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ABSTRACT 

Disinfection by-products (DBPs) are contaminants produced during drinking water disinfection. Several 

DBPs have been implicated in a variety of toxic effects, mainly carcinogenic and genotoxic effects. 

Moreover, DBPs exposure has also been associated to an increased risk of developmental effects. In 

this study, the developmental toxicity and genotoxicity of 10 DBPs (4 trihalomethanes (THMs), 5 

haloacetic acids (HAAs) and sodium bromate) in the zebrafish embryo model was evaluated. Embryos 

exposed during 72 hours were observed for different endpoints such as growth, hatching success, 

malformations and lethality. THMs exposure resulted in adverse developmental effects and a significant 

reduced tail length. Two HAAs, tribromoacetic acid and dichloroacetic acid along with sodium bromate 

were found to cause a significant increase in malformation rate. Chloroform, chlorodibromomethane 

and sodium bromate produced a weak induction of DNA damage to whole embryos. However, 
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developmental effects occurred at a range of concentrations (20-100µg/mL) several orders of 

magnitude above the levels that can be attained in the foetal blood in humans exposed to chlorinated 

water. In conclusion, the teratogenic and genotoxic activity observed by some DBPs in zebrafish 

reinforce the view that there is a weak capacity of disinfection products to cause developmental effects 

at environmentally relevant concentrations.  

 

Keywords: Comet assay, developmental toxicity, haloacetic acids, trihalomethanes, water disinfection 

by-products, zebrafish. 
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INTRODUCTION 

Disinfection by-products (DBPs) are contaminants formed as a consequence of chemical disinfection 

of public drinking waters. The disinfectants, such as chlorine, can react with natural organic matter in 

surface waters leading to the formation of a complex mixture of DBPs. So far, more than 600 DBPs 

have been identified and reported in the literature; nevertheless, they represent less than half of all 

possible environmental DBPs. The most prevalent DBPs include the four trihalomethanes (THMs), 

chloroform, bromoform, chlorodibromomethane (CDBM) and bromodichloromethane (BDCM), the 

group of haloacetic acids (HAAs) and bromate anion. DBPs in drinking water are generally present at 

sub-µg/L or low- to mid-µg/L levels (Richardson et al. 2007) and some countries have regulated the 

levels of some DBPs in drinking water (Table 1, U.S.EPA 2006). Moreover, World Health Organization 

(WHO) guidelines exist as well as European Union DBP standards (Table 1, WHO 2004 and EU 

Directive 98/83/EC 1998). 

 

Several DBPs have been confirmed as mutagenic, genotoxic and/or carcinogenic in different test 

systems (Richardson et al. 2007). There is an increasing concern about the association of DBPs 

exposure to adverse developmental effects. A number of individual DBPs have been found to cause 

developmental toxicity in mammalian assays at high doses (Ruddick et al. 1983; Narotsky et al. 1996; 

Christian et al. 2001a). Some DBPs induce specific congenital malformations of the cardiovascular 

and neurological system, but, in general, foetal body weight reduction is often reported as the major 

effect (Epstein et al. 1992; Hunter III et al. 1996). Recent studies had evaluated the developmental 

effects of complex mixtures and appeared to exert no adverse developmental effects (Narotsky et al. 

2012). The epidemiologic studies found inconsistent results or very weak associations for congenital 

anomalies/birth defects, central nervous system anomalies, neural tube defects and spontaneous 

abortion. However, these studies suggested a positive association with some measure of growth 

retardation (Reviewed in Graves et al. 2001; Tardiff et al. 2006; Colman et al. 2011). 

 

Chemical treatment of public water supplies is designed to kill pathogens that may exist in the 

drinking water, so the risk-benefit balance of water disinfection is considered positive. However some 

factors as the huge magnitude of the population affected, the distorted perception by the population of 

chemical risks, the availability of several alternative water treatment methodologies, the uncertainties 
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in the hazard characterization of DBPs and the intrinsic limitations of the epidemiological studies, 

warrant the requirement of a better knowledge about DBPs toxicity and mechanisms of action 

(Colman et al. 2011). In this study, we have explored the capabilities of the zebrafish embryo model in 

order to identify and characterize the potential embryotoxic and genotoxic effects of some DBPs. 

 

Zebrafish (Danio rerio) is a prominent model vertebrate in developmental genetics, toxicology and 

ecotoxicology (Postlethwait et al. 2000; Hill et al. 2005; Scholz et al. 2008). Size, easy husbandry, 

high fecundity and fast development represent the main benefits of using zebrafish over other 

vertebrate species. In addition, zebrafish embryos are transparent and develop outside the mother. 

Hence, morphological structures and internal organs can be easily visualized (Zhang et al. 2003). 

Moreover, the mechanisms of embryogenesis are well conserved along the vertebrates and there are 

several studies that confirm the ability of zebrafish model to predict the teratogenic potential of 

chemicals in mammals (Brannen et al. 2010; Padilla et al. 2012; Selderslaghs et al. 2012). Hence, 

zebrafish is increasingly used for assessing developmental toxicity of chemicals. 

 

Currently, “whole-mixture” approaches are being used to address concerns related to the potential 

adverse health effects of DBPs exposure. Scientists from the US EPA office of Research and 

Development proposed an experimental design for a multigenerational reproductive/developmental 

bioassay to optimize the probability of detecting adverse effects (Simmons et al. 2008). In the present 

study, the capability of the zebrafish embryo, as alternative model, was explored in order to 

investigate the developmental effects and genotoxicity of disinfection by-products. The selected DBPs 

-four trihalomethanes (chloroform, bromoform, chlorodibromomethane and bromodichloromethane), 

five haloacetic acids (dichloroacetic acid, trichloroacetic acid, dibromoacetic acid, tribromoacetic acid 

and bromochloroacetic acid) and sodium bromate – represented the most prevalent compounds and 

data were available for comparison with other test systems and models. 

 

MATERIALS AND METHODS 

Chemicals and test media 

Dibromoacetic acid (DBA), trichloroacetic acid (TCA), chloroform, bromoform and sodium bromate 

were purchased from Sigma-Adrich (St.Louis, MO). Dichloroacetic acid (DCA) and tribromoacetic acid 
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(TBA) were delivered from Tokyo Chemical Industry (Tokyo, Japan). Bromochloroacetic acid (BCA), 

bromodichloromethane (BDCM) and chlorodibromomethane (CDBM) were purchased from Alfa Aesar 

(Karlsruhe, Germany). Buffered embryo medium (17.4 mM NaCl; 0.23 mM KCl; 0.12 mM MgSO4·7 

H2O; 0.18 mM Ca(NO3)2; 1.5 mM HEPES; pH 7.4) was used as the medium for all solutions during 

the experiments to keep the pH stable and constant between assays (Gustafson et al. 2012).  

 

Embryo exposure 

All stock solutions were prepared with buffered embryo medium except for THMs that were initially 

prepared in 100% dimethylsulfoxide (DMSO) and subsequently diluted in buffered embryo medium 

with a final DMSO concentration of 0.1% (v/v).  

For all substances, a concentration range-finding experiment was conducted with a constant spacing 

factor 2. The range finding test allow us to select the final tested concentrations based on the 

presence of a 0 and 100% effect level (for both malformation and mortality).Each substance was 

tested in 5-7 concentrations with a negative control, test medium only or solvent control with 0.1% of 

DMSO. Exposure concentrations are anticipated to be stable during all the test duration. 

 

Zebrafish embryos were collected by natural spawning and staged according to Kimmel et al. (1995). 

Fertilization success was checked and only batches of eggs with at least a fertilization rate of 80% 

were used. Exposures of embryos began at 4 hours post-fertilization (hpf) and were incubated at 27 ± 

1ºC on a 14-h light and 10-h dark cycle for 72 hours. The exposure was semi-static and solutions 

were renewed every 24 hours.   

Embryos were exposed to HAAs and sodium bromate in a 6-well culture plate (Greiner Bio-one, 

Germany). Ten embryos were randomly distributed into wells and filled with 5 ml of each solution. 

Each 6-well plate held five different concentrations of the test compound and the negative or solvent 

control. In order to prevent losses by volatilization, THMs were tested in 20 ml glass vials hermetically 

sealed. Ten embryos per vial and treatment were exposed with 10 ml of each test solution. For each 

substance, three independent exposure experiments were conducted using eggs from independent 

spawning events (n=3). 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 

 

Evaluation of developmental effects 

 At 8, 28, 52 and 76 hpf, mortality of embryos was checked using a stereomicroscope (SMZ-168, 

Motic). According to Nagel (2002) four four endpoints were considered as indicators of mortality: 

coagulation of eggs, non-development of somites, non-detachment of the tail and no presence of 

heartbeat. Dead embryos were removed daily after assessment of mortality rate. The fraction of dead 

embryos at the end of the test was used to calculate LC50 values.  

 

The teratogenic effects were evaluated and recorded as described in Teixidó et al. (2013) (Table 2). 

The fraction of abnormal embryos was determined for each concentration and control group in order 

to calculate EC50 value. The frequency of teratogenic effects in all tested groups of a test substance 

was also analysed. If the following criteria were fulfilled: (a) concentration-response relationship and 

(b) the endpoint is observed in ≥50% of all embryos showing malformations, the effect was 

considered to be a distinctive or identifying malformation (fingerprint endpoint) for this substance 

(Weigt et al. 2011). Embryos were observed using a stereo microscope, and images were obtained 

with a camera (Moticam 2000, Motic). Image processing was performed in Image J 1.41 (available at 

http://rsb.info.nih.gov/ij/) and Adobe Photoshop CS3 (Adobe Systems Inc., USA). Test concentrations 

are expressed in nominal concentrations.  

Hatching success and tail length measurement 

From 48 hpf the embryos are able to hatch. Hatching success was recorded at 76 hpf as the 

percentage of embryos that hatched respect surviving embryos.  The malformations observed in the 

embryos could affect its movement and consequently reduce or delay the hatching. Therefore, motility 

was also assessed by touch evoked response as a complementary endpoint.  

Embryos that have not yet hatched were dechorionated. All embryos were anesthetized with buffered 

tricaine methanesulfonate (0.5 mM, Sigma-Aldrich, St. Louis, MO) and photographed (Moticam 2000, 

Motic) positioned on their lateral side in order to measure the distance between the anus and the 

posterior end of the notochord, defined as tail length (Bachmann 2002). The minimum concentration 

to inhibit growth (MCIG) is defined as the minimum concentration to significantly produce a decrease 

in tail length.  
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Cell isolation and alkaline comet assay 

After exposure for 72 h, seven surviving fish embryos for the treatments and control groups were 

processed for cell isolation and comet assay. Cell isolation was carried out mechanically according to 

the protocol by Kosmehl et al. (2006). The EC50 values from teratogenic effects were used as the test 

concentrations for genotoxicity testing.  

 

The alkaline single cell gel electrophoresis (SCGE) or comet assay was performed as described by 

Singh et al. (1988) with some modifications. Fifty microliters of cell suspension were added to a tube 

containing 100 µL of 0.9% low melting point agarose (37 ºC). The suspension was added to an 

agarose precoated slide and gently covered with a cover slide to make a micro gel. The gel was 

allowed to solidify 10 min at room temperature and 6 min at −20 ºC. Immersion in lysis buffer (2.5 M 

NaCl, 100 mM disodium EDTA and 10 mM Tris, pH 10) containing Lauryl Sarcosine 1% (v/v), Triton 

1% (v/v) and DMSO 10% (v/v) in the dark was performed for 1,5 h at 4 ºC. The slides were then 

placed in a horizontal gel electrophoresis unit, immersed in cold alkaline electrophoresis buffer (300 

mM NaOH and 1 Mm Na2EDTA, pH > 13.5), and left in solution for 20 min at 4 ºC. After 

electrophoresis in the same buffer at 25 V and 300 mA for 20 min, slides were neutralized by washing 

three times with 0.4 M Tris buffer at pH 7.5.  

DNA was stained with 20 µl of DAPI solution (4′,6-diamidino-2-phenylindole) and immediately 

analysed using a Nikon E600 fluorescence microscope. DNA damage as % of DNA in the tail was 

measured using the Comet Assay IV software (Perceptive Instruments, Suffolk, UK). Zebrafish in vivo 

exposure to methyl methanesulfonate (MMS) during 72 h (from 4 hpf to 76 hpf) was used as a 

positive control for comet assay.   

 

Data evaluation 

Concentration-response curves for mortality and teratogenicity were plotted for compounds that 

showed a clear concentration-response relationship. It has been demonstrated that ignoring control 

mortality, even at lower than 10%, can lead to biased estimation of LC50 (lethal effects) and EC50 

(teratogenic effects) (Hoekstra 1987). Therefore, data were corrected for control mortality with 

Abbott’s formula: Pc = (P – Pi) / (100 – Pi) x 100 where Pc is the corrected percentage, P is the 

percentage mortality of the treated embryos and Pi is the percentage mortality of the control embryos 
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(Abbott 1987). 

Concentration-response curves were calculated using probit analysis (SPSS 15.0). Confidence 

intervals were set at 95%. Based on LC50 and EC50 values, a teratogenic index (TI) was calculated as 

the ratio LC50/EC50. In case no TI could be calculated, the compound was considered to be a non-

teratogen although it could still be embryotoxic.  EC20 values were calculated for comparison between 

zebrafish embryo and human exposure data.  

 

Statistical analysis was performed with SPSS 15.0. One-way analysis of variance (ANOVA) followed 

by post hoc multi-comparison with the Bonferroni’s test was used to analyse homogeneous data of 

the continuous variables. Kruskal-Wallis test was used to analyse non-homogeneous data followed 

Dunnett’s post hoc test. Significance was accepted when p < 0.05. 

 

RESULTS AND DISCUSSION 

Exposure of zebrafish embryos to trihalomethanes  

Exposure to the THMs selected in this study resulted in adverse developmental effects in zebrafish. 

The cumulative concentration-response curves for lethality and teratogenesis are shown in figure 1A. 

The vehicle control (0.1% DMSO) was not toxic to embryos. The estimated LC50, EC50, EC20 and TI 

values at 76 hpf are represented in table 3. Malformations that occurred with the highest frequency 

included cardiac edema and tail developmental abnormalities (Table 4 and Figure 1B) and are in 

accordance with those reported by Brennan et al. (2005) for tadpoles. In our study, the EC20 values 

range between 0.11 mM (23 mg/L) for chlorodibromethane and 0.7 mM (84.7 mg/L) for chloroform. 

Using the EC20 to compare the chemicals a ranking of the compounds in order of decreasing potency 

can be established as: Chlorodibromomethane > Bromoform ≈ Bromodichloromethane > Chloroform. 

CDBM (LC50= 0.48 mM, 100 mg/L and EC50= 0.16 mM, 33.3 mg/L) resulted to be 3-fold times more 

potent than chloroform (LC50= 2.4 mM, 286.5 mg/L and EC50= 0.84 mM, 100.3 mg/L). This order of 

toxicity was also found by Mattice et al. (1981) after exposure of common carp embryos to THMs. All 

THMs inhibited the growth of the embryo (Table 3), effect that is often observed when there is a 

cardiovascular impairment (Billiard et al. 1999). Delayed hatching was also observed after THMs 

exposure and could be due to an inhibition of enzymes involved in hatching or a decreased mobility in 

the embryo (Von Westernhagen 1988). The developmental abnormalities and the concentration 
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dependent sedative effect observed after THMs exposure partially or completely inhibit movement 

which may be required for proper hatching (Figure 3).  

 

The EC50 reported in this study for chloroform (EC50=0.85 mM) and BDCM (EC50= 0.26 mM) were 

similar to those reported for FETAX in Brennan et al. (2005) (0.92 mM and 0.4 mM respectively). 

Based on the TI values (from 2.5 to 3.6), all THMs were found to produce teratogenic effects in 

zebrafish. Studies in mammalians suggest evidence of a fetotoxic response for THMs but not a 

teratogenic effect (Thompson et al. 1974; Ruddick et al. 1983). Other mammalian studies have 

reported a decreased fetal growth, delayed ossification and craniofacial abnormalities in rats treated 

by chloroform inhalation (Schwetz et al. 1974; Murray et al. 1979). Rats exposed to chloroform via 

drinking water have only showed to have an impaired postnatal growth (Lim et al. 2004). Brown-

Woodman et al. (1998) reported a no effect concentration for chloroform of about 1.05 mM in rat 

whole embryo culture (WEC), similar to the EC20 concentration reported in our study (EC20= 0.7 mM). 

 
Exposure of zebrafish embryos to five haloacetic acids 

The only HAAs that induced some morphological effects were DCA and TBA at high concentrations 

(Figure 2B and Table 3). Embryos exposed to DCA exhibited moderate pericardial oedema whereas 

no lethality was observed up to 46.5 mM (Figure 2A and B, Table 4). The estimated LC50, EC50, EC20 

and TI-values are represented in table 3. DCA were previously found to be developmental toxic in 

zebrafish by Hassoun et al. (2005). Craniofacial abnormalities (reduced mouth and jaw formation), 

skeletal muscle deformations and yolk sac and cardiac oedema were observed at 144 hpf after an 

exposure of DCA in a concentration range between 8 and 32 mM. However, (Weber et al. 2004) did 

not found any embryotoxic effect up to a concentration of DCA of about 124 mM in Xenopus laevis. 

DCA have been shown to produce cardiovascular defects when administered to pregnant dams at 

high dose levels (Epstein et al. 1992; Johnson et al. 1998).  

 

In our study, TBA exposure caused curvatures of the spinal column, swelling of the pericardia and 

small eyes (Figure 2B, Table 4) with an EC20 of 4.4 mM (1,300 mg/L, Table 3). The current data are in 

agreement with results from Hunter III et al. (1996) that reported that brominated acetic acids are 

potentially more toxic than chlorinated species to developing embryo. Developmental toxicity studies 

with frog (Bantle et al. 1999) reported a teratogenic index of about 3.86 after TBA treatment, a higher 
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value compared with our results with zebrafish embryos (TI= 2.2). In vivo, TBA exposure was found to 

not produce any adverse developmental effect (NTP, National Toxicology Program 1998a). HAAs 

have been shown to produce neural tubes defects, prosencephalic and pharyngeal arch hypoplasia, 

heart and eye defects in rat and mice whole embryo culture (Hunter III et al. 1996; Andrews et al. 

2004), but at a lower range concentration (0.05-2 mM) compared to zebrafish (10-30 mM).  

 

BCA exposure did not produce any adverse developmental effects at the highest concentration tested 

(30 mM, Table 3). In BCA-exposed tadpoles, some gut abnormalities and decreased growth were 

observed only at higher concentrations (57.7 mM and 46 mM, respectively)(Brennan et al. 2005). 

BCA was found to not produce any adverse developmental effect in vivo in mammals (NTP, National 

Toxicology Program 1998b). In our study, TCA exposure did not caused developmental effects (Table 

3). In vivo, administered TCA to pregnant dams at high dose levels has been shown to produce 

cardiovascular defects and low weight (Smith et al. 1989; Johnson et al. 1998). Zebrafish embryo 

exposure to DBA only produced a decrease in tail length (Table 3). DBA was found to not produce 

any adverse developmental effect in vivo in mammals (Christian et al. 2001b).  

 

Exposure of zebrafish embryos to sodium bromate 

Sodium bromate showed embryotoxic effects on zebrafish only at very high concentration (LC50= 65.4 

mM, Table 3), probably by an irrelevant unespecific effect. Small eyes and pericardial oedema were 

the predominant sodium bromate-induced malformations in zebrafish embryos (Figure 2B and Table 

4). As shown in table 3, the EC20 value after exposure to sodium bromate was 51.7 mM, The 96-h 

LC50 (8.32 mM) reported for frog embryos after sodium bromate treatment resulted to be about 8 

times lower than the LC50 reported for zebrafish embryos in this study (65.4 mM). Studies in mammals 

have been shown that sodium bromate did not cause any adverse developmental effect (Wolf & 

Kaizer 1996).  

 

Genotoxicity of water disinfection by-products 

DNA-damage caused by water disinfection by-products was investigated using the comet assay. 

Genotoxicity could represent a potential mechanism leading to developmental disorders and embryo 

mortality, and also it has been associated with carcinogenic effects provoked by DBPs. The four 
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THMs, the TBA and sodium bromate were selected for the comet assays as they exhibit embryo 

toxicity in zebrafish. The test concentration used was the EC50 values from teratogenic effects. 

Chloroform (0.85 mM) and CDBM (0.16 mM) produced a significant DNA damage compared to 

control solvent group (Figure 4B). If compared to the DNA damage produced by the positive control 

(Figure 4A), disinfection by-products displayed a weak positive response. Exposure to the positive 

control (methyl methanesulfonate –MMS-) produced a concentration-dependent increase in the mean 

percentage of DNA in the tail (r=0.89, p<0.01; Figure 4A) and ranged between 4 and 37 %. The 

highest tested concentration of MMS (25 mg/L) produced less than 10% of embryo mortality, however 

all embryos showed developmental effects (data not shown). Many in vitro techniques have been 

used to investigate the mutagenic and genotoxic properties of THMs and HAAs (Richardson et al. 

2007). These studies have shown that THMs are weak inducers of DNA damage (Landi et al. 2003; 

Zhang et al. 2012) and that glutathione S-tranferase-theta (GSTT1-1) activity mediated transformation 

of brominated THMs to mutagenic intermediates (Pegram et al. 1997). Although, it has not been 

found yet the homolog GSTT1-1 gene for zebrafish, embryos possess a lower GST activity that could 

play a role not only in the weak mutagenicity observed but also in the low teratogenicity observed. 

HAAs caused DNA breaks in Chinese hamster ovary (CHO) cells (Plewa et al. 2010) and in human 

derived hepatoma cell line (Zhang et al. 2012). In our study, the strongest effect was found in sodium 

bromate treated embryos with a median damage of 8 % of DNA in the tail (Figure 4C). It has been 

reported that bromate induced DNA damage (SCGE assay) in mammalian cells through oxidative 

damage (Priestley et al. 2010).  

 

Exposure to DBPs in humans has been quantitatively assessed by measuring the concentration of 

DBPs and its metabolites in blood, urine and exhaled breath after the oral intake of chlorinated water 

and after the dermal or inhalatory exposure during shower and bath. The reported blood levels in 

exposed humans are in the pg/mL range, with the highest levels of about 300 pg/ml for chloroform 

after a shower with a tap water surpassing the current standards (Nieuwenhuijsen et al. 2000; 

Nuckols et al. 2005). Transplacental crossing of some DBPs in blood at concentrations equal to or 

greater than in maternal blood has been demonstrated in rodents and humans (Dowty et al. 1976; 

Danielsson et al. 1986; Christian et al. 2001a). In this study, effect concentrations of a 20% were 

between 0.11-0.7mM (20-100µg/mL) after DBPs exposure in zebrafish, several orders of magnitude 
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above the levels that human embryos would be exposed through their mother blood. It should be 

noted that it has yet not been demonstrated that plasma concentrations in mammals relate to toxicity 

effect concentrations similar as exposure concentrations to fish embryo test.  

 

One of the alleged weaknesses of the zebrafish embryo as a model for teratogenicity in mammals is 

the difference in metabolic activity towards exogenous substances. This is especially relevant in the 

case of xenobiotics whose toxicity is mediated by their metabolites. It is well known that some of the 

toxic effects of halogenated short-chain hydrocarbons are mediated by intermediate electrophilic 

metabolites. Zebrafish have a total of 94 CYP genes, distributed among 18 gene families, most of 

which are direct orthologs of human CYPs. Most of these CYPs are expressed in embryos during 

various time courses along the first 48 hours after fertilization. Indeed, some maternally-derived CYPs 

RNA transcripts are present in the unfertilized egg (Goldstone et al. 2010). Jones et al. (2010) have 

further demonstrated the expression of several xenobiotic metabolizing genes similar to human 

(CYP1A, CYP2B6, CYP3A5, UGT1A1) and their functional capacity metabolizing some model 

compounds during the early development. Therefore, the zebrafish embryo is endowed with a wide 

spectrum metabolic capacity, but the capability of metabolic transformation in comparison to 

mammalian models is still not fully understood. (Hill et al. 2012). To our knowledge, there are no data 

about the capacity of zebrafish embryo to metabolize THMs or HAAs. However, there is evidence of 

the capacity to bioactivate THMs by other fish species (Räbergh & Lipsky 1997; Vega-López et al. 

2012). 

 

Conclusions 

Effect concentrations in zebrafish embryos support previous observation of a weak teratogenic and 

genotoxic potential of DBPs.The proximity of effect concentration of lethality and malformations 

suggest that probably the teratogenic effects are related to unspecific embryo toxicity. The effects are 

observed only at concentration levels well above those that can be attained in the foetal blood in 

humans exposed to chlorinated water, providing further evidence for only a weak teratogenic potential 

of DBP products.. However, more studies are needed to explore the involvement of metabolism in the 

potential DBP toxicity and to extent our knowledge about exposure to mixtures and the possible 

developmental effects and genotoxicity. Finally, our study indicates that zebrafish embryos are as 
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sensitive as other test systems and can be used as a potential screening and prioritization tool to 

assess large number of disinfection by-products.  

 

Tables 

Table 1. DBP regulations and guideline values (highest concentration allowed in drinking water). 

Table 2. Lethal and teratogenic effects evaluated in zebrafish embryos at 76 hpf. 

Table 3. The LC50, EC50 values are represented with their 95% confidence intervals (CI) and 

teratogenic index (TI) of all water disinfection by-products tested. Minimum concentration that inhibits 

growth (MCIG) and EC20 effect concentrations at 76 hpf are also represented for all substances.  –, 

indicates that could not be calculated. Abbreviations used:  CDBM (chlorodibromomethane),BDCM 

(bromodichloromethane), DCA (dichloroacetic acid), TCA (trichloroacetic acid), DBA (dibromoacetic 

acid), TBA (tribromoacetic acid) and BCA (bromochloroacetic acid).   

 

Table 4. Frequency of endpoints observed at 76hpf in zebrafish embryos exposed to DBPs. Σt 

represents the sum of embryos in all test concentrations showing teratogenic effects for each specific 

endpoint. The percentatge of embryos showing each endpoint was calculated respect the total 

number of embryos with teratogenic effects found in all test concentrations. Bold values indicate that 

the endpoint followed a concentration-response relationship and was observed in ≥50% of all 

embryos showing malformations. Abbreviations used:  CDBM (chlorodibromomethane), BDCM 

(bromodichloromethane), TBA (tribromoacetic acid), DCA (dichloroacetic acid). 

 

Figures 

Figure 1. (A) Concentration-response curves for mortality (o, full line) and teratogenesis (x, dotted 

line) for chloroform, bromoform, chlorodibromomethane and bromodichloromethane exposure from 4-

76hpf. % Effect (Mean± S.D.) is shown versus the logarithm of concentration tested. (B) 

Representative images of fish embryos exposed to chloroform, bromoform, chlorodibromomethane 

and bromodichloromethane at 76hpf. 

 

Figure 2. (A) Concentration-response curves for mortality (o, full line) and teratogenesis (x, dotted 

line) for tribromoacetic acid, dichloroacetic acid and sodium bromate exposure from 4-76hpf. % Effect 
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(Mean ± S.D.)  is shown versus the logarithm of concentration tested. (B) Representative images of 

fish embryos exposed to dichloroacetic acid, tribromoacetic acid and sodium bromate at 76hpf. 

 

Figure 3. Percentage of embryos (Mean ± S.E.M) displaying reduced motility after THMs exposure 

and hatching success of these embryos at 76 hpf. Motility of the embryos was checked after 

dechorionation if the embryo had not hatched at 76 hpf. * Significant different from solvent control 

group (0), p<0.05. 

 

Figure 4. (A) Genotoxicity following exposure of whole embryos to increasing concentrations of 

methyl methanesulfonate (MMS,from 4 to 76 hpf). DNA damage expressed as % of DNA in tail in 

primary cells derived from 76-h-old zebrafish embryos (B) Genotoxicity following exposure to the EC50 

of chloroform (0.85 mM), bromoform (0.2 mM), bromodichloromethane (BDCM, 0.26 mM) and 

chlorodibromomethane (0.16 mM). (C) Genotoxicity following exposure to the EC50 of tribromoacetic 

acid (TBA, 5.7 mM) and sodium bromate (49.2 mM). For each treatment and control groups, 100 cells 

were investigated, while 2 X 50 cells on two replicate slides were tested for treatments plots. 

*Significant different from control group (Dunnett’s test with p<0.05).  
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Table 1. DBP regulations and guideline values (highest concentration allowed in drinking water). 
 
U.S. EPA, Safe Drinking Water Act (SDWA)

a
 

DBP MCL (mg/L) 

Total THMs 0.08 
Haloacetic acids (HAA5) 0.06 
Bromate 0.01 
  
World Health Organization (WHO) guidelines

b 

DBP Guideline value (mg/L) 

Chloroform 0.2 
Bromoform 0.1 
Chlorodibromomethane 0.1 
Bromodichloromethane 0.06 
Dichloroacetic acid 0.05

c 

Trichloroacetic acid 0.2 
Bromate 0.01

c 

  
European Union Standards 

DBP Standard value (mg/L) 

Total THMs 0.1 
Bromate 0.01

c 

 

a 
The total THMs represent the sum of the concentrations of four trihalomethanes: chloroform, bromoform, 

bromodichloromethane, and chlorodibromomethane. The haloacetic acids represent the sum of monochloro-, 
dichloro-, trichloro-, monobromo-, and dibromoacetic acid (U.S.EPA 2006). 
 
MCL: maximum contaminant levels.  

b
 WHO guidelines on THMs state that for authorities wishing to establish a total THM standard to account for 

additive toxicity the sum of the ratio of the concentration of each THM to its respective guideline value should 
not exceed unity. 
c 
Provisional guideline value 

d 
Where possible, without compromising disinfection, EU member states should strive for a lower value. This 

value must be met, at the latest, 10 calendar years after the issue of Directive (EU Directive 98/83/EC 1998); 
within 5 years of the Directive, a value of 0.025 mg/L must be met. 
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Table 2. Lethal and teratogenic effects evaluated in zebrafish embryos at 76 hpf. 
Type Physiological/dysmorphogenic effect Description 

Lethal Coagulated egg Denaturated fish egg. No clear structures of the embryo are 

observable anymore. 

 Non-detachment of the tail from the yolk From 16 hpf the tail begins to detach from the yolk and to 

extend.  

 Non-development of somites The somites are structures of the early trunk or tail segments 

that will eventually form the skeletal muscle, skin and cartilage.  

 Lack of heartbeat  

Teratogenic Malformation of the chorda No tail, malformation of chorda or spinal cord. 

 Malformation of the eyes Abnormal pigmentation, small eyes or asymmetric eyes. 

 Malformation of the ear Formation of no, one or more than two otoliths per sacculus. 

Absence or abnormally shaped vesicles. 

 Malformation of the head Brain necrosis, hemorrhage or small head. 

 Malformation of the heart Pericardial oedema, big heart, hemorrhage or abnormal 

chambers. 

 Malformation of the tail Hemorrhage, tail necrosis, bent tail, bent or twisted tip tail. 

 Abnormal pigmentation  
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Table 3. The LC50, EC50 values are represented with their 95% confidence intervals (CI) and 
teratogenic index (TI) of all water disinfection by-products tested. Minimum concentration that 
inhibits growth (MCIG) and EC20 effect concentrations at 76 hpf are also represented for all 
substances.  

 –, indicates that could not be calculated. Abbreviations used:  CDBM (chlorodibromomethane),BDCM 
(bromodichloromethane), DCA (dichloroacetic acid), TCA (trichloroacetic acid), DBA (dibromoacetic acid), 
TBA (tribromoacetic acid) and BCA (bromochloroacetic acid).   
 

Substance CAS-No 
LC50 mM 
(95% CI) 

EC50 mM 
(95% CI) 

TI 
EC20 mM 

(95% CI) 
MCIG 
mM 

Chloroform 67-66-3 2.1 (1.75 – 2.31) 0.85 (0.75 – 0.97) 2.5 0.7 (0.6 – 0.8) 1.26 

Bromoform  75-25-2 0.52 (0.45 – 0.60) 0.20 (0.17 – 0.23) 2.6 0.15 (0.12 – 0.17) 0.1 

BDCM 75-27-4 0.93 (0.80 – 1.06) 0.26 (0.20 – 0.32) 3.6 0.17 (0.10 – 0.22) 0.3 

CDBM 124-48-1 0.45 (0.38 – 0.54) 0.16 (0.13 – 0.19) 2.8 0.11 (0.08 – 0.13)  0.06 

DCA 79-43-6 > 46.5 28.9 (24.5 – 33.5) - 22.1 (16.1 – 25.8) 46.5 

TCA 76-03-9 > 42.8 > 42.8 - > 42.8 > 42.8 

DBA 631-64-1 > 20 > 20 - > 20 10 

TBA 75-96-7 12.7 (11.6 – 13.9) 5.7 (4.8 – 6.5) 2.2 4.4 (3.2 – 5.2) 2.6 

BCA 5589-96-8 > 30 > 30 - > 30 > 30 

Sodium Bromate 7789-38-0 65.4 (57.6 – 73.0) 49.2 (42.0 – 56.6) 1.3 40.7 (25.3 – 46.0) 68.3 
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Table 4. Frequency of endpoints observed at 76hpf in zebrafish embryos exposed to DBPs. Σt 
represents the sum of embryos in all test concentrations showing teratogenic effects for each 
specific endpoint. The percentage of embryos showing each endpoint was calculated respect the 
total number of embryos with teratogenic effects found in all test concentrations. Bold values 
indicate that the endpoint followed a concentration-response relationship and was observed in 
≥50% of all embryos showing malformations.  

 
Abbreviations used:  CDBM (chlorodibromomethane),BDCM (bromodichloromethane), TBA (tribromoacetic 
acid), DCA (dichloroacetic acid). 

 
 

 

 

 

 

 

 

 

 

 
  
 
 

 

 

 

 

 

 

 

 

 

 

 Chloroform Bromoform CDBM BDCM TBA DCA NaBr 

Malformation Σt (%) Σt (%) Σt (%) Σt (%) Σt (%) Σt (%) Σt (%) 

Chorda 9 24.3 0 0.0 16 28.1 25 36.3 18 27.7 0 0.0 3 12.0 

Ear 2 5.4 9 23.7 0 0.0 9 13.0 25 38.5 0 0.0 1 4.0 

Head 4 10.8 14 36.8 19 33.3 9 13.0 19 29.2 0 0.0 1 4.0 

Eyes 29 78.4 25 65.8 30 52.6 23 33.3 44 67.7 8 22.9 20 80.0 

Heart 28 75.7 23 60.5 30 52.6 39 56.5 40 61.5 31 88.6 24 96.0 

Tail 29 78.4 27 71.0 31 54.4 37 53.6 48 73.8 12 34.3 10 40.0 
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