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ABSTRACT: 

Excessive sugar intake has been related to cognitive alterations, but it remains unclear whether 

these effects are related exclusively to increased energy intake, and the molecular mechanisms 

involved are not fully understood. We supplemented Sprague-Dawley female rats with 10% w/v 

fructose in drinking water or with isocaloric glucose solution for seven months. Cognitive 

function was assessed through the Morris water maze (MWM) and the novel object recognition 

(NOR) tests. Plasma parameters and protein/mRNA expression in the frontal cortex and 

hippocampus were determined. Results showed that only fructose-supplemented rats displayed 

postprandial and fasting hypertriglyceridemia (1.4 and 1.9-fold, p<0.05) and a significant 

reduction in the discrimination index in the NOR test, whereas the results of the MWM test 

showed no differences between groups. Fructose-drinking rats displayed an abnormal glucose 

tolerance test and impaired insulin signaling in the frontal cortex, as revealed by significant 

reductions in insulin receptor substrate-2 protein levels (0.77-fold, p<0.05) and Akt 

phosphorylation (0.72-fold, p<0.05), and increased insulin-degrading enzyme levels (1.86-fold, 

p<0.001). Fructose supplementation reduced the expression of antioxidant enzymes and altered 

the amount of proteins involved in mitochondrial fusion/fission in the frontal cortex. In 

conclusion, cognitive deficits induced by chronic liquid fructose consumption are not exclusively 

related to increased caloric intake and are correlated with hypertriglyceridemia, impaired insulin 

signaling, increased oxidative stress and altered mitochondrial dynamics, especially in the 

frontal cortex. 

 

Keywords: simple sugars; cognitive deficit; frontal cortex; hippocampus; metabolic 

dysfunctions. 
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Introduction 

Metabolic diseases such as obesity, type 2 diabetes (T2D) and non-alcoholic steatohepatitis 

have been linked to cognitive disorders [1]. Specifically, cognitive decrements, i.e., slight 

changes in cognitive performance that do not interfere with daily life, have been observed not 

only in T2D patients, but also in individuals with pre-diabetic insulin resistance (IR) [2]. However, 

both metabolic and cognitive alterations are complex, multifactorial diseases, and 

epidemiological studies do not demonstrate a causal relationship between them or the 

mechanisms involved.  

It is widely acknowledged that a high intake of carbohydrates, particularly simple sugars, is 

associated with metabolic pathologies (obesity, IR and T2D) [3–6]. More recently, sugar intake 

has also been related to cognitive alterations [7–9]. The intake of simple sugars in the human 

diet has risen in the last decades and it is particularly high in industrialized countries, especially 

due to the elevated consumption of sugar-sweetened beverages (SSB) [10]. These beverages 

are usually sweetened with sucrose or with High Fructose Corn Syrup (HFCS), containing 

roughly 50% glucose and 50% fructose. Although glucose and fructose molecules are very 

similar, fructose seems to be more harmful than glucose to human health, due to its particular 

metabolic effects [11, 12]. In this sense, our research group has demonstrated that liquid 

fructose supplementation in rats for a two-month period causes worse metabolic and vascular 

responses than liquid glucose, despite the similar or even higher caloric intake of glucose-

supplemented rats [13, 14]. However, to our knowledge there are no reports comparing the 

effects of glucose and fructose on brain health. Moreover, it remains unclear whether these 

effects are related exclusively to the increased energy intake in individuals who consume large 

amounts of simple sugars. A population-based case-control study showed that a high caloric 

intake was associated with increased odds of developing mild cognitive impairment [15]. 

Nevertheless, the type of nutrient that provides these calories may also be a determining factor: 

a population-based prospective study performed with elderly subjects showed a higher risk of 

mild cognitive impairment or dementia in individuals who obtained a higher percentage of their 

daily calories from carbohydrates than from fat and proteins [16].  

  Female animals are underrepresented in preclinical studies, and there is increasing 

awareness by the National Institutes of Health (NIH) that research should include females. In 
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our previous studies we showed that female rats supplemented with liquid fructose displayed a 

more detrimental response than male rats, including glucose intolerance and insulin resistance, 

which were not observed in males [17]. Based on these results, and taking into account the 

putative relationship between metabolic abnormalities and cognitive alterations, in this study we 

used female Sprague–Dawley rats.  

  On the other hand, in our previous studies we used a two-month fructose or glucose 

supplementation period, which is roughly equivalent to six human years of daily sugar 

consumption [18]. However, the pattern of sugar-sweetened beverage consumption in humans 

may extend for much longer periods; in addition, both metabolic and cognitive alterations evolve 

over many years. Thus, in the present work we attempted to examine whether long-term (seven 

months) supplementation with liquid glucose or fructose, providing the same amount of calories, 

causes not only metabolic but also cognitive alterations in female rats, and to explore the 

molecular mechanisms involved.  

 

Materials and methods 

 Animals and diets  

   Female Sprague-Dawley rats were obtained from Charles River (Barcelona, Spain), 

and were maintained under conditions of constant humidity (40-60%) and temperature (20-

24ºC) with a light/dark cycle of 12 hours. Procedures were conducted in accordance with the 

guidelines established by the University of Barcelona’s Bioethics Committee (Autonomous 

Government of Catalonia Act 5/1995, of July 21). All experimental procedures involving animals 

were approved by the University of Barcelona’s Animal Experimentation Ethics Committee 

(approval No. 7912). 

36 adult rats (aged eight weeks) were randomly assigned to either a control group (no 

supplementary sugar, n=12), a fructose-supplemented group (10% w/v in drinking water) (n=12) 

or a group supplemented with a glucose solution prepared to match the amount of calories 

ingested by the fructose group (n=12), for seven months (28 weeks). All the animals received 

2014 Teklad rodent maintenance diet (Envigo, Barcelona, Spain). Throughout the treatment, the 

amount of solid food ingestion was controlled weekly and liquid consumption three times a 

week. Body weight was assessed every two weeks.    
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Glucose tolerance test  

A glucose tolerance test (GTT) was performed at week 26 after the beginning of the 

sugar supplementation period, as described previously [13]. Briefly, after a 6 h fast and 

following the collection of an unchallenged sample (time 0), a glucose solution of 2 g/kg body 

weight was administered into the peritoneal cavity. During the test, blood was collected from the 

tail vein at 15, 30, 60, 90 and 120 min after glucose administration. Glucose measurements 

were performed using a hand-held glucometer (Accutrend® Plus System Cobas, Roche Farma, 

Barcelona, Spain). Plasma insulin levels were measured at baseline, 15, 60 and 120 min post 

glucose administration using a rat insulin ELISA kit (Millipore, Billerica, MA, USA).  

 

Cognitive tests 

 Cognitive tests (novel object recognition (NOR) and Morris water maze (MWM) tests) 

were performed twice during the study, on week 2 and week 27 after the beginning of the sugar 

supplementation period.  

 The NOR task procedure consisted of habituation, familiarization and test phases. In the 

habituation phase, each animal was placed in an empty test arena (30x70x70 cm) and allowed 

to explore it for 10 min for two days. On the third day, each rat was placed in the same open-

field arena, which contained two identical objects (A + A), for 10 minutes (familiarization phase). 

After a retention interval of 2 h (first test) and 24 h (second test), the animal was returned to the 

arena with two objects, one of which was identical to the object used in the familiarization phase 

and the other was a novel object, for 10 minutes. The novel object was different in the first and 

second test (A+B and A+C, respectively). The behavior of the rats during the tests was 

recorded with a camera, and the time spent exploring the novel object (TN) and the old object 

(TO) measured. A discrimination index (DI) was defined as (TN − TO) / (TN + TO). The arena 

and objects were cleaned with 96° ethanol after each test in order to eliminate olfactory cues. 

 The MWM tests were performed two days after finishing the NOR tests, using an open 

circular pool (160 cm in diameter, 50 cm in height) half filled with water at a temperature of 22°C 

± 1. Two principal perpendicular axes were defined; thus, the water surface was divided into 

four quadrants (NE, SE, SW and NW), and five starting points were set (NE, E, SE, S and SW). 
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Four visual cues were placed on the walls of the tank (N, E, S and W). Non-toxic white latex 

paint was added to make the water opaque, and a white escape platform (11 cm in diameter) 

was submerged 1 cm below the water level (approximately in the middle of one of the 

quadrants). The position of the platform was different in the tests performed after two weeks 

and after seven months of sugar supplementation. The learning phase consisted of six days of 

trials for each rat. The animals were submitted to four trials each day and started from randomly 

set positions. There were no resting phases between trials. In each trial, the rat was gently 

placed in the water, facing the wall of the pool, and allowed to swim for 90 s. If the rat was 

unable to locate the platform during this period, it was guided or placed on the platform by the 

researcher. Animals were left on the platform for 30 s to allow them to spatially orient 

themselves. The animals' swimming paths were recorded by a video camera mounted above 

the center of the pool and the data were analyzed with SMART software version 3.0. The 

parameters measured were latency to find the platform, time spent in each quadrant and 

distance swam for each trial. A memory test was performed on day 7 whereby the platform was 

removed and the time spent by each rat in each quadrant measured. 

  

Sample preparation 

3 days after finishing the cognitive tests the rats were fasted 12 h. 8 rats from each 

group were anesthetized with ketamine/xylazine (9 mg and 40 µg/100 g body weight, 

respectively) and blood was collected by cardiac puncture. Plasma was prepared by 

centrifugation at 3,000 xg for 10 min at room temperature. The rats were then euthanized by 

exsanguination, their brains dissected, and the frontal cortex and the hippocampus separated, 

immediately frozen in liquid nitrogen, and stored at −80°C until needed.  

The remaining 4 rats in each group were used for immunohistochemical studies. To this 

end, the rats were intracardially perfused with 200 ml of 4% paraformaldehyde in 0.1 M 

phosphate buffer. The brains were then extracted and fixed in the same perfusion solution for 

24 h at 4ºC. The samples were maintained for 24 h in 4% paraformaldehyde / 30% sucrose 

solution, then frozen and stored at −80°C. 

 

Blood and plasma parameters  
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Triglycerides (post-prandial and after a 12 h fast) and fasting glucose levels were 

measured in blood samples using an Accutrend® Plus system glucometer (Cobas, Roche 

Farma, Barcelona, Spain). Concentrations of insulin and advanced glycation end products 

(AGE) in plasma were determined using specific enzyme-linked immunosorbent assay kits 

(Millipore, Billerica, MA, USA and MyBioSource, San Diego, CA, USA, respectively). 

Thiobarbituric acid reactive substance (TBARS) levels in plasma were determined using a 

colorimetric assay kit from Cayman (Ann Arbor, MI, USA). 

 

RNA preparation and analysis 

Total RNA was isolated with the TRIzol Reagent (Invitrogen, Carlsbad, CA, USA), in 

accordance with the manufacturer’s instructions. RNA concentration and purity were measured 

spectrophotometrically using the NanoDrop® ND-1000 Spectrophotometer (Thermo Scientific). 

The ratios of absorbance at 260/230 and 260/280 were used as indicators of RNA purity. 

Specific mRNAs were assessed by real-time reverse transcription polymerase chain reaction 

(RT-PCR) using SYBR Green PCR Master Mix, specific primers and the Applied Biosystems 

StepOnePlus Sequence Detection System (Applied Biosystems, Foster City, CA, USA). β-actin 

(actb) was used as an internal control. Primer sequences and PCR product length are listed in 

Supplementary Table 1. 

  

Preparation of protein extracts 

 Total protein extracts from the frontal cortex and hippocampus were obtained with the 

Helenius method [19]. Briefly, RIPA Lysis Buffer (Sigma-Aldrich, St. Louis, MO, USA) with 

protease, phosphatase and acetylase inhibitors (10 mM NaF, 1 mM EDTA, 1 mM EGTA, 2 mM 

Nappi, 1 mM PMSF, 2 µg/mL leupeptin, 2 µg/mL aprotinin, 1 mM Na3VO4, 10 mM NaM, 1 µM 

TSA) was added to micronized tissue and homogenized for 1.5 h at 4°C. The samples were 

then centrifuged at 15,000 ×g for 15 min at 4°C and the supernatant collected. Protein 

concentrations were determined using the Bradford method [20]. 

 

Western blot analysis 
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 Different protein extracts (20-30 µg) from rat frontal cortex and hippocampus were 

subjected to SDS-polyacrylamide gel electrophoresis. Proteins were then transferred to 

Immobilon polyvinylidene difluoride Transfer Membranes (Millipore, Billerica, MA, USA), blocked 

for 1 h at room temperature with 5% non-fat milk solution in Tris-buffered saline (TBS) with 0.1% 

Tween-20, and incubated as described previously [21]. Detection was performed using the ECL 

chemiluminescence kit for HRP (Amersham GE Healthcare Europe GmbH, Barcelona, Spain). 

To confirm the uniformity of protein loading, blots were incubated with -actin antibody (Sigma-

Aldrich, St. Louis, MO, USA), which was used as the normalization control for Western blot 

analysis. Primary antibodies for total and phosphorylated Akt, and total and phosphorylated 

GSK3β were supplied by Cell Signaling (Danvers, MA, USA), and those for Drp1, IDE, Mfn2 

and PSD95 were obtained from Abcam (Cambridge, UK). The anti-SYP antibody was obtained 

from Dako (Agilent Technologies, Santa Clara, CA, USA), Opa1 from BD Biosciences (San 

Jose, CA, USA), total Tau from Chemicon International (Temecula, CA, USA) and 

phosphorylated Tau from Invitrogen (Carlsbad, CA, USA).  

 

Brain-derived neurotrophic factor (BDNF) 

 Levels of BDNF protein were determined by an ELISA kit from Millipore (Billerica, MA, 

USA) using protein extracts from the frontal cortex and hippocampus.  

 

Glial fibrillary acidic protein (GFAP) detection by immunohistochemistry 

Frozen brains were embedded in OCT cryostat embedding compound (Tissue-Tek, 

Torrance, CA, USA), cut into 25 μm-thick coronal sections using a cryostat (Leica 

Microsistemas, Barcelona, Spain) at −23°C, and placed on slides. The slides were stored at -

20ºC in 0.1 M phosphate buffer containing 30% glycerol and 30% ethyleneglycol. For the 

staining procedure, the brain sections were incubated for 2 h at room temperature with a 

blocking solution (0.1 M phosphate buffer containing 10% fetal bovine serum, 1% Triton and 

0.2% gelatin). The slices were then incubated overnight at 4°C with an anti-GFAP antibody 

(Dako, Agilent Technologies, Santa Clara, CA, USA). Next, the samples were incubated with a 

fluorescent secondary antibody (Anti-Rabbit IgG Alexa Fluor 594, Life Technologies, Thermo 

Fisher Scientific, Waltham, MA, USA) diluted in blocking solution for 2 h at room temperature. 
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Nuclear staining was performed with 2 µg/mL of Hoechst H33342 (Sigma-Aldrich, Saint Louis, 

MO, USA) for 8 min at room temperature, and the sections were then mounted with 

Fluoromount-G™ (EMS, Hatfield, NJ, USA). Slides were allowed to dry overnight and images 

were acquired with a fluorescence laser microscope (Olympus BX41; Olympus, Hamburg, 

Germany). At least four images from four different animals per group were analyzed using 

ImageJ/ 1.49v software, available online from the National Institutes of Health, USA. 

 

Statistical analysis 

  The results are expressed as the mean of n values ± standard deviation. Plasma 

samples were assayed in duplicate. Gaussian distribution of the data was verified using the 

Kolmogorov-Smirnov normality test, and significant differences were established by one-way 

ANOVA and Šidák’s post-hoc test for selected comparisons (GraphPad Software V6). When 

variance was not homogeneous, a non-parametric test was performed. In addition, partial 

correlation after controlling for group was calculated using SPSS+ 21.00, between the variables 

of interest (see figure legend for details). Spearman’s partial correlation coefficients between 

each possible pair of behavioral markers, plasma levels or neuronal markers were calculated 

with adjusted p-values to eliminate false positive correlations. The statistical significance level 

was set at p≤0.05. 

 

Results 

Only fructose supplementation increases body weight and plasma triglyceride, AGE and 

TBARS levels, despite the identical total calorie consumption of the glucose group 

  Rats supplemented with liquid glucose or fructose for seven months drank more than 

control rats (3.2- and 2.7-fold, respectively) and reduced their ingestion of solid food (0.6- and 

0.7-fold, respectively) (Table 1). This reduction was not sufficient to compensate for the calories 

obtained from the sugars, and the total caloric intake was therefore increased by similar levels 

in both glucose and fructose groups (1.6 and 1.5-fold, respectively). However, only fructose-

supplemented rats showed an increase in body weight throughout and at the end of the 

treatment period (Table 1). Moreover, only fructose-supplemented rats displayed postprandial 
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and fasting hypertriglyceridemia (1.4 and 1.9-fold) and increased levels of AGE (1.9-fold) and 

TBARS (1.5-fold).  

 

Fructose but not glucose supplementation reduces whole-body insulin sensitivity and 

alters the glucose tolerance test 

  As shown in Figures 1A and B, despite the fact that blood glucose levels were not 

altered, fructose-supplemented rats showed significant hyperinsulinemia at the end of 

treatment. The insulin sensitivity index therefore decreased significantly in this group only 

(Figure 1C). The results of the GTT showed an increase in blood glucose levels 120 min after 

the glucose challenge in the fructose group only (Figure 1D), but the integrated glucose 

concentration, calculated as the area under the curve (AUC), was not significantly altered 

(Figure 1E). However, glucose-stimulated AUC insulin levels increased significantly in fructose-

supplemented rats only (Figures 1F and 1G).  

 

Fructose-supplementation for seven months impairs novel object recognition 

 Rats were assessed in the NOR and MWM tests at the beginning (week 2) and at the 

end (week 27) of the sugar supplementation in order to study the short- and long-term effects 

on memory, respectively. The results of the NOR tests performed at week 2 did not reveal any 

effect on memory, since no differences were detected in the discrimination index (DI) between 

groups (Figures 2A and 2B). By contrast, the NOR tests performed at week 27 showed a 

significant reduction in the discrimination index in the fructose group only (Figures 2C and 2D).  

The results of the MWM test showed no differences in spatial-learning acquisition and retention 

between the different experimental groups at the two time-points examined. Thus, all groups 

were able to learn over the course of the trial period (Figures 3A and 3 E) and the swimming 

velocity was similar (Figures 3B and 3F). The removal test showed no differences in the 

percentage of time spent in the platform quadrant (Figures 3C and 3G) or in the number of 

entries into the platform zone (Figures 3D and 3H).  

 

Effects of sugar supplementation on synaptic plasticity-related parameters 
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 Next, we determined the expression of several molecules involved in the regulation of 

synaptic plasticity, a mechanism underlying the acquisition and consolidation of learning and 

memory. The protein expression of brain-derived neurotrophic factor (BDNF) was reduced 

significantly by fructose supplementation in the hippocampus and also showed a trend towards 

a reduction in the frontal cortex of this group (Figure 4A). However, the expression of other 

molecules also related to synaptic plasticity, such as synapsin1 (SYN1), growth-associated 

protein 43 (GAP-43), synaptophysin (SYP) and PSD95, was not altered by sugar 

supplementation (Figures 4B-D).  

 

Fructose, but not glucose, alters brain insulin signaling 

 It has been suggested that insulin signaling in the brain is involved in cognitive functions 

such as learning and memory [22]. Thus, the reduction in whole-body insulin sensitivity and the 

altered results of the NOR test in fructose-drinking rats prompted us to examine insulin signaling 

in the frontal cortex and the hippocampus. The mRNA expression of the main insulin-signaling 

transducers, insulin receptor substrates (IRS)-1 and -2, was not significantly modified (Figure 

5A). However, we found that IRS-2 protein expression in the frontal cortex was significantly 

reduced in fructose-supplemented rats (Figure 5B). Moreover, phosphorylation of V-akt murine 

thymoma viral oncogene homolog-2 (Akt) was also significantly reduced in the frontal cortex of 

the fructose group (Figure 5C). A trend towards reduced Akt phosphorylation in the 

hippocampus was also observed, but did not reach statistical significance (Figure 5D). The 

phosphorylation status of Akt-downstream molecules glycogen synthase kinase (GSK)3β and 

Tau was not affected by sugar supplementation in either the frontal cortex or the hippocampus 

(Figures 5C and 5D). 

The expression of insulin-degrading enzyme (IDE), a protease involved in the 

degradation of both insulin and amyloid β (Aβ), was also determined. Rats supplemented with 

fructose showed a significant increase (1.8-fold, p<0.001) in the IDE protein levels in the frontal 

cortex, but not in the hippocampus (Figure 5E).  

   

Sugar supplementation does not induce neuroinflammation in the frontal cortex or the 

hippocampus 
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Neuroinflammation is one of the mechanisms that may underlie cerebral insulin 

resistance. However, the mRNA expression of pro-inflammatory molecules tumor necrosis 

factor (tnf) α, monocyte chemotactic protein (mcp)-1 and interleukin (il)-6 were not significantly 

modified after sugar supplementation in either the frontal cortex or the hippocampus (Figure 

6A). Moreover, the immunohistochemical assessment of glial fibrillary acidic protein (GFAP) 

expression, a marker of astroglial activation, did not reveal any differences between groups in 

the frontal cortex or the hippocampus (Figures 6B and 6C).  

 

Effects of fructose supplementation on oxidative stress and markers of mitochondrial 

dynamics 

 Increased production of reactive oxygen species (ROS) and oxidative stress have also 

been related to the establishment of insulin resistance. We examined the mRNA expression of 

glutathione peroxidase (gpx1), a major peroxide-scavenging enzyme, superoxide dismutase 

(sod2), which converts superoxide into hydrogen peroxide, and catalase (cat), which is 

responsible for the decomposition of hydrogen peroxide to water and oxygen. Our results 

showed that the mRNA levels of gpx1, sod2 and cat in the frontal cortex of fructose-

supplemented rats were significantly reduced; however, in the hippocampus, only sod2 mRNA 

expression decreased significantly in the fructose group (Figure 7A). 

 As mitochondrial dysfunction has also been related to impaired neuronal function, the 

expression of mitochondria-shaping proteins optic atrophy 1 (Opa1) and mitofusin 2 (Mfn-2), 

which promote mitochondrial fusion, and dynamin-related protein 1 (Drp1), which participates in 

mitochondrial fission, was determined. As shown in Figure 7B, fructose supplementation 

significantly reduced Opa1 expression in the frontal cortex, whereas it increased the expression 

of Drp1, which suggests impaired mitochondrial dynamics. By contrast, glucose 

supplementation did not alter the expression of these proteins significantly. None of these 

proteins was affected by sugar supplementation in the hippocampus (Figure 7C). 

  

Cognitive alterations are associated with metabolic changes 

 A partial correlation analysis was performed in order to determine the relationship 

between the DI (the parameter used to assess the performance of the rats in the NOR test) and 
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several metabolic and molecular parameters that may be related to key events in 

neurodegeneration processes, after seven months of sugar supplementation (Supplementary 

Table 2 and Figure 8). The most interesting findings were a significant negative correlation 

between the DI and plasma triglyceride values (r=-0.650, p<0.001) and a positive correlation 

between triglyceride and insulin plasma levels (r=0.493, p<0.05), which suggests that 

hypertriglyceridemia may contribute to the cognitive impairment and also to the 

hyperinsulinemia observed in fructose-supplemented rats. Moreover, we found significant 

correlations between the DI and the expression of molecules related to oxidative stress (Sod2: 

r=0.462, p<0.05) and mitochondrial dynamics (Opa1: r=-0.877, p<0.001 and Drp1: r=0.825, 

p<0.001) in the frontal cortex. 

 

Discussion  

  Diet-induced cognitive deficits and their relationship with metabolic alterations have been 

the subject of extensive research, but it is still a matter of debate whether these effects depend 

exclusively on the high amount of energy provided by the diets or are related to specific 

nutrients. Our results support the latter, as they show that long-term exposure to a diet 

supplemented with liquid fructose in female rats causes metabolic and cognitive alterations, 

whereas consumption of an isocaloric supplement of liquid glucose does not. Specifically, only 

fructose consumption alters the results of the GTT and impairs brain insulin signaling, while 

reducing the rats’ performance in the NOR test. Moreover, only fructose-supplemented rats 

exhibit increased plasma levels of triglycerides, AGE and TBARS, as well as reduced 

expression of antioxidant enzymes and altered mitochondrial dynamics in the frontal cortex.  

  In humans, some reports suggest impaired postprandial memory after consumption of a 

meal with a high glycemic index [23–25], whereas others show that drinking glucose can 

temporarily enhance cognitive abilities [26, 27]. By contrast, our results did not show any 

differences in cognitive performance in the MWM or NOR tests after short-term sugar 

supplementation (2 weeks). However, when the sugar supplementation period was extended to 

seven months, memory deficits were observed in the NOR test, but not the MWM test, and only 

in animals that consumed fructose. Most studies concerning the effects of dietary components 

on cognitive abilities in animal models use only one type of test, but it has been suggested that 
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memory impairments after simple sugar consumption may differ depending on the cognitive test 

used [28]. The NOR test is based on the rodents’ spontaneous preference for novelty, and it is a 

widely used model for researching memory alterations through the evaluation of the animals’ 

ability to recognize a novel object [29]. The MWM test, on the other hand, evaluates spatial 

working memory and learning, and is considered useful for assessing damage to the 

hippocampus [30]. Hippocampal tissue seems to be play a more important role in spatial 

memory than in non-spatial memory [31], which is evaluated more effectively in the NOR test. In 

most studies, the NOR task does not seem to be impaired by hippocampal lesions [32]. Thus, 

the memory deficits observed in our study, in the NOR test alone, suggest that the main effect 

of fructose supplementation does not take place in the hippocampus. However, the involvement 

of this tissue in the cognitive alterations observed cannot be ruled out entirely, since it has been 

shown that with retention intervals of less than 15 min in the NOR test the cortex is sufficient for 

object recognition, but with longer intervals (as in the present study, i.e., 2 and 24 h), the 

hippocampus is also required [31].  

  In that regard, the levels of BDNF protein, a neurotrophic factor that plays an important 

role in synaptic plasticity, were found to be lower in both the frontal cortex and the 

hippocampus, and the reduction was more intense and significant in the hippocampus. Although 

it has been reported that BDNF levels are regulated by excessive dietary energy [33], our 

results clearly show a specific reduction in fructose-supplemented rats, despite the fact that the 

energy intake was identical in both sugar-supplemented groups. Several studies in laboratory 

animals suggest that diets enriched with sugars and fats lead to a reduction in BDNF levels that 

correlates with cognitive decline [33, 34]. In humans, reduced BDNF expression is already 

evident in pre-clinical phases of Alzheimer’s disease (AD) [31]. Thus, the observed reduction in 

hippocampal BDNF may be an early marker of dysfunction that appears before specific 

hippocampus-related cognitive deficits are apparent. Moreover, our results show that 

downstream effectors of the BDNF pathway (SYN1 and GAP43) are not affected in sugar-

supplemented rats. Thus, it is plausible that longer supplementation with fructose could lead to 

further impairment of BDNF signaling, thereby resulting in memory deficits in the MWM test. 

However, not only the duration of the sugar supplementation period, but also the sex of the 

animals may influence the rats’ performance in a given test. For example, cognitive deficits in 
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the spatial water maze test were observed in male rats supplemented with high-fructose diets 

for four to five months [35, 36], but not in female rats [37]. This suggests that estrogens may be 

protective against the development of these alterations [9].  

  One key observation of the present study is that, despite being isocaloric, fructose 

supplements caused cognitive alterations, while glucose supplements did not. This is consistent 

with the presence of metabolic alterations in fructose-supplemented rats only, which reveals the 

mechanism underlying the cognitive deficits. On the one hand, rats supplemented with fructose 

present clear hypertriglyceridemia, which is not observed in glucose-supplemented rats, and 

there is a strong negative correlation between the DI obtained in the NOR test and the plasma 

triglyceride levels after seven months of sugar supplementation (Table 2, Figure 8). Thus, our 

results are consistent with studies showing that high triglyceride levels can cause cognitive 

alterations [38–40]. On the other hand, only rats that received fructose present significant 

increases in plasma insulin levels, under fasting conditions and throughout the GTT, which 

indicates that the rats may secrete more insulin in order to maintain normal blood glucose 

levels. Accordingly, fructose-drinking rats show a reduction in whole-body insulin sensitivity, 

assessed by the ISI, which suggests a state of IR. Studies in hamsters also show that fructose 

induces an IR state, together with a considerable increase in VLDL-triglyceride production, and 

suggest that the culprit for these effects is not fructose per se but the IR caused by fructose 

[41]. In this regard, a significant positive correlation was observed between plasma triglyceride 

and insulin levels (Table 2, Figure 8). Moreover, IR is a hallmark of T2D, and clinical studies 

have linked pre-diabetic IR states and T2D to cognitive dysfunctions and dementia [2]. It has 

been suggested that peripheral IR is accompanied by central IR, which may be a mechanistic 

mediator of cognitive deficits [2, 42].  In the present study, we observed that fructose- but not 

glucose-supplemented rats show insulin signaling impairment in the brain, once again 

suggesting that the effect is specifically related to fructose rather than increased calorie intake. 

A hippocampal insulin signaling defect has previously been observed in fructose-fed rats or 

hamsters [35, 43, 44]. Our results are consistent with these reports, as they show a trend 

towards reduced Akt phosphorylation in the hippocampus in the context of increased plasma 

insulin, a situation in which activation of Akt would be expected. Most studies concerning diet-

induced central IR have focused on the hippocampus, as this tissue expresses high levels of 
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insulin receptors [45] and is particularly sensitive to changes in lifestyle factors, such as diet [33, 

46]. However, all components of the insulin signaling cascade are also expressed to a 

comparable extent in the cortex [47], and dietary changes may also affect this brain region. 

Indeed, we examined insulin signaling in the frontal cortex also, and observed a clear 

impairment, revealed by significantly reduced IRS-2 protein levels and Akt phosphorylation. It 

could be hypothesized that the memory deficit observed in the NOR task, which as commented 

before depends less on the hippocampus than the cortex, may be related to the more intense 

insulin signaling impairment in this brain region. These results highlight the importance of the 

cortex, which has received less attention than the hippocampus in past studies, in the 

establishment of cognitive deficits induced by fructose supplementation. 

  IR has been associated with decreased IDE levels [22, 48]; by contrast, we observed an 

increase in IDE protein expression in fructose-drinking rats. Insulin has been shown to regulate 

IDE expression [49], and the hyperinsulinemia presented by the fructose group could therefore 

explain this increase. Alternatively, increased IDE may be regarded as a compensatory 

mechanism to reduce high insulin levels due to its insulin-degrading activity. Some reports 

suggest an inverse correlation between plasma and cerebrospinal fluid insulin in AD patients 

[47]. Thus, although brain insulin levels were not measured in this study, it could be 

hypothesized that increased IDE expression in fructose-supplemented rats leads to reduced 

insulin concentrations in the brain, thereby contributing to impaired insulin signaling and 

cognitive deficits. 

  Other factors, such as inflammation and oxidative stress, may play a key role in cognitive 

dysfunctions, either directly or through IR-related mechanisms [2]. Our results, which show 

unaltered expression of the main inflammatory mediators and astrogliosis markers, rule out the 

participation of neuroinflammation in our model. In contrast, Cigliano et al. recently reported 

hippocampal inflammation in young and adult male rats after short-term consumption of fructose 

in solid form [44], and suggested that inflammation may be linked to increased intestinal 

permeability and microbiota remodeling [44, 50]. The difference between our results and those 

from Cigliano et al. may lie in the way the body handles solid compared to liquid fructose; thus, 

we have previously shown that feeding mice with a Western-type solid diet as a source of 
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fructose increases intestinal permeability to bacterial toxins, whereas liquid fructose 

supplementation (15% w/v) does not [51].  

  On the other hand, plasma AGE levels are selectively increased in fructose-drinking rats 

(Table 1), thus highlighting a role for oxidative stress. In this regard, the formation of AGEs 

(irreversible adducts derived from the non-enzymatic reaction between sugars, such as glucose 

and fructose, and proteins) increases under oxidative conditions [52] and, in a positive feedback 

loop, AGEs may increase the formation of reactive oxygen species [53] and down-regulate 

intracellular antioxidant systems, such as SOD and glutathione [54]. In this regard, a reduction 

in the mRNA expression of antioxidant enzymes in the frontal cortex of fructose-supplemented 

rats was observed, and this may contribute to increased oxidative stress. Accordingly, plasma 

TBARS levels, a marker of lipid peroxidation that occurs as a consequence of oxidative 

imbalance [55], increase only in the fructose group. The fact that both AGE and TBARS are 

selectively increased by fructose but not glucose supplementation may derive from fructose-

specific mechanisms, such as its higher reactivity to form AGE compared with glucose [56]. 

Moreover, an increase in TBARS may result from fructose-increased triglyceride levels, as 

serum triglycerides have been shown to positively correlate with the amount of TBARS [57].  

On the other hand, oxidative stress-related neurodegenerative diseases, such as AD and age-

related cognitive disorders, are also characterized by dysfunctions in mitochondrial dynamics 

[58, 59]. Specifically, excessive mitochondrial fission resulting in fragmented mitochondria is an 

early event in the progression of these pathologies [60] and has also been observed in the 

neurons of diabetic mice [61]. Our results also show an increase in the expression of the fission-

related protein Drp1 and a decrease in Opa1, which is involved in the fusion process, in the 

frontal cortex of fructose-drinking rats. Although mild, these changes suggest that fructose 

induces an imbalance in mitochondrial dynamics in this area of the brain that may result from 

increased oxidative stress and can further contribute to it, in a vicious cycle leading to the 

progression of cognitive dysfunction.   

  In conclusion, our results show that fructose supplementation in liquid form induces 

cognitive deficits in female rats that are strongly associated with metabolic alterations, 

specifically hypertriglyceridemia, hyperinsulinemia and changes in molecular markers of 

oxidative stress and mitochondrial dynamics. These alterations, which are absent in isocaloric 



 18 

glucose-supplemented rats and are therefore not exclusively related to the increased calorie 

intake, could underlie defects in molecular pathways, such as brain insulin signaling, and lead to 

cognitive impairment.  
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Figure legends 

Figure 1: Blood glucose (A), plasma insulin levels (B) and insulin sensitivity index (C) from 

control (CT), glucose- (GLC) and fructose-supplemented rats (FRC). (D-G) Results of the 

glucose tolerance test: plasma glucose (D) and insulin (F) values at different times after the 

intraperitoneal administration of a glucose solution (2 g/kg body weight). Area under the curve 

(AUC) values for glucose (E) and insulin (G) plasma concentrations represented in Fig 1D and 

F. Results are the mean ± SD of values from 11-12 animals/group. *p < 0.05, **p < 0.01 vs CT; 

#p < 0.05, ##p < 0.01, ###p < 0.001 vs GLC. 

 

Figure 2: Results of the Novel Object Recognition (NOR) Test. The bars show the performance 

of control (CT), Glucose- (GLC) and Fructose-supplemented (FRC) rats in the test measured as 

Discrimination Index (DI) 2 h and 24 h after the training phase,  at  week 2 (A,B) and  week 27 

(C,D) after the commencement of their respective diets. The DI was defined as (TN − TO) / (TN 

+ TO), being TN and TO the time spent by each rat exploring the novel object and the old 

object, respectively. Results are the mean ± SD of values from 11-12 animals/group. *p < 0.05 

vs CT; #p < 0.05, ##p < 0.01 vs GLC. 

 

Figure 3: Evaluation of spatial learning and memory performance of control (CT), Glucose- 

(GLC) and Fructose-supplemented (FRC) rats using the Morris Water Maze (MWM) Test at 

week 2 (A-D) and week 27 (E-H) after the commencement of their respective diets. The bars 

show the escape latency time to reach the hidden platform during training days (A,E) and the 

swimming velocity (B,F), the percentage of time spent in the platform zone (C,G) and the 

number of entries in the platform zone (D,H) during the probe trial. Results are the mean ± SD 

of values from 11-12 animals/group. *p < 0.05 vs CT; #p < 0.05, ##p < 0.01 vs GLC. 

 

Figure 4. (A) Levels of BDNF in the frontal cortex and in the hippocampus of control and sugar-

supplemented rats determined by ELISA test. (B) mRNA levels of SYN1 and GAP43 in the 

frontal cortex and in the hippocampus of control and sugar-supplemented rats (n=8/group).  

Western-blot of SYP and PSD95 in samples from the frontal cortex (C) and the hippocampus 

(D) obtained from control, glucose- and fructose-supplemented rats. Representative bands 
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corresponding to 3 different rats in each group are shown; bar plots show the level of the 

proteins expressed as the mean (a.u., arbitrary units) ± SD of the values obtained from 4-5 

animals. *p < 0.05 vs control values; #p < 0.05 vs glucose group values.  

 

Figure 5. (A) mRNA levels of IRS-1 and -2 in the frontal cortex and in the hippocampus of 

control and sugar-supplemented rats (n=8/group). Western-blot of IRS-2 (B), phosphorylated 

and total AKT, GSK3β and TAU (C,D) and IDE (E) in samples from frontal cortex and 

hippocampus obtained from control, glucose- and fructose-supplemented rats. Representative 

bands corresponding to 3 different rats in each group are shown; bar plots show the level of the 

proteins expressed as the mean (a.u., arbitrary units) ± SD of the values obtained from 4-5 

animals. *p < 0.05, ***p<0.001 vs control values; #p < 0.05, ##p <0.01 vs glucose group values.  

 

Figure 6. (A) Bar plots showing the relative levels of specific mRNAs of pro-inflammatory 

molecules in the frontal cortex and in the hippocampus of control and sugar-supplemented rats 

(n=8/group). (B) Quantification and (C) representative images for GFAP immunostaining in 

control fructose- and glucose-supplemented rats. Bars represent the mean (a.u., arbitrary units) 

± SD of the values obtained from 4-5 animals/group. CA: Cornu Amonis, DG: Dentate gyrus.  

 

Figure 7. (A) Bar plots showing the relative levels of specific mRNAs of oxidative stress-related 

molecules in the frontal cortex and in the hippocampus of control and sugar-supplemented rats 

(n=8/group). Western-blot of proteins involved in mitochondrial dynamics in the frontal cortex (B) 

and hippocampus (C) obtained from control, glucose- and fructose-supplemented rats. 

Representative bands corresponding to 3 different rats in each group are shown; bar plots show 

the level of the proteins expressed as the mean (a.u., arbitrary units) ± SD of the values 

obtained from 4-5 animals. *p < 0.05 vs control values. Verificar asterisk en aquesta figura 

 

Figure 8. Behavioral, plasma level and neuronal markers hierarchical network of the three rat 

groups (n=36) obtained by using yEd graph editor (v. 3.14.4). Each node represents one 

behavioral, plasma level or neuronal marker and each edge between two nodes represents the 

partial correlation. Colors represent the different variables and node dimensions represent the 
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number of correlations. Solid black line represents positive correlation and dotted red line 

represents negative correlation. 

 

 

  
 

 

  

 



Table 1. Zoometric parameters and plasma analytes of female rats supplemented or not with 

10% w/v liquid fructose or glucose for 7 months. 

 

 
Control Glucose Fructose 

AUC liquid intake 

(ml/[rat x 7 months])a  
7171±923 22935±3340*** 19712±5040** 

AUC solid food intake  

(g/[rat x 7 months])a 
3190±154 1899±225*** 2139±310*** 

AUC Total ingested kcal 

(kcal/[rat x 7 months])a 
9331±443 14705±820*** 14119±1430*** 

Final body weight 

(g) a 
327±23 344±17 359±38* 

AUC weight 

(g/[rat x 7 months])a 
8103±445 8267±362 8623±566* 

Postpandrial plasma triglycerides  

(mg/dl) 
144±24 147±16 209±45***### 

Fasting plasma triglycerides  

(mg/dl) 
155±27 196±50 292±28***### 

Plasma AGE  

(ng/ml) 
12.2±4.2 9.8±6.7 22.9±6.9* 

Plasma TBARS 

(µmol/l) 
23.2±5.0 25.3±4.3 34.1±7.3*# 

 

AUC: Area Under the Curve. Values are expressed as mean ± SD of n=8 rats/group except for 

valuesa, which were obtained from n=12 rats. *p<0.05; **p<0.01;***p<0.001 vs Control and 

#p<0.05, ##p<0.01, ###p<0.001 vs Glucose. 
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