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ABSTRACT  20 

A simultaneous derivatization/extraction method followed by liquid chromatography-21 

electrospray-high resolution mass spectrometry for the determination of volatile thiols in 22 

hydroalcoholic matrixes was optimized and used to identify and quantify volatile thiols in wine 23 

and beer samples. The method was evaluated in terms of sensitivity, precision, accuracy and 24 

selectivity. The experimental LOQs of eleven thiols tested ranged between 0.01 ng/L and 10 25 

ng/L. Intra-day relative standard deviation (RSD) was in general lower than 10% and inter-day 26 

RSD ranged between 10% and 30%. Recovery in the model and real matrixes ranged from 45% 27 

to 129%. The method was then applied for the analysis of four white wines and six beers. Five 28 

out of the eleven reference thiols were identified and quantified in the samples analysed. The 29 

non-target approach, carried out by monitoring the diagnostic ion at m/z 275.9922 30 

[C13H10ONSe]+ in the fragmentation spectrum, allowed detecting, in the same samples, 31 

fourteen non-target thiols.  32 

 33 

Keywords: wine, beer, thiols, derivatization, high resolution mass spectrometry (HRMS), 34 

HRMS/MS, Orbitrap.  35 

36 
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1. INTRODUCTION 37 

Volatile sulfur compounds are major contributors to several food and beverage aromas 38 

(McGorrin, 2011; Vermuelen Gijs & Collin, 2005). Due to their extremely low odor thresholds, 39 

they have a significant sensory impact even at very low concentrations. In particular, volatile 40 

thiols are well known to be powerful odorants in beverages such as wine (Tominaga, 41 

Baltenweck-Guyot, Peyrot des Gachons & Dubourdieu, 2000; Kotseridis & Baumes, 2000) and 42 

beer (Vermeulen, Lejeune, Tran & Collin, 2006; Hugues, 2009). Among wine varietal thiols, 4-43 

mercapto-4-methyl-pentan-2-one, 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate 44 

(3MHA), are responsible for box tree, exotic fruit and grapefruit aromas, respectively, in wines 45 

made from Sauvignon Blanc, Colombard, Scheurebe, Merlot and Cabernet Sauvignon cultivars, 46 

among others (Tominaga et al., 1999; Schneider, Charrier, Razungles & Baumes; 2006; 47 

Kotseridis & Baumes, 2000; Guth, 1997; Darriet, Tominaga, Lavigne, Boidron & Dubourdieu; 48 

1995; Bouchilloux, Darriet, enry, Lavigne-Cruege & Dubourdieu, 1998). Other thiols such as 2-49 

furanmethanethiol (2FMT), 2-methyl-3-furanthiol (2M3FT), and benzenemethanethiol, have 50 

been associated with the empyreumatic notes of aged wines (Blanchard, Tominaga & 51 

Dubourdieu, 2001; Tominaga, Blanchard, Darriet & Dubourdieu, 2000; Tominaga, Guimbertau 52 

& Dubourdieu, 2003). Furthermore, several polyfunctional thiols have been reported in beer, 53 

usually associated with sensory defects. In particular, 3-methyl-2-buten-1-thiol (3MBT) imparts 54 

the well-known lightstruck and “skunky” off flavors (Huvaere, Andersen, Skibsted, Heyerick & 55 

Keukeleirea, 2005; Goldstein, Rader & Murakami, 1993; Lermusieau & Collin, 2003), while 4-56 

mercapto-4-methyl-2-pentanone (Cosser, Murray & Holzapfel, 1980) and 3-mercapto-3-57 

methylbutyl-formate (Schieberle, 1991) induce a “ribes, catty” odor. Recently, 3-mercapto-2-58 

methylbutanol and 2-mercapto-3-methylbutanol were associated with onion-like notes in beer 59 

(Vermeulen et al., 2006). Moreover, 2M3FT (Lermusieau, M. Bulens & Collin, 2001) and 3MH 60 
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are often present in fresh lager beers, although their sensory impact seems of little relevance  61 

(Vermeulen et al., 2006). 62 

Finally, highly volatile thiols, such as hydrogen sulfide (H2S), methanethiol, ethanethiol and 63 

propanethiol, have been identified as responsible for putrefaction, garlic, onion or rotten egg-64 

like notes, in beer (Hugues, 2009) and in wine, as reviewed by Mestres et al. (2000). 65 

The analytical assay of volatile thiols in food and beverages is particularly difficult due to the 66 

complexity of the matrixes, together with the typically low concentrations and high reactivity 67 

of the thiols. The most widely used analytical methods are based on the liquid–liquid 68 

extraction of thiols from a wine or beer matrix, followed by derivatization with p-69 

hydroxymercurybenzoate (Vermeulen et al., 2006; Tominaga, Murat & Dubourdieu, 1998) or 70 

by reversible covalent chromatography (Schneider, Kotseridis, Ray, Augier & Baumes, 2003). 71 

More recently, 2,3,4,5,6-pentafluorobenzyl bromide (PFBBr) has been used to derivatize thiols 72 

on solid-phase microextraction (SPME) fibers (Mateo-Vivaracho, Cacho & Ferreira, 2007) or in 73 

the wine matrix, followed by isolation of the derivatives either via solid-phase extraction (SPE) 74 

(Mateo-Vivaracho, Cacho & Ferreira, 2008) or SPE followed by SPME (Rodríguez-Bencomo, 75 

Schneider, Lepoutre &  Rigou, 2009). The best quantification performance achieved with these 76 

methods uses stable isotopic dilution, which involves the synthesis of deuterated thiols. 77 

These procedures require relatively large sample amounts, they are laborious and time-78 

consuming, and some of them involve several sample-manipulation steps during which volatile 79 

thiols can be lost or undergo degradation. 80 

In order to devise a simple, reliable, selective and sensitive method for the analysis of volatile 81 

thiols at trace levels in hydroalcoholic matrices such as wine and beer, a simultaneous 82 

derivatization/extraction method followed by liquid chromatography-electrospray-high 83 

resolution mass spectrometry (LC-ESI-HRMS) was developed using ebselen as the 84 

derivatization reagent. This choice was based on recent reports of its high selectivity, fast 85 
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reaction and high derivatization yield for some biological thiols (Xu, Zhang, Tang, Laskin, Roach 86 

& Chen, 2010), and volatile thiols in lipid matrixes (Vichi, Cortés-Francisco & Caixach, 2013). 87 

HRMS was chosen to provide the highest chemical selectivity . The analytical conditions were 88 

optimized in model systems and real wine and beer samples, both spiked with eleven 89 

representative volatile thiols. The method was first evaluated in terms of sensitivity, precision, 90 

accuracy and selectivity, and then applied to real samples. Moreover, a non-target approach 91 

based on the formation of a diagnostic product ion was evaluated using real wine and beer 92 

samples. 93 

2. MATERIAL AND METHODS 94 

2.1. Chemicals and reagents 95 

Mass spectrometry grade dichloromethane and methanol (MS SupraSolv®) were purchased 96 

from Merck (Darmstadt, Germany). Water was of ultrapure milli-Q grade. Ammonium formate 97 

was from Sigma-Aldrich (St. Louis, MO, USA). Nitrogen (Alphagaz N2, purity 99.999%, Air 98 

Liquid) was used in the Orbitrap-Exactive as nebulization and fragmentation gas.  99 

Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one, purity 98%), absolute ethanol (purity 100 

99.8%), ethylenediaminetetraacetic acid (EDTA) (purity 98,5%);  3-mercaptohexyl acetate 101 

(3MHA) (purity 98%); 3-mercaptohexanol (3MH) (purity 98%); 3-mercapto-3-methylbutan-1-ol 102 

(3MMB) (purity 98%); 2-furanmethanethiol (2FMT) (purity 97%);  p-mentha-8-thiol-3-one (MT) 103 

(purity 98%); 1-hexanethiol (HT) (purity 98%); 4-methoxy-α-toluenethiol (IS, purity 90%) were 104 

purchased by Sigma-Aldrich (St Louis, MO, USA). 4-mercapto-4-methylpentan-2-ol (4MMP) 105 

(purity 98%), 4-methoxy-2-methyl-2-butanethiol (4MMB) (purity 98%); 3-mercaptohexyl 106 

hexanoate (3MHH) (purity 98%); 1-phenylethyl mercaptan (1PEM) (purity 98%)  were from 107 

Endeavour Speciality Chemicals Ltd (Northants, UK). 3-methyl-2-butene-1-thiol preparation kit 108 

was provided by Toronto Research Chemicals Inc. (North York, Canada). Molecular structures 109 

of the reference thiols are shown in Fig. S1 (Supplementary information). 110 



6 

 

2.2. Model wine and model beer 111 

Model wine was prepared according to Labanda et al. (2009), by dissolving 5 g/L of glycerol, 10 112 

g/L of glucose, 5 g/L of tartaric acid, 10 mg/L of albumin, 300 mg/L of pectin, 100 mg/L of 113 

tannic acid, 150 mg/L of sodium methabisulfite and 120 m/L of absolute ethanol in deionized 114 

water. The pH of the model wine was 3.0. 115 

Model beer was prepared according to Eagles & Wakeman (2002) with some modifications: 116 

1.5g/L of glycerol, 1.5 g/L of maltose 100 mg/L of citric acid, 100 mg/L of albumin, 300 mg/L of 117 

pectin, 50 mg/L of tannic acid and 50 mL/L of absolute ethanol in deionized water. The pH of 118 

the model beer was 4.2. 119 

2.3. Wine and beer samples 120 

The method was applied to distinct commercial samples of wine and beer provided by local 121 

retails. Wine samples were: Albariño (2012) Denomination of Origin (D.O.) Rias Baixas (Spain) 122 

(sample W1); Sauvignon Blanc (2012) D.O. Rueda (Spain) (W2); Riesling (2012) D.O. Penedés 123 

(Spain) (W3); Sauvignon blanc/gewürztraminer (2012) D.O. Penedès (Spain) (W4). Two lager 124 

beer samples exposed to light (B1, B2), one lager (B3), one double-malt (B4), one alcohol free 125 

(B5) and one stout (B6) commercial beers were analyzed.  126 

2.4. Derivatization/extraction conditions 127 

The derivatization and extraction conditions were optimized in model and real wine and beer 128 

samples spiked with reference thiols at 5 ng/L. The most suitable conditions were determined 129 

by comparing absolute peaks areas. Derivatization/extraction conditions were finally fixed as 130 

follows: 20 mL of sample were weighed into a screw cap-tube, added with 400 µL of EDTA 30 131 

mg/mL and spiked with 4-methoxy-α-toluenethiol (IS) to a final concentration of 10 ng/L. 6 mL 132 

of ebselen 0.1 mM in dichloromethane was then added and the mixture was vortex-mixed 133 

during 1 min. The sample was maintained under nitrogen atmosphere during this process. 134 
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After centrifugation (4000 rpm, 15 min), 1 mL of the dichloromethane phase was collected, 135 

dried under nitrogen flow and redissolved in 0.1 mL of methanol.  136 

2.5. High performance liquid chromatography (HPLC) 137 

The HPLC system consisted of a Surveyor MS Plus pump coupled to an Accela Open automatic 138 

sampler (Thermo Fisher Scientific, San Jose, California) equipped with 10 µL loop. The 139 

chromatographic separation was performed on a Luna C18 (150 × 2.1 mm, 5 µm) analytical 140 

column (Phenomenex, Torrance, CA). Elution was performed at a flow rate of 200 µL/min, 141 

using water (solvent A) and methanol (solvent B), both containing ammonium formate 10 mM. 142 

The solvent gradient changed according to the following conditions: 50% (A)-50% (B) during 2 143 

min, to 100% (B) in 18 min; 100% (B) during 13 min, then to 50% (A)-50% (B)  in 1 min, 144 

followed by 6 min of maintenance. 145 

2.6. High resolution mass spectrometry (HRMS) 146 

Mass spectrometric analysis was carried out with an Orbitrap-Exactive-HCD (Thermo Fisher 147 

Scientific, Bremen, Germany) equipped with an electrospray source (H-ESI II). The ionization 148 

conditions in positive mode were according to Vichi et al. (2013): spray voltage 3.75 kV, 149 

capillary voltage 25 V, skimmer voltage 16 V, tube lens voltage 80 V. Sheath gas flow rate was 150 

set at 40 arbitrary units (au), auxiliary gas flow rate was 10 au, capillary temperature was 275 151 

ºC, and heater temperature was 30 ºC. The mass range was set to m/z 50-1200. The automatic 152 

gain control was used to full fill the C-trap and gain accuracy in mass measurements (high 153 

dynamic range mode, 3x106 ions). Maximum injection time was 500 ms. High resolving power 154 

defined as R: 50,000 (m/z 200, FWHM), 2 HZ, was set. High energy Collision Dissociation (HCD) 155 

voltage was fixed at 25 eV. In a single injection, the Orbitrap mass analyzer alternated full scan 156 

mode and "All Ion Fragmentation" (AIF) mode at a resolution power of 50,000 (m/z 200, 157 

FWHM). Mass accuracies better than 2 ppm were achieved for molecular and product ions, 158 

always working with external calibration. 159 
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The molecular formulae calculation was performed with Xcalibur 2.1 (Thermo Fisher Scientific, 160 

Bremen, Germany). In order to obtain a reliable  list of confidence formulae from a mass 161 

measurement, heuristic filtering (criteria) were set to generate reliable elemental formulae: C 162 

≥ 13, O ≥ 1, N=1, Se=1, S=1, and RDB ≥ 8.5. The mass peaks considered were single positive 163 

charged ions >103 area counts. 164 

2.7. Validation 165 

Quantification was performed using an internal standard and by constructing matrix-matched 166 

calibration curves in the range 0.01-50 ng/L, except for 3MBT (5-50 ng/L). Matrix-matched 167 

calibration curves were made by analyzing blank wine or beer samples spiked with different 168 

amounts of reference thiols dissolved in methanol. Spiked matrix solutions were derivatized 169 

and extracted as previously described for samples.  170 

Linearity within these ranges was evaluated by the correlation coefficient, r. 171 

Experimental limits of quantification (LOQ) were determined by the lowest point of the 172 

calibration curve, which was assessed in accordance with the established identification criteria: 173 

retention time drift <3-fold the standard deviation (SD) of the method, mass accuracy < 2 ppm 174 

with real resolution ≥20.000 (full width at half maximum – FWHM) at the mass range of 175 

interest, and the presence of isotope ions containing 80Se and 78Se, respectively.  176 

The precision, expressed as intra- and inter-day relative standard deviation (RSD) was obtained 177 

analysing the same blank wine and beer spiked with thiols at two concentration levels: 1 and 178 

20 ng/L. The repeatability was calculated on seven samples analyzed within the same day. The 179 

intra-day RSD was calculated in seven samples analysed on the same day, whereas the inter-180 

day RDS was obtained from six samples analysed on different days. 181 

The recovery of the extraction and the matrix effect were assessed by comparing peak areas of 182 

reference thiols derivatized with ebselen 0.1 mM in dichloromethane with peak areas of thiols 183 

after the derivatization/extraction step, using the same ebselen solution. Thiols were dissolved 184 
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in 20 mL of: model wine, model beer, white wine, red wine and beer, respectively. Recovery 185 

and matrix effect were calculated for eleven reference thiols at two concentration levels: 1 and 186 

20 ng/L. 187 

3. RESULTS AND DISCUSSION 188 

As reported by Xu et al. (2010),  Mugesh et al. (2001) and Sarma e al. (2005), the reaction 189 

between the SH group of the thiol and the Se-N bond of ebselen yields a selenenyl sulfide 190 

derivative through the formation of an Se-S bond (Fig S2, Supplementary information). This 191 

fast, selective and efficient reaction enables the derivatization and isolation of volatile thiols 192 

from hydroalcoholic matrixes by a simple liquid–liquid extraction, over a minimum time and 193 

with minimum sample manipulation. A selective derivatization strategy is the key to stabilizing 194 

the free thiol group. The use of ebselen as the derivatization agent allows the reactive thiol 195 

group to be protected and the ESI-HRMS responses of the derivative to be increased due to 196 

the presence of the easily ionizable aminic nitrogen atom. Moreover, selective chemical 197 

tagging of volatile thiol with a molecule containing selenium allowed outstanding detection 198 

selectivity. In fact, after derivatization with ebselen, all the thiols showed the characteristic 199 

selenium isotopic pattern, as exemplified by 3MHA extracted from spiked wine (1 ng/L) (Fig. 200 

1a), which fitted the theoretical isotopic pattern perfectly (Fig. 1b). Isotope M+6, which 201 

matches the presence of an 80Se atom, presented the strongest signal; followed by M+4, which 202 

corresponds to the presence of 78Se. Isotopes M+6 and M+4 were used as quantification and 203 

confirmation ions, respectively.  204 

Compliance with the identification criteria for derivatized thiols are reported in Table 1. 205 

Independently of the concentration and matrix tested, mass accuracy was always better than 2 206 

ppm, with a SD of the mass error of between 0.1 and 0.4 ppm. The real resolution was > 207 

28,000 for all the thiols analyzed. 208 

3.1.1. Optimization of derivatization/extraction conditions 209 
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The derivatization and extraction conditions previously optimized for lipid samples (Vichi et al., 210 

2013) were adapted to hydroalcoholic samples by using dichloromethane as the extraction 211 

solvent. Distinct solvent volumes and ebselen concentrations were tested to optimize the 212 

recovery of derivatized thiols in such matrixes. The sample volume to extraction solvent 213 

volume ratio was proportional to the thiol uptake (Fig. S3a, supplementary information). Given 214 

that above ratios of 2.5-3 the increase in thiol uptake was low, higher volume ratios were not 215 

tested. To enable easy collection of a discrete volume of clean sample extract after 216 

centrifugation, the final sample volume to dichloromethane volume ratio was fixed at 20:6 mL.  217 

No substantial differences were observed in the thiol response using ebselen concentrations of 218 

between 0.05 and 0.1 mM for the analysis of beer or wine spiked at 10 ng/L (Fig. S3b, 219 

supplementary material). However, the highest of these ebselen concentrations was chosen 220 

for further analysis to ensure complete derivatization of thiols even at the higher 221 

concentrations reported in the literature (Tominaga et al., 2000; Vermuelen et al., 2006). 222 

Prior to the analysis, a concentration step was applied in order to increase the response of the 223 

thiols, and dichloromethane was replaced by methanol to improve the chromatography.  224 

Representative thiols containing different functional groups were chosen to develop and 225 

evaluate the method. They expressly included primary, secondary and tertiary thiols in order 226 

to detect any discrimination effect in their derivatization. The exact mass, the molecular 227 

formula and the molecular structure of the selected reference thiols are shown in Table 1 and 228 

Fig. S1 (Supplementary information).  229 

3.2. LC-ESI-HRMS analysis 230 

The chromatograms obtained from the derivatized extract of a white wine spiked with 231 

reference thiols at 1 ng/L (IS 10 ng/L; 3MTB 20 ng/L), by selecting the exact mass of each thiol 232 

derivative from the ESI+ full-scan analysis, are shown in Fig. S4 (Supplementary information). 233 

The chromatographic retention time drifts, expressed as SD and calculated from samples 234 
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analyzed in different days, are reported in Table 1. As can be observed, HRMS provided high 235 

selectivity and sensibility, with almost no noise. HRMS was chosen since by means of accurate 236 

mass (AM) measured with high resolving power it provides the best information about the 237 

molecular composition of the compounds, thereby allowing us to confirm or tentatively 238 

identify their elemental formulae. Moreover, it has been demonstrated in several studies that 239 

high resolution is necessary in the analysis of complex samples in order to avoid interference 240 

from isobaric compounds and thus the problem of false positives (Kaufmann, 2012).  241 

3.3. Validation. 242 

3.3.1. Recovery and matrix effect 243 

In order to estimate the effect of the matrix on the extraction of derivatized thiols, their 244 

recovery was assessed in spiked red and white wine, beer, model wine and model beer. The 245 

response of thiols after derivatization and extraction in such matrixes was compared with the 246 

response obtained by adding the same concentrations of thiols directly to the ebselen 247 

solution. Table 1 reports the recovery of the thiols from each matrix, calculated as the 248 

percentage of the peak areas. The extraction of derivatized thiols, evaluated at two 249 

concentration levels, can be considered as quantitative in model systems, beer and white wine 250 

for all the thiols except 3MBT, which in some cases presented slightly lower recoveries (though 251 

always over 45%). In the case of red wine, a moderate, overall decrease of thiol recovery was 252 

observed. 253 

3.3.2. Method sensitivity and linearity 254 

Quantification was carried out using an internal standard and by constructing matrix-matched 255 

calibration curves using white wine and beer spiked at the concentrations reported in Table 2. 256 

The lower limit of these ranges was determined by the limit of quantification (LOQ) of each 257 

thiol. Linearity within these ranges, evaluated by the correlation coefficient (r) was > 0.98, 258 

except for 3MBT in wine (r = 0.9779). 259 
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The experimental LOQ was given by the lowest concentration which it was possible to measure 260 

according to the established identification criteria: retention time drift, mass accuracy, 261 

resolution, and the presence of ions containing the isotopes 80Se and 78Se, as detailed in the 262 

Material and methods section.  263 

The LOQ of the eleven reference thiols, assessed in wine and beer matrixes, ranged from 0.01 264 

to 5 and from 0.01 to 10 ng/L, respectively (Table 2): slightly higher in beer than in wine. These 265 

LOQ values were compared with those obtained by other analytical methods, when available. 266 

The LOQ for 3MH and 3MHA in wine (0.01 ng/L) were far below those obtained by other 267 

methods: 0.83 and 4.3 ng/L (Rodríguez-Bencomo et al., 2009); 1 and 0.7-5 ng/L (Schneider et 268 

al. 2003), 3.1 ng/L (Sarrazin, Shinkaruk, Tominaga, Bennetau, Frérot & Dubordieu , 2007), 20 269 

and 1.9 ng/L (Mateo-Vivaracho et al, 2007); 0.8 and 6 ng/L (Mateo-Vivaracho, 2008). Likewise, 270 

the LOQ for 2FMT in white wine (0.01 ng/L) was lower than previous values: 1.4 ng/L (Mateo-271 

Vivaracho et al, 2007), 0.3 ng/L (Mateo-Vivaracho, 2008), 2.2 ng/L (Tominaga & Dubourdieu, 272 

2006) and below the reported odor threshold: 0.4 ng/L (Tominaga et al., 2000).  273 

3MBT showed a LOQ higher than those of the other thiols. As standard 3MBT is not easily 274 

available, a commercial preparation kit was used to obtain this compound, for which the 275 

reaction yield could not be verified. A low reaction yield during standard preparation would 276 

explain the higher LOQ calculated for this compound. As far as we know, no LOQ data are 277 

available for 3MBT by other methods, but an odor threshold of from 1 to 35 ng/L was reported 278 

for this thiol (Hugues, 2009). Overall, the thiol LOQ are lower than their odor thresholds 279 

reported in the literature (Tominaga et al., 2000; Mestres et al., 2000; Hugues, 2009), 280 

indicating that the present method is suitable for current purposes. 281 

3.3.3. Method precision  282 

The precision of the method, expressed as intra-day and inter-day relative standard deviation 283 

(RSD), was calculated at two concentration levels fixed in the low and mid-range of the 284 
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calibration curve and in two matrixes: wine and beer (Table 2). Intra-day RSD was in general 285 

below 10%, while inter-day RSD ranged between 5% and 30%. 286 

3.4. Non-target analysis  287 

Prompt fragmentation corresponding to the S-Se bond indicated in the scheme (Fig. 1c) means 288 

that thiol structural information cannot be obtained by MS/MS analysis. However, the 289 

formation of a diagnostic product ion at m/z 275.9922 [C13H10ONSe]+, which corresponds to 290 

the ebselen moiety of the derivatives and preserves the typical selenium isotopic pattern, is 291 

useful for the screening of non-target thiols via full-scan mode acquisition, with and without 292 

HCD fragmentation. The presence of a non-target derivatized thiol may be revealed by the 293 

presence of the diagnostic ion in the HCD chromatogram. Thiol identification must be 294 

confirmed by the presence in the full-scan chromatogram of the corresponding identification 295 

and confirmation ions (isotopes M+6 and M+4) that fit with the restrictions established for 296 

their molecular composition.  297 

3.5. Analysis of wine and beer samples 298 

In order to evaluate the suitability of the optimized method for the analysis of real 299 

hydroalcoholic beverages, four white wines and six beers were selected for analysis. Five out 300 

of the eleven reference thiols studied were identified and quantified in the samples analyzed 301 

(Table 3). In the same samples, fourteen non-target thiols were detected and quantified by 302 

expressing their concentration as ng IS equivalent/L. Table 3 shows the exact mass and the 303 

elemental composition of these thiol derivatives. Some of them were also tentatively 304 

identified on the basis of their molecular formula and reports of their occurrence in wine or 305 

beer, when available. Both target and non-target thiols were characterized by the diagnostic 306 

ion m/z 275.9922, according to the restrictions established for their molecular composition, 307 

and contained both quantification and confirmation ions (80Se and 78 Se, respectively), 308 

identified with a mass accuracy < 2 ppm at R > 28,000. 309 
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The target thiols 3MH and 3MHA were present in wines at concentrations of from 0.21 to 1.32 310 

ng/L and from 0.01 to 0.22 ng/L, respectively; they were most abundant in Sauvignon Blanc, as 311 

expected. 3MMB was found in both wine and beer samples, in the range 0.01-0.03 ng/L. 3MBT 312 

reached 37.3 and 3.4 ng/L in lager beer samples exposed to light, while it was not detected in 313 

other samples. Finally, 2FMT was identified in the stout beer sample, probably due to the use 314 

of roasted malt or barely in the production of this product. Anyway, it was at a concentration 315 

below the LOQ (<0.1 ng/L). 316 

Regarding non-target thiols, those tentatively identified as methyl mercaptopropionate, ethyl 317 

mercaptopropionate, methanethiol and mercaptoethanol were the most abundant in wine 318 

samples and stout beer, in some cases reaching concentrations of nearly 50 ng/L (expressed as 319 

equivalents of IS). Methanethiol was the most abundant non-target thiol in lager beers, 320 

ranging between 1.9 and 4.6 ng/L.  321 

The importance of HRMS for the correct identification of compounds is demonstrated in Fig. 2, 322 

which shows the presence in a wine sample of two derivatized thiols with the same nominal 323 

mass and quite similar chromatographic retention times, but different molecular formula: the 324 

tentatively identified ethyl 3-mercaptopropionate (C18H20O3NSSe, m/z 410.0324) (Fig. 2a) and 325 

3MH (C19H24O2SSe, m/z 410.0687) (Fig. 2b). The same figure shows the isotopic patterns of 326 

both derivatized thiols, and their compliance with the identification criteria. 327 

 328 

In conclusion, the simultaneous derivatization/extraction method followed by ESI-LC-HRMS 329 

was optimized for the determination of volatile thiols in hydroalcoholic matrixes and used to 330 

identify and quantify volatile thiols in real wine and beer samples. The method was shown to 331 

be fit for this purpose by carrying out a validation study to ensure reliable results. 332 

Experimental LOQs were between 0.01 and 0.05 ng/L for most of the thiols evaluated, and 333 

lower than those available in the literature. Acceptable recoveries where obtained in model 334 
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and real wine and beer matrixes, as well as satisfactory intra-day and inter-day RSD values. Any 335 

positive finding had to satisfy the identification criteria established, based on retention time 336 

drift, mass accuracy, real resolution, and the presence of identification and confirmation ions. 337 

Five target thiols were identified and quantified in wine and beer samples, while fourteen thiol 338 

derivatives were detected by the non-target approach, which were tentatively identified on 339 

the basis of their molecular formula.  340 

 341 

Acknowledgements 342 

This study was supported by the Spanish Ministerio de Economia y Competitividad through the 343 

Ramón y Cajal program (RYC-2010-07228) and the project AGL 2011-23872.  344 

345 



16 

 

Literaure cited 346 

Blanchard, L., Tominaga, T. & Dubourdieu, D. (2001) Formation of Furfurylthiol Exhibiting a 347 

Strong Coffee Aroma during Oak Barrel Fermentation from Furfural Released by Toasted 348 

Staves. Journal of Agricultural and Food Chemistry, 49, 4833-4835. 349 

Bouchilloux, P., Darriet, P., Henry, R., Lavigne-Cruege, V. & Dubourdieu, D. (1998) Identification 350 

of Volatile and Powerful Odorous Thiols in Bordeaux Red Wine Varieties. Journal of 351 

Agricultural and Food Chemistry, 46, 3095-399. 352 

Cosser, K.B. , Murray, J.P. & Holzapfel, C.W. (1980) Investigation of a ribes off-flavor in beer. 353 

Technical Quarterly MBAA Communication, 17, 53-59. 354 

Darriet, P., Tominaga, T., Lavigne, V., Boidron, J.N. & Dubourdieu D. (1995) Identification of a 355 

powerful aromatic component of Vitis vinifera L. var. sauvignon wines: 4-mercapto-4-356 

methylpentan-2-one. Flavour and Fragrance Journal, 10, 385-392. 357 

Eagles, W.P. & Wakeman, R.J. (2002) Interactions between dissolved material and the fouling 358 

layer during microfiltration of a model beer solution. Journal of Membrane Science, 206, 359 

253-264. 360 

Goldstein, H., Rader, S. & Murakami, A. (1993) Determination of 3-methyl-2-butene-1-thiol in 361 

beer. Journal of the American Society of Brewing Chemists, 51, 70-74. 362 

Guth, H. (1997) Quantitation and sensory studies of character impact odorants of different 363 

white wine varieties. Journal of Agricultural and Food Chemistry, 45, 3027-3032. 364 

Hugues, P. in: Russell, I., Bamforth, C. W. & Stewart G. (Eds.), Beer, a quality perspective-365 

Handbook of Alcoholic Beverages, Academic press, London, 2009, pp 61. 366 

Huvaere, K., Andersen, M.L.,  Skibsted, L.H.,  Heyerick, A. & Keukeleirea, D. (2005) 367 

Photooxidative Degradation of Beer Bittering Principles:  A Key Step on the Route to 368 

Lightstruck Flavor Formation in Beer. Journal of Agricultural and Food Chemistry, 53, 369 

1489-1494. 370 

http://www.sciencedirect.com/science/article/pii/S0376738801007724
http://www.sciencedirect.com/science/article/pii/S0376738801007724
http://pubs.acs.org/doi/abs/10.1021/jf970280a
http://pubs.acs.org/doi/abs/10.1021/jf970280a


17 

 

Kaufmann, A. (2012) The current role of high-resolution mass spectrometry in food analysis. 371 

Analytical and Bioanalytical Chemistry, 403, 1233-1249. 372 

Kotseridis, Y. & Baumes, R. (2000) Identification of Impact Odorants in Bordeaux Red Grape 373 

Juice, in the Commercial Yeast Used for Its Fermentation, and in the Produced Wine. 374 

Journal of Agricultural and Food Chemistry, 48, 400-406. 375 

Labanda, J., Vichi, S., Llorens, J. & López-Tamames, E. (2009) Membrane separation technology 376 

for the reduction of alcoholic degree of a white model wine. LWT - Food Science and 377 

Technology, 42, 1390-1395. 378 

Lermusieau, G., Bulens, M. & Collin, S. (2001) Use of GC−Olfactometry to Identify the Hop 379 

Aromatic Compounds in Beer J. Journal of Agricultural and Food Chemistry, 49, 3867-380 

3874. 381 

Lermusieau, G. & Collin, S. (2003) Volatile sulfur compounds in hops and residual 382 

concentrations in beer-A review. Journal of the American Society of Brewing Chemists, 61, 383 

109-113. 384 

McGorrin, R.J. in: M. Quian et al. (Eds.), Volatile sulfur compounds in foods, ACS Symposium 385 

Series, American Chemical Society, Washington, 2011, pp.3. 386 

Mateo-Vivaracho, L., Cacho, J.  & Ferreira, V. (2007) Quantitative determination of wine 387 

polyfunctional mercaptans at nanogram per liter level by gas chromatography–negative 388 

ion mass spectrometric analysis of their pentafluorobenzyl derivatives.  Journal of 389 

Chromatography A, 1146, 242-250. 390 

Mateo-Vivaracho, L., Cacho, J.  & Ferreira, V. (2008) Improved solid-phase extraction procedure 391 

for the isolation and in-sorbent pentafluorobenzyl alkylation of polyfunctional 392 

mercaptans: Optimized procedure and analytical applications. Journal of Chromatography 393 

A, 1185, 9-18. 394 

http://www.sciencedirect.com/science/article/pii/S0023643809000802
http://www.sciencedirect.com/science/article/pii/S0023643809000802


18 

 

Mestres, M., Busto, O. & Guasch, J. (2000) Analysis of organic sulfur compounds in wine aroma.  395 

Journal of Chromatography A, 881, 569-581.  396 

Mugesh, G., du Mont, W.W. & Sies, H. (2001) Chemistry of Biologically Important Synthetic 397 

Organoselenium Compounds. Chemical Reviews, 101, 2125-2180. 398 

Rodríguez-Bencomo,  J.J., Schneider, R. , Lepoutre, J.P. & Rigou, P. (2009) Improved method to 399 

quantitatively determine powerful odorant volatile thiols in wine by headspace solid-400 

phase microextraction after derivatization. Journal of Chromatography A, 1216, 5640-401 

5646. 402 

Sarma, B.K. & Mugesh, G. (20025) Glutathione Peroxidase (GPx)-like Antioxidant Activity of the 403 

Organoselenium Drug Ebselen: Unexpected Complications with Thiol Exchange Reactions. 404 

Journal of the American Chemists Society, 127, 11477-11485. 405 

Sarrazin, E., Shinkaruk, S., Tominaga, T., Benneteau, B., Frérot, E. & Dubordieu D. (2007) 406 

Odorous Impact of Volatile Thiols on the Aroma of Young Botrytized Sweet Wines:  407 

Identification and Quantification of New Sulfanyl Alcohols. Journal of Agricultural and 408 

Food Chemistry, 55, 1437-1444. 409 

Schieberle, P. (1991) Primary odorants of pale lager beer. Zeitschrift für Lebensmitteln 410 

Untersuchung und Forschung A, 193, 558-565. 411 

Schneider, R., Charrier, F., Razungles & A. Baumes, R. (2006) Evidence for an alternative 412 

biogenetic pathway leading to 3-mercaptohexanol and 4-mercapto-4-methylpentan-2-413 

one in wines. Analytica Chimica Acta, 536, 58-64. 414 

Schneider, R. , Kotseridis, Y., Ray, J.L., Augier, C. & Baumes R. (2003) Quantitative determination 415 

of sulfur-containing wine odorants at sub parts per billion levels. 2. Development and 416 

application of a stable isotope dilution assay. Journal of Agricultural and Food Chemistry, 417 

51, 3243-3248. 418 



19 

 

Tominaga, T., Baltenweck-Guyot, R.,  Peyrot des Gachons, C. & Dubourdieu, D. (2000) 419 

Contribution of Volatile Thiols to the Aromas of White Wines Made From Several Vitis 420 

vinifera Grape Varieties.  American Journal of Enology and Viticulture, 51, 178-181. 421 

Tominaga, T., Blanchard, L., Darriet, P. & Dubourdieu, D. (2000) A Powerful Aromatic Volatile 422 

Thiol, 2-Furanmethanethiol, Exhibiting Roast Coffee Aroma in Wines Made from 423 

Several Vitis vinifera Grape Varieties. Journal of Agricultural and Food Chemistry, 48, 424 

1799-1802. 425 

Tominaga, T.  & Dubourdieu, D. (2006) A novel method for quantification of 2-methyl-3-426 

furanthiol and 2-furanmethanethiol in wines made from Vitis vinifera grape varieties. J. 427 

Journal of Agricultural and Food Chemistry, 54, 29-33. 428 

Tominaga, T., Guimbertau, G. & Dubourdieu, D. (2003) Role of Certain Volatile Thiols in the 429 

Bouquet of Aged Champagne Wines. Journal of Agricultural and Food Chemistry, 51, 430 

1016-1020. 431 

Tominaga, T., Murat, M. & D. Dubourdieu (1998) Development of a Method for Analyzing the 432 

Volatile Thiols Involved in the Characteristic Aroma of Wines Made from Vitis vinifera L. 433 

Cv. Sauvignon Blanc. Journal of Agricultural and Food Chemistry, 46, 1044-1048. 434 

Vermeulen, C., Gijs, L. & Collin, S. (2005) Sensorial Contribution and Formation Pathways of 435 

Thiols in Foods: A Review. Food Reviews International,  21, 69-137. 436 

Vermeulen, C., Lejeune, I., Tran, T.T.H. & Collin, S. (2006) Occurrence of Polyfunctional Thiols in 437 

Fresh Lager Beers Journal of Agricultural and Food Chemistry, 54, 5061-5068. 438 

Vichi, S., Cortés-Francisco, N. & Caixach, (2013) J. Determination of volatile thiols in lipid matrix 439 

by simultaneous derivatization/extraction and liquid chromatography–high resolution 440 

mass spectrometric analysis. Application to virgin olive oil. Journal of Chromatography A, 441 

1318,180-188. 442 

http://www.ncbi.nlm.nih.gov/pubmed/16390173
http://www.ncbi.nlm.nih.gov/pubmed/16390173
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A(Vermeulen%2C+C)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A(Gijs%2C+L)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A(Collin%2C+S)
http://www.tandfonline.com/loi/lfri20?open=21#vol_21


20 

 

Xu, Y., Zhang, B., Tang, J., Laskin, P. J., Roach, H. & Chen, H. (2010) Study of Highly Selective and 443 

Efficient Thiol Derivatization Using Selenium Reagents by Mass Spectrometry. Analytical 444 

Chemistry, 82, 6926-6932. 445 

446 



21 

 

Figure legends 447 

Figure 1. (a) Mass spectrum of 3MHA, [C21H26O3NSSe]+, at 1 ng/L, derivatized and extracted 448 

from wine; (b) theoretical isotopic pattern of [C21H26O3NSSe]+; (c) mass spectrum and 449 

molecular structure of diagnostic ion [C13H10ONSe]+, m/z 275.9922; R: 50,000 (m/z 200, 450 

FWHM), mass error tolerance < 2ppm; HCD voltage: 25 eV. 451 

Figure 2. ESI+ Full scan chromatogram obtained by monitoring the exact mass of a) tentatively 452 

identified ethyl 3-mercaptopropionate-ebselen derivative at m/z 410.0324, and b) 3MH-453 

ebselen derivative at m/z 410.0687, in wine sample W2; both with the corresponding mass 454 

spectrum showing identification and confirmation ions: isotopes M+6 and M+4, relative to the 455 

presence of isotopes 80Se and 78Se, respectively. R: 50,000 (m/z 200, FWHM), mass error 456 

tolerance < 2ppm. 457 

 458 



TABLES 

Table 1. Molecular formulae, exact mass, mass accuracy and precision values, real mass resolution, chromatographic retention time and precision values for 

ebselen-derivatized thiols in positive ESI, setting the R: 50,000 (m/z 200, FWHM); recovery (%) of the extraction and standard deviation (SD) calculated real 

and model wine and beer matriXes and at two concentration levels, by comparison with derivatized thiols in dichloromethane solution (n=3).  Peak 

numbering is according to Fig. 2 and S1 (supplementary information). 

 

Compound Formula  
[M+H]+ 

Theoretic
al m/z 

∆a (ppm) 
± SD 

RT c (min) 
±SD 

 Recovery (%) ±SD 

    1 ng/L      20 ng/L   

  
model 
beer 
(n=3) 

beer 
(n=3) 

model 
wine 
(n=3) 

white 
wine 
(n=3) 

red 
wine 
(n=3) 

 
model 
beer 
(n=3) 

beer 
(n=3) 

model 
wine 
(n=3) 

white 
wine 
(n=3) 

red 
wine 
(n=3) 

1 3MMB-Ebs C18H22O2NSSe 396.0531 1.5 ± 0.3 14.34 ± 0.05  102 ±  14 80 ± 14 99 ± 14 79 ± 17 59 ± 5  91 ± 7 73 ± 13 98 ± 14 75 ± 9 61 ± 9 

2 4MMP-Ebs C19H24O2NSSe 410.0687 1.7 ± 0.3 15.38 ± 0.04  121 ± 3 91 ± 16 104 ± 23 105 ± 18 75 ± 8  120 ± 13 98 ± 15 113 ± 13 107 ± 11 91 ± 13 

3 3MH-Ebs C19H24O2NSSe 410.0687 1.6 ± 0.3 16.35 ± 0.04  129 ± 10 74 ± 11 110 ± 19 107 ± 22 84 ± 9  121 ± 12 81 ± 12 115 ± 17 97 ± 10 80 ± 7 

4 4MMB-Ebs C19H24O2NSSe 410.0687 1.4 ± 0.2 17.45 ± 0.04  114 ± 12 70 ± 21 108 ± 14 93 ±16 73 ± 12  120 ± 14 95 ± 18 110 ± 16 100 ± 12 86 ± 15 

5 2FMT-Ebs C18H16O2NSSe 390.0061 1.3 ± 0.1 16.82 ± 0.02  121 ± 16 83 ± 15 103 ± 12 103 ± 14 83 ± 11  119 ± 15 86 ± 12 100 ±6 92 ± 9 86 ± 18 

 IS C21H20O2NSSe 430.0374 1.3 ± 0.2 18.19 ± 0.02  119 ± 9 84 ± 16 104 ± 23 99 ± 17 66 ± 13  127 ± 14 102 ± 30 120 ± 20 101 ± 13 85 ± 14 

6 3MHA-Ebs C21H26O3NSSe 452.0793 1.5 ± 0.2 18.83 ± 0.02  123 ± 11 94 ± 25 112 ± 18 103 ± 21 80 ±17  111 ± 15 102 ± 24 107 ± 14 98 ± 14 79 ± 13 

7 3MBT-Ebs C18H20ONSSe 378.0419 1.6 ± 0.2 18.96 ± 0.04  <LOQ <LOQ <LOQ <LOQ <LOQ  71 ± 21 74 ± 15 70 ± 15 46 ± 11 45 ± 22 

8 1PEM-Ebs C21H20ONSSe 414.0425 1.5 ± 0.2 19.11 ± 0.03  109 ± 9 84 ± 18 103 ± 26 96 ± 15 72 ± 14  107 ± 18 97 ± 16 101 ± 14 92 ± 12 80 ± 12 

9 MT-Ebs d C23H28O2NSSe 462.1000 1.6 ± 0.2 19.32 ± 0.03  118 ± 12 90 ± 22 107 ± 18 101 ± 23 80 ± 17  121 ± 13 109 ± 27 113 ± 18 102 ± 17 84 ± 15 

10 HT-Ebs C19H24ONSSe 394.0738 1.5 ± 0.3 21.44 ± 0.02  89 ± 12 91 ± 24 94 ± 25 79 ± 16 66 ± 15  99 ± 24 112 ± 28 89 ± 15 91 ± 13 87 ± 15 

11 3MHH-Ebs C25H34O3NSSe 508.1419 1.2 ± 0.3 22.12 ± 0.02  104 ± 10 87 ± 25 101 ± 18 94 ± 19 78 ± 17  98 ± 10 106 ± 31 106 ± 17 100 ± 15 88 ± 11 
 

a: mean of n=6 replicates analysed in different days for blank beer and wine spiked samples considered together, expressed as root mean square error (RMS 

error) ± standard deviation (SD), both in ppm; b: R: real mass resolution; c:chromatographic retention time ± SD (n=14) ; d: MT, mixture of isomers 



 

Table 2. Linearity range calculated in white wine and beer matrix, evaluated by regression coefficient (r); experimental limit of quantification (LOQ) 
consisting in the lowest concentration satisfying the established confirmation criteria; method repeatability and reproducibility, calculated at two 
concentration levels, and expressed as intra-day relative standard deviation (RSD) and inter-day RSD, respectively. 

 

Compound 

Wine  Beer 

 Range 
(ng/L) 

Linearity 
(r) 

LOQ 
(ng/L) 

Intra-day RSD  
(%) (n=7) 

Inter-day RSD 
 (%) (n=6) 

 
Range 
(ng/L) 

Linearity 
(r) 

LOQ 
(ng/L) 

Intra-day RSD  
(%) (n=7) 

Inter-day RSD 
 (%) (n=6) 

 1 ng/L 20 ng/L 1 ng/L 20 ng/L  1 ng/L 20 ng/L 1 ng/L 20 ng/L 

1 3MMB-Ebs 0.01-50 0.9942 0.01 7 6 18 12  0.01-50 0.9956 0.01 5 4 13 15 
2 4MMP-Ebs 0.01-50 0.9896 0.01 4 7 20 10  0.05-50 0.9916 0.05 5 4 10 11 
3 3MH-Ebs 0.01-50 0.9961 0.01 5 6 19 12  0.05-50 0.9962 0.05 6 6 16 17 
4 4MMB-Ebs 0.01-50 0.9949 0.01 4 9 19 15  0.05-50 0.9856 0.05 6 5 9 6 
5 2FMT-Ebs 0.01-50 0.9902 0.01 4 9 12 18  0.1-50 0.9803 0.1 8 6 16 12 
6 3MHA-Ebs 0.01-50 0.9955 0.01 8 7 17 11  0.05-50 0.9932 0.05 8 4 8 9 

7 3MBT-Ebs 5-50 0.9779 5 - 38 - 52  10-50 0.9937 10 - 7 - 26 

8 1PEM-Ebs 0.01-50 0.9865 0.01 9 8 24 17  0.05-50 0.9828 0.05 10 3 11 9 
9 MT-Ebs a 0.01-50 0.9964 0.01 5 8 18 11  0.05-50 0.9944 0.05 7 5 14 10 
10 HT-Ebs 0.01-50 0.9942 0.01 6 23 23 30  0.05-50 0.9973 0.05 14 6 14 12 
11 3MHH-Ebs 0.01-50 0.9897 0.01 7 9 22 15  0.05-50 0.9831 0.05 10 6 13 5 

a:MT, sum of isomers 

 



Table 3. Target (in bold) and non-target volatile thiols detected in selected wine and beer samples. 

     Thiols in wine samples(ng/L)a  Thiols in beer samples (ng/L)b 
RT c 

(min) 
Theoretical 

m/z 
derivative 

formula [M+H]+ 
thiol 

formula Identification or tentative identification W1 W2 W3 W4  B1 B2 B3 B4 B5 B6 

11.43 354.0061 C15H16O2NSSe C2H6OS mercaptoethanold 1.2 4.3 6.9 1.9  0.52 0.33 1.0 0.47 0.97 2.27 
11.52 366.0061 C16H16O2NSSe C3H6OS  0.10 0.05 0.03 0.17        
11.56 351.9905 C15H14O2NSSe C2H4OS mercaptoacetaldehyded 0.35 0.19 0.13 0.57  0.10 0.22 0.07 0.09 0.09 0.30 

12.33 368.0218 C16H18O2NSSe C3H8OS mercaptopropanold 0.37 1.42 1.29 0.24  0.06  0.12  0.05 0.30 

12.76 426.0273 C18H20O4NSSe C5H10O3S 2-hydroxyethyl-3-mercaptopropionated 0.83 0.55 0.80 0.69        
13.02 436.0116 C19H18O4NSSe C6H8O3S       0.06  0.08 0.04 0.04  
13.78 382.0374 C17H20O2SSe C4H10OS Mercaptobutanol  or mercaptomethylpropanold 0.34 1.68 1.00 0.44  0.02  0.04  0.03 0.01 

14.36 396.0531 C18H22O2NSSe C5H12OS 3MMBe  0.03 0.01 0.02  0.16 0.20 0.21 0.08 0.13 0.23 

14.51 396.0167 C17H18O3NSSe C4H8O2S methyl-3-mercaptopropionated 6.2 31.3 47.1 15.5  1.9 0.53 4.5 1. 5 2.0 8.2 

14.92 323.9956 C14H14ONSSe CH4S methanethiold 2.9 6.6 3.0 1.6  4.6 1.9 3.4 3.2 2.0 2.7 

15.25 410.0324 C18H20O3NSSe C5H10O2S ethyl 3-mercaptopropionated 1.1 5.4 6.6 1.5  0.23 0.05 1.02 0.15 0.13 1.02 

15.66 408.0531 C19H22O2SSe C6H12OS 4-mercapto-4-methylpentan-2-oned  0.10          
15.8 452.0793 C21H26O3NSSe C8H16O2S mercaptohexyl acetate isomer d  0.05 0.02 0.01        

16.37 410.0687 C19H24O2SSe C6H14OS 3MH e 0.33 1.3 0.21 0.33        
16.60 338.0112 C15H16ONSSe C2H6S ethanethiold 0.22 0.48 0.56 0.02  0.01  0.08    
16.83 390.0061 C18H16O2NSSe C5H6OS 2MFTe           <LOQ 

16.88 424.0480 C19H22O3NSSe C6H12O2S ethyl 3-mercaptobutyrate/mercaptohexanoic acidd 0.03 0.12 0.20 0.04   0.04     
18.89 452.0793 C21H26O3NSSe C8H16O2S 3MHA e 0.01 0.22  0.02        
18.91 378.0419 C18H20ONSSe C5H7S 3MBTe      37.3 3.4     

a: W1: albariño, W2: sauvignon blanc, W3: Riesling, W4: sauvignon blanc/gewürtztraminer; b: B1: lager beer exposed to light, B2: lager beer exposed to light; 
B3: lager beer3; B4: double malt beer; B5: alcohol free beer, B6: stout beer; c: retention time; d: tentative identification on the basis of molecular formula; 
quantified as ng/L of IS; e: identified by comparison with authentic reference compound by using matrix-matched calibration curve. 
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