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ABSTRACT 19 

This study explores the metabolic profiles of concordant/discordant phenotypes of high insulin 20 

resistance (IR) and obesity. Through untargeted metabolomics (LC-ESI-QTOF-MS), we analyzed 21 

the fasting serum of subjects with high IR and/or obesity (n = 64). An partial least-squares 22 

discriminant analysis with orthogonal signal correction followed by univariate statistics and 23 

enrichment analysis allowed exploration of these metabolic profiles. A multivariate regression 24 

method (LASSO) was used for variable selection and a predictive biomarker model to identify 25 

subjects with high IR regardless of obesity was built. Adrenic acid and a dyglyceride (DG) were 26 

shared by high IR and obesity. Uric and margaric acids, 14 DGs, ketocholesterol, and 27 

hydroxycorticosterone were unique to high IR, while arachidonic, hydroxyeicosatetraenoic (HETE), 28 

palmitoleic, triHETE, and glycocholic acids, HETE lactone, leukotriene B4, and two glutamyl-29 

peptides to obesity. DGs and adrenic acid differed in concordant/discordant phenotypes, thereby 30 

revealing protective mechanisms against high IR also in obesity. A biomarker model formed by DGs, 31 

uric and adrenic acids presented a high predictive power to identify subjects with high IR [AUC 32 

80.1% (68.9− 91.4)]. These findings could become relevant for diabetes risk detection and unveil 33 

new potential targets in therapeutic treatments of IR, diabetes, and obesity. An independent validated 34 

cohort is needed to confirm these results. 35 
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1. INTRODUCTION 38 

Metabolic disorders such as insulin resistance (IR) and obesity are major health problems. IR plays 39 

an important pathophysiological role in the development of diabetes and metabolic syndrome. 40 

Obesity is also usually accompanied by other metabolic comorbidities such as IR, diabetes, and 41 

cardiovascular complications.1,2 Nevertheless, not all the subjects with obesity develop IR or 42 

diabetes, and individuals with IR are not always overweight. Subjects with obesity can be insulin-43 

sensitive (IS) and have normal blood pressure and lipid profiles, whereas normal weight individuals 44 



can present IR and β-cell impairment. 3,4 The inclusion of discordant phenotypes in research studies 45 

has shed light on new insights into the metabolic processes uniquely related to obesity or diabetes, 46 

and therefore dug more deeply into the interrelation between obesity and the development of 47 

diabetes.5 Metabolomics is the high-throughput technology that explore the global metabolic state 48 

(metabolome) of an individual by analyzing the low-molecular-weight compounds (metabolites) 49 

within a biological sample.6 Over the past decade, metabolomics has been used to identify predictive 50 

and prognostic biomarkers and to monitor the efficacy of treatments.7,8 Moreover, metabolomics has 51 

also been employed to uncover the molecular processes involved in pathophysiological states and to 52 

describe individual metabolic phenotypes (metabotypes), which can be exploited in personalized 53 

medicine and public healthcare.9 Untargeted metabolomics is a promising tool for elucidating novel 54 

mechanisms and finding disease biomarkers. It measures hundreds of metabolites and can detect 55 

previously unpredicted metabolic perturbations associated with a certain disease.6 Few untargeted 56 

metabolomic studies have explored the metabolic profiles of diabetes and obesity, and very few of 57 

high IR regardless of obesity. The comprehensive analysis of the metabolome of subjects with high 58 

IR could be key in discovering a new gold standard to predict the progression of IR and the risk of 59 

developing diabetes. The aims of this work are three-fold: (1) to explore the metabolic profiles of 60 

high IR and obesity; (2) to identify differences between concordant/discordant phenotypes of high IR 61 

and obesity; and (3) to define a predictive model for the risk of developing of diabetes. To these ends, 62 

we have carried out an untargeted metabolomic approach on fasting serum of human 63 

concordant/discordant phenotypes of high IR and obesity, followed by multivariate and univariate 64 

statistics, and an enrichment analysis. Finally we have built different predictive models of combined 65 

serum markers to identify subjects with high IR through a multivariate logistic regression and 66 

assessed their performance with ROC curves. 67 

■ MATERIALS AND METHODS 68 

Subjects and Study Design 69 



Sixty-four adult individuals (19 men and 45 women) were recruited at the Virgen de la Victoria 70 

University Hospital and Carlos Haya Hospital (Malaga, Spain). A detailed description of the study 71 

design and inclusion/exclusion criteria has been previously reported.5 Individuals were classified 72 

according to (1) the risk of developing diabetes type 2, based on fasting plasma glucose (FG) and the 73 

Homeostatic Model Assessment-Insulin Resistance index (HOMA-IR), in low IR or IS if FG < 100 74 

mg/dL and HOMA-IR < 2.5, or high IR if 100 ≤ FG < 126 mg/dL and HOMA-IR > 3.4; and (2) body 75 

mass index (BMI), in nonobesity if 18.5 < BMI ≤ 26.9 kg/m2 or subjects with obesity if BMI > 40 76 

kg/m2. The FG cutoff was defined by the American Diabetes Association,10 and the HOMA-IR 77 

cutoff was obtained experimentally.5 Subsequently, four sex-matched phenotypic groups were 78 

obtained as follows: subjects with (1) IS and nonobesity (control group, n = 19); (2) IS and obesity 79 

(n = 12); (3) high IR and non-obesity (n = 12); and (4) high IR and obesity (n = 21). The protocol 80 

was approved by the local Ethics and Research Committees (Hospital Universitario Virgen de la 81 

Victoria, Malaga) and all participants provided written informed consent. 82 

Anthropometric and Biochemical Parameters 83 

The following anthropometric and biochemical parameters were measured, as previously described:5 84 

(1) adiposity markers (body weight (kg), BMI (kg/m2), waist and hip circumference (cm) and waist-85 

hip ratio); (2) IR markers (FG (mmol/L), fasting insulin (μU/mL), HOMA-IR index); (3) blood 86 

pressure (diastolic and systolic blood pressure (mm Hg)); and (4) lipid markers (total cholesterol, 87 

low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, and triglycerides 88 

(TG), mmol/L). 89 

Reagents 90 

Acetylcholine, acetyl-d3-L-carnitine hydrochloride, acetyl-Lcarnitine, adrenic acid, L-carnitine, L-91 

citrulline, dodecanoic acid, (−)-epicatechin, gallic acid, glycochenodeoxycholic acid, glycocholic 92 

acid, glycocholic acid-(glycyl-1−13C) monohydrate, α-hydroxyisobutyric acid, indole-3-acetic-2,2-93 

d2 acid, Lisoleucine, 7-ketocholesterol, L-leucine, leukotriene B4, margaric acid, palmitic acid, L-94 

phenylalanine, stearic acid, syringic acid, L-tryptophan, uric acid, and L-valine were purchased from 95 



Sigma-Aldrich (St. Louis, MO). 4-hydroxyhippuric acid was purchased from PhytoLab GmbH and 96 

Co KG (Vestenbergsgreuth, Germany), naringenin from Extrasynthèse (Genay, France), and 97 

arachidonic acid from Cymit Quimica (Barcelona, Spain). UHPLC−MS-grade methanol, acetone, 98 

formic acid, and HPLC-grade acetonitrile were purchased from Scharlau Chemie S.A. (Barcelona, 99 

Spain). Ultrapure water (Milli-Q) was obtained from a Milli-Q Gradient A10 system (Millipore, 100 

Bedford, MA). 101 

Quality Controls and Standards 102 

An aqueous mix of metabolite standards (quality control, QC) and internal/external standards was 103 

prepared, as previously described,11 to monitor instrumental stability. Water was used as QC1. A 104 

mix of standards (QC2) containing acetylcholine, acetyl-d3-L-carnitine hydrochloride, acetyl-L-105 

carnitine, L-carnitine, L-citrulline, dodecanoic acid, (−)-epicatechin, gallic acid, 106 

glycochenodeoxycholic acid, glycocholic acid-(glycyl-1−13C) monohydrate, α-hydroxyisobutyric 107 

acid, indole-3-acetic-2,2-d2 acid, L-isoleucine, L-leucine, palmitic acid, L-phenylalanine, stearic 108 

acid, syringic acid, L-tryptophan and L-valine, spiked in Milli-Q water and plasma, was prepared (5 109 

ppm final concentration). Finally, a 10% of the samples, randomly selected, were reanalyzed to assess 110 

differences between replicates (QC3). Aqueous solutions of isotopically labeled and unlabeled 111 

compounds were also prepared and used during sample extraction. A mixture of glycocholic acid-112 

(glycyl-1−13C) monohydrate and 1-O-stearoyl-sn-glycero-3-phosphocholine (25 ppm final 113 

concentration) was used as internal standard, and a mixture of indole-3-acetic-2,2-d2 acid and acetyl-114 

d3-Lcarnitine hydrochloride (25 ppm final concentration) as external standard. Adrenic acid, 115 

arachidonic acid, glycocholic acid, 7-ketocholesterol, leukotriene B4, margaric acid, palmitoleic acid, 116 

and uric acid (50 ppb ppm final concentration) were spiked in Milli-Q water and plasma to confirm 117 

the identity of annotated metabolites. 118 

Sample Treatment and Data Acquisition 119 

Fasting serum samples (50 μL) were subjected to in-plate hybrid extraction, previously optimized by 120 

Tulipani et al. Samples were first deproteinized by acidic solvent precipitation (acetonitrile in 1% 121 



formic acid), followed by phospholipid solid phase extraction (SPE)-mediated removal.12 A 122 

TripleTOF 6600 hybrid quadrupole-TOF mass spectrometer (AB Sciex, Framingham, MA) with 123 

Turbo Spray IonDrive source coupled to a Shimadzu Nexera X2 series HPLC system (Kyoto, Japan) 124 

(Atlantis T3 RP column 50 × 2.1 mm2, 5 μm (Waters, Milford, MA)) was used. A linear gradient 125 

elution was used ([A] Milli-Q water 0.1% HCOOH (v/v) and [B] methanol (v/v)), at a constant flow 126 

rate of 600 μL min−1 as follows (time, min; B, %): (0, 1), (4, 20), (6, 95), (7.5, 95), (8, 1), (12, 1). 127 

Data acquisition was performed by liquid chromatography−mass spectrometry (LC−MS) from 70 to 128 

850 m/z with positive and negative electrospray ionization (ESI + and ESI−). The sample injections 129 

order was randomized to avoid bias. QC samples were analyzed throughout the run every 15 130 

injections to provide measurements of the stability and performance of the system and evaluate the 131 

quality of the data.12,13 Calibration was carried out with calibration solutions for AB Sciex 132 

TripleTOF systems (AB Sciex) in ESI+ and ESI− modes. The mass spectrometry data have been 133 

deposited to the MetaboLights repository14 (https://www.ebi.ac.uk/ metabolights/) with the data set 134 

identifier MTBLS668. 135 

Data Preprocessing 136 

LC−MS data were preprocessed with MarkerView 1.3.0.1 (AB Sciex) (Tables S1 and S2). Raw data 137 

contained 3000 mass features, including redundant mass signals (isotopes, adducts, in-source 138 

fragments, etc.). The data sets were filtered out to remove variables that did not appear in more than 139 

25% of any of the groups.11 The final data sets presented 2607 (ESI+) and 2318 (ESI−) mass features. 140 

ESI+ and ESI− data sets were analyzed separately. 141 

Multivariate Statistical Analysis 142 

Partial least-squares discriminant analysis with orthogonal signal correction (OSC-PLS-DA) was 143 

used to examine between-group differences in LC−MS data (SIMCA-P+ 13.0 software, Umetrics, 144 

Umeå, Sweden). Data were log-transformed and Pareto scaled,15,16 and an OSC filter was applied 145 

to remove the variability not associated with the diseases. Comparisons were performed by 146 

comparing the control group (IS and nonobesity, n = 19) with the high IR group (subjects with high 147 



IR (non-obesity + obesity), n = 33) or the obesity group (subjects with obesity (IS + high IR), n = 148 

33). The robustness of the models was evaluated through the R2X (cum), R2Y (cum), and Q2 (cum) 149 

parameters, cross-validation and permutation tests (n = 200) (Table S3). As a final quality test, the 150 

data set was randomly split into ten equal-size subsamples, nine of which were used as a training set 151 

while the remaining was used as a validation set. This process was repeated ten times (Table S4). 152 

Mass features explaining group separation were selected according to their variable importance for 153 

projection (VIP) values (cutoff ≥ 2). 154 

Annotation of Metabolites 155 

A cluster analysis, based on Pearson correlation and Ward’s distance method,17 was used to 156 

determine eventual clusters of mass features from the same metabolite (PermutMatrix 1.9.3). 157 

MetaNetter, a plugin for Cytoscape (v.2.8.0), was used to define adducts and fragments within the 158 

cluster.18 The annotation of metabolites was carried out by comparing MS and MS/MS experimental 159 

data with in-house (MAIT19) and online databases including HMDB, METLIN, LipidMAPS, 160 

MassBank and MetFrag (±5 mDa mass error tolerance). The fragmentation of [M+H]+ and [M+Na]+ 161 

ions enabled the characterization of fatty acids contained in the glycerolipid structure. The fatty acid 162 

composition of diglycerides (DG) was annotated based on characteristic daughter ions in the m/z 163 

range 200−400 Da, generated through the release of fatty acids from the glycerol backbone.20 164 

Metabolite identity confirmation was carried out by matching peak chromatographic and MS 165 

responses (extracted ion chromatogram, product ion scan) to those of commercial reference 166 

standards, when available, spiked in Milli-Q water and plasma (50 ppb), on a QStar Elite system (AB 167 

Sciex). The analytical parameters were the same as described above. 168 

Univariate Statistical Analysis 169 

Univariate analysis was performed in R to describe differences in clinical and metabolic parameters. 170 

Clinical parameters were first log-transformed prior to the analysis. Statistics on metabolic 171 

parameters were performed on the raw matrix. Prior to the analyses, data were log-normalized and 172 

Pareto scaled. A type III ANOVA for unbalanced groups was performed to assess the effects of 173 



obesity and high IR on clinical variables. Fisher’s exact test was used to evaluate differences in gender 174 

distribution across the groups.21 A Student’s t test was used to confirm that the metabolites with a 175 

VIP ≥ 2 differed between groups, and to identify differences between concordant and discordant 176 

phenotypes of each metabolic disorder. All p-values were corrected by false discovery rate (FDR) to 177 

reduce the probability of false positives.22 Gender, age and drug consumption were considered as 178 

confounders in all the analyses. Only those metabolites with adjusted p-value ≤ 0.05 were considered 179 

significant. 180 

Enrichment Analysis 181 

ChemRICH (http://chemrich.fiehnlab.ucdavis.edu/) was used to perform an enrichment analysis of 182 

the metabolites that presented VIP ≥ 2 and adjusted p-value ≤ 0.05. ChemRICH utilizes structure 183 

similarity and chemical ontologies to map all known metabolites and name metabolic modules. The 184 

ChemRICH statistical approach compares chemical similarities using the Medial Subject Headings 185 

database and Tanimoto chemical similarity coefficients to cluster metabolites into nonoverlapping 186 

chemical groups. Enrichment statistical analysis uses a background-independent database test, 187 

Kolmogorov− Smirnov-test, using the created clusters.23  188 

Predictive Models of Combined Serum Markers 189 

Variable selection was performed with all the metabolites that met both criteria, VIP ≥ 2 and adjusted 190 

p-value ≤ 0.05, for high IR to select those compounds that better separate subjects with IS or high IR. 191 

A new metabolic variable, total diglycerides (tDG), was created with the arithmetic mean of all DGs. 192 

Variable selection was conducted with the least absolute shrinkage and selection operator (LASSO) 193 

logistic regression using a leave-one-out cross-validation.24 Prior to the analysis, data were log-194 

normalized and Pareto scaled, and adjusted by gender, age, and drug consumption. The lambda-195 

coefficient was used to choose the most predictive metabolites, and these were employed to build a 196 

new parameter, the multimetabolite biomarker model, as follows: Multimetabolite biomarker model 197 

= λ1 X metabolite 1 + λs X metabolite 2 + …. + λn X metabolite n The LASSO regression method 198 

was performed in R with the glmnet package. 199 



ROC Curves 200 

The global performance of this multimetabolite biomarker model was evaluated through receiver 201 

operating characteristic (ROC) curves. The area under the curve (AUC) value, confidence intervals 202 

(CIs 95%), sensitivity, and specificity were calculated in R with the pROC package. 203 

RESULTS 204 

Anthropometric and Biochemical Parameters 205 

Individuals with high IR presented altered FG, fasting insulin, HOMA-IR index, and lipid metabolism 206 

indicators (total cholesterol, HDL, and LDL cholesterol and TG). Subjects with obesity had higher 207 

adiposity markers, systolic and diastolic pressure, and total cholesterol than individuals without 208 

obesity. No changes were observed in the interaction between high IR and obesity for any of the 209 

variables (Table 1). Differences between concordant and discordant phenotypes of high IR were 210 

mainly due to adiposity markers. Subjects with concordant and discordant phenotypes of obesity also 211 

presented metabolic differences including FG, fasting insulin, HOMA-IR index, and lipid metabolism 212 

(Table 1). 213 

LC−MS Data Quality 214 

Neither carryover nor apparent clustering due to the batch injection order were noticed (Figure S1). 215 

The run-to-run repeatability of the QCs across the whole data set met the quality criteria (retention 216 

time shift ≤ 0.05 min, mass accuracy deviation <3 mDa and peak area CV < 25%)11 (Table S1). The 217 

generation of the OSC filters removed six and five components (eigenvalue >2), maintaining the 54% 218 

and 76% non-orthogonal variation in the original ESI+ and ESI− data sets, respectively. The OSC-219 

PLS-DA resulted in four robust models that discriminate metabolic differences among control 220 

individuals and subjects with high IR or obesity (Figure 1, Table S3). The PLS score plot showed 221 

that the control group and the high IR or obesity groups clearly separated in the first component. The 222 

plot also suggested that concordant and discordant phenotypes of each disorder (high IR-obesity vs 223 

high IR-non-obesity, and IS-non-obesity vs IS-obesity, respectively) might be metabolically different 224 



as they were slightly separated in the second component (Figure 1). A total of 193 (ESI+) and 169 225 

(ESI−) mass features were selected (VIP value ≥ 2) for further metabolite identification(Figure S2). 226 

Metabolic Profiles of High IR and Obesity 227 

A total of 29 metabolites (VIP ≥ 2) were annotated from their m/z value and/or fragmentation pattern, 228 

and the identity of eight of them was confirmed with metabolite standards (Table 2). The majority of 229 

the metabolites were lipids. We were not able to discern between a molecular ion or sodium adduct 230 

in DGs since both species presented a small mass difference with the theoretical mass (<3 mDa). 231 

Thus, we provided both annotations. A Student’s t test confirmed that two out of these compounds 232 

were shared by both metabolic statuses, 18 were only found in high IR and nine in obesity. Adrenic 233 

acid and a DG (34:2/36:5) were common between high IR and obesity, which were higher than in the 234 

control group. Metabolomics also revealed that the high IR group presented more DGs, margaric 235 

acid, ketocholesterol, and uric acid, and lower levels of hydroxycorticosterone. On the other hand, 236 

alterations in lipid metabolism were also found in obesity. For instance, the obesity group showed 237 

higher levels of arachidonic acid, HETE, HETE lactone, leukotriene B4, palmitoleic acid and 238 

tryhydroxyeicosatetraenoic acid (triHETE), and the dipeptides γ- glutamyl-γ-aminobutyraldehide and 239 

glutamyl-valine than the control groups, and lower levels of the bile acid glycocholic acid (Figure 2). 240 

An enrichment analysis was performed with ChemRICH to identify which chemical class was more 241 

enriched in each metabolic disorder. ChemRICH revealed that the most enriched chemical class in 242 

high IR was DGs (adjusted p-value = 2.2 × 10−20), while HETEs and unsaturated fatty acids were in 243 

obesity (adjusted p-values = 1.7 × 10−05 and 6.0 × 10−04, respectively) (Table 3). Therefore, we will 244 

mainly focus the discussion of the results in these chemical classes.  245 

Metabolic Differences between Concordant/Discordant Phenotypic Groups 246 

Comparisons between phenotypic groups confirmed that the main differences between groups were 247 

due to DG and polyunsaturated fatty acid (PUFA) levels, revealing that the degree of dyslipidemia 248 

and pro-inflammatory markers could differentiate subjects of distinct phenotypic groups (Figure 3). 249 



Among all the PUFAs, adrenic acid was the only metabolite able to distinguish subjects with IS from 250 

those with high IR, and individuals with obesity from those without obesity (Table S5). 251 

Predictive Models of Combined Serum Markers 252 

A combined multimetabolite biomarker model to identify individuals with high IR was formed with 253 

the arithmetic mean of DGs (tDG), uric acid, and adrenic acid. This model presented a high predictive 254 

power. Specifically, the AUC (95% CI) for the multimetabolite biomarker model was 80.1% 255 

(68.9−91.4) when analyzing all the population of the study, 72.5% (53.3−91.7) for the subjects with 256 

obesity, and 80.7% (61.0−100) for individuals without obesity (Figure 4). Sensitivity and specificity 257 

rates were between 70 and 90%. In the case of subjects with obesity, predictive values were slightly 258 

lower (Table 4). This predictive model presented better performance than the combination of other 259 

lipid markers such as cholesterol or TG between them and/or with uric acid and adrenic acid (Table 260 

S6). 261 

DISCUSSION 262 

The untargeted profiling of the serum of concordant/ discordant phenotypes of high IR and/or obesity 263 

allowed exploring the metabolic profiles of these two metabolic statuses and describing their 264 

similarities and divergences. In addition, it allowed defining a multimetabolite biomarker model to 265 

detect high IR regardless of obesity, which might predict the risk developing diabetes. Large 266 

disturbances in lipid metabolism were observed in all the metabolic disorders. 267 

Metabolic Profile of High IR 268 

DGs were the most enriched chemical class in subjects with high IR. This group also presented 269 

differences in TG levels, whose levels highly correlate with DG levels (Pearson’s correlation 270 

coefficient: r = 0.90). However, TG species could not be detected in metabolomic profiles because 271 

of their very low polarity, which provokes that most TGs remain adsorbed into the protein precipitate 272 

during serum extraction. Furthermore, these neutral lipids are not readily ionized in ESI, unless some 273 

modifier is added to mobile phases (e.g., ammonium salts). Despite the adipocytokines-induced 274 



inflammation is the prevailing hypothesis of IR progression, the hypothesis of DGmediated IR is 275 

becoming increasingly important.26,27 In line with this hypothesis, we observed higher levels of 276 

DGs in subjects with high IR regardless of obesity. An accumulation of DGs leads to a cascade of 277 

events such as the activation of isoforms of protein kinase C that inhibit sensibility to insulin of insulin 278 

responsive tissues, the reduction of fatty acid β- oxidation in the mitochondria, thereby limiting 279 

energy production, and lipodystrophy in tissues due to the redistribution of fat.26,27 Adrenic acid 280 

was the only PUFA whose levels were altered in subjects with high IR, suggesting a certain degree 281 

of a proinflammatory response. Adrenic acid is a ω-6 PUFA. This class of lipids act as inflammatory 282 

mediators by acting as ligands for immune receptors and trigger a perpetual low-grade inflamma- 283 

tion. This low-grade inflammation leads to a cascade of events including inflammatory cell activation, 284 

adipocyte growth and dysfunction, oxidative stress and altered signaling.28,29 Uric acid, a product 285 

of the metabolic breakdown of purine nucleotides, was also higher in subjects with high IR. It is 286 

normally excreted by the urine but high concentrations of uric acid in blood are associated with 287 

oxidative stress, inflammation and alterations in carbohydrate and lipid metabolism. For instance, 288 

hyperuricemia promotes endothelial cell damage and dysfunction, decreases endothelial nitric oxide 289 

availability, which limits insulin action, increases reactive oxygen species, and blocks adiponectin 290 

synthesis. In addition, hyperuricemia alters gluconeogenesis, fatty acid oxidation, and induces the 291 

production of pro-inflammatory mediators. Serum uric acid has been proposed as a risk marker in IR, 292 

cardiovascular disease, metabolic syndrome and renal failure, among others.30,31 The precursor of 293 

aldosterone, hydroxycorticosterone, was lower in subjects with high IR. Hypoaldosteronism has been 294 

associated with adrenal insufficiency and diabetic nephropathy. 32 Results from the cohort 295 

Framingham Heart Study described a lineal relationship between the glycaemic index and the risk for 296 

renal alterations, even before the onset of diabetes.33 Therefore, alterations in uric acid and 297 

hydroxycorticosterone might reflect that subjects with high IR may be prone to develop renal 298 

alterations. Furthermore, higher levels of 7-ketocholesterol might also confirm oxidative processes 299 

in high IR. 7-ketocholesterol, also known as 5-cholesten-3β-ol-7-one, is a sterol derived from the 300 

oxidation of cholesterol and it has been proposed as a robust biomarker of oxidized LDL particles in 301 



a range metabolic disorders.34 Energy misbalance, hyperglycaemia, and hyperlipidaemia can lead to 302 

increase the production of free radicals, which might damage cellular structures and alter metabolic 303 

processes.35,36 304 

Metabolic Profile of Obesity 305 

Dyslipidemia was also observed in obesity. For instance, the blood levels of free fatty acids (FFA) 306 

such as palmitoleic acid and ω-6 PUFAs were higher in the obesity group than in the control group. 307 

In physiological conditions, blood FFA levels are tightly regulated. However, in obesity and other 308 

metabolic disorders, FFA increase in plasma due to the stress of the adipose tissue, which releases 309 

more FFA than in normal conditions.37 The enrichment analysis with ChemRICH revealed that 310 

HETEs and unsaturated fatty acids were the most enriched chemical classes in subjects with obesity. 311 

For instance, adrenic acid, arachidonic acid, HETE, HETE lactone, leukotriene B4 (diHETE), and 312 

triHETE levels were found to be higher in the obesity group. These metabolites belong to the ω-6 313 

PUFAs class and, as already commented, they are lipid mediators that trigger a perpetual low-grade 314 

inflammation. Arachidonic acid is considered the primary source of pro-inflammatory lipid mediators 315 

and it is rapidly converted into potent inflammatory mediators such as prostaglandins, thromboxanes, 316 

leukotrienes, lipoxins and HETEs, and derivatives, which lead to cascade of events, as described 317 

hereinbefore.28,29 Therefore, the fact that we found more ω-6 PUFAs differentially expressed in 318 

obesity than in high IR with respect to the control group (Table 2), and their levels were higher in 319 

concordant than in discordant phenotypes (Figure 3, Table S5), suggests that the inflammatory 320 

processes in high IR might be at a lower extent than in obesity. Inflammation and oxidative stress are 321 

tightly interconnected processes. For instance, inflammatory cells produce free radicals during the 322 

immune response.35,36 Although 7-ketocholesterol was not altered in obesity, two glutamyl 323 

peptides, namely glutamyl-γ-aminobutyraldehyde and glutamyl-valine, levels were higher in obesity. 324 

Glutamyl dipeptides, formed by glutamate and another amino acid, are byproducts of glutathione 325 

synthesis and their levels are an indirect evidence of glutathione synthesis and amino acid 326 

availability.38 γ-aminobutyraldehyde is the direct precursor of γ-aminobutyric acid (GABA). Both 327 



GABA and glutamate stimulate food intake and body weight gain.39 Valine has also been associated 328 

with obesity as branched-chain amino acids (BCAAs) fuel adipocytes.40 Glutamate and BCAA levels 329 

also correlated with anthropometric adiposity markers in a previous study, probably as an alternative 330 

energy source to compensate glucose and lipid metabolism impairment.5 Therefore, higher levels of 331 

these dipeptides in obesity might mirror oxidative stress, the stimulation of appetite, body weight 332 

gain, and the use of alternative energy sources in the group with obesity. Bile acids are involved in 333 

the absorption of dietary fat and fatsoluble vitamins and modulate cholesterol level, but also regulate 334 

energy homeostasis and can act as signaling molecules and inhibit obesity. We found lower levels of 335 

glycocholic acid, a primary bile acid conjugated with glycine, in obesity. Thus, alterations in this bile 336 

acid might reflect body weight, lipid and carbohydrate metabolism alterations in obesity.41 In 337 

addition, this decrease of primary bile acids might alter the release of glucagon-like peptide-1 (GLP-338 

1), thus modifying satiety and appetite of individuals with obesity.42 This observation agrees with 339 

the higher levels of the dipeptide formed by glutamate and the direct precursor of GABA. Increases 340 

in conjugated bile acids have been found in patients with obesity after undergoing bariatric surgery.43 341 

Differences between Concordant/Discordant Phenotypes of High IR and Obesity 342 

The main differences between the four phenotypic groups were DGs and PUFA levels. The highest 343 

levels of these metabolites were found in subjects with both high IR and obesity, while the lowest 344 

levels in individuals with both IS and non-obesity. In addition, this study also revealed that the 345 

metabolic profile of subjects with only one metabolic disorder, high IR or obesity, had lower levels 346 

of DGs, free fatty acids and pro-inflammatory markers than individuals presenting both disorders. 347 

These results might unveil that obesity itself also implies the existence of protective mechanisms 348 

against high IR. In line with this observation, differences in pro-inflammatory markers in subjects 349 

with obesity and IS or IR have been already described. This observation is also known as the “obese 350 

healthy paradox”.44,45 Among all the metabolites identified as potential markers of discordant 351 

phenotypes of high IR and obesity (Table S5), adrenic acid is particularly interesting since it is the 352 

only compound whose levels allowed differentiating the four phenotypical groups. Adrenic acid 353 



(C22:4 n-6) is a minor ω- 6 PUFA in blood, it derives from the elongation of arachidonic acid in the 354 

liver and its production increases in inflammation.46 However, little literature about its role in healthy 355 

conditions is known. Further research on this particular lipid could provide more insights about 356 

differences between concordant/discordant phenotypes in metabolic disorders. 357 

Multimetabolite Biomarker Model To Predict Risk of Developing Diabetes 358 

IR sets in before disease markers appear and it might remain undiagnosed for a long period, thereby 359 

increasing the risk of developing other metabolic alterations. Therefore, there is a need to detect IR 360 

rapidly and to monitor its progression to diabetes. Although current markers have a high predictive 361 

power, they also present some limitations.1 Current markers of high IR such as FG, fasting insulin or 362 

HOMA-IR presented a high predictive power (not shown, AUC ≈ 95%). It may be because subjects 363 

were grouped according their FG levels and HOMA-IR index. However, they may be late markers 364 

since when insulin deficiency manifests as hyperglycaemia, considerable pancreatic β-cell 365 

insufficiency has already occurred.47 Thus, the third aim of this work was to identify new markers 366 

of high IR. We selected those metabolites that presented a VIP ≥ 2 and adjusted p-value <0.05 and 367 

the most predictive metabolites for high IR were chosen. The combination of DGs, uric acid and 368 

adrenic acid provided a good predictive model of high IR (AUC 80.1%). This multimetabolite 369 

biomarker model could be a comprehensive indicator of metabolic alterations before β-cell 370 

impairment occurs, as it mirrors IR in insulin-responsive tissues, lipotoxicity and certain degree of 371 

inflammation (DG), oxidative stress and alterations in carbohydrate and lipid metabolism (uric 372 

acid),30,31 and proinflammatory processes (adrenic acid).46 Further research with larger cohorts and 373 

longitudinal studies should be conducted to validate this model as an early marker of diabetes. 374 

Strengths and Limitations 375 

Although this study is an observational study, the high potential of untargeted metabolomics has 376 

provided a snapshot of the metabolome of subjects with high IR and/or obesity at a given time. Thus, 377 

we have explored in depth the metabolic profiles of these two metabolic disorders, described their 378 

similarities and divergences, formulated hypotheses about discordant phenotypes and mechanistic 379 



insights, and defined a predictive model for the risk of developing diabetes. Despite the low number 380 

of subjects enrolled in the study and the fact that some individuals were grouped in both high IR and 381 

obesity groups, results were robust and in line with previously reported. Complementary 382 

metabolomics studies are necessary to provide a comprehensive overview of the metabolome of these 383 

metabolic disorders. The authors support large-scale and follow-up studies to replicate and validate 384 

the results. 385 

CONCLUSION 386 

Through an untargeted metabolomic-driven approach, we have explored the metabolic profiles of 387 

concordant and discordant phenotypes of subjects high IR and/or obesity. Large alterations in lipid 388 

metabolism, oxidative stress, and inflamma- tion were unveiled. In addition, these results allowed to 389 

build a multimetabolite biomarker model to predict high IR regardless of obesity that includes the 390 

measurement of DGs, uric acid, and adrenic acid. It might be also employed to predict the risk of 391 

developing diabetes; however, they need to be externally validated. These findings provide new 392 

insights in the research of metabolic diseases and unveil new potential targets in therapeutic 393 

treatments of diabetes and obesity. 394 
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FIGURES 566 

 567 

 568 

Figure 1. OSC-PLS-DA score plots. The discriminant models separated the control group 569 
(individuals with both IS and non-obesity) from patients with high IR (models 1 and 2) or subjects 570 
with obesity (models 3 and 4) in both ionization modes. White circles refer to the control group 571 
(nonobese IS), gray circles to high IR, and black circles to obesity. Abbreviations: ESI, electrospray 572 
ionization; IR, insulin resistance; IS, insulin sensitivity; OSC-PLS-DA, orthogonal signal correction 573 
partial least-squares discriminant analysis. 574 



 575 

 576 

Figure 2. Venn diagram of the metabolic profiles of subjects with high IR and/or obesity. This 577 
diagram shows similarities and divergences between the metabolic status of high IR and obesity 578 
with respect to subjects with IS and non-obesity. Only metabolites that met the criteria VIP ≥ 2 and 579 
adjusted p-value ≤0.05 are shown. The symbol “/” means ambiguity in metabolite annotation. 580 

 581 

Figure 3. Box plots of the most representative metabolite changes in concordant/discordant 582 
phenotypes of high IR and obesity (Table S5). Significances (p-values) are shown with asterisks 583 
when compared with the control group as follows: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001; or with 584 
hash keys when compared with the group of subjects with high IR and obesity as follows: # p < 585 
0.05, ## p < 0.01, ### p < 0.001. Abbreviations: IR, insulin resistance; IS, insulin sensitivity; OB, 586 
obesity. 587 



  588 

Figure 4. ROC curve parameters of a predictive biomarker model to identify high IR, regardless of 589 
obesity. The biomarker model was formed by the arithmetic mean of the 15 DGs annotated (tDG), 590 
adrenic acid, and uric acid. 591 
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