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At present, the geographical origin of extra virgin olive oils can be ensured by documented traceability,
although chemical analysis may add information that is useful for possible confirmation. This preliminary
study investigated the effectiveness of flash gas chromatography electronic nose and multivariate data
analysis to perform rapid screening of commercial extra virgin olive oils characterized by a different geo-
graphical origin declared in the label. A comparison with solid phase micro extraction coupled to gas
chromatography mass spectrometry was also performed. The new method is suitable to verify the geo-
graphic origin of extra virgin olive oils based on principal components analysis and discriminant analysis
applied to the volatile profile of the headspace as a fingerprint. The selected variables were suitable in
discriminating between “100% Italian” and “non-100% Italian” oils. Partial least squares discriminant
analysis also allowed prediction of the degree of membership of unknown samples to the classes
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1. Introduction

In an increasingly globalized world, certification of food quality
is one of the most important goals for scientists in the agri-food
sector. Consumer demand of traceability and authenticity of food
products is also increasing, and the international agencies dealing
with food quality have recently published specific guidelines in
this regard (FAO, 2003). Extra virgin olive oil (EVOO) is a typical
Mediterranean food product characterized by a multi-millenary
tradition that arouses great appreciation among consumers.
Within the Mediterranean basin, Italy is a key producer of olive
oil. The vast economic interests may give rise to illegal activities
aimed to increase profit, such as a false declaration of geographic
origin, thus falsifying traceability and, consequently, authenticity
of the product. The European Union (EU) has recently concluded
a decennial iter to establish regulations about olive oil with the
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aim of regulating production and commercialization of this impor-
tant product. Regulation EU No. 1019/02 defined how to correctly
pack and label oils, and the last Commission Implementing
Regulation, 2013 EU No. 1335/13 made it obligatory to indicate
the geographic origin on the label. In EU Regulation No. 29/12
(European Commission Implementing Regulation, 2012), it is
reported that in order to ensure that consumers are not misled
and the olive oil market is not distraught, information concerning
the geographic area in which olives are harvested and olive oil is
obtained should be stated on the packaging or labels. For greater
clarification, the document also defines that simple provisions as
‘blend of olive oils of European Union origin’ or ‘blend of olive oils
not of European Union origin’ or ‘blend of olive oils of European
Union origin and not of European Union origin’ should be stated
for labeling of origin.

The mandatory necessity of certifying the geographical origin
makes it highly desirable to assess origin not only by documenta-
tion of verification, but also by rapid analytical methods. In this
regard, it is necessary to apply high performance instrumental ana-
lytical methods, and the large number of variables imposes the use
of chemometrics, whose outputs provide useful and easy-to-
visualize information extracted from data while simultaneously
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discarding useless information (analytical noise and redundant
information).

There is an urgent need to extend the representativeness of a
database established on chromatographic, spectroscopic, and spec-
trometric compositional data profiles to clearly identify the most
promising techniques in order to confirm the geographic origin
of EVOOs and verify the conformity of label-declared geographic
origin, as well as to provide one or more harmonized methods
for sharing markers that are useful to check the product’s confor-
mity to specific standards (e.g., geographic origin). All the factors
identified by compositional analysis of EVOOs are important. Mass
spectrometry together with various spectrometric and chromato-
graphic analytical techniques have been applied to determine the
chemical composition, and many of these instrumental analytical
techniques have been used in tandem with chemometrics
(Gouvinhas, De Almeida, Carvalho, Machado, & Barros, 2015;
Azizian et al., 2015; Mendes et al,, 2015; Sinelli et al., 2010;
Diraman & Dibeklioglu, 2009). In this context, adulteration of
EVOOs has been studied by liquid chromatography (HPLC), gas
chromatography (GC), and linear discriminant analysis (LDA) using
fatty acids (FA) and triacylglycerols (TGs) as markers (Ollivier,
Artaud, Pinatel, Durbec, & Guerere, 2006; Jabeur et al., 2014).
HPLC-mass spectrometry (MS) and LDA allowed determination of
the phenolic profile for discrimination of geographical origin
(Taamalli, Arrdez Roman, Zarrouk, Segura-Carretero, & Fernan
dez-Gutiérrez, 2012). In particular, specific volatile compounds or
their classes (e.g., terpenoid compounds) have been used to dis-
criminate EVOO samples according to geographic origin (Ben
Temime, Campeol, Cioni, Daoud, & Zarrouk, 2006; Cecchi & Alfei,
2013; Vichi, Pizzale, Conte, Buxaderas, & Lopez-Tamames,, 2003;
Zunin, Boggia, Salvadeo, & Evangelisti, 2005). Many EVOOs have
also been classified according to their geographic origin using the
combination of FA and/or TG profiles with other compounds such
as sterols, polyphenols, and volatiles using conventional and new
analytical approaches, as recently reviewed (Gallina Toschi,
Bendini, Lozano-Sanchez, Segura-Carretero, & Conte, 2013;
Garcia-Gonzalez, Luna, Morales, & Aparicio, 2009). Several publica-
tions have described the use of volatile-species distribution as a
fingerprint to assess traceability, authentication, and non-
degradation based on head-space sampling and GC in tandem with
several chemometric tools: analysis of variance (ANOVA) and cor-
relation analysis (Cecchi & Alfei, 2013); principal components anal-
ysis (PCA) (Cimato et al., 2006); LDA (Pouliarekou et al., 2011); PCA
and hierarchical clustering analysis (HCA) (Procida, Giomo,
Cichelli, & Conte, 2005).

Among the chemical species in EVOO, many volatiles have been
related with specific sensory characteristics (Aparicio, Morales, &
Alonso, 1996; Cerretani, Salvador, Bendini, & Fregapane, 2008).
Over the last decade, “e-sensing” technologies have undergone
important developments from a technical and commercial point
of view, and electronic noses have been designed to mimic the
human sense of olfaction in order to detect and recognize flavors
and off-flavors in different food matrices (Peng, Tian, Chen, Li, &
Gao, 2015). Moreover, the electronic nose results have been suc-
cessfully correlated to those obtained with other techniques (sen-
sory, GC, and GC-MS) (Mildner-Szkudlarz & Jelen, 2008; Lerma-
Garcia et al., 2010).

In a traditional multivariate approach, the variables are concen-
trations of several compounds: this means that the scientist
chooses beforehand which chemical species are relevant; in con-
trast, when tools like PCA or partial least squares discriminant
analysis (PLS-DA) are applied to full chromatograms, there is no risk
to discard species with retention times not corresponding to chem-
ical species already known to influence EVOO quality. The advan-
tages of such an approach have recently been described (Melucci
et al., 2013).

The aim of this study was to analyze the headspace profile of
commercial EVOOs with different geographic origin using elec-
tronic nose with ultra fast gas chromatography (FGC E-nose),
which is able to perform the separation on two short columns of
different polarities working in parallel and detect analytes with a
flame ionization detector (FID). The FGC E-nose was used to dis-
criminate between products labeled as “100% Italian EVOO” and
“non-100% Italian” coming from other countries in the EU, and in
particular Spain and Greece. PCA, LDA, and HCA were applied as
exploratory tools. Data processing was initially applied to datasets
made from peak areas at retention times corresponding to signifi-
cant species; in this case, a comparison between the non-target
analysis performed by FGC E-nose and SPME/GC-MS achieved
two purposes: (i) to demonstrate that the discriminating power
of FGC E-nose was comparable with SPME/GC-MS; (ii) to assign
FGC E-nose retention times to specific volatile compounds. In a
second step, the full chromatograms, obtained on two different
sets of samples analyzed in two different laboratories, were pro-
cessed by applying PLS-DA as a chemometric tool.

2. Materials and methods
2.1. Samples

The two sets of samples named Set A and Set B were formed by
27 and 251 EVOOs, respectively, and were collected from COOP Ita-
lia before distribution by the supermarket chain (COOP Italia is a
consortium that acts as a central retailer and is one of the most
important supermarket chains in Italy; it also carries out market-
ing activities and performs quality control). Set A was composed
of 5 PDO (Protected Designation of Origin) and PGI (Protected Geo-
graphical Indication) Italian samples, 13 samples declared as pro-
duced and processed exclusively in Italy (100% Italian, I code),
and 9 samples produced in countries which are members of the
European Union (Mixtures, M code). All samples in Set A were col-
lected during the 2012-2013 harvest period. Set B included 132
samples labeled as 100% Italian (I) and 119 samples labeled as
non-100% Italian (M) EVOOs collected during the 2013-2014 har-
vest period. Even if the actual identity of the samples was confi-
dential, all the olive oils were bottled (in dark or transparent
glass bottles) in Italy. Moreover, samples considered as 100% Ital-
ian were assumed to be as declared, according to specific quality
control checks, and based on chemometric control with single-
class PCA models and Hotelling analysis for outliers elimination
applied to confirm the geographic class. All samples were stored
at 10 °C in darkness before analysis.

2.2. Sensory Evaluation

A 10C panel test method was carried out on samples in Set A by
a group of 8 selected trained assessors, all members of the Profes-
sional Committee DiSTAL. Sample evaluation was performed
according to the official procedure (Reg. (EC) 640/2008). Moreover,
the presence of green notes and other positive attributes were
evaluated with reference to the list of descriptors for PDO EVOOs
developed and agreed by the International Olive Oil Council,
2005 (I00C/T.20/Doc. No. 22, 2005).

2.3. FGC E-Nose

The same type of FGC E-nose Heracles Il (AlphaMos, Toulouse,
France) was used for both sets of samples but in two different lab-
oratories (Set A was analyzed in Toulouse, Set B in the laboratory of
COOP Italia in Bologna, Italy). The Heracles Il was equipped with
two columns working in parallel mode: a non-polar column
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(MXT5: 5% diphenyl, 95% methylpolysiloxane, 10 m length and
180 um diameter) and a slightly polar column (MXT1701: 14%
cyanopropylphenyl, 86% methylpolysiloxane, 10 m length and
180 um diameter). A single comprehensive chromatogram was
created by joining the chromatograms obtained with the two col-
umns; such an approach may help in preventing/reducing incor-
rect identifications due to overlapping of chromatograms
obtained with two different columns, and represents a useful tool
for improved identification. An aliquot of each sample (2 g + 1%)
was placed in a 20 mL vial and sealed with a magnetic plug. The
vial was placed in the Heracles’ auto-sampler, which placed it in
a shaker oven where it remained for 20 min at 50 °C, shaken at
500 rpm. Next, a syringe pierced the silicone septum of the mag-
netic plug and sampled 5 ml of the head space. Prior to the chro-
matographic separation, the 5-ml headspace aliquot was
adsorbed on a CARBOWAX trap maintained at 40 °C for 65 s while
the carrier gas (H,) flowed through it in order to concentrate the
analytes and to remove excess air and moisture. Subsequently,
desorption was obtained by increasing the temperature of the trap
up to 240 °C in 93 s and the sample was injected. The thermal pro-
gram started at 40 °C (held for 2 s) and increased up to 270 °C at
3 °Cs~!; the final temperature was held for 21 s. The total separa-
tion time was 100 s. At the end of each column, a FID detector was
placed and the acquired signal was digitalized every 0.01 s. For cal-
ibration, an alkane solution (from n-hexane to n-hexadecane) was
used to convert retention time in Kovats indices and identify the
volatile compounds using specific software (AromaChemBase).
Samples were analyzed in triplicate or quadruplicate for both Set
A and Set B.

2.4. SPME/GC-MS

The headspace composition was investigated by SPME coupled
to GC separation and MS detection. This same analysis was per-
formed in two different laboratories: samples in Set A were ana-
lyzed at the University of Bologna (Italy), whereas the laboratory
of the University of Barcelona (Spain) performed analysis on Set
B. The same kind of instrument, a gas chromatograph Agilent
6890 N Network and a quadrupolar mass-selective spectrometry
Agilent 5973 Network detector (Agilent Technologies, Palo Alto,
CA, USA), provided with a split-splitless injection port and helium
as the carrier gas (linear velocity of 17 cm s~!) was used. Slight dif-
ferences in analytical conditions were applied.

For analysis of Set A: SPME was carried out by weighing 1.5 g of
sample, spiked with 4-methyl-2-pentanone (internal standard dis-
solved in refined sunflower oil) to a concentration of 10 mg kg~ in
a 10 mL vial fitted with a silicone septum. The vial was placed in a
water bath at 40 °C and maintaining the oil sample under magnetic
stirring for 2 min (conditioning) and then a DVB/CAR/PDMS fiber
(50/30 pm, 2 cm long from Supelco Ltd., Bellefonte, PA) was
exposed for 30 min in the headspace of the sample. After exposi-
tion, the fiber was retracted into the needle and immediately des-
orbed for 3 min in the injection port of a gas chromatograph
(250 °C). Compounds were separated on a ZB-WAX column 30 m,
0.25 mm ID, 1.00 um film thickness (Chemtek Analytic, Bologna,
Italy). Column temperature was held at 40°C for 10 min and
increased to 200 °C at 3 °C min~'. The ion source and transfer line
were at 180°C and 230 °C, respectively. Electron impact mass
spectra were recorded at 70eV ionization energy in the 20-
250 amu mass range, 2 scans s~ ..

For analysis of Set B, SPME extraction was performed according
to Vichi et al. (2003) and differed from the method applied for Set A
only for use of a different internal standard, 4-methyl-2-pentanol
(Sigma-Aldrich, St. Louis, MO). The fiber was then desorbed at
260 °C in the gas chromatograph injection port for 5 min. Separa-
tion of compounds was performed on two columns with distinct

polarity: Supelcowax-10 and Equity-5 (both 30 m x 0.25 mm I.D.,
0.25 um film thickness), both purchased from Supelco (Supelco
Ltd., Bellefonte, PA, USA). The column temperature was held at
40 °C for 5 min and increased to 200 °C at 4 °C min~'. The injector
temperature was 260 °C, and the transfer line temperature was
280 °C. Electron impact mass spectra were recorded at 70 eV ion-
ization energy in the 30-300 amu mass range, 2 scans s~ .

Identification of volatile compounds was mainly carried out by
a comparison of mass spectral data with information from the
National Institute of Standards and Technology (NIST) library
(2005 version) and checked with pure standards. Linear retention
indexes were also calculated and compared with those available
in the literature. Relative amounts of volatile compounds were
expressed as mg of internal standard per kg of oil, applying a
response factor of 1. All determinations were carried out in tripli-
cate or duplicate for Set A and Set B, respectively.

2.5. Software

The FGC E-nose data processing was carried out with Alphasoft
V12.44 and AroChembase software. XLSTAT version 2011.1.03 soft-
ware (Addinsoft, USA) was used to elaborate ANOVA and PCA on
Set A. Preliminary PCA on Set B and PLS-DA were performed using
The Unscrambler version 9.8 (CAMO, Norway).

2.6. Chemometrics

In this work, a first explorative step was carried out using peak
areas that were automatically calculated by the software that con-
trols each instrument. All data based on peak area were pre-
processed by autoscaling.

Principal component analysis is a well-known chemometric
procedure which rotates the original space to another one whose
versors are the principal components (PCs) oriented along direc-
tions containing the maximum explained variance (EV) and mutu-
ally orthogonal. Score and loadings plots are obtained, allowing for
easy visualization of samples and variables and verification of their
role in the analytical problem. Hotelling analysis, applied to PCA
scores, calculates the covariance ellipsoid corresponding to 95%
confidence level (and visually draws it on the scores plot); there-
fore, samples falling outside of the ellipsoid are those in the multi-
variate Gaussian tails and may be considered outliers and
discarded from further analyses. Linear discriminant analysis is a
multivariate classification tool which rotates the original space,
but unlike PCA its aim is to maximize separation between classes,
minimizing at the same time distances between objects in the
same class; in this way, new objects may be projected onto this
new scores space and assigned to one of the classes of the training
set. HCA may also be applied to identify eventual sub-classes by
calculating multidimensional Euclidean distances between objects
and grouping those closest to each other. In the present investiga-
tion, it was highly expected that various sub-categories may be
included in the very broad category “non-100% Italian” (M, for
example mixtures from Spain, Greece, Italy).

Once the preliminary exploration by PCA, HCA, and LDA was
completed, the work was extended by creating models, or equa-
tions involving experimental variables. A very useful response vari-
able is the degree of belonging of objects to the possible classes
involved in the analytical problem. The main interest was in quan-
tifying the degree of belonging to class I (y;) and the degree of
belonging to class M (y). Few tens of objects are available while
up to thousands of variables (digitized signal) are generated by a
FGC E-nose chromatogram. Thus, the only adequate modeling tool
is PLS regression (in particular, PLS-DA), which exploits PCs and
maximizes both EV and correlation between regressors (the vari-
ables, that is the chromatographic signals at various retention
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times) and the response (degree of belonging, y). The choice of
using full chromatograms has important advantages: (i) no pre-
selection of significant retention times is needed, thus by-passing
the non-target character of FID signals; when no pre-selection is
done, the risk of discarding useful information is avoided; (ii)
errors related to incorrect integration in peak-area calculation
are avoided. Of course, some disadvantages must also be consid-
ered when using whole chromatograms as predictors: a number
of correlated variables much higher than the number of objects
may lead to overfitting, which provides modeling noise instead
of useful information. However, chemometric modeling tools offer
reliable methods for controlling these problems to obtain good
performance of PLS-regression, based on objective measures: in
particular, root mean square error (RMSE) and correlation coeffi-
cients. Predictive ability (also for LDA) was evaluated by the
well-known cross-validation (CV) procedure (Brereton, 2007).

3. Results and discussion
3.1. Explorative analysis of sample Sets A and B

The exploration of Set A was considered as a preliminary step in
the method development as it was the first to be analyzed and con-
sequently taken into account to better define a chemometric
approach for discriminating such a large number of olive oil sam-
ples subsequently studied. This first set of 27 samples was very
useful for exploring Set B in depth and in establishing the method.

3.2. PCA from SPME/GC-MS peak areas of Set A

According to the sensory analysis performed by IOC panel test
method, the 27 samples of Set A were classified as EVOO (8 sam-
ples) and VOO (19 samples); for EVOOs, the intensity of fruity
was light (4 samples) and medium (4 samples), and the presence
of secondary notes (olfactory and gustatory sensations) of almond,
tomato, and grass was also found. The VOOs showed several sen-
sory defects, although “fusty-muddy” (off-flavor of oils from olives
stored in large amounts for many days before processing, or of oils
left in contact with the sediment for a long period of time, both
leading to anaerobic fermentation) was the most common. Other
sensory defects found in VOO samples were rancid and winey-
vinegary.

The volatile compounds identified and quantified in the head-
space of the analyzed samples by SPME/GC-MS are reported in
Fig. 1, which shows an overlap between SPME/GC-MS traces rela-
tive to the profiles in volatiles molecules for M15 (mixture, non-
100% Italian), 113 (100% Italian), and 123 (Italian PDO) samples. It
is interesting to note that the non-100% Italian sample (M15)
showed a high content of Cg lipoxygenase (LOX) esters (hexylac-
etate and (Z)-3-hexenylacetate), which contribute to the positive
sensory notes of “sweet”, “fruity”, and “banana-like” (Kalua et al.,
2007) and, on the other hand, a tendency towards a lower content
in (E)-2-hexenal and (E)-2-hexenol, both positively correlated with
green sensory attributes such as “freshly cut grass”, “bitter
almond”, and “leaves” (Angerosa, 2002; Morales, Luna, &
Aparicio, 2005). Moreover, a larger peak of a compound tentatively
identified as dodecene could be observed (see also Fig. 2). Gener-
ally, samples 113 and 123, respectively, 100% Italian and Italian
PDO, were characterized by a major richness in compounds
derived from the secondary pathway of LOX (i.e., Cs molecules
and pentene dimers).

Volatile data obtained from SPME/GC-MS were elaborated by
PCA to compare the profile of volatile compounds (Fig. 2). A selec-
tion of the most discriminant volatile compounds obtained by
ANOVA was performed to improve separation among samples.

The first two components explained 81% of total variance (48%
for the first latent variable and 33% for the second). Considering
the locations of products on the PCA scores plot, it is possible to
point out that the non-100% Italian samples (M) were grouped in
a cluster located in the quadrant of negative values of PC1 and pos-
itive values of PC2, whereas Italian samples (100% Italian and Ital-
ian PDO/PGI, I) were concentrated mainly between the two
quadrants corresponding to negative values of PC2. The different
direction/location of vectors (PCA loadings) shows which mole-
cules were involved in the aroma variations among samples,
according to the previous explanation. This statistical elaboration
allowed to discriminate the samples according to their different
geographic origin (non-100% Italian vs. Italian), but not in terms
of sensory quality: in fact, each cluster contains both VOOs and
EVOOs. The application of FGC E-nose on the set of samples
allowed hypothetical identification of 25 different compounds
based on Kovats retention indices and the AroChembase software
equipped with a library built on the scientific literature to display
the associated sensory features.

3.3. PLS-DA from FGC E-nose full chromatograms of Set A

Fig. 2 clearly demonstrated that the discriminating power of the
volatile profile with respect to geographic origin can be identified:
this preliminary result encouraged further chemometric explo-
ration. Once the discrimination potential of PCA based on Set A,
the same set was used to explore the potentials of the other key
chemometric tool chosen, namely PLS-DA. In order to make this
check independent of the analytical procedure (modality of intro-
duction of volatiles in the GC column) and of the nature of chemo-
metric variables (peak areas or full chromatograms), thus
reinforcing eventual confirmation of the intrinsic discriminating
power of the volatile profile, the PLS-DA was applied to full chro-
matograms obtained by FGC E-nose analysis of Set A. To reduce
the calculation complexity, one retention time every 10 was
selected: hence, the number of variables was reduced from
20,000 to 2000. For the sake of succinctness, the PLS-DA model is
not reported herein, but its good performance may be summarized
as follows: (i) the scores-plot is analogous to the one shown in
Fig. 2 (I samples on negative PC2 values and M samples with neg-
ative PC1 and positive PC2); (ii) high total EV (96.9% in the first 2
PCs) was obtained; the plot of predicted vs. experimental
responses showed low RMSE (0.071) and RMSEcy (0.15) with high
correlation (R? = 0.980; RZ, = 0.908).

Following the demonstration that the volatiles profile is intrin-
sically related to geographic origin (independently of whether the
volatiles are identified in the GC column by E-nose or SPME, and
independently of choosing variable peak areas or full chro-
matograms), in depth analysis of the large training set (Set B)
was initiated.

3.4. PCA models based on FGC E-nose peak areas of Set B

Considering Set B, the training set to create chemometric mod-
els and the unknown set to apply models must be extracted from
all 251 EVOO samples that were analyzed in quadruplicate by
FGC E-nose. Each replicate corresponds to a row of the data set
(object), and thus 251 samples gave 1004 objects. In this first step
of multivariate analysis of Set B, the variables are the peak areas.
Choosing the training set is a delicate step, because the fidelity of
the characteristics declared about the samples is crucial to the
model’s performance. In order to obtain a very reliable and consis-
tent training set, the following rationale was used. A PCA model
was created from the 100% Italian samples, and Hotelling analysis
was performed. Only objects far inside the Hotelling ellipse were
chosen; 224 objects were thus selected. The same was done with
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Fig. 1. (A) Overlapping of volatile GC traces obtained by SPME/GC-MS analysis (Set A). Samples: M15 (non-100% Italian), 113 and 123 (100% Italian). Peaks are reported in
order of elution: 1: ethyl acetate; 2: ethanol; 3: 3 ethyl-1,5-octadiene (I); 4: IS; 5: 3 ethyl-1,5-octadiene (II); 6: 1-penten-3-one; 7: 4,8-dimethyl-1,7-nonadiene; 8: hexanal; 9:
1-penten-3-ol; 10: (E)-2-hexenal; 11: 1-dodecene; 12: hexylacetate; 13: (Z)-3-hexenylacetate; 14: hexanol; 15: (Z)-3-hexenol; 16: nonanal; 17: (E)-2-hexenol; 18: (E,E)-2,4-
hexadienal; 19: acetic acid. (B) Overlapping of sensors (volatiles) as detected by FGC E-Nose (Set A). Samples and peak numbers according to the (A).
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Fig. 2. (A) PCA loadings obtained using the selected variables on SPME/GC-MS data (Set A). (B) PCA score plot obtained using the selected variables on SPME/GC-MS

data (Set A).

the M samples, and 269 objects were selected. Therefore, the train-
ing set was formed of 493 objects. To verify the suitableness of
samples, a LDA scores plot (not reported) was created, and separa-
tion between classes was excellent (94.2% correct assignments in
cross validation). This is not an obvious result: based on FGC E-
nose areas, all Italian samples formed a homogeneous PCA cluster,
and all M samples constituted another homogeneous PCA cluster,
but LDA showed that these two clusters are separated, thus
demonstrating the discriminating ability of FGC E-nose variables
and hence of the volatiles profile. This preliminary exploration
allowed identification of the variables that were related to high
discriminating power. In order to explore eventual subgroups in

M category (very wide in this case), a HCA was performed. In fact,
3 clusters were observed in the M category, termed M1, M2, and
M3 (dendrogram not shown).

The PCA analysis of these 493 selected objects obtained the
results reported in Fig. 3. The resulting PCA model showed good
performance since 81.3% EV was obtained in calibration mode
with only 6 PCs of 20 original variables. It can be seen that
the centroid of the I-cluster is far distant from the centroid of
the M-cluster. This is another important proof of the suitability
of the volatiles profile (here represented with FGC E-nose vari-
ables) to discriminate the geographic origin with respect to
100% Italian and non-100% Italian EVOOs. However, several M2
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Fig. 3. Scores plot of FGC E-nose peak areas of 493-objects dataset selected by Hotelling (Set B). M1, M2, M3: clusters identified by HCA. EV = 39% along PC1, 18% along PC2.

95% EV is obtained with 11 PCs in calibration and 15 PCs in cross validation mode.
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Fig. 4. PLS-DA from FGC E-nose full chromatograms of 439-objects sub-dataset (Set B). (A) Scores plot, PC1-EV: 87%, PC2-EV: 7%. (B) PC1-loadings plot. (C) PC2-loadings plot.

samples in the scores plot in Fig. 3 are near the I centroid; this is
not surprising, since a sample classified as “non-100% Italian”
may contain a fraction of Italian EVOO. The samples with the
highest distance from the centroid were from four suppliers
who declared that they were from EU countries, but did not

contain Italian oil. In order to avoid doubts related to the
geographical origin of samples in the training set, in the
subsequent discussion a sub-dataset was created where the M2
samples were discarded (439 objects remained), and M1 and
M3 were joined again in a unique M class.
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3.5. PLS-DA from FGC E-nose full chromatograms of Set B

To check the opportunity of using full chromatograms as pre-
diction variables, PLS-DA was performed on the 439 object sub-
dataset of Set B. This procedure is almost identical to the one used
in Section 3.2, although in this case there is a much higher number
of objects. The outputs relevant to the PLS-DA model are reported
in Fig. 4A-C. A well-defined separation between Italian and non-
100% Italian classes is obtained. Comparison between the scores
plot in Fig. 4A and loadings relevant to PC1 (Fig. 4B) allows deter-
mination of which FGC E-nose retention times discriminate objects
with positive PC1 scores with respect to objects with negative PC1
scores; the analogous comparison allows to study the FGC E-nose
discriminating retention times along PC2. The figures of merit
related to the PLS-DA response plot (calculated vs. experimental
degree of belonging to Italian class) were as follows: a very low
RMSE was obtained for both descriptive and predictive ability
(0.203 and 0.207, respectively); very few PCs contained over 99%
of variance: for each chromatogram, 2000 signals at several reten-
tion times were acquired and only 2 PCs contained an high level of
information (PC1-EV: 87%, PC2-EV: 7%; total EV = 94%). Both in cal-
ibration and in validation, the slopes of response plot were very
high (0.834 and 0.833, respectively) and the offsets were close to
the ideal null value. Determination coefficients were also high
(0.835 and 0.839). This is a very strong result, because models cre-
ated in Sections 3.3 and 3.5 were obtained by two different labora-
tories working in a completely independent manner, and using two
different sample sets from different harvest periods analyzed with
different instruments and experimental conditions.

The good PLS-DA model obtained was applied to M2 samples
that were used as unknowns to be predicted. In all cases, a relative
standard deviation (RSD) of about 20% degree of belonging (y; or
ym) was obtained. Predicted values for y; or yy that were higher
than 70% were considered to correspond to “full” I or M character,
respectively; values resulting lower than 30% were assumed to
indicate non-belonging. The result of prediction was the following:
6 ME2 samples of 51 (11.8%) were predicted as “non-100% Italian”;
19 samples (37.3%) were predicted as “100% Italian”; the remain-
ing 26 ME2 samples were predicted as partially “100% Italian”
and partially “non-100% Italian”.

3.6. PCA models based on SPME/GC-MS peak areas of Set B

In order to compare FCG E-nose results with a well known tech-
nique such as SPME/GC-MS, a new dataset was created on the
basis of the PCA shown in Section 3.4, according to the following
criteria. Samples for which all the replicates gave points that were
very close to the I-centroid were selected as “surely Italian sam-
ples”. Samples for which all the replicates give points very close
to the M-centroid were selected as “surely non-100% Italian” sam-
ples. In this way, 7 | samples and 9 M samples were extracted, and
the I-M sub-dataset was obtained. The scores plot obtained from I-
M dataset is reported in Fig. 5, where the Hotelling ellipse is seen.

The I-M dataset extracted from Set B was processed by SPME/
GC-MS, and careful and detailed analysis of mass spectra was per-
formed to identify molecules corresponding to significant chro-
matographic peaks. It must be pointed out that neither the gas
chromatographic conditions nor the headspace conditions respec-
tively employed for SPME/GC-MS and FGC E-nose were identical.
Moreover, correlation analysis between SPME/GC-MS and FGC E-
nose chromatograms may show eventual correspondences
between species identified in SPME/GC-MS and FGC E-nose reten-
tion times. This could help in bypassing the non-target character of
FGC E-nose analyses.

Since SPME/GC-MS analyses were performed in two replicates
(Set B), the 7+9 samples corresponded to 14+18 objects. The species
identified by SPME/GC-MS analysis were the following: 1-hexanol;
1-octanol; 1-octen-3-ol; 1-penten-3-ol; 1-penten-3-one;
2,4-decadienal; 2,4-hexadienal; 2-butenal; 2-heptanone;
2-methylbutanal;  2-methylbutanol;  2-octanol;  3,4-diethyl
1,5-hexadiene; 3,4-diethyl meso-1,5-hexadiene; 3,5-octadien-
2-one; 3,7-decadiene; 3-ethyl 1,5-octadiene; 3-methylbutanal;
3-methylbutanol; 3-pentanone; acetic acid; acetone; o-copaene;
o-murolene;  o-pinene; benzeneethanol (2-Phenylethanol);
benzenemethanol; citronellal; decanal; decane; dimethylnonadienal;
(E,E)-a-farnesene; (E)-2-heptenal; (E)-2-hexenal; (E)-2-hexenol;
(E)-2-pentenal; (E)-2-pentenol; (E)-B-ocimene; ethanol; ethyl
acetate; formic acid; heptanal; hexanal; hexane; hexylacetate;
isoamylacetate; isoamylalcohol; limonene; methanol; methylac-
etate; methyloctane; murolene; nonanal; octanal; octane;
pentanal; propanal; (Z)-2-pentenol; (Z)-3-hexenal; (Z)-3-hexenol;
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Fig. 5. Scores plot of FGC E-nose peak areas of [-M dataset (Set B). PC1-EV: 25%, PC2-EV: 16%.
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Fig. 6. (A) Scores plot of SPME/GC-MS peak areas of I-M dataset (Set B). PC1-EV: 28%, PC2-EV: 14%. (B) Correlation loadings plot of SPME/GC-MS peak areas of I-M dataset

(Set B).

(2)-3-hexenylacetate; (Z)-4,8-dimethylnonatriene. Each of these spe-
cies was a “variable” in a dataset created by putting the I-M samples
on lines and the SPME/GC-MS peak-area values (in total ion current,
TIC) in the corresponding columns. There were 62 species detected,
although some were detected by both the more-polar and by less-
polar columns. Hence, there were 89 variables in the SPME/GC-MS
dataset, which was more than the number of species detected. The

PCA model obtained by the I-M SPME/GC-MS dataset is reported in
Fig. 6A, where the Hotelling ellipse is seen. An excellent separation
was observed between I and M clusters, thus confirming that head-
space GC may discriminate the Italian quality of EVOOs. The corre-
sponding correlation loadings plot (Fig. 6B) showed which species
are especially important in discriminating samples: the molecules in
the zone between the internal and the external ellipses are the most



272 D. Melucci et al./Food Chemistry 204 (2016) 263-273

important variables; molecules with absolute values of loadings
higher than 0.3 may be considered significantly relevant. It is interest-
ing to observe that molecules relevant to a separation along PC1,
namely with respect to the separation between I and M, are due to pri-
mary or secondary metabolic compounds of the LOX pathway and ter-
penes. This has a chemical-biological basis, since molecules derived
from these enzymatic activities are known to be influenced by the cul-
tivar and geographic origin. Comparison between Figs. 5 and 6A shows
that the FGC E-nose peak areas and SPME/GC-MS peak areas yield a
very similar PCA model: this confirms that headspace GC data (inde-
pendently of how volatiles are brought into the GC column, i.e., FGC
E-nose or SPME/GC-MS) are suitable for discriminating between
100% Italian and non-100% Italian samples, and that FGC E-nose per-
formance in this discrimination is not significantly different with
respect to SPME/GC-MS. It must be pointed out that the extraction
of the training set samples from the initial samples was performed
based on data pre-processing on objects obtained by FGC E-nose;
the fact that these objects gave good results even with SPME/GC-MS
data demonstrates that the initial choice was not a tautology: MS data
are completely independent from FID data. The comparison between
the scores plot and the correlation loadings plot, respectively reported
in Fig. 6A and B, shows that I samples are characterized by negative
PC1 scores and M samples are characterized by positive PC1 scores;
this suggests that molecules identified by MS spectra and character-
ized by negative PC1 loadings and positive PC1 loadings may be
related to I and M samples, respectively.

3.7. Correlation between FGC E-nose and SPME/GC-MS data of Set B

In order to study the correlation between FID variables and MS
variables, a dataset in which lines corresponded to the I-M sam-
ples discussed in Sections 3.4 and 3.6 was created; all columns rel-
evant to FGC E-nose peak areas and SPME/GC-MS peak areas
relevant to the more polar column are reported. The correlation
matrix for the FID-peaks and MS-peaks was calculated, and corre-
lation coefficients with significant or considerable values for highly
discriminating FGC E-nose peaks (see Section 3.4) were observed.
For instance, correlation coefficients higher than 0.8 were observed
for ethanol, methylacetate, ethylacetate, 1-penten-3-one, 1-
penten-3-ol, (E)-1-hexenal, 1-hexanol, and (E)-2-hexenol. This
analysis shows that accurate study may lead to identification of
FGC E-nose peaks, thus bypassing the shortcomings of this tech-
nique: it is a non-target analysis; when a significant signal is not
linkable to a chemical characteristics, the chemometric results
are less strong. It must be underlined that high correlation
between retention time and a molecule does not imply that the
molecule is an important variable; the present correlation analysis
simply has an identification purpose. Importance of variables is
determined by loadings: the important molecules are those lying
in the outside elliptical ring shown in correlation loadings plot
(Fig. 6B). Complete identification of FGC E-nose signal is beyond
the scope of the present work, which aims to demonstrate that
FGC E-nose based chemometric models are not less reliable that
those obtained with SPME/GC-MS data.

4. Conclusions

This study demonstrates that FGC E-nose is suitable for check-
ing geographical traceability of EVOO, even using non-target chro-
matographic signals of the volatile fraction as variables for
multivariate analysis. As a consequence, the feasibility of compar-
ing the geographic origin of standard EVOOs to the origin of an
unknown EVOO using FGC E-nose chromatograms as a fingerprint
has been assessed. A PLS-DA model, able to discriminate between
oils labeled as “100% Italian” (I) and oils labeled as EU oils mixture,

considered as “non-100% Italian” (M), was created. This means that
when a good, reliable training set coming from a certain produc-
tion year is available, it is possible to verify, through direct and
rapid analysis, whether unknown samples belong to the same sta-
tistical population as the training set. Moreover, it is possible to
quantify the degree of belonging of unknown samples to the cate-
gory “100% Italian”. The performance of geographic discrimination
of FGC E-nose was comparable with SPME/GC-MS, and the results
obtained by the two techniques on the same dataset were not sig-
nificantly different. Comparison between FGC E-nose and SPME/
GC-MS signals allowed for eventual correlations between some
FGC E-nose retention times and particular molecules identified
by their MS spectra in SPME/GC-MS analysis.

Both approaches utilized to analyze volatile compounds were
able to discriminate samples with different geographical origin
(M vs. I), but each offers specific advantages and limitations:
SPME/GC-MS provided more reliable diagnostic information on
the identity of compounds thanks to the study of the specific ion
fragment profile and the possibility to consult the library of mass
spectra, but a lengthy time for analysis and for data processing is
required. FGC E-nose was a very fast analytical tool (only 100 s of
acquisition time and virtually no need for solvents), discriminating
samples with a higher explained variance and allowed for compre-
hensive data processing with automatic identification of mole-
cules. These results highlight the potential of FGC E-nose for
rapid control of the compliance of information on geographic ori-
gin declared in the label. This analytical approach seems particu-
larly interesting for food providers, commercial suppliers, and
retailers that intend to avoid media scandals of this sector thanks
to a more efficient protection and promotion of the integrity of
the olive oil image. The main effort concerns the possibility to
build, season by season (even by each distributor) an internal or
shared and representative data base to be used to screen and con-
trol, year after year, EVOOs labeled with a specific origin.
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