
GRAU DE MATEMÀTIQUES

Treball final de grau

The Burau Representation of the
Braid Group

Autora: Raquel Revilla Bouso

Director: Dr. Ricardo García López

Realitzat a: Departament de Matemàtiques i Informàtica

Barcelona, 19 de gener de 2020





Abstract

This work deals with two relevant subjects of modern mathematics: representati-
on theory and braid theory. It also includes a relation between them; the Burau
representation, as well as a new concept; the Fox partial derivatives and its rela-
tion with the braid theory, more specifically with the Burau representation. The
structure of the work is as follows. Firstly, the basic notions of representation
and braid theory will be given to understand the following results. Therefore, the
Burau representation will be studied giving its definition, the one of its reduced
form and proving its faithfulness. A different interpretation of this representation,
introduced by V. Jones will also be studied and it has to be outlined due to its
relation with the probability. Finally, the Fox calculus and its partial derivatives
will be introduced to show an alternative approach to the Burau representation.

Resum

Aquest treball presenta dos temes rellevants de la matemàtica moderna: la teoria
de representacions i la teoria de trenes. També inclou una relació entre ambdós; la
representació de Burau, així com un nou concepte; el de les derivades parcials de
Fox i la seva relació amb la teoria de trenes, més exactament amb la representació
de Burau. L’estructura del treball és la següent. Primerament, es donaran les
nocions bàsiques tant de la teoria de representacions com de la de trenes per tal
de poder comprendre i enunciar els resultats següents. A continuació, s’estudiarà
la representació de Burau donant la seva definició, la de la seva forma reduïda i
comprovant la seva fidelitat en alguns casos. Cal destacar que també s’observarà
una interpretació diferent d’aquesta representació relacionada amb la probabilitat
deguda a V. Jones. Finalment, s’acabarà amb la introducció del càlcul de Fox i de
les seves derivades parcials per tal de donar una altre perspectiva per a definir la
representació de Burau.
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Introduction

A mathematician born in Germany called Emil Artin, in the early part of the 20th
century, began to study what nowadays is known as braid theory. The first ideas
were based on the physical and tractable nature of braids, but, over the course
of the century, this theory gradually evolved and now it is recognized as a basic
theory in mathematics, with applications in such branches as topology, category
theory and algebraic geometry. The central object is the braid group with n strings.

On the other hand, representation theory is the part of mathematics that studies
abstract algebraic structures by representing their elements as linear transforma-
tions of modules over a ring or of vector spaces. Thus, a representation makes an
abstract object more concrete by describing its elements and operations in terms
of matrices. This is most effective when the representation is faithful, what means
that no information is lost when passing from the abstract object to the linear data.

So, one can ask which are the representations of the braid group, and, moreover,
if there are faithful representations of it. In 1936, Werner Burau, also a German
mathematician, introduced a remarkable representation of the braid group, nowa-
days known as the Burau representation.

In this work we introduce some basic notions of braid theory and representation
theory, and we apply them to study some particular aspects of the Burau repre-
sentation. We provide a detailed proof of the fact that the Burau representation is
faithful if n 6 3, and we roughly indicate how it is proved that for n > 5 it is not.
The case n = 4 is still open at present. 2

While the Burau representation can be defined very quickly just giving the matri-
ces which correspond to each Artin generator, such a definition seems unnatural
and its motivation is unclear. At the beginning of the ’50s, Ralph Fox, an American

2It is know that there are faithful representations of all of the braid groups, but this is out of the
scope of this work.
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mathematician, developed in a series of five papers the so-called free differential
calculus, also known as Fox calculus. He defined the Fox derivatives, which are
an algebraic construction in the theory of free groups with some similarities to the
conventional derivatives in calculus. The final goal of this work is to define the
Burau representation in terms of the Fox calculus. This is not straightforward, but
the definition obtained looks much more natural and gives another viewpoint on
the representations of Burau.

This work is organized in three parts:

The first part covers chapters 1 and 2 and it is intended to give some basic con-
cepts which will be a fundamental tool in the sequel. Chapter 1 introduces some
definitions of representation theory and some examples. Special attention is payed
to the definition of faithfulness and irreducibility due to the importance this no-
tions will have in chapter 3. In chapter 2 we state three different definitions of the
braid group. We begin with the geometrical definition of a braid with n strings,
of braid equivalence and of the braid group and we study its operation and a
few properties. We continue giving the definition of the braid group in algebraic
terms, that is, in terms of a presentation with generators and relations, this is the
Artin presentation of the braid group. Finally, we define braid automorphisms
and we state an important theorem which relates braids with automorphisms of
free groups.

The second part covers chapter 3 and it deals with the relation between the no-
tions introduced in the two previous chapters. It starts defining the Burau repre-
sentation of the braid group and proving that it is reducible. Then, we prove the
faithfulness of the Burau representation of the braid group with three strings, this
is the most difficult part. We also give the details of an observation of Vaughan
Jones about a probabilistic (or as he says, mechanical) interpretation of the Burau
representation for positive braids.

The last part of this work is chapter 4, where we introduce the Fox calculus and
we explain in detail how the Burau representation can be defined in terms of it.

The fundamental bibliographical sources have been [3], [6], [7] and [8]. The re-
maining references have been used as secondary bibliography and the article men-
tioned is just referenced for completeness. The present work merely aspires to be
an exposition and a synthesis of the different sources we have used, but, as far as
possible, we have tried to give a slightly original perspective on the topics treated.



Chapter 1

Representation theory

This chapter presents some fundamental ideas and results of representation theory
which will be important throughout the work.

1.1 Basic language

From now and on, R will always be a commutative, unitary ring, M a free R-
module and we will denote by GL (M) the group of its automorphisms. If a basis
e1, . . . , en of M as a free R-module is fixed, we can identify GL (M) with GL (n, R),
the group of invertible n× n matrices with coefficients in R.

Definition 1.1. Let G be a group. A linear representation of G defined over R is a
group homomorphism

ρ : G −→ GL (M),

The rank of M is called the rank of ρ or its dimension if R is a field.

Remark 1.2. If the ring R is clear from context, it is customary to just say that ρ is
a representation of G. Similarly, when the homomorphism ρ is clear from context,
one may say only that M is a representation of G.

Given a representation ρ : G −→ GL (M) and an element g ∈ G, we usually write

ρ (g) v

for the image of v ∈ M under the linear transformation ρ (g). Such vectors are
also sometimes called G-translates of v or, simply, translates of v when the context
is clear. Similarly, when ρ is clearly understood, one may simply write

gv = ρ (g) v.

3



4 Representation theory

Representations exist in plenty, we will see some examples.

Example 1.3. The following examples are easily defined representations just to
clarify the concept:

1. If we take R = C, then we have the exponential z 7→ ez, which is a group
homomorphism from (C,+) to (C×, ·), or in other words, to GL (1,C) =

GL (C). This means the exponential is a one-dimensional representation of
the additive group of the complex numbers.

2. The additive group of the real numbers admits a two-dimensional real rep-
resentation:

(R,+) −→ GL (2,R)

t 7−→
(

1 t
0 1

)

3. Any subgroup GL (n,R) can be thought of as being given with a natural
representation, for example:

(a) Sn ↪→ GL (n,R), where Sn denotes the symmetric group of n elements.
If e1, . . . , en is the canonical basis of Rn, to each σ ∈ Sn, we associate
the automorphism given by

ρ (σ) : Rn −→ Rn

ei 7−→ eσ(i) .

It is easy to see that ρ is a group monomorphism.

(b) On = {A ∈ GL (n,R) | AT A = AAT = Id} ↪→ GL (n,R)

(c) SLn = {A ∈ GL (n,R) | det (A) = 1} ↪→ GL (n,R)

Definition 1.4. Let G be a group. A representation ρ of G defined over R is faithfull
if ρ is injective, i.e., if Ker (ρ) = {1}.

Definition 1.5. Let G be a group. A R-representation ρ of G is trivial if ρ (g) = 1M

is the identity map of M for all g ∈ G, i.e., if Ker (ρ) = G.

Remark 1.6. Sometimes only the representation of degree 1, with M = R, mapping
g to 1 ∈ R× is called "the" trivial representation. We will denote by 1 this one-
dimensional representation when G and R are clear from the context, or 1G if only
R is.
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Although there are "many" representations, many of them are actually equivalent.
In other words, quite often, the representations of G over R can be classified in
a useful way. To go into this, we must explain how to relate possibly different
representations.

Definition 1.7. Let G be a group. A morphism, or homomorphism, between representa-
tions ρ1 and ρ2 of G, both defined over R and acting on free modules M1 and M2,
respectively, is a R-linear map

φ : M1 −→ M2

such that

φ (ρ1 (g) v) = ρ2 (g) (φ (v)) ∈ M2,

for all g ∈ G and v ∈ M1.

Remark 1.8. One also says that φ intertwines ρ1 and ρ2 and one denotes this by
φ : ρ1 → ρ2.

This definition is also better visualized as saying that, for all g ∈ G, the square
diagram

M1
φ−−−→ M2yρ1(g)

yρ2(g)

M1
φ−−−→ M2

of linear maps commutes or, even more briefly, by omitting the mention of the
representations and writing

φ (gv) = gφ (v)

for g ∈ G, v ∈ M1.

If a morphism of representation φ is bijective , its inverse φ−1 is also a morphism,
between ρ2 and ρ1, and it is therefore justified to call φ an isomorphism between
ρ1 and ρ2. Indeed, using the diagram above, we find that the relation

ρ2 (g) ◦ φ = φ ◦ ρ1 (g)

is equivalent, in that case, to

φ−1 ◦ ρ2 (g) = ρ1 (g) ◦ φ−1.
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Definition 1.9. Let G be a group and let ρ : G → GL (M) be a representation of G.
If a free submodule F ⊂ M is stable under all operators, i.e., ρ (g) (F) ⊂ F for all
g ∈ G, then the restriction of ρ (g) to F defines a homomorphism

ρ̃ : G −→ GL (F)

which is therefore a R-representation of G, and the inclusion map

i : F ↪→ M

is a morphism of representations. One speaks, naturally, of a subrepresentation of ρ

or, if the action is clear from the context, of M itself.

The following type of representation are the fundamental building blocks for rep-
resentations in general.

Definition 1.10. Let G be a group. A representation ρ of G on a R-free module M
is irreducible if and only if M 6= {0} and there is no free submodule of M stable
under ρ, except {0} and M itself, that is to say that the only submodules N ⊂ M
such that for all g ∈ G ρ (g) (N) ⊂ N are N = {0} and N = M.

If a representation is not irreducible, it is called reducible.



Chapter 2

Braid theory

In this chapter we give some definitions of braid theory and we state some im-
portant results that will be useful for the following chapters. We have mainly
consulted the references [6] and [8] to develop it.

2.1 Basic concepts

Definition 2.1. Let D be a unit cube, so D = {(x, y, z) | 0 ≤ x, y, z ≤ 1}. On the
top face of the cube, place n points, A1, A2, . . . , An and, similarly, place n points
on the bottom face, B1, B2, . . . , Bn. Now, join the n points A1, A2, . . . , An with
B1, B2, . . . , Bn by means of n segments or arcs d1, d2, . . . , dn. However, the arcs
can only be attached in such a way that the following three conditions hold:

1. d1, d2, · · · , dn are mutually disjoint.

2. Each di connects some Aj to some Bk where j and k may or may not be equal,
but di is not permitted to connect Aj to Ak or Bj to Bk.

3. Each plane Es = {z = s} where 0 ≤ s ≤ 1, in other words, each plane in D
parallel to the xy-plane, intersects each arc di at one and only one point.

Such a configuration of n arcs d1, . . . , dn with end points A1, . . . , An, B1, . . . , Bn,
is called n-braid, or a braid with n strings. As might be expected, di is called a braid
string or equivalently the ith braid string.

Example 2.2. The first figure is an example of a braid while the second one is an
example of what can not be considered a braid.

7



8 Braid theory

Let us describe an alternative way of representing a braid. Firstly, retract the cube
D backwards onto the yz-plane by means of the projection, p, given by p (x, y, z) =
(0, y, z). Then we have a set of n simple curves, d1, d2, . . . , dn, on the yz-plane. We
shall denote p (β) by β̂.

Example 2.3. In the following example it can be seen how a braid is projected:

p−→

In addition, we may assume that the "new" curves d̂i satisfy the following condi-
tions:

1. p (β) has at most a finite number of intersection points.

2. At most 2 distinct points of β are mapped onto the same point in β̂. In such
cases, Q is said to be a double point or intersection point of β̂.

d̂jd̂i

Double point

d̂k d̂j

d̂i

Ruled out by this condition

3. A vertex of β is never mapped onto a double point of β̂.
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A projection β̂ that satisfies the above conditions is a regular projection of β.

Now, let β be a braid and β̂ be a regular projection of β. In essence, β̂ represents
the braid except at the double points where it is not clear which string is in front
of the other. To solve this problem, we cut away near a double point a small piece
from either side of one of the strings as we can see in the following diagram:

−→ or

So, a projection that has been altered in the above fashion is said to be a regular
diagram or just simply a diagram.

Remark 2.4. It must be noted that these diagrams always exist. This is not a trivial
result and the reader might consult the reference [6, Chapter 1, Subsection 1.2.2]
for a proof.

Now, let β̂ be a regular diagram of β.

A natural question to ask is, when are two braids regarded as the same or equiv-
alent? The intuitive answer is when their differences can be removed in a rea-
sonably straight-forward manner. So, what we need to find is either a move or a
sequence of moves that will produce "essentially" the same braids.

Definition 2.5. Two n-braids, b and b′, are isotopic if there is a continuous map
F : b× I → R2 × I such that for each s ∈ I, the map Fs : b→ R2 × I sending x ∈ b
to F (x, s) is an embedding whose image is a n-braid where F0 = idb : b → b and
F1 = b′. Each Fs automatically maps every endpoint of b itself.

In fact, isotopy is an equivalence relation. If two n-braids are equivalent, then we
will treat them as if they are the same braid. We denote Bn the quotient of the set
of n-braids by this equivalence relation, ∼.

Now, we are going to provide two theorems to relate this concept with the idea of
braid diagrams and with the polygonal image of the strings, respectively.

To state the first theorem, we will need the following previous concepts.

Definition 2.6. Two braid diagrams, β̂ and β̂′, with n strings are said to be isotopic
if there is a continuous map F : β̂× I −→ R× I such that for each s ∈ I the set
β̂s = F

(
β̂× s

)
⊂ R× I is a braid diagram with n strings, β̂0 = β̂ and β̂1 = β̂′. It

is understood that F maps the crossings of β̂ to the crossings of β̂s for all s ∈ I
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preserving the under or overgoing data. The family of braid diagrams {β̂s} ∈ I is
called an isotopy of β̂0 = β̂ into β̂1 = β̂′.

Definition 2.7. The following transformations of braid diagrams Ω2 and Ω3, as
well as, the inverse transformations Ω−1

2 and Ω−1
3 are called Reidemeister moves.

Ω2−→ or

Ω3−→

The moves Ω2 involves 2 strings and create two additional crossings (and there
are 2 types of Ω2-moves), while Ω3 involves 3 strings and preserves the number
of crossings.

Definition 2.8. Two braid diagrams, β̂ and β̂′, are R-equivalent if β̂ can be trans-
formed into β̂′ by a finite sequence of isotopies and Reidemeister moves.

Now, we are ready to reformulate the notion of isotopic braids in topological
terms.

Theorem 2.9. Two braid diagrams present isotopic braids if and only if their diagrams are
R-equivalent.

The proof of this theorem is far from the objective of this work. This is why we
have not added it. 1

To state the second theorem, let us denote the set of all n-braids by Bn, suppose D
is a unit cube and within this cube there are n strings.

We will work with the polygonal image of a string, that is to say that any n-braid
can be approximated by polygonal braids. 2 We redraw the braid in Example 2.2
with polygonal strings to clarify what we refer to.

1It can be found in [6, Chapter 1, Theorem 1.6].
2We can find the proof in [6, Chapter 1, pg 10, step 2].
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We now reformulate the notion of isotopy of braids in the polygonal setting. To
this end, we introduce the following moves.

Definition 2.10. Let AB be an edge of a string d. Let C be a point in D such
that the triangle ∆ABC in D does not intersect any other strings and only meets d
along AB. Further, suppose AC ∪ CB intersects every level plane Es for 0 ≤ s ≤ 1
at most at one point. If the above holds, we define an operation, which we shall
denote by Ω, which replaces AB by the two edges AC ∪CB. We will also consider
the inverse operation of Ω, namely, if AC∪CB is a part of a string and ∆ABC does
not intersect any other strings. Then, the operation, Ω−1, replaces AC ∪ CB by the
edge AB.

d

A

B

C

Ω−→

Ω−1

←−
d

A

B

C

These are called elementary moves on a braid.

Theorem 2.11. Two polygonal n-braids, b and b′, are isotopic if and only if b can be
transformed into b′ by a finite number of elementary moves.

The proof of this theorem is far from the objective of this work. This is why we
have not added it. 3

3It can be found in [6, Chapter 1, Claim 1.7].
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2.2 Definition of the braid group

Now, we will denote a polygonal n-braid and, by a slight abuse of notation, also
its diagram by β. In order to make the diagrams that we will draw easier to view,
we shall draw these strings as smooth curves.

Definition 2.12. Let β1 and β2 be two n-braids in Bn. Identify the bottom edge of
β1 with the top edge of β2 and remove only the identified edge. This provides us
with a new n-braid which is defined to be the product of the two n-braids β1 and β2

and it is denoted by β = β1β2.

Example 2.13. Product of two braids:

β1 • β2 = β

Proposition 2.14. The product of braids is associative, i.e.,

(β1β2) β3 ∼ β1 (β2β3).

Althought the product of braids is associative, it need not to be commutative, i.e., β1β2

need not to be equivalent to β2β1.

Example 2.15. Consider the following braids,

β1 β2 β3

we can see that this braid product is associative:
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(β1β2) β3 ∼ β1 (β2β3)

and, non commutative:

β2β3 6∼ β3β2

We can affirm that this two braids are not equivalent because we can check that,
for example, in β2β3 the first string ends in the second position while in β3β2 it
ends in the first position and the elementary moves do not touch where the braids
start and finish. Then, β2β3 never can be transformed into β3β2 and they will
never be equivalent.

Proposition 2.16. Let e be the n-braid shown in the following diagram, where for i =

1, 2, . . . , n we join by a straight line segment the point Ai to the Bi. Then, for any n-braid
β,

βe ∼ β and β ∼ βe

Such a braid e is called the identity or trivial braid and we shall denote it by 1n.
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B1

A1

B2

A2

. . .

. . .

Bn−1

An−1

Bn

An

Identity or trivial braid

Now, let β be a n-braid and let us construct a new n-braid β̄ from β. Imagine that
the bottom edge that contains β acts as a plane of a mirror. By taking the mirror
image of β, we can construct a new n-braid, β̄.

Example 2.17. In the following example it can be seen how a product of ββ̄ is
equivalent to the identity braid by elementary moves.

ββ̄ −→ ββ̄

Observe that the first string passes under the other ones and the second one passes
under, over, over and under the third one what let us check that the second and
third string can be separated. Then, we see how ββ̄ is transformed into the identity
braid.

Proposition 2.18. For each n-braid β, there exists a n-braid β̄ such that

ββ̄ ∼ 1n and β̄β ∼ 1n.

For the proof we refer to [6, Chapter 1, Lemma 1.10].

Such a n-braid is called the inverse of β and denoted by β−1.
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Taking into account the definitions and propositions above and considering the
equivalence classes of n-braids, we have all the necessary requirements for Bn to
be a non-commutative group.

Theorem 2.19. The set of equivalence classes of n-braid, Bn, with the product of two
n-braids, forms a group. This group is usually called the n-braid group.

Proof.

The binary operation is the product given by Definition 2.13; associativity is a con-
sequence of Proposition 2.15; the identity element is 1n given by Proposition 2.17
and the inverse element is β̄ denoted by β−1 in Proposition 2.19. �

Next, we give a definition in purely algebraic terms of the n-braid group, Bn, that
is in terms of generators and relations.

Definition 2.20. The Artin braid group B̃n is the group generated by n− 1 generators
σ1, σ2, . . . , σn−1 and the braid relations

σiσj = σjσi

for all i, j = 1, 2, . . . , n− 1 with |i− j| ≥ 2, and

σiσi+1σi = σi+1σiσi+1

for i = 1, 2, . . . , n− 2.

The above generators σ1, σ2, . . . , σn−1 arise from the following idea; taking a
braid projection and diving it by means of level planes such that between two
consecutive level planes only two strings are braided with a unique double point
and the remaining strings hang vertically downwards.

Example 2.21. In the following example it can be seen how a braid is divided to
obtain a partition of it.

−→

It is important to say that the configuration that lies between two consecutive
planes is also, by our definition, a n-braid. For any n-braid there are 2n− 2 such
possible generators and this set may be divided into two sets, each containing
n− 1 generators.
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B1

A1

B2

A2

. . .

. . .

Bi−1

Ai−1

Bi

Ai

Bi+1

Ai+1

Bi+2

Ai+2

. . .

. . .

Bn−1

An−1

Bn

An

Generator σi

We shall denote these n-braids by σ1, σ2, . . . , σn−1.

B1

A1

B2

A2

. . .

. . .

Bi−1

Ai−1

Bi

Ai

Bi+1

Ai+1

Bi+2

Ai+2

. . .

. . .

Bn−1

An−1

Bn

An

Generator σ−1
i

And these by σ−1
1 , σ−1

2 , . . . , σ−1
n−1.

Due to Artin’s seminal work on braids, this set of braids is sometimes referred
to as Artin braids and the importance of these n-braids is that they generate the
n-braid group, Bn.

Theorem 2.22. For any n ≥ 1 the n-braid group, Bn, is isomorphic to the Artin braid
group, B̃n.

Unfortunately, the proof of this theorem is beyond the scope of this work. This is
why we have not added it. 4

Remark 2.23. Notice that given a group homomorphism f from Bn to a group G,
the elements {si = f (σi)}i=1, ..., n−1 of G satisfy the braid relations of B̃n. And
conversely, if s1, . . . , sn−1 are elements of a group G satisfying the braid relations,
then there is a unique group homomorphism f : Bn → G such that si = f (σi) for
all i = 1, 2, . . . , n− 1.

Finally, we give still one more way of seeing Bn. We realize the braid group as a
group of automorphisms of the free group, Fn, on n generators x1, x2, . . . , xn.

4It can be found in [6, Chapter 1].
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Definition 2.24. An automorphism ϕ of Fn is said to be a braid automorphism if it
satisfies the following two conditions:

i) There is a permutation µ of the set {1, 2, . . . , n} such that ϕ (xk) is conjugate
in Fn to xµ(k) for all k ∈ {1, 2, . . . , n}.

ii) ϕ (x1x2 . . . xn) = x1x2 . . . xn

It is easy to check that the following formulas define two mutually inverse braid
automorphism σ̆i and σ̆i

−1 of Fn for i = 1, 2, . . . , n− 1:

σ̆i (xk) =



xkxk+1x−1
k i f k = i

xk−1 i f k = i + 1

xk otherwise

σ̆i
−1 (xk) =



xk+1 i f k = i

x−1
k xk−1xk i f k = i + 1

xk otherwise

Denote the set of braid automorphisms of Fn by B̆n. It follows from the defini-
tions that the inverse of a braid automorphism and the composition of two braid
automorphisms are again braid automorphisms. Therefore, B̆n is a group with
respect to the composition.

We now state the main theorem relating braids to braid automorphisms.

Theorem 2.25. The formula σi 7→ σ̆i with i = 1, 2, . . . , n− 1 defines a group isomor-
phism Bn → B̆n.

Proof.

We will only prove that the formula σi 7→ σ̆i defines a group homomorphism
Bn → B̆n. The rest of the proof can be found in [6, Chapter 1, Theorem 1.31].
It must be taken into account that what we have here denoted by σ̆i, in the just
outlined reference is denoted by σ̃i

−1.

Firstly, we prove σ̆iσ̆j = σ̆iσ̆j for all i, j = 1, 2, . . . , n− 1 with |i− j| ≥ 2.
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- If k = i :

σ̆j (σ̆i (xi)) = σ̆j

(
xixi+1x−1

i

)
= xixi+1x−1

i

σ̆i
(
σ̆j (xi)

)
= σ̆i (xi) = xixi+1x−1

i

- If k = i + 1 :

σ̆j (σ̆i (xi+1)) = σ̆j (xi) = xi

σ̆i
(
σ̆j (xi+1)

)
= σ̆i (xi+1) = xi

- If k 6= i, i + 1 :

σ̆j (σ̆i (xk)) = σ̆j (xk) = xk

σ̆i
(
σ̆j (xk)

)
= σ̆i (xk) = xk

The cases when k = j, k = j + 1 and k 6= j, j + 1 are similar to the previous.

Secondly, we prove σ̆i ˘σi+1σ̆i = ˘σi+1σ̆i ˘σi+1 for all i = 1, 2, . . . , n− 2.

- If k = i :

σ̆i ( ˘σi+1 (σ̆i (xi))) = σ̆i

(
˘σi+1

(
xixi+1x−1

i

))
= σ̆i

(
xixi+1xi+2x−1

i+1x−1
i

)
= xixi+1xi+2x−1

i+1x−1
i

˘σi+1 (σ̆i ( ˘σi+1 (xi))) = ˘σi+1 (σ̆i (xi)) = ˘σi+1

(
xixi+1x−1

i

)
= xixi+1xi+2x−1

i+1x−1
i

- If k = i + 1 :

σ̆i ( ˘σi+1 (σ̆i (xi+1))) = σ̆i ( ˘σi+1 (xi)) = σ̆i (xi) = xixi+1x−1
i

˘σi+1 (σ̆i ( ˘σi+1 (xi+1))) = ˘σi+1

(
σ̆i

(
xi+1xi+2x−1

i+1

))
= ˘σi+1

(
xixi+2x−1

i

)
= xixi+1x−1

i

- If k 6= i, i + 1 :

σ̆i ( ˘σi+1 (σ̆i (xk))) = σ̆i ( ˘σi+1 (xk)) = σ̆i (xk) = xk

˘σi+1 (σ̆i ( ˘σi+1 (xk))) = ˘σi+1 (σ̆i (xk)) = ˘σi+1 (xk) = xk �
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Remark 2.26. Since product of braids is usually written from left to right and
composition of automorphisms from right to left, we have η̆τ = τ̆ ◦ η̆ if η and τ

are braids.



Chapter 3

The Burau representation

This chapter relates the two previous ones by defining a representation of the braid
group, Bn, called the Burau representation. We will also see an interpretation of
this representation from [5] and we will discuss its main properties.

3.1 Definition

For all n ≥ 1, Werner Burau introduced a linear representation of the braid group,
Bn, by n × n matrices over the ring of Laurent polynomials over a field k, these
are linear combinations of positive and negative powers of the variable with coef-
ficients in k. We denoted it by

Λ = k
[
t, t−1].

Fixed n ≥ 2 and for i = 1, . . . , n− 1, we consider the following n× n matrix over
the ring Λ :

Ui =


Ii−1 0 0 0

0 1− t t 0
0 1 0 0
0 0 0 In−i−1


where Ik denotes the unit k× k matrix. Note that when i = 1, there is no identity
matrix in the upper left corner of Ui and when i = n− 1, there is no unit matrix
in the lower right corner of Ui.

Thus each matrix Ui has a diagonal block form with blocks being the unit matrices
and the 2× 2 matrix

20
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U =

(
1− t t

1 0

)
.

By the Cayley-Hamilton theorem, any 2 × 2 matrix M over the ring Λ satisfies
M2− tr (M) M+ det (M) I2 = 0. So, for M = U, this gives U2− (1− t)U− tI2 = 0.
Since identity matrices also satisfy this equation, we have

U2
i − (1− t)Ui − tIn = 0

for all i. This can be rewritten as Ui (Ui − ( 1− t) In) = tIn. Hence, Ui is invertible
over Λ and its inverse is:

U−1
i = t−1 (Ui − ( 1− t) In) =


Ii−1 0 0 0

0 0 1 0
0 t−1 1− t−1 0
0 0 0 In−i−1

 .

The block form of the matrices U1, . . . , Un−1 implies that

UiUj = UjUi

for all i, j with |i− j| ≥ 2. And it is easy to check that

UiUi+1Ui = Ui+1UiUi+1

for all i = 1, . . . , n− 2.

By Remark 2.23, ψ (σi) = Ui with i = 1, . . . , n− 1 defines a group homomorphism
ψn from the braid group Bn with n ≥ 2 to the group GL (n, Λ) of invertible n× n
matrices over Λ. That is to say, we have the following representation:

ψn : Bn −→ GL (n, Λ)

σi 7−→ Ui

This representation is called the Burau representation of Bn.

3.1.1 The reduced Burau representation

We will show that the Burau representation is reducible.
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Proposition 3.1. Let n ≥ 3 and V1, V2, . . . , Vn−1 be the (n− 1)× (n− 1) matrices
over Λ given by

V1 =

 −t 0 0
1 1 0
0 0 In−3

 , Vn−1 =

 In−3 0 0
0 1 t
0 0 −t

 ,

and for 1 < i < n− 1

Vi =


Ii−2 0 0 0 0

0 1 t 0 0
0 0 −t 0 0
0 0 1 1 0
0 0 0 0 In−i−2

 .

Then, for all i = 1, . . . , n− 1,

C−1UiC =

(
Vi 0
∗i 1

)
,

where C is the n× n matrix

C = Cn =


1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1


and ∗i is the row of lenght n− 1 equal to 0 if i < n− 1 and to (0, . . . , 0, 1) if i = n− 1.

Proof.

For i = 1, . . . , n− 1 set

V
′
i =

(
Vi 0
∗i 1

)
.

It is sufficient to prove that

UiC = CV
′
i for all i.

Given i, it is easy to check that UiC is obtained from C by:

a) Replacing the entry (i, i) by 1− t.

b) Replacing the entry (i + 1, i) by 1.
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Similarly, it is also easy to check that CV
′
i is obtained from C by the same modifi-

cations as above. �

Corollary 3.2. The Burau representation is reducible for all n ≥ 2.

Proof.

Firstly, consider n ≥ 3 and let e1, . . . , en be the canonical base of Λn. Taking the Λ-
module 〈 Cen 〉, we are going to see that it is invariant by the Burau representation:
ψn (σi) = Ui. Using the previous theorem, we obtain that:

UiCen = C

(
Vi 0
∗i 1

)
en = Cen.

Secondly, consider n = 2 and observe that:

C−1U1C =

(
1 −1
0 1

)(
1− t t

1 0

)(
1 1
0 1

)
=

(
−t 0
1 1

)
.

Now, let e1, e2 be the canonical base of Λ2 and take the Λ-module 〈 Ce2 〉. We are
going to see that it is invariant by the Burau representation. Using the previous
equality, we obtain that:

U1Ce2 = C

(
−t 0
1 1

)
e2 = Ce2.

In these two cases, the definition of irreducible representation has been contra-
dicted because 〈 Cen 〉 is ψn-stable. So, for any n ≥ 2 the Burau representation is
reducible. �

Definition 3.3. Since the matrices U1, . . . , Un−1 satisfy the braid relations, the
conjugate matrices C−1U1C, . . . , C−1UnC also do. The relation

C−1UiC =

(
Vi 0
∗i 1

)
implies that matrices Vi also satisfy them. It is easy to see that these matrices are
invertible over Λ and therefore belong to GLn−1 (Λ), so we have a group homo-
morphism

ψr
n : Bn −→ GLn−1 (Λ)

σi 7−→ Vi

ψr
2 : B2 −→ GL1 (Λ)

σ1 7−→ −t

which is called the reduced Burau representation.
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3.2 A probabilistic interpretation

It was V. Jones who, in his paper [5], notes that there is a "probabilistic" interpre-
tation of the Burau representation of positive braids, which are n-braids given by
words on σ1, σ2, . . . , σn−1 (not on σ−1

1 , σ−1
2 , . . . , σ−1

n−1). He affirmed that:

"For positive braids there is also a mechanical interpretation of the Burau matrix:
Lay the braid out flat and make it into a bowling alley with n lanes, the lanes
going over each other according to the braid. If a ball traveling along a lane has
probability 1− t of falling off the top lane, and continuing in the lane below, at
every crossing then the (i, j) entry of the non-reduced Burau matrix is the proba-
bility that a ball bowled in the ith lane will end up in the jth."

In this section we are going to give a proof of Jones’s interpretation and a specific
example.

First of all, it is easy to see that the previous quote is true for the generators
σ1, σ2, . . . , σn−1 which generate the positive n-braid group, B+

n . If we take any σi

with the following diagram:

1

1

2

2

. . .

. . .

i

i

i+1

i+1

. . .

. . .

n-1

n-1

n

n

and apply the Burau representation, we obtain:

ψn (σi) = Ui =


Ii−1 0 0 0

0 1− t t 0
0 1 0 0
0 0 0 In−i−1

 .

Considering that the bowling alley goes from the top to the bottom of the braid
diagram and that 1 − t is the probability of a ball falling off the top lane and
continuing in the lane below, the (i, j) entries of Ui are equal to the probabilities
mentioned before. For instance, for the generator σi, the probability that the ball
bowled in the ith finish in the same one is that it falls off, that is to say 1− t, which
coincides with (i, i) entry.
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We know that any braid of B+
n can be written as a product of braid generators:

ξ = σi1 σi2 . . . σik ∈ B+
n where k ∈ N

We will prove Jones’s affirmation by induction on k. The case when k = 1 has
just been seen, we check next the case k = 2; ξ = σi1 σi2 ∈ B+

n . This case is not
indispensable, but we have added it to have a more concrete idea of what we will
do in the general case. Applying the Burau representation:

ψn (σi1 σi2) = ψn (σi1)ψn (σi2) = Ui1Ui2 = U′2.

Denote Ui1 =
(
aij
)

i,j, Ui2 = (bkl)k,l and U′2 = (crs)r,s.

By definition of the matrix product

crs = ∑n
j=1 arjbjs

where arj is the probability that a ball bowled in r finish in j and bjs is the proba-
bility that a ball bowled in j finish in s, so crs is the probability that a ball bowled
in r finish in s, not minding where it ends between the first braid generator, σi1 ,
and the second one, σi2 . So, this case has also been verified.

Now, we suppose that Jones’ affirmation is true for any braid in B+
n with k gener-

ators, that is to say that the inductive hypothesis is:

ψn (σi1 σi2 . . . σik) = U′k

where U′k is the Burau matrix whose entries coincide with the probabilities men-
tioned before. And, we want to see that it is true for any braid with k + 1 genera-
tors. So, we take ξ = σi1 σi2 . . . σim σik+1 ∈ B+

n and then,

ψn
(
σi1 σi2 . . . σik σik+1

)
= ψn (σi1 σi2 . . . σik)ψn

(
σik+1

)
= U′kUik+1 = U′k+1

where the first equality holds because ψn is a morphism, the second one is because
of the inductive hypothesis and the case when k = 1 and the last one is obtained
as in the case k = 2 above.

Example 3.4. We will consider the following positive braid ξ in B+
4 :
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1

1

2

2

3

3

4

4

Considering that the bowling alley goes from the top to the bottom of the braid
diagram, we note that

ξ = σ1σ3σ2σ1

and applying the Burau representation

ψ4 (σ1σ3σ2σ1) = ψ4 (σ1)ψ4 (σ3)ψ4 (σ2)ψ4 (σ1) = U1U3U2U1.

Finally,

U1U3U2U1 =


1− t (1− t) t t2 0
1− t t 0 0
1− t 0 0 t

1 0 0 0


and it is easy to check that these entries are the probabilities mentioned by Jones.

3.3 Faithfulness of the Burau representation

We are going to see, depending on n, whether the Burau representation is faithful
or not. We will start with the easy cases n = 1 and n = 2, then we analyze in
detail when n = 3 and we state the case where n ≥ 5. Case n = 4 is not solved
yet; it is unknown whether ψ4 is faithful or not.

3.3.1 ψ1 is faithful

This is trivial because B1 = {1}.
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3.3.2 ψ2 is faithful

It is easy to see that B2 ∼= Z. If we consider a 2-braid, it will be or the identity
braid or it will formed by a product of σ1 or σ−1

1 , that is, it will have a determined
number of positive or negative crossings (if we have a product of σ1 and σ−1

1 , they
will be canceled until we have a braid as the ones mentioned before). Then, the
isomorphism consists in sending the braid to the number of crossings with its
symbol (positive or negative). It is immediate to check that the product of braids
corresponds to the sum in Z.

Then, the generator σ1 ∈ B2 has image U1 ∈ GL (Λ) and observe that:

(1,−1)U1 = (1,−1)

(
1− t t

1 0

)
= (t,−t) = −t (1,−1)

which implies, (1,−1)Uk
1 = (−t)k (1,−1) for all k ∈ Z and Uk

1 6= I2 for all k ∈
Z− {0}.

3.3.3 ψ3 is faithful

To analyze ψ3 we will use the reduced Burau representation, but there are some
previous results that will be needed before.

Definition 3.5. Let

SL2 (Z) = {
(

a b
c d

)
| a, b, c, d ∈ Z and ad− bc = 1}.

Then SL2 (Z) is a group, its center is {+I2, −I2} and its quotient group SL2 (Z) /{±I2}
is called the modular group. It is denoted by PSL2 (Z).

We have

PSL2 (Z) = {Ĉ −→ Ĉ where Ĉ = C∪ {∞}, z 7−→ az+b
cz+d and ad− bc = 1}.

We consider the following group presentations:

1.
〈

a, b | aba = bab, (aba)4 = 1
〉

2.
〈
s, t | s3 = t2, t4 = 1

〉
3.
〈
s, t | s3 = t2 = 1

〉
then, we have the next result.
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Lemma 3.6. a) Presentations 1 and 2 define the same group G.

b) The group H defined by presentation 3 is isomorphic to G/
〈
t2〉.

Proof.

a) Considering the substitutions s = ab, t = aba and a = s−1t, b = t−1s2, then the
result is easy to verify.

b) It is easy to verify if we take the presentation 2 of G and compare with 3.

�
Consider the matrices A, B ∈ SL2 (Z) given by

A =

(
1 1
0 1

)
, B =

(
1 0
−1 1

)
which verify that

ABA = BAB and (ABA)4 = 1.

Therefore, we have a group morphism:

f : G −→ SL2 (Z)

a 7−→ A

b 7−→ B

which in terms of s and t is

f (s) = AB =

(
0 1
−1 0

)
, f (t) = ABA =

(
0 1
−1 0

)
and, f

(
t2) = −I2. Then, we have an induced morphism:

f̄ : H = G/
〈
t2〉 −→ PSL2 (Z).

Theorem 3.7. The morphisms f : G −→ SL2 (Z) and f̄ : H −→ PSL2 (Z) are isomor-
phisms.

Proof.

It follows from the previous definitions, that f induces an isomorphism:〈
t2〉 ∼→ {±I2}
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which lets us affirm:

a) f is injective⇔ f̄ is injective.

b) f is exhaustive⇔ f̄ is exhaustive.

Now, it will be sufficient to verify that f is exhaustive and that f̄ is injective to
prove the theorem.

a) To see that f is exhaustive we prove that the matrices A and B generate SL2 (Z).

Let M =
(

a b
c d

)
∈ SL2 (Z), which means that ad − bc = 1 and denote b =

b (M) and d = d (M).

We define T = f (t) = f (aba) = f (a) f (b) f (a) = ABA =
(

0 1
−1 0

)
.

It has to be proved that M can be written as a word on matrices A±1 and
B±1. We distinguish the following cases:

- If b = 0⇒ a = d = ±1⇒ M =
(

1 0
c 1

)
or M =

( −1 0
c −1

)
. Then,

M = B−c or M = −I2Bc = T2Bc = (ABA)2 Bc.

- If d = 0 ⇒ bc = −1 ⇒ b = −c = 1 or b = −c = −1 ⇒ M =
( a 1
−1 0

)
or

M =
( a −1

1 0

)
. Then,

M = A−aT = A−a ABA or M = AaT3 = Aa (ABA)3.

- If b = b (M) 6= 0 and d = d (M) 6= 0, then AM =
( a+c b+d

c d

)
and

TM =
( c d
−a −b

)
. So, we have

b (AM) = b (M) + d (M)

d (AM) = d (M)

}
(1)

b (TM) = d (M)

d (TM) = −b (M)

}
(2)

From (1), we observe that exists n ∈ Z such that

0 ≤ |b (An M)| ≤ |d (An M)|.

This is because from (1), we have that d (An M) = d (M) and if we put
bn = b (An M) and dn = d (M), then we have bn = bn−1 + d (that is, {bn} is
an arithmetic progression of difference d). Then, it is easy to see that there
exists n ∈ Z such that
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0 ≤ |bn| ≤ |d|.

Now, using (2), we note that ±b and ±d can be exchanged by multiplying
the matrix M by T on the left.

So, multiplying M by A or T on the left, as many times as necessary, we
arrive to the cases when b = 0 or d = 0.

b) By a slight abuse of notation, we denote also by s, t the classes of s, t in H. To
see that f̄ is injective we will use the presentation

〈
s, t | s3 = t2 = e

〉
of H,

where e denotes the neutral element of the group.

Any element h of H is a word in s and t, which means that:

h = sn1 tm1 sn2 tm2 . . . where ni, mi ∈ Z.

Then, due to the equality t2 = e, we can assume that t always appears with
exponent 1. Since, s3 = e, we can assume that ni ∈ {0, 1, −1}. So, we can
see that any element of H can be written like:

• ω = sε1 tsε2 t . . . sεr ,
• ωt,
• tω,
• tωt,
• t and
• e

where εi = ±1.

It will be sufficient to prove that, except the neutral element, none of these
elements are in Ker

(
f̄
)
. From the definition of f̄ , we know that t /∈ Ker

(
f̄
)
.

Note that tωt = tωt−1 is conjugated of ω and tω = tωtt−1 is conjugated of
ωt. So, it will be sufficient to verify that f̄ (ω) 6= 1 and f̄ (ωt) 6= 1.

- Firstly, we want to see f̄ (ωt) 6= 1. By definition of ω:

ωt = (sε1 t) . . . (sεr t)

From the proof of Lemma 3.6., we have that s−1t = a and st =
(
t−1s2)−1

=

b−1, so we have

f̄
(
s−1t

)
= Ā and f̄ (st) = B̄−1
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where Ā and B̄ are the images of A, B ∈ SL2 (Z) in PSL2 (Z). Then, f̄ (ωt)
is equal to a product of matrices of Ā and B̄−1.

Note that no product of A and B−1 is equal to ±I2 because A =
(

1 1
0 1

)
and

B−1 =
(

1 0
1 1

)
so, this product will have always positives entries and the sum

of the non diagonal entries will increase.

- Secondly, if f̄ (ω) = 1, then f̄ (ωt) = f̄ (ω) f̄ (t) = f̄ (t) =
(

0 1
−1 0

)
. This is

impossible as we have just said. �

Theorem 3.8. The Burau representation ψ3 is faithful.

Proof.

We start defining the following group morphism:

ξ3 : B3 −→ SL2 (Z)

σ1 7−→ a1

σ2 7−→ a2

where a1 =
(

1 0
1 1

)
and a2 =

(
1 −1
0 1

)
.

Note that the matrices a1 and a2 are obtained by taking the matrices, V1 and V2,
defining the reduced Burau representation and putting t equal to −1.

Note that A = aT
1 and B = aT

2 , thus SL2 (Z) =
〈

a1, a2 | a1a2a1 = a2a1a2, (a1a2a1)
4 = 1

〉
.

Since B3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉, we deduce that ξ3 is well defined.

Now, we would like to see that Ker (ξ3) =
〈
(σ1σ2σ1)

4
〉

.

To this end, we observe:

i) It is clear that (σ1σ2σ1)
4 ∈ Ker (ξ3).

ii) Due to the fact that the kernel of any group morphism is always a normal
subgroup:

SNS
(
(σ1σ2σ1)

4
)
⊂ Ker (ξ3),

where SNS (Σ) denotes the smallest normal subgroup which contains Σ. We
know that if G is a group and Σ ⊂ G, the smallest normal subgroup that
contains Σ is:
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SNS (Σ) = {gsg−1| g ∈ G, s ∈ Σ}.

iii) If p ∈ Ker (ξ3), what is to say p (σ1, σ2) ∈ B3 such that ξ3 (p) = 1. Then
p (a1, a2) is the identity element in SL2 (Z), thus

p (a1, a2) ∈ SNS
(

a−1
2 a−1

1 a−1
2 a1a2a1, (a1a2a1)

4
)

of the free group generated
by a1, a2.

Since in B3 we already have the relation σ−1
2 σ−1

1 σ−1
2 σ1σ2σ1 = 1 we can assume

p (σ1, σ2) ∈ SNS
(
(σ1σ2σ1)

4
)

It is easy to check that the following equalities hold:

(σ1σ2σ1)
2 σ1 = σ1 (σ1σ2σ1)

2,

(σ1σ2σ1)
2 σ2 = σ2 (σ1σ2σ1)

2.

Then, (σ1σ2σ1)
2 commutes with all the elements in B3 and this implies that the

smallest normal subgroup that contains (σ1σ2σ1)
4 is the cyclic group generated by

this element

SNS
(
(σ1σ2σ1)

4
)
=
〈
(σ1σ2σ1)

4
〉

.

Next, we would like to see that

ker (ψ3) ⊂ ker (ψr
3) ⊂ ker (ξ3) =

〈
(σ1σ2σ1)

4
〉

but, in fact, since C−1ψ3C =
(

ψr
3 0

1 1

)
we have that ker (ψ3) = ker (ψr

3) and the sec-
ond inclusion is due to the fact that a1, a2 are obtained from the matrices V1, V2

(defined in Proposition 3.1) putting t = −1.

Finally, to prove that ψ3 is faithful observe

V1V2V1 =

(
0 t2

−t 0

)
, (V1V2V1)

2 =

(
t3 0
0 t3

)
where the matrices V1 and V2. Thus, if k ∈ Z, then

ψr
3

(
(σ1σ2σ1)

4k
)
=

(
t6k 0
0 t6k

)
6= I2.
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Consequently, ker (ψr
3) = {e} and ker (ψ3) = {e}, which means that ψ3 is faithful.

�

The Burau representation is not faithful for n ≥ 5, this is proved by finding an
explicit non-trivial element in its kernel. 1

Precisely, let γ = σ4σ−1
3 σ−1

2 σ2
1 σ−1

2 σ−2
1 σ−2

2 σ−1
1 σ−5

4 σ2σ3σ3
4 σ2σ2

1 σ2σ−1
3 be a braid in B5

and ρ be the commutator 2 of γσ4γ−1 and σ4σ3σ2σ2
1 σ2σ3σ4. Then, it can be proved

that:

i) ρ =
[
γσ4γ−1, σ4σ3σ2σ2

1 σ2σ3σ4
]
6= I5

ii) ρ ∈ ker (ψ5)

So, we have a braid ρ ∈ B5, belonging to ker (ψ5) that is different from the group’s
identity (what can be checked with the help of a computer) and so ψ5 is not faith-
ful.

Consequently and due to the fact that Bm ↪→ Bn when n ≥ m, ψn is not faithful for
any n ≥ 5.

1We have consulted [6, Chapter 3, Theorem 3.3].
2[a, b] = aba−1b−1.



Chapter 4

Free differential calculus

In this chapter we start defining some concepts related to the free differential cal-
culus, also called Fox calculus, and then we will see how the Burau representation
can be described in terms of this calculus.

4.1 The Fox partial derivatives

Let G be a group and Z [G] its group ring, that is

Z [G] = {∑k
i=1 nigi| ni ∈ Z, gi ∈ G, k ∈ Z}.

Definition 4.1. The following homomorphism

•ε : Z [G] −→ Z

τ = ∑ nigi 7−→ τε = ∑ ni

is called the augmentation homomorphism.

Definition 4.2. A mapping ∆ : Z [G]→ Z [G] is called a derivation of Z [G] if

∆ (ξ + η) = ∆ (ξ) + ∆ (η) (4.1)

∆ (ξη) = ∆ (ξ) ηε + ξ∆ (η) (4.2)

where ξ, η ∈ Z [G]. Properly, (4.1) is called additivity and (4.2) the product rule.

Denote Der (Z [G]) the set of derivations of Z [G].

Lemma 4.3. a) Der (Z [G]) is a right Z [G]-module under the operations defined by

(∆1 + ∆2) (τ) = ∆1 (τ) + ∆2 (τ) , (4.3)

(∆γ) (τ) = ∆ (τ) γ (4.4)

where ∆1, ∆2 ∈ Der (Z [G]) and τ, γ ∈ Z [G].

34
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b) Let ∆ be a derivation. Then:

∆ (m) = 0 for m ∈ Z,

∆
(

g−1) = −g−1∆ (g).

Proof.

a) Remember that if A is unitary ring and M is a set with 2 operations + : M×
M→ M and · : A×M→ M, then M is a right A-module if:

i) (M,+) is an abelian group.

ii) (x + y) r = xr + yr

iii) x (r + s) = xr + xs

iv) x (rs) = (xr) s

v) x1A = x

for all x, y ∈ M and r, s ∈ A. In our case, we have A = Z [G] and
M = Der (Z [G]) and i) is easy to check from the definition.

Now, we are going to prove the rest of the properties.

ii) Let ∆1 and ∆2 be derivations and γ ∈ Z [G]. Then, if τ ∈ Z [G]

((∆1 + ∆2) γ) (τ) = (∆1 + ∆2) (τ) γ = (∆1 (τ) + ∆2 (τ)) γ =

(∆1γ) (τ) + (∆2γ) (τ)

where in the first and the third equalities we have used (4.4) while in
the second we have used (4.3).

iii) Let ∆ be a derivation and γ, η ∈ Z [G]. Then, if τ ∈ Z [G]

(∆ (γ + η)) (τ) = (∆γ + ∆η) (τ) = (∆γ) (τ) + (∆η) (τ)

where in all the equalities we have used (4.3).

iv) Let ∆ be a derivation and γ, η ∈ Z [G]. Then, if τ ∈ Z [G]

(∆ (γη)) (τ) = ∆ (τ) γη = (∆ (τ) γ) η = ((∆γ) (τ)) η = ((∆γ) η) (τ)

where we have used (4.4).

v) Let ∆ be a derivation and 1Z[G] be the neutral element of Z [G]. Then, if
τ ∈ Z [G]
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∆1Z[G] (τ) = ∆ (τ) 1Z[G] = ∆ (τ)

where in the first equality we have used (4.3) and then the result is
obvious.

b) First of all, we notice that ∆ (1) = 0. This is easy because:

∆ (1) = ∆ (1 · 1) = ∆ (1) + ∆ (1) = 2∆ (1)

where in the second equality we have used the equation (4.2) and the result
is easy to see. This implies that,

∆ (m) = ∆ (1 + . . . + 1) = ∆ (1) + . . . + ∆ (1) = 0

where in both additions there are m summands and in the second equality
we have used the equation (4.1).

Secondly, we note that

0 = ∆ (1) = ∆
(

g−1g
)
= ∆

(
g−1)+ g−1 · ∆ (g)

where in the third equality we have used the equation (4.2) and then the
result is easy to see. �

Proposition 4.4. Let F = 〈{Si| i ∈ I}〉 be a free group. There exists a uniquely deter-
mined derivation ∆ : Z [F]→ Z [F] with ∆Si = ωi for arbitrary elements ωi ∈ Z [F] and
i ∈ I.

Proof.

Using additivity and the product rule, uniqueness is assured. We note that,

• ∆
(

Sn1
i1

Sn2
i2

)
= ∆Sn1

i1
+ Sn1

i1
∆Sn2

i2

• ∆
(

Sn1
i1

Sn2
i2

Sn3
i3

)
= ∆

(
Sn1

i1
Sn2

i2

)
+ Sn1

i1
Sn2

i2
∆Sn3

i3
= ∆Sn1

i1
+ Sn1

i1
∆Sn2

i2
+ Sn1

i1
Sn2

i2
∆Sn3

i3

where we have used the product rule. Then, we define ∆
(

Sn1
i1

. . . Snk
ik

)
:

∆
(

Sn1
i1

. . . Snk
ik

)
= ∆Sn1

i1
+ Sn1

i1
∆Sn2

i2
+ . . . + Sn1

i1
. . . + Snk−1

ik−1
∆Snk

ik
. (4.5)

One can check that ∆ is well defined and it is a derivation of Z [G].

For example,
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∆
(

uSη
i S−η

i v
)
= ∆u + u∆Sη

i + uSη
i ∆S−η

i + uSη
i S−η

i ∆v =

∆u + u
(

∆Sη
i ∆S−η

i

)
+ u∆v = ∆u + u∆v = ∆ (uv)

(where we have used: in the first equality the equation (4.5), in the second and the
fourth one the product rule and in the third one that ∆ (1) = 0) thus, ∆ is well
defined on F. �

Definition 4.5. The derivations

∂

∂Si
: Z [F] −→ Z [F]

Sj 7−→
{

1 f or i = j
0 f or i 6= j,

of the group ring of a free group F = 〈{Si| i ∈ J}〉 are called partial derivations.

Remark 4.6. It was Fox who, considering the free group Fn = 〈x1, . . . , xn〉,
showed the existence of derivations in Z [Fn] such that

∂

∂xi
: Z [Fn] −→ Z [Fn]

xj 7−→ δi,j =

{
1 f or i = j
0 f or i 6= j.

They are called The Fox partial derivatives and they are a particular case of Proposi-
tion 4.4 and Definition 4.5.

From now and on, we will consider the free group Fn = 〈x1, . . . , xn〉 and the Fox
partial derivatives.

4.1.1 The Chain Rule

Let $ : Fn → Fn be an automorphism, denoting its extension to Z [G] also by $, we
have the next lemma.

Lemma 4.7. If ω ∈ Z [Fn], then

∂$(ω)
∂xj

= ∑n
k=1 $

(
∂ω
∂xk

)
· ∂$(xk)

∂xj
for all j = 1, . . . , n.

Proof.

We consider the set S of applications

α : Z [Fn] −→ Z [Fn]
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such that

α
(
∑ ngg

)
= ∑ ngα (g)

α (ξη) = α (ξ) ηε + $ (ξ) α (η) (*).

These maps are univocally determined by its value on the generators of Fn.

Any element of Fn can be written as

xε1
i1

. . . xεk−1
ik−1

xεk
ik

with ε i ∈ Z.

and we are going to see that α
(

xε1
i1

. . . xεk−1
ik−1

xεk
ik

)
is determined by the values of

α (xi).

Taking ξ = xε1
i1

. . . xεk−1
ik−1

and η = xεk
ik

, we note that α
(

xε1
i1

. . . xεk−1
ik−1

xεk
ik

)
is determined

by α (ξ) and α (η) because of (*). Then, due to the fact that the length of ξ and η is
shorter than the length of xε1

i1
. . . xεk−1

ik−1
xεk

ik
, we can reduce to the case where we only

have α (xi) and α
(

x−1
i

)
by induction on its length.

But, as we have seen before, α
(

x−1
i

)
= −$

(
x−1

i

)
α (xi) and we can affirm that

α
(

x−1
i

)
is determined by α (xi).

Now, we prove that both sides of the equality in statement of the lemma are in S ,
additivity is easy to see.

If

α (ω) =
∂$(ω)

∂xj
,

we have

α (ξη) =
∂$(ξη)

∂xj
= ∂($(ξ)$(η))

∂xj
= ∂$(ξ)

∂xj
$ (η)ε + $ (ξ)

∂$(η)
∂xj

But, note that $ (η)ε = ηε and we have just obtained that the left hand side of the
statement of the lemma is in S .

If

α (ω) = ∑n
k=1 $

(
∂ω
∂xk

)
∂$(xk)

∂xj
,
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we have

$
(

∂(ξη)
∂xk

)
= $

(
∂ξ
∂xk

ηε + ξ
∂η
∂xk

)
= $

(
∂ξ
∂xk

)
$ (ηε) + $ (ξ) $

(
∂η
∂xk

)
.

Then, also using $ (η)ε = ηε, we obtain the right hand side (of the statement of the
lemma) is also in S .

α (ξη) = ∑n
k=1 $

(
∂ξ
∂xk

)
ηε ∂$(xk)

∂xj
+ ∑n

k=1 $ (ξ) $
(

∂η
∂xk

)
∂$(xk)

∂xj
=

α (ξ) ηε + $ (ξ) α (η) .

Finally, we can affirm that it is sufficient to proof the equality if ω = xi. In this
case, we have

∑n
k=1 $

(
∂xi
∂xk

)
∂$(xk)

∂xj
= ∑n

k=1 $ (δi,k)
∂$(xk)

∂xj
= ∂$(xi)

∂xj
.

�

4.2 The Fox calculus and the Burau representation

Let Bn be the braid group with n strings and let Fn be the free group with n gen-
erators x1, x2, . . . , xn.

It is necessary to remember Theorem 2.25 in chapter 2 where we have defined the
following group isomorphism between braids and braid automorphisms:

Bn −→ B̆n = Aut (Fn)

σi 7−→ σ̆i.

Denoting 〈t〉 = {tn| n ∈ Z} the infinite cyclic group generated by a variable t, we
define the group morphism:

Fn −→ 〈t〉
xa1

i1
. . . xak

ik
7−→ tai1+...+ai1

which induces a ring morphism:

a : Z [Fn] −→ Z
[
t, t−1

]
.

Now, we consider the application:

ρ : Bn −→ GL
(

n,Z
[
t, t−1

])
σ 7−→

(
a
(

∂σ̆ (xi)

∂xj

))
i,j
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where i denotes the row, j the column and where

∂

∂xj
: Z [Fn] −→ Z [Fn]

is the Fox partial derivate.

Theorem 4.8. ρ is the Burau representation of Bn.

Proof.

We start with the simplest cases. If we choose n = 2, we know that in B2 there is
only one generator σ1 and we want to see that:

ρ (σ1) −→ U1 =

(
1− t t

1 0

)
.

Using Definition 2.24 in chapter 2, we note that:

ρ (σ1) −→

 a
(

∂σ̆1(x1)
∂x1

)
a
(

∂σ̆1(x1)
∂x2

)
a
(

∂σ̆1(x2)
∂x1

)
a
(

∂σ̆1(x2)
∂x2

)  =

 a
(

∂x1x2x−1
1

∂x1

)
a
(

∂x1x2x−1
1

∂x2

)
a
(

∂x1
∂x1

)
a
(

∂x1
∂x2

)
 .

Then, applying the Fox partial derivates (and (4.5)) and the morphism a, we obtain
what we were looking for:

ρ (σ1) −→
(

a (1− x2) a (x1)

a (1) a (0)

)
=

(
1− t t

1 0

)
.

If we choose n = 2, we know that in B3 there are 2 generators, σ1 and σ2, and we
want to see that:

ρ (σ1) −→ U1 =

 1− t t 0
1 0 0
0 0 1


and

ρ (σ2) −→ U2 =

 1 0 0
0 1− t t
0 1 0

 .

Using Definition 2.24 in chapter 2, we note that:

ρ (σ1) −→


a
(

∂x1x2x−1
1

∂x1

)
a
(

∂x1x2x−1
1

∂x2

)
a
(

∂x1x2x−1
1

∂x3

)
a
(

∂x1
∂x1

)
a
(

∂x1
∂x2

)
a
(

∂x1
∂x3

)
a
(

∂x3
∂x1

)
a
(

∂x3
∂x2

)
a
(

∂x3
∂x3

)
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and

ρ (σ2) −→


a
(

∂x1
∂x1

)
a
(

∂x1
∂x2

)
a
(

∂x1
∂x3

)
a
(

∂x2x3x−1
2

∂x1

)
a
(

∂x2x3x−1
2

∂x2

)
a
(

∂x2x3x−1
2

∂x3

)
a
(

∂x2
∂x1

)
a
(

∂x2
∂x2

)
a
(

∂x2
∂x3

)
 .

Then, applying the Fox partial derivates (and (4.5)) and the morphism a, we obtain
U1 and U2, respectively:

ρ (σ1) −→

 a (1− x2) a (x1) a (0)
a (1) a (0) a (0)
a (0) a (0) a (1)

 =

 1− t t 0
1 0 0
0 0 1


and

ρ (σ2) −→

 a (1) a (0) a (0)
a (0) a (1− x3) a (x2)

a (0) a (1) a (0)

 =

 1 0 0
0 1− t t
0 1 0

 .

Now, we want to verify the general case:

ρ (σi) −→ Ui =


Ii−1 0 0 0

0 1− t t 0
0 1 0 0
0 0 0 In−i−1

 f or i = 1, 2, . . . , n− 1

where Ik denotes the unit k× k matrix.

Using Definition 2.24 in chapter 2 and applying the Fox partial derivates (and
(4.5)), we note that:

σ̆i (x1) = x1
...

...
σ̆i (xi−1) = xi−1

 −→ Ii−1

σ̆i (xi) = xixi+1x−1
i

σ̆i (xi+1) = xi

}
−→ (*)

σ̆i (xi+2) = xi+2
...

...
σ̆i (xn) = xn

 −→ In−i−1
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(*)→ the matrix where all the elements are zero except:

∂σ̆i(xi)
∂xi

=
∂xixi+1x−1

i
∂xi

= 1− xi+1,

∂σ̆i(xi)
∂xi+1

=
∂xixi+1x−1

i
∂xi+1

= xi and

∂σ̆i(xi+1)
∂xi

= ∂xi
∂xi

= 1.

Finally, applying the morphism a, we obtain Ui:

ρ (σi) −→


Ii−1 0 0 0

0 a (1− xi+1) a (xi) 0
0 1 0 0
0 0 0 In−i−1

 =


Ii−1 0 0 0

0 1− t t 0
0 1 0 0
0 0 0 In−i−1

 .

Now, we verify that the following equality holds:

ρ (ητ) = ρ (η) ρ (τ) . (4.6)

We first note that

a (τ̆ (ω)) = a (ω)

for any ω ∈ Z [Fn]. This equality holds because, by induction on the length, we
can reduce to the case where ω = xk ∈ Fn and τ = σi and then, the result is trivial.

If we fix xi, xj (generators of Fn) and we apply the chain rule proved in Lemma
4.7, we have:

∂τ̆(η̆(xi))
∂xj

= ∑n
k=1 τ̆

(
∂η̆(xi)

∂xk

)
∂τ̆(xk)

∂xj
.

Then, applying the ring morphism a, we obtain:

a
(

∂τ̆ (η̆ (xi))

∂xj

)
=

n

∑
k=1

a
(

τ̆

(
∂η̆ (xi)

∂xk

))
a
(

∂τ̆ (xk)

∂xj

)
=

n

∑
k=1

a
(

∂η̆ (xi)

∂xk

)
a
(

∂τ̆ (xk)

∂xj

)
(4.7)

On the left most term of (4.7) we have the entries of the matrix ρ (ητ), on the right
most term there is the product of rows of ρ (η) by columns of ρ (τ), thus we have

ρ (ητ) = ρ (η) ρ (τ).
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Finally, we already know that any braid of Bn can be written as a product of gen-
erators σ1, . . . , σn−1, the determinant of any ρ (σi) is equal to −t and taking into
account (4.6), we can affirm that ρ is well-defined, namely that ρ (ω) is invertible
for all ω ∈ Z [Fn], and, again by (4.6), it is a group morphism.

Thus, ρ is the Burau representation of Bn. �



Conclusions

We have seen what is the braid group and how it can be defined in geometrical
terms, in algebraic terms through a group presentation by generators and relations
(the Artin braid group) and in terms of automorphisms of the free group.

Taking this into account, we have defined an important representation of the braid
group, the Burau representation. We have proved that for all n ≥ 2 it is reducible
and we have given its reduced form. Then, we have added the detailed study of
its faithfulness, arriving to affirm that for n = 1, 2 and 3 the representation is
faithful. When n ≥ 5, we have indicated how it can be seen that it is not faithful. 1

In addition, we have also proved that the Burau representation can also be defined
through the Fox calculus.

From my point of view, there are three possible paths to follow after this work,
from which, in the future, I would like to explore the first and the third ones:

1. Go in depth in braid theory: understanding the proof of the fact that two
braid diagrams present isotopic braids if and only if these diagrams are R-
equivalent (Theorem 2.9) and of the fact that two polygonal n-braids are
isotopic if and only if one can be transformed into the other one by a finite
number of elementary moves (Theorem 2.11) and, also, the proof of the fact
that the n-braid group is isomorphic to the Artin braid group (Theorem 2.22).

2. Make the necessary calculations and computations to check that ψ5 is not
faithful.

3. Study other representations of the braid group and their properties.

1We do not mention the case when n = 4 because, as we have said in the introduction, it have
not been solved yet.
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