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ABSTRACT 

The main objective of the present project is to critically review the current state of 

knowledge on a group of mitochondrial disorders known as coenzyme Q10 (CoQ) 

deficiencies. It has been developed thanks to a deep bibliographic research, using an 

on-line biomedical database in order to search and select the most recent and relevant 

articles in this field of study. 

The project highlights the central role of CoQ in the mitochondrial respiratory chain, but 

also its involvement in several aspects of cellular metabolism. Given its essential 

functions, this study also describes how a deficit in this molecule leads to a number of 

disorders with an unexplained heterogeneous clinical spectrum. In this regard, CoQ 

deficiencies can occur due to defects of CoQ biosynthesis (primary deficiencies) or due 

to other causes (secondary forms). In addition, this piece of work emphasizes how 

biochemical measurements in the patient’s tissues or biological fluids and genetic 

testing play a crucial role in the diagnostic pathway. A reviewed and updated protocol 

for the biochemical determination of CoQ status in different specimens is proposed. 

Finally, this project also states that early diagnosis and initiation of specific treatment is 

of paramount importance, especially as some CoQ-deficient patients respond well to 

CoQ supplementation. 

In conclusion, the study suggests that, despite the advances in the last decades, 

further elucidation of the biochemistry and genetics of these complex diseases is 

needed to set the stage for improving the care of patients and the development of 

novel treatments.  

 

 

 

 

 

 

 

 

 

 



RESUM 

Deficiències de coenzim Q10: 

un grup de malalties mitocondrials potencialment tractables 

El principal objectiu d’aquest treball final de grau és revisar d’una forma crítica el 

coneixement actual sobre un grup de malalties mitocondrials conegut com a 

deficiències de coenzim Q10 (CoQ). Ha estat redactat gràcies a una minuciosa recerca 

bibliogràfica, emprant una base de dades biomèdica on-line per tal de cercar i 

seleccionar els articles més recents i rellevants en aquest camp. 

Aquest projecte posa de manifest el rol fonamental del CoQ en la cadena respiratòria 

mitocondrial, però també la seva participació en un gran nombre de processos del 

metabolisme cel·lular. Donada la rellevància de les seves funcions, aquest estudi 

també descriu com el dèficit d’aquesta molècula condueix a un grup de malalties amb 

una espectre clínic molt heterogeni. En aquest sentit, les deficiències de CoQ poden 

ser degudes a defectes en la biosíntesi de CoQ (deficiències primàries) o a altres 

causes (formes secundàries). A més, el treball remarca el paper crucial de les 

determinacions bioquímiques de CoQ en teixits i fluids biològics, així com el de les 

proves genètiques, en el procés diagnòstic. També es proposa un protocol actualitzat 

per a la determinació bioquímica de CoQ en diferents espècimens biològics. 

Finalment, s’assenyala que el diagnòstic i l’inici del tractament primerencs són de vital 

importància donat que alguns pacients responen bé a la suplementació amb CoQ. 

Com a conclusió, el projecte suggereix que, malgrat els avenços de les últimes 

dècades, és necessari aprofundir en l’estudi dels aspectes bioquímics i genètics 

d’aquestes malalties per tal de poder millorar la cura dels pacients i desenvolupar 

noves teràpies. 

 

 

 

 

 

 

 

 



ABBREVIATIONS 

3,4-dHB: 3,4-dihydroxybenzoate 

4-HB: 4-hydroxybenzoate 

ATP: adenosine triphosphate 

BMCs: blood mononuclear cells 

CNS: central nervous system 

CoA: coenzyme A 

CoQ: coenzyme Q10 

CoQ9: coenzyme Q9 

CPEO: chronic progressive external ophthalmoplegia 

FGF-21: fibroblast growth factor-21 

FPP: farnesyl-pyrophosphate 

GDF-15: growth differentiation factor-15 

HCM: hypertrophic cardiomyopathy 

HMG-CoA: 3-hydroxy-3-methylglutaryl coenzyme A 

HPLC: high-pressure liquid chromatography 

HPLC-ED: HPLC coupled with electrochemical detection 

ID: intellectual disability 

LC-MS/MS: liquid chromatography-tandem mass spectrometry 

LHON: Leber hereditary optic neuropathy 

MADD: multiple acyl-coenzyme A dehydrogenase deficiency 

MD: mitochondrial diseases 

MELAS: mitochondrial myopathy, encephalopathy, lactic acidosis with stroke-like 

episodes 

MERRF: myoclonic epilepsy with ragged-red fibers 

MNGIE: mitochondrial neurogastrointestinal involvement and encephalopathy 

MPS: mucopolysaccharidosis 

MRC: mitochondrial respiratory chain 



mtDNA: mitochondrial DNA 

NARP: neuropathy, ataxia and retinitis pigmentosa 

nDNA: nuclear DNA 

NGS: next-generation sequencing 

OXPHOS: oxidative phosphorylation 

PKU: phenylketonuria 

PP: pyrophosphate 

ROS: reactive oxygen species 

SNHL: sensorineural hearing loss 

SRNS: steroid-resistant nephrotic syndrome 

VA: vanillic acid 

WES: whole-exome sequencing 

 

 

 

 

 

 

 

 

 

 

 

 

 



INTEGRATION OF THE DIFFERENT AREAS 

Coenzyme Q10 (CoQ) deficiency is a biochemical abnormality associated with markedly 

different clinical presentations. Although the first patients with very low levels of CoQ 

were described in 1989, the genetic bases of these discoveries remained elusive until 

2006. The present project reviews the current state of knowledge on this group of 

mitochondrial disorders known as CoQ deficiencies. It is a multidisciplinary study that 

can be related to three different areas: Biochemistry and Molecular Biology, Physiology 

and Pathophysiology, and Pharmacology and Therapeutics. 

First of all, this project has been developed considering the pathophysiology and the 

clinical manifestations of CoQ deficiencies, with a special focus on the biochemical and 

molecular mechanisms that play an essential role in the pathogenesis of these 

diseases. Moreover, it also points out the importance of laboratory analysis in the 

diagnostic strategy of these disorders, giving emphasis to the fact that biochemical and 

molecular testing are key elements in this process. Finally, taking into account that 

some patients respond, sometimes dramatically, to CoQ supplementation and that 

ubiquinol, the reduced form of CoQ, was recently approved as an orphan drug for 

primary CoQ deficiencies, this piece of work also reviews the therapeutic use of CoQ in 

this group of disorders. 

The effective integration of the three areas allows the reader of the present study to 

realise about the vital functions that CoQ plays in human health, from its essential role 

at a molecular level to the potential therapeutic benefits of its supplementation. 
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1. INTRODUCTION 

Mitochondrial diseases (MD) are a group of genetic disorders that are characterized by 

dysfunctional mitochondria, with a minimum prevalence of greater than 1 in 5.000 

adults (1,2). The concept of MD was introduced in 1962, when a group of investigators 

in Stockholm described a woman with severe hypermetabolism unrelated to thyroid 

dysfunction (3). This exemplary piece of translational investigation was based on three 

sets of data: a) morphological evidence of abnormal mitochondria in muscle, b) 

biochemical documentation of ‘loose coupling’ of oxidation and phosphorylation in 

isolated muscle mitochondria, and c) excellent correlation between biochemical 

abnormalities and clinical features. This was both the first description of a MD and the 

first to characterize disease of a subcellular organelle; therefore, this paper introduced 

not only the concept of mitochondrial medicine but also that of ‘organellar medicine’ 

(4,5). 

In the pre-molecular era (from 1962 to 1988), MD were defined on the basis of clinical 

examination, muscle biopsy and biochemical criteria. However, biochemical studies 

were often inconclusive due to the difficulty of isolating functionally intact mitochondria 

from human muscle biopsies and to the relatively insensitivity of polarography (the 

predominant biochemical technique then employed) in detecting partial metabolic 

blocks. Yet, the application of specific biochemical assays led to the description of 

increasing numbers of metabolic defects (4). 

The ‘big divide’ in the history of MD, and the beginning of the molecular age, was the 

description in 1988 of the first pathogenic mutations in mitochondrial DNA (mtDNA) (4). 

In the next years, new pathogenic mutations of mtDNA were reported at the rate of 

about eight per year (6). In the mid-1990s scientists started directing their attention to 

the nuclear genome, which, after all, encodes about 99% of mitochondrial proteins and 

about 86% of the respiratory chain subunits. Not too surprisingly, the first ‘direct hit’ 

(that is, the first mutations in a gene encoding a respiratory chain subunit) affected 

complex II, which is entirely encoded by nuclear DNA. The year was 1995, and the 

patients two siblings with Leigh syndrome who were homozygous for a mutation in the 

flavoprotein subunit (7,8). 

A peculiar kind of ‘direct hit’ can be considered mutations in genes involved in the 

biosynthesis of coenzyme Q10 (or CoQ, an essential electron carrier in the 

mitochondrial respiratory chain [MRC]), as they can cause primary CoQ deficiencies, 

which often result in a severe block of the respiratory chain. The concept that primary 

CoQ deficiencies were due to mutations in biosynthetic genes was validated in 2006 
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with the discovery of mutations in PDSS2 and COQ2, and confirmed in 2007 with the 

report of mutations in PDSS1 and COQ2 (4,9–11). These newly recognized disorders 

are important to consider in the differential diagnosis of infantile encephalomyopathies 

with nephrosis and in ataxia syndromes because they respond, sometimes 

dramatically, to oral supplementation of CoQ (8). 

In the last 20 years new MD pathogenic mechanisms have been revealed through the 

identification of numerous nuclear gene mutations. These mitochondrial alterations 

include defects of mitochondrial protein importation, maintenance of the inner 

mitochondrial membrane lipid milieu, and even organellar dynamics such as 

mitochondrial fission, fusion and movement (5). 

Although this brief historical review has brought us to the present, it is far from 

complete. The pathogeneses of known mutations remain largely unexplained, at the 

same time that new pathogenic mechanisms are emerging (6). In addition, currently 

there is no effective and specific treatment for vast majority of patients with MD, with 

few exceptions, such as primary CoQ deficiencies. For these reasons, further 

elucidation of the biochemistry and genetics of these complex diseases is still needed 

(2,5). 
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2. OBJECTIVES 

The main objectives of this project are: 

1) To briefly describe the pathophysiology and diagnosis of mitochondrial diseases. 

2) To review the state-of-the-art knowledge of a group of mitochondrial diseases known 

as coenzyme Q10 (CoQ) deficiencies, including a previous description of the biological 

functions of CoQ and its biosynthetic pathway. 

3) To study the current diagnostic issues of CoQ deficiency syndromes, especially from 

a biochemical and a molecular point of view. 

4) To provide an overview of the role of CoQ therapeutic supplementation in CoQ 

deficiencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

3. MATERIALS AND METHODS 

In order to learn how to cope with the development of this project, two training courses 

delivered by the Pharmacy and Food Science CRAI (Learning and Research 

Resources Centre) Library were attended. Thanks to the first one, not only the 

structure of an academic work such as this one was learned, but also how to access to 

a series of information resources (including Google Scholar and specialized databases 

like Web of Science, Scopus and PubMed), and how to develop and execute an 

information search strategy. In this regard, the use of Boolean operators and the 

usefulness of MeSH (Medical Subject Headings) terms when searching PubMed were 

taught. The second course was focused on citing and managing bibliographical 

references. On one hand, information and examples of how to cite different documents 

according to Vancouver rules were provided. On the other hand, detailed information 

about the use of Mendeley was given. This helpful tool is a reference and citation 

manager that can also be used to organize the search results and to discover the latest 

documents published in a specific field. 

Taking that in mind, this study has been developed thanks to a wide bibliographic 

research. The process consisted in identifying, reading, synthesizing and reporting the 

information from a diversity of sources, mainly journal articles and reviews. 

An on-line biomedical database named PubMed (12) was used, which includes 

citations for biomedical literature from the National Library of Medicine (NLM) database 

(MEDLINE) plus other life science journals and on-line books. The search strategy and 

selection criteria followed consisted in searching key terms (e.g. ‘mitochondrial 

diseases’, ‘coenzyme Q10 deficiency’, ‘coenzyme Q10 supplementation AND coenzyme 

Q10 deficiency’) for articles and reviews published in English in the last 10 years. 

However, other papers were also selected after identification from the references lists 

of relevant articles. 

Finally, bibliographical references were recorded following the NLM citation style, using 

the Mendeley reference manager (both web and desktop 1.19.4 versions). 
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4. RESULTS AND DISCUSSION 

4.1. Mitochondrial diseases: mechanisms and diagnosis 

Mitochondria are cellular organelles found in all nucleated human cells. They have a 

crucial function which consists in generating energy in the form of ATP (adenosine 

triphosphate) via oxidative phosphorylation (OXPHOS), using predominantly 

carbohydrates and fatty acids as fuel. The OXPHOS system is located in the inner 

membrane and it consists of five multimeric protein complexes (Figure 4.1.). The first 

four complexes (I-IV) form the respiratory chain, and complex V is an ATP synthase 

(2). OXPHOS is a complex process involving the transfer of electrons along the MRC 

through a series of oxidation and reduction reactions that ultimately results in the 

consumption of oxygen at complex IV. Essential to this electron transport are two 

electron carriers, CoQ and cytochrome c, which shuttle between the complexes. A 

consequence of this electron transport is the extrusion of protons into the 

intermembrane space at complexes I, III and IV. The proton gradient generated is then 

dissipated through complex V, resulting in the condensation of adenosine diphosphate 

and inorganic phosphate to form ATP (13).  

 

 

Figure 4.1. Schematic representation of mitochondrial respiratory chain and oxidative 

phosphorylation system. Adapted from Ref. (1). 

 

Likewise, mitochondria are unique in that they have their own DNA pool (mtDNA), 

distinct from that of nuclear DNA (nDNA). mtDNA is maternally inherited and it has 

independent evolutionary origins from nDNA that date back to the time when 
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mitochondria were separate organisms before forming a symbiotic relationship with 

eukaryotes (14). mtDNA is a molecule of double-stranded DNA that encodes thirteen 

structural peptide subunits of the OXPHOS system and twenty-four RNA molecules 

that are required for intra-mitochondrial protein synthesis. As opposed to nDNA, 

mtDNA has a circular structure and lacks an intron-exon structure. In addition, the 

mitochondrial genome is polyploidy, with multiple copies of mtDNA within each cell, 

and the total amount can vary depending on the cell type. This results in complex 

transmission of mutations and genotypic-phenotypic variation in the presentation of 

MD. In fact, many patients with a MD have a mixture of mutated and wild-type mtDNA, 

a situation known as heteroplasmy. This explains why disease does not occur in 

everyone with mtDNA mutations; in certain mutations, a threshold level of mutated 

mtDNA is required before function is compromised and clinical consequences become 

apparent. This threshold may vary between individuals, tissue types and specific 

mtDNA mutations (1,13). 

MD represent a clinically, biochemically and genetically heterogeneous group of 

diseases in which the process of ATP production is disrupted. As approximately 90% of 

ATP arises from mitochondria, cells with high-energy requirements such as neurons, 

skeletal and cardiac muscle are particularly vulnerable to this limited ATP supply and 

feature prominently in the various mitochondrial phenotypes (13,14). MD can be 

caused by mutations in either mtDNA or nuclear genes that directly or indirectly 

interfere with the MRC function. To date, mitochondrial proteomic analysis reveal that, 

in addition to the thirteen proteins encoded by the mitochondrial genome, around 1.500 

proteins are linked to various mitochondrial functions and so far almost 290 genes have 

been implicated in the development of human disease (2,15). On one hand, 

pathogenetic mutations in mtDNA can affect the structural subunits of the MRC or the 

mitochondrial protein synthesis machinery; in this sense, hundreds of different point 

mutations and large-scale mtDNA rearrangements have been shown to cause disease 

(1). On the other hand, the nDNA mutations may be structural (that is, coding for 

respiratory complexes) or non-structural, affecting mtDNA replication and repair, 

metabolism and mitochondrial integrity (13). 

The clinical manifestations of MD are very heterogeneous, and the presentation usually 

depends on generalised or tissue-specific decrease in ATP production. Some of these 

disorders affect a single organ (e.g. the eye in Leber hereditary optic neuropathy 

[LHON]), but many involve multiple organ systems. Virtually any organ may be 

impaired but, as previously described, the organs with the highest energy demands are 

most frequently involved, including brain, muscle, heart and liver. Besides, MD may 
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manifest at any age since birth until late-adulthood, with acute manifestation or as a 

chronic progressive disease (16). Paediatric onset disease is associated with more 

severe multi-systemic involvement, relentless progression and poorer prognosis (2). 

Many classic syndromes have been described over the last few decades (Table 4.1.). 

However, there is often considerable clinical variability and many affected individuals 

do not fit into one particular category (16). Moreover, many symptoms associated with 

MD (such as deafness, diabetes, myopathy, gastrointestinal symptoms and others) are 

also common on their own in the population (2).  

 

Clinical syndromes with neonatal and childhood onset 

 Alpers-Huttenlocher syndrome 

 Ataxia neuropathy spectrum 

 Childhood myocerebrohepatopathy spectrum 

 Congenital lactic acidosis 

 Leigh syndrome 

 3-methylglutaconic aciduria with deafness, encephalopathy and Leigh-

like syndrome 

 Myoclonic epilepsy myopathy sensory ataxia 

 Pearson syndrome 

 Sengers syndrome 

Clinical syndromes associated with adolescence and adulthood 

 Chronic progressive external ophthalmoplegia (CPEO) 

 Kearns-Sayre syndrome 

 Leber hereditary optic neuropathy (LHON) 

 Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like 

episodes (MELAS) syndrome 

 Mitochondrial neurogastrointestinal encephalopathy (MNGIE) syndrome 

 Myoclonic epilepsy with ragged-red fibres (MERRF) 

 Neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP) 

Table 4.1. Clinical syndromes of mitochondrial disorders. Adapted from Ref. (1). 

 

In general, many MD do not have pathognomonic features that point towards a 

particular genetic diagnosis (2). The diagnosis is further complicated by an often 

tenuous relationship between the genotype and the observed clinical phenotype. For 

example, some mtDNA mutations can give rise to several different clinical syndromes: 
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the m.3243A>G mutation (in MT-TL1) can cause CPEO, MELAS syndrome and 

maternally inherited diabetes and deafness. The reverse is also true in that specific 

syndromes can have a diverse genetic aetiology. For instance, Leigh syndrome can be 

caused by an array of mtDNA and nDNA mutations in several genes (1,17,18). 

For all these reasons mentioned above, diagnosis of MD is both challenging and 

demanding. It is necessary to take into account the particular family and personal 

history, the course of the disease, the comprehensive clinical examination, the results 

of specialized examinations (especially cardiology, visual fundus examination, brain 

imaging and electromyography), and laboratory testing of body fluids (lactate, pyruvate, 

aminoacids [alanine], organic acids, fibroblast growth factor-21 [FGF-21], growth 

differentiation factor-15 [GDF-15], etc.). Outcomes of these examinations help tailor 

targeted molecular genetic testing, but if it is not possible to target direct gene 

sequencing, next-generation sequencing (NGS) technologies can be used (16). 

Performing genetic testing might avoid the need for an invasive tissue biopsy, but some 

cases will still require it for biochemical confirmation of the consequences of mutations 

of unknown significance (1). 

Finally, in addition to the diagnostic challenge, clinicians also encounter difficulty in the 

management of MD due to lacking of effective disease-modifying therapy. Because 

they are clinically and genetically heterogeneous disorders, no single therapeutic 

approach can address the diverse biochemical pathogenic mechanisms. Several 

treatments have been used, mostly nutritional supplements such as CoQ, carnitine, 

creatine, dichloroacetate and ‘vitamin cocktails’ (2,19). The physiological basis of 

vitamin supplementation is to remove toxic metabolites or promote ATP production by 

using electron-transport chain mediators, bypassing the metabolic defect (13). Despite 

these treatments have been widely used, the available sparse evidence suggests that 

they have modest beneficial effects (1,20). 

 

4.2. CoQ deficiencies: a group of potentially treatable mitochondrial diseases 

4.2.1. CoQ structure and functions 

CoQ or ubiquinone is the only endogenously synthetized redox-active lipid that is found 

in virtually all eukaryotic cells, being especially abundant in mitochondria (21). It was 

isolated and characterized by Festenstein et al. in 1955, and it was established in 1957 

by Crane et al. that this compound functions as a member of the MRC. Wolf et al. 

determined its complex structure in 1958, which is composed of a redox-active 
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benzoquinone ring and a polyisoprenoid tail of different lengths: ten isoprene units in 

humans (CoQ10), nine in mice (CoQ9) and six in yeast (CoQ6) (Figure 4.2.) (22,23). 

 

 

Figure 4.2. Chemical structure of CoQ. Adapted from Ref. (21). 

 

CoQ is permanently going through oxidation-reduction cycles. It can be found in a 

completely reduced form (ubiquinol), after receiving two electrons, or in a completely 

oxidized form (ubiquinone). When this redox cycle occurs by a two-step transfer of one 

electron each, a semiquinone (semi-ubiquinone) intermediate is produced (21). 

 

 

Figure 4.3. Redox cycle of CoQ. Adapted from Ref. (21). 

 

The ability of this peculiar molecule to sustain continuous redox cycles makes it an 

excellent electron carrier in many crucial cellular pathways (24). In this sense, as 

previously mentioned, CoQ constitutes an essential element of the mitochondrial 
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electron-transport chain, shuttling electrons from complexes I and II to complex III at 

the inner mitochondrial membrane (Figure 4.1.) (25). 

CoQ is also a potent membrane antioxidant which protects lipids, proteins and nucleic 

acids from harmful oxidative damage. The high efficiency of CoQ against oxidative 

stress may be related to its ubiquitous distribution, its localization in the core of 

membranes and the availability of diverse dehydrogenases, able to efficiently 

regenerate the molecule (21,26). 

In addition to its central role in the MRC and its function as an antioxidant, CoQ is also 

involved in a number of aspects of cellular metabolism (22,23,27): 

 Participation in extra-mitochondrial electron transport 

 Regulation of mitochondrial permeability transition pores 

 Activation of mitochondrial uncoupling proteins 

 Cofactor of several mitochondrial dehydrogenases, including an enzyme involved in 

pyrimidine nucleotide biosynthesis 

 Regulation of the physicochemical properties of membranes 

 Modulation of the amount of β2-integrins on the surface of blood monocytes 

 Improvement of endothelial dysfunction 

 

4.2.2. CoQ biosynthesis 

All mammalian cells have the capacity to synthesize CoQ, but its availability also 

comes up from dietary sources, which influence plasmatic levels up to 25% of the total 

amount. However, the distribution of plasma CoQ through cells and organs seems 

limited. Thus, every mammalian cell produces CoQ, likely because this molecule is 

poorly absorbed into cells and tissues (28,29). 

CoQ is synthesized by a set of nuclear-encoded proteins through a pathway that is not 

completely understood. Most of the work on CoQ biosynthesis has been done in yeast, 

and at least thirteen yeast genes have been identified as players of this process. 

Information about the human pathway is very scarce, but orthologues of almost all of 

these genes have been already identified (21,30). In yeast, Coq proteins assemble in a 

multi-subunit complex which requires the presence of all its components for its stability. 

This complex seems to be present also in mammalian cells, however, the exact 

composition and organization of this complex are not completely clear yet (27). 

In mammals, the precursor of the benzoquinone ring is 4-hydroxybenzoate (4-HB), 

which is derived from tyrosine through an uncharacterized set of reactions. The 
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polyisoprenoid tail is synthesized through the mevalonate pathway (which is also 

common to cholesterol and dolichol biosynthesis), which comprises the reactions that 

starting from acetyl-coenzyme A (acetyl-CoA) produce farnesyl-pyrophosphate (FPP) 

(24). The latter, after conversion to decaprenyl-pyrophosphate (decaprenyl-PP), 

condenses with 4-HB to decaprenyl-4-hydroxybenzoate (decaprenyl-4-HB), which is 

then converted in a number of additional reaction steps to CoQ (Figure 4.4.). While the 

most of the early steps take place in the cytosol, the steps specific to CoQ 

biosynthesis, starting with the generation of the side chain from FPP, occur in the 

mitochondria (25). 

 

 

Figure 4.4. The mevalonate pathway produces isoprenoid precursor units, which are 

required for the biosynthesis of a variety of important molecules, including CoQ, 

cholesterol and dolichol. Adapted from Ref. (25). 

 

Whereas many aspects of CoQ biosynthesis have been unveiled, little is known about 

CoQ biosynthesis regulation, which may occur at the transcriptional, post-

transcriptional and post-translational level, or even during the assembly of the putative 

multi-subunit complex (21). In the same way, there is still little information about the 

CoQ degradation pathway. The tissue half-life of CoQ is remarkably long (in the order 

of several days), and its catabolites are found in urine and feces; they consist of the 
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ring and a short side chain, which are phosphorylated, but the enzymes that catalyse 

these processes are still unknown (23). 

 

4.2.3. CoQ deficiencies 

CoQ deficiency is a biochemical abnormality associated with markedly different clinical 

presentations, and it is not expected to occur in healthy individuals because 

endogenous production is usually sufficient. Given the essential functions of CoQ, a 

deficit in this molecule leads to a number of MD with an unexplained heterogeneous 

clinical spectrum that encompasses at least five major phenotypes: 1) an 

encephalomyopathy, characterized by recurrent myoglobinuria, 2) a severe infantile 

multisystem disorder with encephalopathy, 3) an ataxic syndrome with cerebellar 

atrophy, 4) an isolated myopathy, and 5) a steroid-resistant nephrotic syndrome 

(SRNS) (25,31,32). 

Although the first patients with very low levels of CoQ were described in 1989 by 

Ogasahara et al., the genetic bases of these discoveries remained elusive until 2006, 

when the first molecular causes of primary CoQ deficiency were described (9,10,33). 

The identification of the molecular defects allowed to propose a genetic classification, 

which distinguishes primary deficiencies, in which the reduction in CoQ content is due 

to mutations in genes controlling CoQ biosynthesis, and secondary forms, which are 

due to defects in genes unrelated to the CoQ biosynthetic pathway (23). The existence 

of secondary forms, which are probably much more frequent than primary defects, is 

important because it demonstrates how the CoQ biosynthetic pathway can be easily 

perturbed (24). It should be noted that the majority of patients with a biochemical 

diagnosis of CoQ deficiency lack a definite genetic diagnosis and, therefore, it is not 

possible to classify them into primary or secondary forms (27). 

 

4.2.3.1. Primary CoQ deficiencies 

Primary CoQ deficiencies are very rare conditions usually associated with highly 

variable multisystem manifestations and genetically caused by autosomal recessive 

mutations. It has been estimated a worldwide total of 123.789 individuals (1 in 50.000 

individuals) affected by these disorders, taking into account the frequency of the 

different known or predicted pathogenic variants in given populations (21,34). 

To date, nine genes encoding CoQ biosynthetic proteins (COQ2, COQ4, COQ6, 

COQ7, COQ8A, COQ8B, COQ9, PDSS1 and PDSS2) have been shown to have 
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pathogenic variants causing human CoQ deficiency with an autosomal recessive 

inheritance; the association of two other genes (ADCK2, COQ5) with CoQ deficiency 

must be confirmed yet. These mutations affect multiple organ systems in a highly 

variable way, including central nervous system (CNS), peripheral nervous system, 

kidney, skeletal muscle, heart and sensory system (Table 4.2.). While many signs and 

symptoms reported in CoQ-deficient patients are common to other MD, some features 

are typical of some forms of CoQ deficiency, as SRNS (21,24,35). 

Among the clinical manifestations of primary CoQ deficiencies, the most frequently 

encountered features are encephalomyopathy, nephropathy and cerebellar ataxia. 

These features have been interpreted as indicating that skeletal muscle, kidney and 

cerebellum have a relatively higher susceptibility to damage under conditions of CoQ 

deficiency, probably because of a relatively low safety margin of CoQ content 

(19,36,37). 

The clinical variability of CoQ deficiencies concerns the age of onset (from birth to 

seventh decade), the severity of the disease (from fatal multisystem disorder to milder, 

tissue specific manifestations), the pattern of tissue involvement (even for patients with 

mutations in the same gene), and the clinical response to CoQ supplementation (27). 

This clinical heterogeneity is best illustrated by the patients that all harbour a mutation 

in the COQ2 gene yet are seemingly phenotypically divergent. For example, the first 

patient to be reported with a homozygous missense mutation in COQ2 was noted to 

have nystagmus at age 2 months and developed a severe SRNS, progressive 

encephalomyopathy, hypotonia, seizures and other symptoms at 12-18 months, 

whereas his young sister developed nephrotic syndrome at 12 months without any 

clinical signs of neurological involvement (10,36). 

The considerable heterogeneity in the clinical expression of CoQ biosynthetic defects 

could be reflective of differences in the residual activities of the affected proteins and, 

thus, of variable degrees of CoQ shortage. Moreover, there remains the possibility of 

other functions of COQ proteins in addition to the biosynthesis of CoQ. Furthermore, it 

is reasonable to suspect that some CoQ biosynthetic intermediates and defective COQ 

proteins may have some biological activities, which could contribute to the variation in 

clinical manifestations of different molecular defects (36). 
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Gene 
Clinical manifestations 

Renal Heart Eye Hearing Neurologic Muscle 

COQ2 SRNS HCM Retinopathy SNHL Encephalopathy, seizures, other Myopathy 

COQ4  Heart failure, HCM   Encephalopathy, seizures, other Myopathy 

COQ6 SRNS   SNHL Encephalopathy, seizures  

COQ7     Encephalopathy, ID, peripheral neuropathy Muscle weakness 

COQ8A     
Encephalopathy, cerebellar ataxia, dystonia, 

spasticity, seizures 
Exercise intolerance 

COQ8B SRNS    ID  

COQ9 Tubulopathy HCM   Encephalopathy Myopathy 

PDSS1   Optic atrophy  Encephalopathy, peripheral neuropathy  

PDSS2 SRNS  Retinopathy SNHL Leigh syndrome, ataxia  

Table 4.2. Clinical manifestations of primary CoQ deficiencies. Abbreviations: SRNS, steroid-resistant nephrotic syndrome; HCM, hypertrophic 

cardiomyopathy; SNHL, sensorineural hearing loss; ID, intellectual disability. Adapted from Ref. (35). 

 

 

 



15 
 

4.2.3.2. Secondary CoQ deficiencies 

CoQ levels can also be reduced secondary to conditions not directly linked to CoQ 

biosynthesis but related to OXPHOS, other non-OXPHOS mitochondrial processes, or 

even to non-mitochondrial functions. Remarkably, secondary CoQ deficiencies are 

proved to be more common than primary deficiencies, probably because of the 

diversity of biological functions and metabolic pathways in which CoQ is involved in 

mitochondrial and non-mitochondrial membranes (21,27,38). 

The exact mechanisms by which these genetic defects cause CoQ deficiency remain 

unknown. Several hypotheses have been proposed, including interference with the 

signalling pathways regulating CoQ biosynthesis, alteration of the mitochondrial inner 

membrane milieu, reduction in the stability of the CoQ biosynthetic complex, increased 

rate of CoQ degradation due to oxidative damage caused by a non-functional 

respiratory chain, or a general impairment of mitochondrial function. Although none of 

these hypotheses have been yet demonstrated, a combination of different factors could 

be the most plausible explanation (21,27). 

Specific symptoms of secondary CoQ deficiencies depend on the underlying condition. 

However, most reports focus on skeletal muscle and the CNS. Muscular manifestations 

consist of weakness, hypotonia, exercise intolerance or myoglobinuria, while the CNS 

manifestations include ataxia and general CNS impairment. Although in these 

situations CoQ deficiency is a secondary phenomenon, it probable exacerbates the 

symptoms caused by the primary molecular defect, and these patients often benefit 

from oral CoQ supplementation, even though the response is not as dramatic as in 

those with the primary forms (27,39). 

CoQ deficiency is a common finding in patients with a MD, especially in mitochondrial 

myopathies (40). In this sense, a comprehensive analysis of muscle and fibroblasts 

samples from patients affected by a wide range of MD showed that secondary 

deficiencies were more frequent in mtDNA depletion syndromes than in any other MD 

(38,41). However, other diseases may display a CoQ reduction, including ataxia with 

oculomotor apraxia, cardiofaciocutaneous syndrome, multiple acyl-CoA 

dehydrogenase deficiency (MADD), methylmalonic aciduria, phenylketonuria (PKU) or 

mucopolysaccharidosis (MPS), among others (38,42). Moreover, secondary deficiency 

may also occur as a result of the use of certain pharmacotherapeutic agents such as 

statins, which are inhibitors of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A 

(HMG-CoA) reductase and, thus, interfere not only with the biosynthesis of cholesterol, 

but also of CoQ (Figure 4.4.) (27,32). 
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Lastly, it is important to keep in mind that a reduction of CoQ levels is not a consistent 

feature in these conditions mentioned above, which could suggest different 

susceptibility to the development of secondary deficiencies among different individuals. 

Currently, there is not any general explanation for this, although genetic factors, such 

as certain polymorphisms, have been proposed to be involved (21,27). 

 

4.2.3.3. Pathogenesis of CoQ deficiency 

The pathogenesis of CoQ deficiency is complex and not completely understood, but it 

seems to involve two main aspects: 1) reduced ATP production, and 2) altered 

oxidative stress levels. In this regard, it has been reported that short-tail ubiquinone 

analogues such as idebenone (which are good antioxidants but do not rescue 

mitochondrial respiration) are not effective in the treatment of CoQ deficiencies, 

indicating that both aspects (the bioenergetics defect and the increased ROS 

production) are relevant for the pathogenesis of the disorder. However, the wide 

spectrum of CoQ functions, the unclear roles of some COQ gene products and the 

considerable phenotypic variability suggest that other mechanisms also contribute to 

the pathogenesis of the disease (21,24). 

First of all, because CoQ is an essential component of the MRC, its deficiency 

(regardless of whether it is a primary or a secondary form) causes an impairment of the 

transport of electrons to complex III and, therefore, an inhibition of OXPHOS and ATP 

production in cells (Figure 4.1.), which in turn compromise cellular functions (27). 

Secondly, CoQ plays an essential role both in ROS generation and in antioxidant 

defence. On one hand, CoQ is the only endogenously synthesized lipophilic antioxidant 

preventing oxidative damage by directly sequestering free radicals or by regenerating 

other antioxidants (i.e. vitamin E and C). On the other hand, CoQ also acts as a pro-

oxidant mainly through the semiquinone intermediate formed during electron transport 

activity (Figure 4.3.), which is believed to be capable of donating its free electron to 

oxygen at complex III, leading to formation of superoxide anion, which is the precursor 

of other damaging oxygen species (36). In cultured cells, there appears to be an 

inverse relationship between the severity of CoQ deficiency and ROS production, such 

that even relatively mild defects do not significantly impair ATP production but cause a 

significant increase of ROS production and, therefore, may be harmful to the cell 

(21,27,43). 

Last but not least, there is evidence that other functions of CoQ are also involved in the 

pathogenesis of the disease. In this sense, a dysfunction of nucleotide metabolism 
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(CoQ is required for the biosynthesis of pyrimidines), increment of cellular apoptosis 

and mitophagy, and impairment of mitochondrial sulfide oxidation pathway have been 

reported in patients with CoQ deficiency (29). 

 

4.3. Diagnosis of CoQ deficiencies 

4.3.1. Clinical diagnosis 

Since the first established molecular case of CoQ deficiency was described, the 

progression in the molecular diagnosis has increased the phenotypical spectrum of the 

disease. As mentioned earlier, a huge clinical variability is observed, including the age 

of onset, the severity of the phenotype, the degree of CoQ reduction in tissues, or the 

clinical response to CoQ supplementation (29). 

Because of the heterogeneity of clinical presentations and also because there are no 

pathognomonic manifestations, it is difficult to define precisely the specific subgroups 

of patients who should be routinely screened for CoQ deficiency. Obvious candidates 

are patients with respiratory chain defects, those with beta-oxidation defects, those with 

unexplained ataxia with cerebellar involvement, and those with subacute exercise 

intolerance and muscle weakness (23). Besides, CoQ deficiency should also be 

suspected in patients with isolated SRNS or with SRNS and also presenting with 

deafness or other CNS manifestations (27). 

Clinical identification of potential cases is of paramount importance to initiate 

investigations that may provide early diagnosis and initiation of specific treatment, 

especially as some CoQ-deficient patients respond well to CoQ supplementation (44). 

 

4.3.2. Biochemical diagnosis 

Biochemical measurements play an important role in the diagnostic pathway by 

providing a fast and reliable demonstration of CoQ deficiency that allows early 

treatment initiation (44). However, it is important to note that biochemical analyses are 

not able to distinguish between primary and secondary CoQ deficiencies, as this 

classification requires a definite genetic diagnosis (45). 

The biochemical detection of CoQ deficiency can be done in the patient’s tissues or 

biological fluids (29,46). A common biochemical pattern has been reported in most 

cases, consisting of a variable degree of CoQ deficiency in tissues (muscle, 

fibroblasts), which in turn may cause reduced combined activities of the CoQ-

dependent MRC enzymes (complex I+III and complex II+III). A strong correlation exists 
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between these enzyme activities and the total CoQ content in muscle, although this 

pattern is not always observed; thus, direct quantitative measurement of CoQ levels is 

the most reliable test for diagnosis (29,44). 

 

4.3.2.1. Tissue assessment 

Essential to direct CoQ quantification is the choice of tissue for analysis. The particular 

CoQ distribution in distinct cellular fractions and the complexity of biological matrices 

make the biological sample choice and preparation a critical step in the CoQ 

quantification process. Additionally, since CoQ deficiency may be tissue-specific, 

invasive procedures are frequently needed in order to assess endogenous CoQ in the 

target organ, especially in muscle. Thus, it can be of value to analyse CoQ status in a 

full range of sample types, as a deficiency may remain undetected if the appropriate 

specimen is not chosen. Table 4.3. summarises the advantages and limitations of 

different biological specimens that can be used for CoQ analysis (44,47). 

Skeletal muscle has been used for diagnosis of CoQ deficiency since the first cases of 

this deficiency were reported. Routine morphological studies on muscle sections do not 

usually yield specific findings (i.e. the histological picture may be normal, whereas in 

severe cases there may be signs of mitochondrial proliferation), although a common 

finding in both primary and secondary forms is the presence of lipid accumulation 

(23,27). This tissue is considered the gold standard for investigating endogenous CoQ 

status, and it seems to correlate with the severity of the disease. In addition, it also 

allows for the measurement of MRC activities, the expression and assembly of 

mitochondrial complexes, and the analysis of other biomarkers of mitochondrial 

function, such as citrate synthase (which is a marker of mitochondrial number and 

volume) (29,38,44,48,49). 

However, skeletal muscle has some important limitations. First of all, the muscle biopsy 

is an invasive procedure (this is particularly evident for paediatric patients), and the 

amount of tissue required can be significant, especially if a complete biochemical 

characterization must be performed. Secondly, CoQ measurements are only performed 

in few selected laboratories and the muscle sample must be shipped in dry ice, 

therefore, the logistics may be complex and expensive (45). 
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Specimen Advantages Limitations 

Skeletal muscle 
- Good diagnostic yield for CoQ deficiency 

- Other mitochondrial studies can be performed 

- Invasive 

- No treatment monitoring 

Fibroblasts 

- Good diagnostic yield for some CoQ deficiencies 

- Functional studies can be performed 

- Unlimited biological material for further studies 

- False negative results in some cases 

Plasma 

- Minimally invasive 

- Identification of some secondary CoQ deficiencies 

- Treatment monitoring 

- Low diagnostic yield for CoQ deficiency in MD 

- CoQ values modified by external sources 

Blood cells 

- Minimally invasive 

- Correlation with CoQ tissue levels 

- Treatment monitoring 

- Fresh preparation 

- Time-consuming 

- Few reported experiences in MD 

Urine 

- Non-invasive 

- Easily detectable CoQ values 

- Treatment monitoring 

- Correlation with kidney CoQ status remains to be established 

Table 4.3. Advantages and limitations of different biological specimens that can be used for CoQ analysis. Adapted from Ref. (44). 
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In terms of practicability, the best tissue would be cultured skin fibroblasts, as obtaining 

them is much less invasive and potentially they may provide an almost unlimited 

amount of biological material (45). Besides, fibroblasts are of great value in functional 

studies such as uridine biosynthesis, ROS production and CoQ biosynthesis analysis, 

which are extremely useful tools for discriminating between primary and secondary 

deficiencies (38). For instance, in these cells it is possible to perform kinetic 

measurements of the CoQ biosynthetic rate (50) and to demonstrate correction of the 

CoQ deficiency by supplementation of the culture medium (51), while these analyses 

cannot be performed in muscle. Furthermore, finding appropriate controls and the 

logistics of shipping cultured fibroblasts are much simpler than for skeletal muscle 

samples (45). 

Yet, diagnostic pitfalls have been demonstrated when analysing fibroblasts CoQ 

concentrations, especially in the milder and late-onset forms of CoQ deficiency. While 

there is specificity in primary CoQ deficiency (meaning that almost all patients with 

primary CoQ deficiency in muscle also present with a defect in fibroblasts), when a 

secondary CoQ deficiency is suspected in the presence of a predominant muscular 

phenotype, a muscle biopsy should be preferred as the pathogenesis is often not clear 

and fibroblasts may not reproduce the situation in muscle (29). 

Regarding plasma samples, it has been reported that they are useful for the 

identification of diseases that include a deficient CoQ status apparently not related to a 

primary defect, such as PKU or MPS. Interestingly, a meta-analysis found new 

associations between serum CoQ levels and genes that are important for the 

development of neuronal disorders (29,52). Furthermore, plasma CoQ determination 

has a critical role in CoQ treatment monitoring, as CoQ therapy is commonly used for 

the treatment of MD and regular plasma CoQ quantification allows for informed 

adjustment of the oral CoQ dose, control of treatment compliance and confirmation of 

adequate CoQ intestinal absorption (44). 

Even so, CoQ status in plasma can be affected by both dietary intake and by the 

amount of plasma lipoproteins (which are the major carriers of CoQ in the circulation) 

(21). For this reason, it has been suggested that plasma CoQ evaluation is not reliable 

for the diagnosis of primary CoQ deficiencies, as partial correction of CoQ levels may 

occur due to dietary consumption of CoQ or increases in cholesterol availability. 

Indeed, in most patients with primary CoQ deficiency, plasma CoQ values are normal 

(42,44). 
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Lastly, other biological samples have been reported as useful for CoQ analysis, but the 

applications in clinical practice have not been applied to large series of patients (29). 

For example, the analysis of blood mononuclear cells (BMCs) and platelets requires 

just a few days (in contrast to the several weeks required for fibroblasts growth), and it 

may reflect changes in cellular status following supplementation (45,53). A second 

example might be biological samples collected by non-invasive procedures, as buccal 

mucosa cells or urine. The latter is especially interesting as it could add data about 

kidney CoQ status in patients with renal diseases in general, and those associated with 

mitochondrial dysfunction in particular (29,54,55). 

 

4.3.2.2. CoQ quantification 

The gold standard procedure for biochemical diagnosis of human CoQ deficiency is the 

analysis of CoQ concentration in muscle biopsy by high-pressure liquid 

chromatography (HPLC). Mainly two different detection systems are used (i.e. 

ultraviolet and electrochemical detectors), being both useful to measure CoQ content in 

human samples and to determine the total CoQ status. In particular, HPLC coupled 

with electrochemical detection (HPLC-ED) is an interesting approach because it is a 

more sensitive procedure than the spectrophotometric one (thus, it yields more 

accurate results and only minimal amounts of muscle homogenates are needed), and 

because it allows the detection of the two natural CoQ forms (ubiquinol and 

ubiquinone) (23,45). The simultaneous assessment of both reduced and oxidised forms 

of CoQ is probably more suitable for research purposes rather than for clinical 

diagnosis, as the determination of total tissue CoQ status is sufficiently accurate to 

detect human CoQ deficiencies (53). 

The reviewed and updated protocol used currently for the determination of CoQ status 

in different biological samples at the Inborn Errors of Metabolism Unit of Hospital Sant 

Joan de Déu is reported in Annex I. Typical HPLC-ED chromatograms are illustrated in 

Figure 4.5.  
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Figure 4.5. Typical CoQ chromatograms of skeletal muscle (A) and plasma (B) 

samples. CoQ9 was used as the internal standard. Adapted from Ref. (44). 

 

Recently, new procedures for CoQ determination have been developed based on liquid 

chromatography-tandem mass spectrometry (LC-MS/MS), allowing not only CoQ 

quantification but also an estimation of the CoQ biosynthetic rate in fibroblast cell 

cultures incubated with adequate CoQ precursors (44,50). 
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4.3.3. Molecular diagnosis 

Apart from demonstrating the biochemical deficiency, it is important to provide a 

molecular diagnosis to the patients by identifying the specific genetic defect, because 

this is essential for clinical care, enabling assignment of risk, genetic counselling and 

prognosis (45). The molecular diagnosis of CoQ deficiency is complicated by the fact 

that a large number of genes are involved in the CoQ biosynthetic pathway (which has 

yet to be fully elucidated, meaning that several genes remain to be identified), but also 

by the possibility that the cause of the deficit may result from pathogenic mutations in 

genes not directly related to CoQ biosynthesis (53). Additionally, CoQ deficiency 

syndromes are clinically heterogeneous, making it difficult to perform accurate 

genotype-phenotype correlations (29,56). Taking all together, investigating all the 

genes related to CoQ synthesis and other possible genes that can lead to similar 

phenotype by Sanger sequencing is not a realistic option and it is not cost-efficient as 

well (45). 

The incorporation of NGS technologies in hospital laboratories during the last decade 

has facilitated molecular diagnosis in terms of speed, efficiency and diagnostic yield 

(29). Either gene panels or exome sequencing based on NGS allow the analysis of 

very large numbers of genes for a fraction of the cost and of the time required by 

traditional Sanger sequencing gene-to-gene (45). Therefore, NGS has largely replaced 

the need to serially sequence individual COQ genes and other genes associated with 

secondary deficiencies and, thus, it has profoundly changed the diagnostic process 

(44). 

Since its appearance, NGS has helped to associate new genes to disease and to 

establish more defined disease frontiers when multiple genes might cause overlapping 

phenotypes. For example, Freyer et al. described a patient with multiple organ 

dysfunction who presented at birth with muscular hypotonia, respiratory distress and 

renal dysfunction, in which whole-exome sequencing (WES) analysis revealed a COQ7 

mutation that implied a severe reduction in CoQ levels in mitochondrial extracts from 

skeletal muscle (29,57). 

The other benefit of NGS application involves assessing secondary CoQ deficiencies, 

which are more common than primary deficiencies, meaning that in most cases with a 

biochemical CoQ deficiency the gene which will establish the cause of the disease is 

not involved in the CoQ biosynthetic pathway. In this sense, multiple studies have 

demonstrated the efficiency of NGS in MD (58). As not only mitochondrial or OXPHOS 

diseases are associated with CoQ deficiency, it is important to carefully evaluate the 
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clinical, biochemical and genetic profiles of each patient, as it is plausible that 

unexpected findings will arise during the genetic analysis (29,38). 

For all these reasons mentioned above, NGS methods are at present the best choice 

for the molecular diagnosis of CoQ deficiency syndromes and also for MD. As a 

diagnostic algorithm, targeted NGS gene panels (which are commonly used for SRNS, 

ataxias and MD) or clinical exome panels (which include 5.000-7.000 genes associated 

with mendelian diseases) can speed up and simplify the analysis, and that can be the 

first step prior to assessing other causal genes by WES (which is theoretically the best 

option, but its costs are higher and its coverage is inferior to targeted panels) (35,45). 

Finally, it is important to have a wide collection of functional studies and cell biology 

techniques for the demonstration of the pathogenicity of the new mutations found by 

NGS. This may include MRC activity studies, protein expression in tissues, assessment 

of the CoQ biosynthetic pathway by using labelled substrates, or functional studies in 

yeast (29).  

 

4.4. Treatment of CoQ deficiencies 

Primary CoQ deficiencies are unique among MD because an effective therapy is 

available for patients, which is the supplementation of CoQ. For this reason, ubiquinol 

was approved as an orphan drug for primary CoQ deficiencies in 2016 (46). Except for 

COQ8A and COQ9 patients, most individuals with primary forms show a good 

response to CoQ supplementation, which is usually evident after 10-20 days from 

starting treatment. Actually, oral CoQ supplementation at high doses (ranging from 5 to 

50 mg/kg/day) has been demonstrated to be effective for treatment of both primary and 

secondary CoQ deficiencies (21,35). 

It has been reported that CoQ supplementation can stop the progression of the 

encephalopathy and of renal manifestations in COQ2, COQ6 and ADCK4 patients. 

However, it is essential to institute treatment as early as possible since once damage in 

critical organs (such as the kidney or the CNS) is established, only minimal recovery is 

possible (23,24). For example, Montini et al. reported a progressive recovery of renal 

function and reduced level of proteinuria 20 days after the initiation of CoQ 

supplementation (Figure 4.6.) in a patient with a homozygous missense mutation in the 

COQ2 gene who had developed a nephrotic syndrome at 12 months of age (59). 
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Figure 4.6. Proteinuria in a COQ2 patient during a 50-month follow-up period. 

Reduction in proteinuria levels can be observed 20 days after the initiation of CoQ 

supplementation (indicated by the arrow). Adapted from Ref. (59). 

 

Patients with CoQ deficiency show variable clinical responses to CoQ supplementation, 

and many different aspects may influence this variability. On one hand, obvious factors 

are the therapeutic dosages, the pharmaceutical formulation employed, the severity of 

the underlying illness and the progression of tissue damage, but there are probably 

many other components (genetic, environmental, and even epigenetic) that modulate 

the response to treatment. In this sense, it is important to provide adequate doses of 

CoQ and the appropriate formulations since often patients receive insufficient doses of 

the compound (27,60). On the other hand, another likely contributing factor to the 

disparate responses to CoQ is its poor bioavailability. Less than 5% of oral CoQ 

reaches plasma in humans, and rodent studies have demonstrated low uptake of CoQ 

by tissues with little or no detectable uptake by brain except in aged rats; hence, the 

blood-brain barrier appears to impair CNS intake of CoQ. Furthermore, because CoQ 

is highly lipophilic, exogenously administered CoQ will be integrated into plasma and 

other cellular membranes before reaching the inner mitochondrial membrane. Taking 

into account both the poor bioavailability and the delayed mitochondrial uptake of CoQ, 

it is clear that early rather than late supplementation is likely to successfully treat CoQ 

deficiency (19,22). 

Different doses of CoQ have been employed for the treatment of primary CoQ 

deficiencies, being 30 mg/kg/day (divided into three doses) effective for both 

neuromuscular and renal symptoms in children; higher doses are well tolerated and no 

serious adverse effects have been reported (23). Split doses should be preferred to 
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single doses, as the efficiency of absorption decreases with the increase of individual 

dose of CoQ (27,32). 

Currently, different formulations of CoQ are available (both in the oxidized and reduced 

forms), including crystalline CoQ powder, oil emulsions, solubilizates of CoQ and 

nanoparticulate formulations (61). The bioavailability of the crystalline form of CoQ is 

low and inconsistent due to the poor solubility and high molecular weight of this form 

(32); thus, it is recommended that solubilized formulations of CoQ, rather than powder-

based CoQ, are used therapeutically as former have enhanced plasma response and, 

therefore, superior bioavailability (62). 

Interestingly, as previously pointed out, primary CoQ deficiencies should not be treated 

with short-tail ubiquinone analogues such as idebenone, because those are good 

antioxidants but cannot replace CoQ in the MRC under conditions of CoQ depletion 

(63). 

Finally, novel approaches have been proposed recently. In this regard, it has been 

reported that probucol, an antioxidant and hypolipidemic drug, has beneficial effects in 

Pdss2 mutant mice, but no data on other genetic defects or human subjects are 

available (24). Also, some 4-HB analogues have been proposed as potential bypass 

molecules with higher bioavailability than CoQ. These water-soluble precursors of the 

benzoquinone ring would restore endogenous CoQ production, bypassing enzymatic 

steps disrupted by mutations in COQ genes, but their efficacy may differ depending on 

the stability of the CoQ biosynthetic complex. This approach is particularly interesting 

as these compounds are not toxic, have good bioavailability and may cross the blood-

brain barrier. Some examples are vanillic acid (VA) and 3,4-dihydroxybenzoate (3,4-

dHB), which are able to bypass COQ6 mutations (21,24). 

 

 

Figure 4.7. Chemical structures of 4-HB and two analogues, VA and 3,4-dHB, which 

may be used to bypass enzymatic steps disrupted by mutations in COQ6. Adapted 

from Ref. (21). 
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5. CONCLUSIONS 

1) MD represent a clinically, biochemically and genetically heterogeneous group of 

diseases associated with dysfunction of the OXPHOS system. The multiple clinical 

phenotypes and the involvement of both the mitochondrial and nuclear genome 

make them particularly challenging for the clinicians. 

2) CoQ is an endogenously synthesized redox-active lipid that plays crucial biological 

functions, including an essential role in energy production. The knowledge on its 

biosynthetic pathway and its regulation is still limited. 

3) CoQ deficiencies have been associated with different clinical phenotypes and 

genetic conditions. They can occur due to defects of CoQ biosynthesis (primary 

deficiencies) or due to other causes (secondary forms), highlighting the importance 

of CoQ homeostasis in human health. 

4) Due to the increasing number of genetic conditions that are being associated with 

CoQ deficiency, it is necessary to apply NGS techniques as a first-line 

investigation. Yet, this is possible only after meticulous clinical and biochemical 

characterization of patients. 

5) Biochemical CoQ quantification by HPLC-ED allows for a rapid identification of CoQ 

deficiency. Moreover, biochemical analysis of CoQ status in a full range of 

biological specimen types can be of value as a deficiency may remain undetected if 

the appropriate sample is not chosen. 

6) The management of patients with MD remains a challenge, due to lacking of 

effective disease-modifying therapy. CoQ deficiencies are unique among MD 

because an effective therapy is available for patients, which is the supplementation 

of oral CoQ at high doses. However, early diagnosis of the CoQ-deficient status is 

essential to improve the clinical outcome of patients. 

7) In summary, despite the advances in the last decades, several interesting and 

challenging aspects of MD remain unclear. Further elucidation of the biochemistry 

and genetics of these complex diseases is needed to set the stage for improving 

the care of patients and the development of novel treatments. 
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ANNEX I 

The following is the current protocol used for the biochemical determination of CoQ 

status in different biological samples at the Inborn Errors of Metabolism Unit of Hospital 

Sant Joan de Déu. It was reviewed, updated and discussed with a clinical biochemist 

from the mentioned department before being reported here. Relevant articles were 

used for this purpose (48,55,64). 

 

1. Sample preparation 

a) Blood samples: EDTA blood samples must be drawn to obtain plasma, BMCs or 

platelets. 

• Plasma samples are obtained by centrifugation of blood at 1.500 x g for 10 minutes 

at 4 ºC. Resulting samples which are highly haemolysed, icteric or lipemic should 

not be used. Since CoQ is related to cholesterol, total plasma cholesterol values 

are analysed by the automated cholesterol oxidase procedure in an Architect 

autoanalyzer (Abbott Laboratories). 

• For BMCs’ isolation, the Histopaque-1077 procedure is used. Briefly, 3 mL of 

Histopaque-1077 solution are added to a 15-mL conical centrifuge tube, and 5 mL 

of blood are carefully layered onto it. After centrifugation at 500 x g for 30 minutes 

at room temperature (with no brake applied), BMCs form a distinct layer at the 

plasma-Histopaque interface. This layer is carefully aspirated with a Pasteur pipette 

and transferred into a clean conical centrifuge tube, and then the cells are washed 

two times with 5 mL of phosphate-buffered saline (PBS) solution. The resulting cell 

pellet is resuspended in 200 µL of PBS solution. 

• The first step in isolating platelets consists of preparing platelet-rich plasma (PRP) 

by centrifugation of blood at 60 x g for 15 minutes at room temperature (with no 

brake applied). Then, two thirds of the top layer are transferred into a new tube, 

without disturbing the buffy coat layer. Platelet counting is performed using an 

ADVIA 2120 haematology analyser (Siemens Healthineers). Finally, in order to 

pellet the platelets, the tube is centrifuged at 1.000 x g for 20 minutes at room 

temperature and the supernatant is discarded. 

• All the blood-derived samples must be stored at -80 ºC until CoQ analysis. 

 

b) Urine samples: first morning urine samples must be collected in standard urine 

containers. Ideally, a minimum volume of 30 mL of urine should be collected. Samples 

containing red or white blood cells or bacteria should not be used. After centrifugation 

at 1.500 x g for 10 minutes at 4 ºC, the urinary pellet is washed with 5 mL of 9 mg/mL 

saline solution, and then it is centrifuged in order to remove urinary proteins. The 



resulting urinary pellet is resuspended in 100 µL of saline solution per 10 mL of total 

urine, and it is stored frozen at -80 ºC until CoQ analysis. 

 

c) Muscle samples: skeletal muscle samples are weighed and homogenized with cold 

SETH buffer in an ice bath. The mixture is then vortexed, sonicated and transferred to 

a polypropylene tube, followed by vortexing for 2 minutes, sonication for 5 minutes and 

centrifugation at 1.500 x g for 10 minutes at 4 ºC. The supernatant must be frozen at -

80 ºC until CoQ analysis. 

 

d) Fibroblasts samples: cultured skin fibroblasts are homogenized and the resulting 

suspension must be frozen at -80 ºC until CoQ analysis. 

 

2. CoQ extraction 

50 µL of samples (100 µL in case of urine samples) are transferred into 10-mL Pyrex 

glass tubes. After internal standard solution in ethanol containing 2.01 µmol/L of CoQ9 

is prepared and added to the samples (20 µL), deproteinization is undertaken by 

addition of 500 µL of ethanol. Then, 2 mL of hexane are added to the tubes, and these 

are closed with screw caps and vortexed for 10 minutes. After centrifugation at 1.500 x 

g for 10 minutes, the hexane phase (top layer) is collected, filtered using a 0.22 µm 

filter, evaporated to dryness under a stream of nitrogen and redissolved in 200 µL of 

methanol/ethanol (60:40, v/v). Calibrators, controls and samples are prepared in the 

same way. 

 

3. Instrumentation and chromatographic conditions 

The CoQ content in the different biological specimens is analysed by HPLC (Waters) 

coupled to electrochemical detection (Coulochem II, ESA). The mobile phase consists 

of 1.06 g/L lithium perchlorate in methanol/ethanol (60:40, v/v), and CoQ is separated 

in a Nucleosil C-18 column (250 x 4 mm, 5 µm particle size, Teknokroma). The flow 

rate is 1 mL/min, and the injection volume is 50 µL (100 µL in case of urine samples). 

Once the CoQ is separated, it is quantified by electrochemical detection (the analytical 

cell, model 5010, is set to -600 mV and +600 mV) using CoQ9 as the internal standard. 

The chromatographic data are integrated using Waters Breeze HPLC software. 

 

4. CoQ content calculations 

CoQ concentrations in the different biological samples are determined by calculating 

the peak height ratios between CoQ and the internal standard (CoQ9). Plasma CoQ 

values are reported as µmol/L and µmol/mol cholesterol. In order to estimate the cell 



content of the BMCs, urine, muscle and fibroblasts samples, the total protein 

concentration is determined by the Lowry method. In these specimens, the CoQ values 

are normalized to the total protein concentration and reported as nmol/g of total protein. 

Regarding to platelets, final results are reported as pmol/109 platelets. 
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