uzz=ΔL/L and = D^^u a a. The total energy can
therefore bewritten as
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The new, stressed equilibriumof the rod is found byminimizing the total energy with respect to u⊥⊥ and uzz,
yielding equilibrium strains

n= -^^ ( )u u a, 78zz
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= - ( )u
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which shows that for compression (T>0), the rod decreases its length and formost elasticmaterials (ν>0), it
increases its width proportionally. This shortening of the length of the rod details the expected change in
mechanical equilibrium of the rod from anunstressed configuration to a stressed configuration.However, it is
not guaranteed that the stressed equilibrium is stable to deformations of the rod that break its symmetry9.
Indeed, it has been long known that if one overloads a column, the columnmay bend, as illustrated in
figure 15(b). To probe the stability of the rodwith respect to deflections that bend the rod, we require a
description of the elasticity of bending deformations. It can be shown (see, e.g., [81]) that if the centerline of the
rod is deflected froma straight configuration to a curved configuration, where it acquires a nonzero curvature
κ(z), the associated elastic energy cost is

9
Wewill assume, however, that the unstressed equilibrium is stable. For polymer gels, as we have shown, this is a nontrivial assumption that

depends on temperature and composition.
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whereB is the bendingmodulus of the rod, a composite of theYoung’smodulusE and the secondmoment of area of
the cross sectionof the rod; for rods of circular cross section, p= ( )B Ea4 4. Stability of the straight configuration
against transversedeflections û of the rod is ensuredwhen the secondvariationof the total energy, δ2E, with respect
to these deflections is positive. Expanding the energy = + DE E T Ltot bend about the stressed equilibrium, that is,
where p d dD » - + D + D( ) ( ) ( )L LT E a L L2 2 , the secondvariationof the energy is givenby
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which can then be expressed in terms of the transverse deflections û . This is done by noting that the shape of the
rod is given by g = + ^( ) ˆ ( )z z zz u so that the curvature change δκ after deformation is given by
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and the second length variation d L2 after deformation is given by
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Therefore, the second variation of the energy is
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In general, for axisymmetric rods in 3D, û can point anywhere transverse to the axis of symmetry (here, the
z-axis) and the buckled, bent configurations spontaneously break a continuous symmetry, namely, rotations
about the z-axis. For simplicity, wewill restrict our attention to symmetry-breaking deflections that keep the rod
configuration confined to a plane, namely the xz-plane, so that =^ ^ ˆuu x. Now, if we assume that the rod isfixed

Figure 15. (a)An elastic rod of length L is compressed at its end by a forceT, resulting in a compression of its length by uzz and a
dilation of its length by n= -^^u uzz . (b)Transverse deflections of the centerline of the rod by û describe bending deformations, the
result of buckling. (c) Left: portion of the ‘phase diagram’ of the compressed rod about the critical forceTcneeded for buckling, along
with depictions of the Landau energy at h=0. Right: depiction of the energyELandau as a function of transverse force h forT>Tc,
where the rod exhibits a discontinuous ‘snap-through’ between bending directions.
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at its two ends such that = =^ ^( ) ( )u u L0 0 thenwe can expand the deflectionfield as a sumof sine functions,
namely
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Note that the formof the bending energy used assumes a slowly varying curvature along the length of the rod, so
that the second variation of the energy, as shown above, is only validwhen thewavenumber of the bending
mode, (nπ)/L ismuch less than 1/a. Therefore, for low compressive forceT, the energy remains positive for
small transverse deflections.However, for > ( )T Tc

n , where the critical compressive force is p=( )T Bn Lc
n 2 2 2,

the total energymay decrease by bending, forming n/2wavelengths. Hence, for > º ( )T T Tc c
1 , the rod is

susceptible to buckling, with the critical compressive forceTcmarking the onset of the instability.

5.2. Extreme thermodynamics
There is an analogy that can be drawn between buckled rods and thermodynamic phases [82]. In particular, the
onset ofmechanical instability resembles the onset of thermodynamic instability at a critical point. Indeed, we can
even take the Landau phenomenological approach andmodel the equilibriumof the bent rod, restricted to the
lowest wavenumbermode, here n=1, via amodel elastic energy of the form
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where s>0 is a parameter that stabilizes the amplitude of the deflection and h is an external force that couples to
the deflection. This simplemodel recovers the spontaneous symmetry breaking due to Euler buckling at h=0
(see figure 15(c)) but also is able tomodel the action due to an external force h that is applied to the center of the
rod (at z=L/2) oriented in the x̂ direction. Interestingly, whereas µû h atT<Tc, the response ismuch
more complicated atT>Tc, where there is a discontinuous snap-through fromone curvature to the opposite, as
depicted infigure 15(c). This snap-through appears as themechanical analogy of afirst-order phase transition.
Interestingly, whereas the rod supports transverse elastic waves in both its straight and buckled configurations,
the vibrational frequency of suchwaves goes to zero as the buckling threshold is reached, due to loss of elastic
stability. This is the elastic analog of the ‘critical slowing down’ of the relaxation time of perturbations in
thermodynamic systems near a critical point [83, 84].

Euler buckling and snap-throughs of a slender rod are examples of howbifurcations and limit points in the
equilibriumphase diagramof an elastic body exhibit parallels with phase transitions [82]. Indeed, as pointed out
in a recent review byHolmes [25], the analogy is useful for understandingmechanical instability for awide
variety of systems. Additionally, Landau theory has proven to be a useful tool for translatingmechanical
instability into the language of phase transitions, providing additional insight, for example, into spin
arrangements inmagnetic dots [85]. In the case of 2D elastic sheets that undergo awrinkling instability, a similar
transfer of ideas has revealed the smectic-like behavior of thewrinkle patterns [79].

It is thus natural to inquire as to how far these analogies betweenmechanics and thermodynamicsmay be
taken. In particular, ifmechanical instability can be used to design newmaterial response, canwe then harness
thermodynamic instability in a similar way? Can a case bemade for extreme thermodynamics, inwhichmaterials,
such as polymer gels, are tuned near a point of thermodynamic instability in amanner that yields new,
interesting behavior?

Thermodynamic instability, likemechanical instability, signals the development ofmultiple free energy
minima, as opposed to a single, as well as the possibility of spontaneous symmetry breaking. A hallmark of the
appearance ofmultiplemetastable equilibrium states is the ability to support coexistent phases within the same
sample. Aswe have discussed, phase coexistence can be achieved in polymer gels via rapid heating from the
swollen phase to the deswollen phase. In experiments on spheres, such phase coexistence leads to the formation
of surface crease patterns; experiments on tori, seefigures 16(a)–(d), reveal additional buckling behavior of the
toroidal shape, as shown infigures 16(e)–(i). The source of these patterns is an internal stress distribution due to
separation into coexistent swollen and deswollen phases. Therefore, onemight regard the appearance of the
patterns asmechanical buckling due to internal stress generated by the allocation of solvent in the gel [66].

However, there is a feedback: the arrangement of the coexistent phases, or the distribution of the solvent
within the gel, depends on themechanical stress distribution. This is illustrated by the example of the phase-
coexistent equilibria of a sphere in section 4.1, inwhich anisotropic deformations of the polymer network due to
coherency strain between the two interfaces altered the equilibriumpolymer volume fractions of each of the two
phases. Aswe shall demonstrate in the next section, this coherency strain has a real effect on the distribution of
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solvent in polymer gel tori, leading to internal stresses that cause buckling.We can therefore conclude that such
buckling is the result of phase coexistence, and thus the presence of thermodynamic instability, showing that
thermodynamic instability can be harnessed to produce new behavior (buckling and pattern formation) that is
distinct from the normal behavior in the thermodynamically stable regime (swelling and deswelling).

5.3. The case of toroidal polymer gels
Tori are characterized by two length scales; it is convenient to use the tube radius a and the ring radiusR, as
depicted infigure 17. In order to address phase coexistence in a toroidal sample of polymer gel as well as the
buckling instability in away that is analytically tractable, wewill take the slender rod approximation a=L=
2πR that was used to study Euler buckling. This is equivalent toworking in the limit whereκa=1, where
κ=1/R is the initial, fabricated curvature of the toroidal centerline.We can therefore approximate the toroid

Figure 16. (a), (b), (c), (d) Images of swollen toroidal polymer gels of various size and aspect ratio (defined as the ratioR/a of the ring
radiusR to the tube radius a)with increasing slenderness going from (a) to (d).Many toroidal gels of identical size are placed inside a
capped vial, laid on its side on top of a circular platformused tomake the tori, and imaged frombelowusing aCCDcamera. (e)–(j)
Experimental images of pNIPAM toroidal gels after fast heating. (e)Buckling evolution of a toroidal gel at 2.0 (left) and 2.5mins
(right) after heating. The dashed line in the second image outlines the position of the inner surface of the buckled tori at earlier time
(2.0mins). (f) Longer time evolution of buckling toroidal gels at (from left to right) 18 s, 3mins, and 10mins after heating. The inner
handle portion of the ring darkens while the outer portion remains transparent, demonstrating the coexistence of solvent-rich and
solvent-poor regions during deswelling. (g, h, i)Photographs of various buckled tori showing (i) out-of-plane buckling (h)
‘PringleTM’-likemorphology, and (i) folding. These photographswere taken from the sidewith aDSLR camera. (j) Low aspect ratio
(R/a=2.7, a=0.9 mm) toroidal gel immediately (top) and 12mins (bottom) after rapid heating showing ballooning crease patterns
and short-wavelength bamboo patterns (radial lines). The two distinct types of pattern reside on either half (top and bottompart,
respectively) of the toroid. The scale bars in (a)–(d), (g)–(i) represent 2 mm, and the ones in (e), (f), (j) represent 1 mm.The dark areas
in images (a)–(f), (j) are shadows fromneedles used tomake the tori or circular objects placed in the light path to aid visualization of
the almost transparent gels.

Figure 17. Left: depiction of the toroidal geometry considered, where 1/R is the ‘ring curvature,’withR the radius of the ring passing
through the center of the circular cross section of the torus. Right: a slice through the circular cross section, where a is the ‘tube radius,’
i.e., the radius of the boundary of the torus asmeasured from the center ring.
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as a slender cylinder of radius a and length L,whose ends are identified, ensuring that it still has the topology of a
solid torus. Curvature is then incorporated as a perturbative correction of sizeκa to this flat limit of the torus.

Under similar conditions to the sphere, phase-coexistent equilibria of the flat limit of the torus can be treated
in a similarmanner.We utilize the same approximations as those used in section 4.1. Proceeding in cylindrical
coordinates, the reference configuration is parametrized by (ρ, θ, z) and the phase-separated target configuration
by (P,Θ,Z). In the limit inwhich the deswollen shell is thin, we can approximate the radial coordinate P as a
piecewise, linear function of ρ, such that r r» L( )P 1 for ρ<b and r r» L + L -( ) ( )P b b1 2 for b�ρ<a,
whereΛ1 andΛ2 represent re-scaling of points transverse to the z-axis. Next, translational symmetry along the
z-axis ensures that the deformationmatrix is not a function of z. Since points z=0 and z=L are identified
under the periodic boundary conditions of the torus, translational symmetry requires that = LℓZ z , whereΛℓ

describes the longitudinal stretch or compression of the torus. Therefore, in the solvent-rich core, the polymer
volume fraction f f= L L( )ℓr 0 1

2 and in the solvent-poor shell, f f= LL L( )ℓp 0 1 2 . Accordingly, the total free

energy Ftorus
0 of the phase-separated, unbent torus is given by
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Values offp,fr, and f thatminimize this free energy are plotted infigure 18, assuming the Flory–Rehnermodel.
Comparing the results withfigures 14(b), (c), notice there are somemarked differences between the variation in
fr and fwithχ1 between a sphere and aflat torus. For example, whereasfr for the sphere steadily decreases with
χ1, there is notmuch change infr for theflat torus until larger values ofχ1. This is due to the additional length-
change degree of freedomof theflat torus: for sufficiently small values ofχ1, the deformation ismainly of the
cross section, so thatΛℓ≈1, and involves a large shrinking of the thin shell with amodest stretch of the core,
resulting in f ~ L-

p 2
1 andfr roughly constant; for larger values ofχ1, deformations of the length becomemore

important as the shell radius change becomes costly, so that f f~ ~ L-
ℓp r

1, shown in the inset offigure 18(b).
There is also a drastic difference in f (χ1) for the two geometries, where the fraction of the solvent-poor phase
appears to level-off with increasingχ1 for the sphere but rapidly grows for the flat toroid. This is also due to the
additional degree of freedompresent in the toroid. Eventually, however, there is a similar level-off of f for higher
values ofχ1 (not shown), due to the activation of the length change.

Next, we consider the effects of curvature on the phase-coexistent equilibria. The curvature of a toroidal
centerline lifts the rotational symmetry of theflat, cylinder-like torus. Consequently, wemust revise the
assumption that the interface between the solvent-rich core and the solvent-poor shell is axisymmetric.

Figure 18.Phase coexistent equilibriumof theflat toroid, as depicted by a cylinder of length Lwith periodic boundary conditions at
z=0, L. (a) Left: reference configuration, where a is the radius of the outer boundary of the gel and b is the interface boundary; right:
target configuration, where the length dilation isΛℓ,Λ1 is the isotropic dilation of the solvent-rich core, and the solvent-poor shell
shrinks in thickness byΛ2. (b)Equilibrium volume fraction, as a function ofχ1, as predicted by the Flory–Rehnermodel; after the
transition, the solvent-poor volume fractionfp is shown as the solid curve whereas the solvent-rich volume fractionfr is dashed, as
highlighted in the inset. (c)Mass fraction f of the gel corresponding to solvent-poor gel as a function ofχ1.
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Furthermore, this also breaks the assumption of axisymmetric deformation, requiring amore general
representation of the deformationmatrixΛ. In order to address this asymmetry, wemove from the cylindrical
coordinate system to amore general one inwhich the straight z-axis is replacedwith a closed parametric curve
g ( )s , where Î [ )s L0, is the arclength parameter of the centerline, defined such that g¶ =∣ ∣ 1s . As long as the

centerline is everywhere curved, we can uniquely construct the Frenet–Serret frame {ˆ ˆ ˆ}t n b, , , where gº ¶ˆ( )st s

is the unit tangent vector, º ¶ ¶ˆ ( ) ( ˆ) ∣ ˆ∣sn t ts s is the unit normal vector, and º ´ˆ ( ) ˆ( ) ˆ ( )s s sb t n is the unit
binormal vector, which completes an orthonormal triad at all points on the centerline; this frame is illustrated in
figure 19.The rotation rate of this frame along the centerline depends on the curvatureκ and the torsion τ of the
centerline, via

k
k t
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a set of geometric relations known as the Frenet–Serret equations [86]. For the fabricated, planar torus of
constant curvatureκ, there is no torsion, τ≡0.However, to study buckling-type deformations of the torus,
where the ring can adopt non-planar deformations, we require this full geometry of curves where t ¹ 0.
Furthermore, the cross section of the gel can, in general, twist independently of the centerline.We therefore
define amaterial frame { ˆ ˆ ˆ }d d d, ,1 2 3 that is adapted to the centerline and can therefore be expressed in terms of
the Frenet–Serret frame. It is convenient to choose

j j= +ˆ ( ) ˆ ( ) ( ) ˆ ( ) ( ) ( )s s s s s ad n bcos sin , 891

j j= - +ˆ ( ) ˆ ( ) ( ) ˆ ( ) ( ) ( )s s s s s bd n bsin cos , 892

=ˆ ( ) ˆ( ) ( )s s cd t , 893

where { ˆ ˆ }d d,1 2 define the transverse frame to the centerline andj(s) is the angle of rotation from the Frenet–
Serret frame (see figure 19). There is amore general set of equations describing the rotation rate of thematerial
frame, namely

w¶ = ´m m
ˆ ( ) ˆ ( ) ( )s sd d , 90s

Figure 19.A centerline g , where the Frenet–Serret frame {ˆ ˆ ˆ}t n b, , is shown at point g ( )s along the curve. A section of the transverse
subspace, spanned by {ˆ ˆ}n b, is highlighted, alongwith the transversematerial frame { ˆ ˆ }d d,1 2 , defined by the rotation anglej. Also
shown: example of a deformed centerline g¢, with associated Frenet–Serret andmaterial frames.
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where m = { }1, 2, 3 and w ( )s is known as theDarboux vector, which is given by

w k j k j t j= + + + ¶ˆ ˆ ( ) ˆ ( )d d dsin cos . 91s1 2 3

Therefore, we can represent points r near an arbitrarily curved centerline as

g= + +( ) ( ) ˆ ( ) ˆ ( ) ( )s x x s x s x sr d d, , , 921 2 1 1 2 2

where x1, x2 give coordinates in the cross section.
Wewill therefore represent the reference configuration of the torus in terms of centerline g , frame

{ ˆ ˆ ˆ }d d d, ,1 2 3 , and coordinates (s, x1, x2). The cross section coordinates (x1, x2) can bewritten in polar form (ρ, θ)
via r q=x cos1 and r q=x sin2 .While ρ=a is the boundary of the torus, the interface between the solvent-
rich and solvent-poor regions is generally not axisymmetric but adopts amore general form ρ=b(θ) in these
polar coordinates. There aremany shapes that the interface can adopt and there is evidence, namely the
ballooning patterns that forms on the surface of toroidal gels (see figures 16(f)–(j)), that the deformationmay
have a relatively lowwavelength along both the toroidalmeridian (the q̂ direction) and the toroidal ring (the d̂3

direction). However, in examining the effect of curvature on the phase-coexistent equilibrium,wewill focus on
longest-wavelength alterations to the coexistence pattern thatmay arise due to broken axial symmetry.
Therefore, let the interface shape b(θ) adopt the simple form

rq q= +( ) ( · ˆ ( )) ( )b b p1 , 930

which is a single-wavelength deformation of the interface in the cross section. As long as the amplitude ∣ ∣p of this
deformation is small, its overall effect is a simple translation of the circular interface such that it is no longer
centered on the toroidal centerline as shown infigure 20(a). In effect, it describes a polarization of the distribution
of solventmasswithin the cross section of the toroid; we shall refer to p as the polarization vector. It is possible to
describe othermoments of the solventmass distribution, such as an inertia tensor, which corresponds to a two-
wavelength deformation of the interface shape in the cross section.However, the coupling between curvature
and polarization is the simplest, as dictated by symmetry; the curvature coupling to othermoments occurs at
higher powers of the free energy F and thusmay be neglected in the low-curvature regime.

In order to represent the equilibrium target configuration  , let us return to the idea of incorporating the
effect of curvature as a small correction to the equilibriumphase coexistence in theflat torus. To do this, wewill
add a step into the deformation process  , and call this intermediate step  . In the intermediate
configuration  , the toroid consists of points ¢r , given by

g¢ ¢ ¢ ¢ = ¢ ¢ + ¢ ¢ ¢ + ¢ ¢ ¢( ) ( ) ˆ ( ) ˆ ( ) ( )s x x s x s x sr d d, , , 941 2 1 1 2 2

Figure 20. (a) Slice through of the reference configuration of the curved toroidwith polarized arrangement of the coexistent phases,
where p is the polarization vector, defining an offset between the centerline and the center of the solvent-rich region. Polar coordinates
(ρ, θ) are also shown, in reference to the transversematerial frame { ˆ ˆ }d d,1 2 . (b)Cross section of the target configuration, highlighting
the isotropic dilation of the solvent-rich core byΛ1, as well as the local tangent ¢T̂ and normal ¢N̂ to the phase-interface. The solvent-
poor shell is stretched byΛ1 tangentially to the interface and compressed byΛ2 normal to the interface. (c) Schematic of the
deformation process where the reference configuration  is deformed to the intermediate configuration  by a change in curve
shape andmacroscopic deformation of the cross section due to phase separation. Finally, residual internal stress is relaxed by through
microscopic deformations, leading to configuration  .
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where g¢ is the deflected centerline, e.g., due to buckling, with new frame ¢ ¢{ ˆ ˆ }d d,1 2 [seefigure 19]. Furthermore,
assume that in going from  , the toroid undergoes phase-separation assuming the same deformation
matrices as in the axisymmetric, flat torus limit. Therefore, in the solvent-rich region,

d r q
¶ ¢

¶
= L <a

b
ab ( ) ( )x

x
bfor , 951

where r q¢ = ¢ ¢x cos1 and r q¢ = ¢ ¢x sin2 yields the polar representation r q¢ ¢( ), of the cross-section coordinates
in  . The anisotropic deformation of the solvent-poor shell is complicated by amore general, thickness-varying
shell; if the solvent-rich coremaintains the above isotropic deformation then the continuity requirement across
the phase interface results in a deformationΛ1 tangential to the interface andΛ2 normal to the interface in the
cross section. In the reference configuration, the interface tangent is given by r rº ¶ ¶q qˆ ( ˆ ) ∣ ( ˆ )∣b bT and
normal by º ´ˆ ˆ ˆN T d ;3 to leading order in = ∣ ∣p p , defined in equation (93), these are given by

q q r= + +ˆ ˆ ( ˆ · ) ˆ ( ) ( )p aT p , 962

r q q= - +ˆ ˆ ( ˆ · ) ˆ ( ) ( )p bN p . 962

The interface tangent and normal, ¢T̂ and ¢N̂ , in the intermediate configuration  have the same formdue to the
isotropic deformation of the core, replacing r r¢ˆ ˆ and q q¢ˆ ˆ . Therefore, in the solvent-poor shell,

q r
¶ ¢

¶
» L ¢ + L ¢ <a

b
a b a bˆ ˆ ˆ ˆ ( ) ( )x

x
T T N N b afor , 971 2

as depicted infigure 20(b). Let L¢ be the deformationmatrix field describing position-dependent changes in
length that occur in going from  . Then

dL¢ º
¶ ¢

¶
= + L( ) ( )r

r
u 98ij

i

j
ik ik kj

ext 0

whereΛ0 is the deformationmatrix corresponding to axisymmetric deformation, namely

L =
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1 2 3, 3,

where the top holds for points in the solvent-rich core ρ<b(θ) and the bottomholds for points in the solvent-
poor shell b(θ)�ρ<a. The other part  +( )uext of the deformationmatrix L¢ describes small changes in
length due to deformations of the centerline and thematerial frame. These small changes are encoded in an
‘external strain’ uext, which is given by

e w w w= D +
L -
L
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where w w wD º ¢ -a a a is the change in theDarboux vector, i.e., change in the curvature, torsion, and twist of
the framed curve degrees of freedomof the gel. Here, we have taken the approximation that the arclength ¢s after
phase-separation is proportional to the arclength s before phase separation and that this proportionality is the
longitudinal deformationmatrixΛℓ, describing the change in length of the gel. Even though it can be expected
that incorporating curvature and torsion of the toroidal centerline altersΛℓ, this effect should be small since
changes in the length of the rod are described by deformations of the gel that respect axial symmetry; as curvature
breaks axial symmetry, we can expect that such alteration to be a higher-order effect thanwhatwe seek to
describe. The external strain also describes the nonaxisymmetric changes in length that occur due to
axisymmetric phase-separationwhen curvature is present; this effect disappears when L  11 , i.e., when there is
no transverse deformation of the gel in the solvent-rich region.

The intermediate configuration  is a poor representation of the phase-separated gel as it imposes the
axisymmetric equilibrium strain on a geometrywithout axial symmetry. To rectify this, pointsR in the actual
equilibrium state, that is, in the target configuration  are obtained frompoints ¢r in  via an ‘internal’
displacementfield u such that

¢ = ¢ + ¢( ) ( ) ( )R r r u r . 101

This displacement field u represents a ‘correction’ to the shape of the equilibrium gel, resulting in a small,
nonaxisymmetric strain that is added to the large axisymmetric deformation. By including the intermediate
configuration  , we are able to factor the deformationmatrixΛ into an axisymmetric partΛ0 and a part that
describes nonaxisymmetric deformations, namely
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wherewe have retained only the leading order nonaxisymmetric terms, ¶ ui j and uil
ext.Whereas the external

strain encodes the shape of the centerline of the toroid, the remaining strain ¶ ul i describes degrees of freedom
thatwe can regard as ‘internal’ to the gel and that are allowed to equilibrate given a certain centerline shape.
Thus, we call ¶ ºu ui j ij

int the ‘internal strain.’ Finally, it is useful to fold the external and internal strain into a

total strain º +u u uext int.
The total free energy F of the gel is then given by

ò ò= + + L + L -
⎡
⎣⎢

⎤
⎦⎥ ( )F F F p

r

V

r

V

d
det

d
det 1 , 103p r

p r

3 3

where Fp and Fr are the free-energies of the solvent-poor and solvent-rich region, respectively, given by
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with òp
and òr

representing integration over solvent-poor and solvent-rich regions of the gel in the reference

configuration. The third term enforces the volume constraint, with p the Lagrangemultiplier. Thus, we can
compute the total free energy F, given the deformationmatrix expressed in equation (102) and using the relation
f f= L( )det0 . However, the amount of solvent in each region of the gel, described by the polymer volume
fraction f ( )r , should be largely unaffected by the presence of a small, nonaxisymmetric strain u; only the shape
of the regions is affected by such strain. This is a common assumption adopted in theories of elasticity: the
‘elastic’ degrees of freedom are independent of any order parameter describing the phase of thematerial. For
example, in the elastic theory of nematic-phase liquid crystals, gradients in the director field do not greatly affect
how ‘nematic’ thematerial is—such elastic terms are considered transverse to order parameter (see e.g., [32]).
This assumption holds as long as the thermodynamic phase of thematerial is well-defined, failing near the
critical point. Similarly, even though the gel in study is in the coexistence region, it consists of twowell-defined
phases, assuming that it is far enough from the critical point. Therefore, the polymer volume fractionf, which
describes the phase of the gel, has two discrete values,fp andfr. Referring to the decomposition of the
deformationmatrix (102), we therefore require that the strain u satisfies the incompressibility constraint,

 + =( )udet 1, everywherewithin the gel. If this holds, then the volume constraint ismaintained independently
of u. Importantly, while the nonaxisymmetric strain u does not affect the volume fractionf of the two phases, it
does affect the spatial distribution of the two coexistent phases, which is described by the interface shape b(θ).
Any interface shape b(θ) that does not preserve the continuous rotational symmetry of the gel about its centerline
axis results in a nonaxisymmetric coherency strain, which is encoded in u.We seek to determine the change
D = -F F Ftorus

0 in free energy due to changing the arrangement of phases in the presence of curvature.
To proceed, we furthermore require that only the symmetric part  º +( )u u 2T of the strain u appears in

the free energy in order to properly describe the cost of elastic deformations. Furthermore, in order to enforce
the incompressibility constraint  + =( )udet 1, the determinant can be expanded using the relation

= ( )A Adet exp ln for anymatrixA, resulting in the condition

  = +( ) ( ) ( )tr
1

2
tr . 1052 3

As a result, the free energy changeΔFdue to lifting the axial symmetry is given by
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where c p and c r are anisotropic elasticity tensors that characterize the linear elasticity of the phase-separated ‘flat’
toroid (see [87] for details). Integrals over the solvent-poor and solvent-rich regions are given by

ò ò ò q q q» -
p

( )( ( )) ( )r s b a b ad d d , 107
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L
3

0 0

2
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3
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2

0

where the portion of the Jacobian r q¶ ¶∣ ( )∣sr , , that depends on curvature contributes a higher-order
correction to the free energy; thus these integrals are over cylindrical regions of the gel. Next, the internal
displacementfield u is found by finding conditions under which the free energy is an extremum, δΔF=0, at
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fixed centerline geometry and polarization p, i.e.,
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which yields, to leading order, a displacementfield that is linear inΔω,ω, and b(θ). The result is an effective
curve elastic energy
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whereB andC are effective bending and twistingmoduli, k>0 is a constant that couples toroid curvature to
interface shape, and r>0 characterizes the free energy change due to polarization of the solvent distribution
(see [87] for values of these parameters in terms ofμ0,Λ1,Λ2, andΛℓ). The positive value of r implies that there is
always a free energy decrease that can be achieved for a polarized solvent distribution.While this is perhaps
unexpected, note that a polarized solvent distribution results in the formation of a solvent-poor shell with a
thinner region and a thicker region, resulting in a nonuniform stress transmitted across the phase interface. This
stress results in a nonaxisymmetric deformation of the solvent-rich core that, due to coherency strain, also
stretches parts of the shell, leading to a local free energy density increase, whilst compressing other parts of the
shell, leading to a local free energy decrease. However, the part of the shell that is stretched is the thinner part,
whereas the part that is compressed is thicker, leading to a net free energy decrease, as compared to the free
energy cost of interfacial strainwith a shell of uniform thickness. As long as the toroidmaintains this solvent-
poor shell, however, themagnitude p of the polarization is ultimately limited: for large p, the thin part of the shell
is greatly stretched, resulting in a large elastic penalty. Still, the polarization, and other highermoments of the
solvent distribution, represent a coarsening processwhere the initial formof the phase-separation into a
coexistent axisymmetric core–shell geometry evolves over time.Within the plateau period of the equilibration
dynamics, the solvent distribution evolves tominimize the elastic free energy cost due to coherency strain.

The curvature-polarization coupling term in (109) shows that the polarization direction is controlled by the
curvature of the toroid, both the curvature (ω1,ω2) at which it was fabricated and the change in curvature
( w wD D,1 2) after deformation. A toroid fabricatedwith initial curvatureκ=1/R andwithout twist, so that the
transversematerial frame is defined byj=constant≡ 0, has an initial Darboux vector w k= b̂, where b̂ is the
binormal of the centerline of the torus prior to deformation. The resulting change in free energy due to coupling
between initial curvature and polarization is therefore
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where n̂ is the normal of the centerline. The free energy therefore decreases when p points along-n̂, describing
a situation inwhich solventmass is greater towards the outer radii of the torus and there ismore polymermass
near the ‘hole’ region; this is confirmed by experiment (see figures 16(f)–(j)). This curvature-solvent distribution
coupling has been observed in bent rubber and is due to the effect of internal stress on amaterial’s ability to swell
[88]; swelling is promoted in regions under tension and impeded in regions under compression. Furthermore,
with such a polarization of the solvent distribution, the similar couplingwithΔωm implies that free energy is
decreased if the torus deforms such that curvature increases. This coupling between bending deformations and
the curvature of the centerline is due to an internal stress distribution, causing a torque about the centerline. A
simplified picture of the situation is shown in 21(a), where the solvent-rich region is under compressive stress
due to lamination to the solvent-poor region; if axial symmetry is broken, then this stress is centered along a
region that is offset from the centerline. The effect is then similar to the classical problemof Timoshenko’s
heated bimetallic strip [89], inwhich twometals with different thermal expansion coefficients are laminated
together in a strip-like geometry; under heating, the constraint imposed by lamination results in a coherency
strain that causes the strip to bend in the direction of the strip that expands less.Here, the gel bends in order to
compress the solvent-poor regionwhilst expanding the solvent-rich region, thus increasing the curvature of the
centerline; this swelling version of the bimetallic strip is ubiquitous in shape-changing softmaterials
[16, 21, 88, 90, 91].Wemay therefore define a swellingmoment = -M k pm mn n3 that characterizes the local
internal torque that is applied transverse to the centerline, bending it. Since thismoment is uniform around the
central ring of the torus, it acts to uniformly increase the curvatureκ.

However, a fundamental result of the differential geometry of curves (see e.g., [86]) implies that the
curvatureκ of any planar closed curve, when integrated over the curve’s arclength, remains constant. Therefore,
unless themagnitude and direction of the polarization changes, the only way for the toroid to deform such that
the total curvatureκ increases is for the toroid to deformout-of-plane. In order to bend out-of-plane, however,
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the deformationmust overcome the cost of bending and twisting. To study this buckling transition, we fix the
magnitude and direction of the polarization p and consider only the elastic part of the free energy change,
namely

ò å åw w wD = D + D + D
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⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭ ( )F s B C M

1

2
d 2 , 111

L

m
m

m
m mel

0 1,2

2
3
2

1,2

wherewefix p along the-n̂ direction, which thenfixes the swellingmoment M along-b̂.
To determine the critical swellingmomentMcneeded to buckle the toroid from its planar configuration,

parameterize a deformed centerline g¢ by

g g z¢ = +( ) ( ) ( ) ˆ ( )s s s R b, 112

where g ( )s is the original centerline

g =( ) ( ( ) ( ) ) ( )s R s R s Rcos , sin , 0 , 113

which has a corresponding Frenet–Serret basis

= -ˆ ( ( ) ( ) ) ( )s R s R at sin , cos , 0 , 114

= -ˆ ( ( ) ( ) ) ( )s R s R bn cos , sin , 0 , 114

=ˆ ( ) ( )cb 0, 0, 1 , 114

as pictured in the inset of 21(b). To second order in the out-of-plane deflection ζ, the Frenet–Serret basis of the
deformed centerline is
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fromwhichwe can define the deformedmaterial frame ¢ ¢{ ˆ ˆ }d d,1 2 via a rotation byj¢( )s as shown in (89a)–(89c).
To second order in ζ andj¢, the elastic part of the free energy change is given by

Figure 21. (a) Schematic of a bimetallic strip before (top left) and after (bottom left) heating. A slice through the cross section of a
phase-separated toroid is shown on the rightwith centerline (dashed red), polarized arrangement of solvent-rich (blue) and solvent-
poor (orange) regions, and the swellingmomentM. (b)Prediction of instability from linear stability analysis in terms of dimensionless
measures of the swellingmoment,M/(Bκ), and the ring rigidity,C/B. The inset schematically shows the Frenet–Serret frame in an
unperturbed ring, as well as the ‘Pringling’ and the next-two-lowest-ordermodes. Note that for uniform incompressible tori with a
circular cross section, elasticity theory dictates thatC/B≈2/3. Figure adapted from [66], Copyright (2018) by theAmerican Physical
Society.
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whichmay be simplified via the substitution10j z z j¢ = -¶ - ¶ + ¢˜ss s resulting in a transformed formof the
free energy change
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Next, the two perturbing fields z ( )s andj¢˜ ( )s can be expanded in Fouriermodes,
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which diagonalizes the free energy change, yielding a quadratic form
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The planar torus is therefore unstable to buckling out-of-plane when the free energy change of a certainmode n
becomes negative. This stability threshold occurs when  =det 0n , i.e.,
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which results in a critical swellingmoment ( )Mc
n for eachmode n as a function of bendingmodulusB, twisting

modulusC, and initial curvatureκ, as plotted infigure 21(b) [66]. For set values of bending and twistingmoduli
and initial curvature, there is afinite value ofM, abovewhich the planar toroid is unstable to buckling out of the
plane. Thefirstmode that becomes unstable is the n=2, corresponding to a saddle or PringleTM-like
morphology; highermodes become unstable for larger values ofM.While the values of the effective bending and
twistingmoduli depend on factors such as the composition of the torus and the thickness of the shell, the ratio
C/B is well-approximated by the result for a uniform elastic rodwith circular cross section, namely

n» +( )C B 1 1 , where ν is the Poisson ratio of the elasticmaterial. Since the gel atfixed volume fraction is
similar to an incompressible rubber, we take ν=1/2, yieldingC/B≈2/3, whichmarks the lower limit ofC/B
for rods of circular cross section, as predicted by classical elasticity theory [81]. Note that threshold value ofM for
buckling decreases as the curvatureκ of the torus decreases atfixed bendingmodulusB. This is completely
analogous to the Euler buckling prediction of smaller critical compressionTc for longer rods atfixed bending
modulus. Given a simple estimation ofM/(Bκ), we have found that the predicted buckling threshold at
C/B≈2/3 agrees with experiments, supporting the phase-separated ringmodel [66].

The formof the effective elastic energyΔF given in equation (109)hints at a description of the phase-
separated gel in terms of Landau theory, namely
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whereCp and u are positive coefficients that stabilize the spatial variations andmagnitude of the polarization
order parameter p. Note that in the casewhere the gel is constrained to lie straight, i.e.whereωm=0, the
equilibrium configuration of the solvent polarization field p is ordered in a ferromagnetic arrangement, with
fixedmagnitude and a spontaneously selected alignment direction transverse to the centerline of the gel.
Consequently, uniform rotations of this alignment direction do not increase the free energy and thus
disturbances in the configuration of the gel, such amaterial inhomogeneity or an interruption in the gel’s
uniform shape, can easily cause long-wavelengthmodulation of the alignment direction. TheseNambu–
Goldstonemodes, which in the context of the ferromagnetic order thatwe expect of the polarization field, are
similar to spin waves in ferromagneticmaterials [32, 92]. If the gel is then allowed to bend in response to the
polarized solvent distribution, reintroducing the coupling between centerline shape and solvent distribution,

10
Since there is an ambiguity in how to define thematerial frame, thefieldj represents a gauge degree of freedomof the framed curve and

this substitution is a gauge transformation.
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the ferromagnetic order causes a uniformbendingmoment, resulting in a uniformly curved gel ring; again, the
direction of the ring curvature is spontaneously selected,much like themagnetic field of a ferromagnetic
material in the absence of an externally applied field. As an aside, note that our discussion of toroidal gels carries
through here: if the gel was initially formed in a ring shape, then themanufactured curvature acts as an applied
field, aligning the solvent polarization vector in a preferred direction. The spin-wave excitations of the
polarization field have a rather interesting consequence for the shape of the gel. A long-wavelength rotation of
the polarization field causes a similarly long-wavelength rotation of the curvature direction. Thismeans that the
shape of the centerline is no longer confined to a plane; it adopts a helical shape rather than a circular one. In
otherwords, the gel has a soft torsionmode so that theNambu–Goldstonemodes of this theory are perhaps
better referred to as twist or torsionwaves.

Aside from a theoretical curiosity, this observation suggest some potentially interesting experiments. Using
polymer gel printing techniques [66] it is possible to create gel samples with a variety of different shapes.
Continuing our analogywith ferromagneticmaterials, a gel drawn in the shape of the letter ‘S,’ as illustrated in
figure 22, should, under rapid heating, adopt a polarization field that undergoes a reversal in direction due to the
flip in the curvature direction. Since the two arcs of the ‘S’-shape are joined by a straight segment, ourmodel
suggests that the polarization should undergo aπ rotation, actuating an out-of-plane twist of the S-shape. This is
an investigation for the future. For now,we conclude there are remarkable similarities between the solvent–
stress coupling in the phase-separated polymer gel andmagnetoelastic effects, which are currently being
investigated for use in so-called ‘shape-programmablemagnetic softmatter’ [93], including recent workwith
flexible ferromagnetic rings [94].

6. Conclusions and outlook

Wehave discussed a small subset of the rich array of phenomena that polymer gels can exhibit. Startingwith a
discussion of the derivation and assumptions that are present in the Flory–Rehner equation of state for isotropic
polymer gels, we have attempted to discuss some of the swelling behavior of gels in amanner that ismodel-
agnostic, only using the Flory–Rehnermodel to illustrate certain predictions. In particular, we have highlighted
the swollen–deswollen phase transition, situating it within the classical theory of phase transitions offluids.
Departing from the traditional discussion surrounding this topic, we have paid particular attention to how
intuition derived from the phase behavior offluids fails, particularly at the critical point and along the phase
coexistence curve, due to shear rigidity. In a spectacular departure fromquasistatic processes, we have seen that
rapid quenches across the first-order swelling transition can lead to arrested deswelling, trapping the gel in a

Figure 22.Depiction of configurations of the solvent polarization for an ‘S’-shaped gel, as predicted by the Landau theory. Curvature
acts as an externalfield, ‘tilting’ the quartic potential thatmodels the free energy of the polarization fieldp. In themiddle, where the
curvature vanishes, the free energy density is rotationally symmetric, suggesting that the polarizationfield interpolates between its two
orientations by twisting either clockwise or counterclockwise.
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coexistence region for a prolonged period, where it reaches an equilibrium state of coexisting phases.We have
shown that the shapes adopted by toroidal gels when forced to coexist in thismanner are dramatically distinct
from the shapes adopted in quasistatic processes. By developing a description of the rapidly-heated gel that
couples the spatial distribution of solvent within the gel to its elasticity, we have shown that the observed
buckling arises fromphase coexistence, and is thus linked to thermodynamic instability of the single-phase gel.
This demonstrates that, in the context of polymer gels, thermodynamic instability can be used to achieve a shape
change that cannot be normally accessed in the thermodynamically stable regime. There are other interesting
changes inmaterial properties that can occur due to thermodynamic instability, such as possible auxetic
behavior [95] andmicrostructure formation [49, 96].We have conjectured that such instabilitymay be used as
part ofmaterial design, an idea that we describe as extreme thermodynamics.

Recently, there has been interest in designing equilibrium shape change in polymermaterials [97, 98]. In one
approach, the swelling response of the bulk gel is tuned by spatiallymodulating the density of cross-links or the
gel’s chemistry, which impacts both the elasticity of the gel and its equilibrium volume fraction at constant
temperature [75, 99–101]. Since different portions of the gel equilibrate to different volume fractions, the result
is an internal stress distribution due to coherency strain that frustrates the original shape of the gel, leading to
interesting shape change. Contrasting this design of the equilibrium gel shape, it has been shown [102] that if the
gel is taken out of equilibriumby exposing different parts to different temperatures or by only exposing part of
the gel to solvent whilst keeping other parts dry, the gel undergoes a dramatic set of shape transformations.

Another approach that yields the ability to design complex geometries from initially planar gels has its roots
in certain processes observed in nature [103, 104]. It has been observed that pine cones are able to actuate shape
change in response to changes in humidity, opening and closing their scales. The reason for this is a bilayer
structure built fromplant tissue that yields an anisotropic response upon swelling [90]. Following this
realization, it was found that certain seed pods [105] split open from aflat state, forming two helical halves of
opposite chirality, via an anisotropic shrinking process where two layers of tissue shrink in different directions,
changing the intrinsic curvature of the seedpod. This layered anisotropy has been adopted for use in a novel
additivemanufacturing technique [21, 98], where polymer gel, made anisotropic through the use of aligned
cellulose fibers within the gel, is printed in layers of different swelling-direction.When swelling is actuated by
immersion in a solvent, these gel structures undergomorphological evolution thatmimics natural processes,
such as the opening of orchids.

We suggest that the shape changes accessed by rapidly heating gels through their phase transitionmay be
considered in the context of these examples of designed shape change. Aswe have shown, the solvent
distributionwithin the torus that is brought to a state of phase-coexistent equilibrium is set by the curvature of
the toroidal centerline.While we have focused our attention on toroidal gels with a single curvature, the formof
the solvent distribution polarization-curvature coupling in the free energy change (109) shows that the solvent
polarization direction can be guided by local curvature of the centerline.We therefore conjecture that formore
general polymer gel rings, where the curvature can vary continuously along the centerline, the solvent
distributionwill be polarized according to the local curvature direction. The result is that after rapid heating,
these rings should deform in amanner that increases themagnitude of the local curvature.Moreover, in the case
where the curvature direction undergoes a rapid reversal, such as in the letter ‘S,’we speculate that in order to
interpolate between the opposite curvature directions, the polarization vector will rotate, actuating a twist of the
gel. It is worth noting that the interesting deformations observed in experiments on tori require a simple
actuation, namely rapid heating, without any prior patterning of the gel: the only feature that guides shape
change is the initial shape of the gel. Thus, a single toroid can undergo at least two very different types of shape
change depending only on heating protocol, namely isotropic deswelling under slowheating and buckling under
rapid heating. This provides access to amuch richer array of possiblematerial responses that extends beyond the
current regime of prescribed buckling, leading to a possibility of feedback between thematerial shape, its phase,
and its response to applied stress.

Naturally, there ismuchmore that can be explored regarding the physics of polymer gels. For example, we
have neglected the topic of polymer gel dynamics entirely. Continuumhydrodynamicmodels have been
developed, based on small deviations from equilibrium conditions for the gel [48, 67, 106–109]. There have been
descriptions of the coarsening of gels that have undergone spinodal decomposition [96] aswell as of the
development of surface patterns [65, 99, 110, 111]. However,many of thesemodels either represent important
idealizations of the gels or are extremely complex, requiring considerable computational resources.
Furthermore, even robust hydrodynamic descriptions based on the Flory–Rehnermodelmay not adequately
describe the kinetics of the phase transition, due to the limitations of themodel. In particular, the equilibration
kinetics that arise in quench experiments on polymer gels represent a considerable challenge for dynamical
studies, due to themultiple timescales involved. For example, it is difficult to determine or predict the thickness
of the solvent-poor skin as a function of time after the quench; this information is essential for a full
understanding of the process as it determines the flow rate of solvent out of the swollen interior. It is not clear
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that the Flory–Rehnermodel, which provides a clear description of a homogeneous gel in or near equilibrium, is
the appropriate equation of state for studying the dynamics in this regime; rather, a separate kinetic description
may be necessary. In addition, the development of patterns, such as balloon and bamboo-like structures that
appeared in both cylindrical [12, 65] and toroidal gels during deswelling, as shown infigure 16(j), is complicated
by the necessity of a full nonlinear elasticity description of the gel that is able to incorporate large strains.
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