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Abstract

LetX be an algebraicK3 surface. Fix an ample divisorH onX ,L ∈ Pic(X)
and c2 ∈ Z. LetMH(r;L, c2) be the moduli space of rank r,H-stable vector
bundlesE overX with det(E) = L and c2(E) = c2. The goal of this paper
is to determine invariants (r; c1, c2) for which MH(r;L, c2) is birational to
some Hilbert scheme Hilbl(X).

1. Introduction

Let X be an algebraic K3 surface defined over the complex number field; i.e, X is an
algebraic surface with the trivial canonical line bundle KX � OX and the vanishing
irregularity q(X) = 0.

Fix an ample divisor H on X. For a line bundle L on X and an integer
c2 ∈ Z, let MH(r;L, c2) be the moduli space of rank r, H-stable (in the sense
of Mumford-Takemoto) vector bundles E over X with det(E) = L and c2(E) =
c2. It is well known that for c2 sufficiently large MH(r;L, c2) is non-empty and
irreducible. Moreover, MH(r;L, c2) is smooth and has the expected dimension equal
to −χ(End0(E)) = 2rc2 − (r− 1)L2 − (r2 − 1)χ(OX) = 2rc2 − (r− 1)L2 − 2(r2 − 1).

In 1984, Mukai ([5]) proved that the moduli spaces of simple sheaves over X has
a symplectic structure. On the other hand, it is well known that the Hilbert schemes
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Hilbl(X) of 0-dimensional subschemes of X with length l have also a symplectic
structure and it seems natural to look for a closer relation between Hilbert schemes
Hilbl(X) and the moduli spaces MH(r;L, c2). In [7], T. Nakashima proposes the
following:

Problem. To determine for arbitrary K3 surfaces X, all invariants (r;L, c2) for
which MH(r;L, c2) are birational to some Hilbl(X).

For the rank 2 case, the first contribution to this problem is due to K. Zuo. He
proved:

Theorem ([12; Theorem 1])
Suppose X is an algebraic K3 surface and H is an ample line bundle on X.

Let MH(2; 0, k(n)) be the moduli space of H-stable rank 2 vector bundles E over X
with det(E) = 0, c2(E) = k(n) := n2H2 + 3, n ∈ N

+ and let Hilb2k(n)−3(X) be the
Hilbert scheme of 0-dimensional subschemes of X of length 2k(n) − 3. Then there
is a birational map

φ : MH

(
2; 0, k(n)

)
� Hilb2k(n)−3(X) .

Later on T. Nakashima generalized Zuo’s Theorem to the triples (r;L, c2) =
(2;L, k(n)) where k(n) := (n2 + n + 1

2 )L2 + 3 and L is an arbitrary ample line
bundle ([6]). In the arbitrary rank case almost nothing is known. Very recently, T.
Nakashima has proved:

Theorem ([7; Theorem 0.2]; see also [10])
Let S be a K3 surface with (D,H) of degree one. If c = D2

2 + r + 1 and
c ≥ h0(D) + 1 then MH(r;D, c) is birational to the Hilbert scheme Hilbc(S) of zero
dimensional cycles of length c.

We would like to stress that the hypothesis (D,H) being of degree one is very
“restrictive”. The goal of this paper is to prove the following:

Theorem A
Let X be an algebraic K3 surface and H an ample line bundle on X. Let

MH(r; c1, k(n)) be the moduli space of H-stable rank r vector bundles E over X

with det(E) = c1, c2(E) = k(n) := c21
2 + r

2n
2H2 +nc1H+(r+1) and let Hilbl(n)(X)

be the Hilbert scheme of 0-dimensional subschemes of X of length l(n). For n >> 0
there is a birational map:

φ : MH

(
r; c1, k(n)

)
−→ Hilbl(n)(X)

where l(n) := k(n) + r(r−1)
2 n2H2 + (r − 1)nc1H.

Notice that when r = 2 we recover the results of K. Zuo and T. Nakashima.
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2. Generalities

In this section we collect some basic facts needed in the sequel.
Let X be a smooth algebraic surface, Z ⊂ X a 0-dimensional subscheme of

length l and D ∈ Pic(X). Any r − 1 linearly independent elements e1, · · · , er−1 ∈
Ext1(IZ(D), OX) define an exact sequence:

0 −→ Or−1
X −→ E −→ IZ(D) −→ 0

where E is a rank r torsion free sheaf on X with Chern classes c1(E) = D and
c2(E) = l.

Definition 2.1. Let H be an ample divisor on a smooth algebraic surface X. For
a torsion free sheaf F on X one sets

µH(F ) :=
c1(F )H
rk(F )

, PF (m) :=
χ(F ⊗OX(mH))

rk(F )
.

The sheaf F is H-semistable (resp. G-semistable with respect to H) if

µH(E) ≤ µH(F )
(
PE(m) ≤ PF (m) for m >> 0

)
for all non-zero subsheaves E ⊂ F with rk(E) < rk(F ); if strict inequality holds
then F is H-stable (resp. G-stable with respect to H).

One easily checks the implications:

H − stable ⇒ G− stable ⇒ G− semistable ⇒ H − semistable.

Let us recall the formulas for the Chern classes and the Euler-Poincaré cha-
racteristic for vector bundles on non-singular projective surfaces with canonical line
bundle K = KX .

2.2. Let E be a rank r vector bundle on a non-singular projective variety of dimen-
sion n and let L be a line bundle on X. Then,

ck(E ⊗ L) =
k∑

i=0

(
r − i
k − i

)
ci(E)c1(L)k−i.

2.3. Let E be a rank r vector bundle on a non-singular projective surface. Let c1
and c2 be the Chern classes of E. Then,

χ(E) =
2∑

i=0

(−1)i dimHi(X,E) = r
(
1 + pa(X)

)
+ c1(−K/2) +

(
c21 − 2c2

)
/2.
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Given a line bundle L on X, an integer c2 and an ample line bundle H on
X, we will denote by MH(r;L; c2) the moduli space of rank r, torsion free sheaves
F on X, G-semistable with respect to H with c1(F ) = L and c2(F ) = c2; and by
MH(r;L; c2) ⊂ MH(r;L; c2) the open subset parameterizing rank r, H-stable vector
bundles F over X with c1(F ) = L and c2(F ) = c2.

We will end this section reviewing a well known result on moduli spaces of rank
r torsion free sheaves on smooth algebraic surfaces that we will use later on.

Theorem 2.4

Let X be a smooth algebraic surface, L an ample divisor on X and c1 ∈ Pic(X).
For all c2 >> 0, the moduli space ML(r; c1, c2) of G-semistable with respect to

L, rank r torsion free sheaves on X (resp. ML(r; c1, c2) of L-stable, rank r vector

bundles onX), is a generically smooth, irreducible projective (resp. quasi-projective)

variety of the expected dimension 2rc2 − (r − 1)c21 − (r2 − 1)χ(OX).

Proof. See [2], [8] and [9]. �

3. Main Construction

From now on, X is assumed to be an algebraic K3-surface defined over the complex
number field; i.e., X is an algebraic surface with the trivial canonical line bundle
KX � OX and the vanishing irregularity q(X) = 0.

Let us fix a line bundle c1 and an ample divisor H on X. Let n0 be an integer
such that for all n ≥ n0, c1 + rnH is ample. Set:

k(n) :=
c21
2

+
r

2
n2H2 + nc1H + (r + 1) ;

l(n) := k(n) +
r(r − 1)

2
n2H2 + (r − 1)nc1H.

Construction. Let F be the irreducible family of rank r torsion free sheaves F
on X, G-semistable with respect to H with Chern classes (c1, k(n)) given by a
non-trivial extension

0 −→ Or−1
X −→ F (nH) −→ IZ(c1 + rnH) −→ 0

where Z is a 0-dimensional subscheme of X of length |Z| = c2(F (nH)) = c2(F ) +
(r− 1)nc1(F )H + r(r−1)

2 n2H2 = k(n) + (r− 1)nc1H + r(r−1)
2 n2H2 = l(n) such that

h0(IZ(c1 + rnH)) = 0.

Claim: For n >> 0, F is non-empty.
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Proof of the claim. We fix c′2 ∈ Z such that MH(r; c1, c′2) �= ∅ ([11]). It is well
known that there exists an integer nc′2

∈ Z such that for all n ≥ nc′2
and for any

E ∈ MH(r; c1, c′2), E(nH) is generated by its global sections and χ(E(nH)) ≥ r−1.
We choose (r − 1) generic sections of E(nH) and we get an exact sequence:

0 −→ Or−1
X −→ E(nH) −→ IZ̃(c1 + rnH) −→ 0

where Z̃ is a 0-dimensional subscheme of X of length |Z̃| = c2(E(nH)) = c′2 +
r(r−1)

2 n2H2 + (r − 1)nc1H.
Moreover, there exists an integer lc′2 ∈ Z such that for all l ≥ lc′2 , if we choose

appropriately l generic points p1, · · · , pl and a surjective map:

α : E −→ ⊕l
j=1Cpj

,

then F , the kernel of α, is a rank r, torsion free sheaf, G-semistable with respect to
H sitting into an exact sequence:

0 −→ Or−1
X −→ F (nH) −→ IZ(c1 + rnH) −→ 0

where Z = Z̃ ∪ {p1, · · · , pl} . (See [9] for more details).
For n >> 0 we can assume k(n) − c′2 ≥ lc′2 , and n ≥ max {nc′2

, n0} . Define
l := k(n) − c′2 ≥ lc′2 . As we have seen, there exists an exact sequence:

0 −→ Or−1
X −→ F (nH) −→ IZ(c1 + rnH) −→ 0

where Z is a 0 dimensional subscheme of X of length

|Z| = |Z̃| + l =
(
c′2 +

r(r − 1)
2

n2H2 + (r − 1)nc1H
)

+ l

= k(n) +
r(r − 1)

2
n2H2 + (r − 1)nc1H

and F is a rank r, torsion free sheaf, G-semistable with respect to H with Chern
classes c1(F ) = c1 and c2(F ) = k(n).

Since c1+rnH is ample, by Kodaira’s vanishing Theorem hi(OX(c1+rnH)) = 0
for i > 0; and applying Riemann-Roch’s Theorem we get:

h0
(
OX(c1 + rnH)

)
= χ

(
OX(c1 + rnH)

)
=
c21
2

+
r2

2
n2H2 + rnc1H + 2 .
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On the other hand,

|Z| = k(n) +
r(r − 1)

2
n2H2 + (r − 1)nc1H

=
c21
2

+
r2

2
n2H2 + rnc1H + (r + 1) .

Therefore, since 0 < r − 1,

(1) h0
(
OX(c1 + rnH)

)
− |Z| = −(r − 1) < 0

and hence for l >> 0 and l generic points,

h0
(
IZ(c1 + rnH)

)
= 0 .

Putting altogether we get F ∈ F , which proves our claim.

Lemma 3.1

With the above notation

dimF = 2l(n)

Proof. By definition,

dimF = 2|Z| + dimGr
(
r − 1, Ext1(IZ(c1 + rnH), OX)

)
− dimGr

(
r − 1, H0(F (nH))

)

where Gr(s, V ) is the Grassmanian variety of s-dimensional subspaces of V and
dimGr(s, V ) = s · dimV − s2.

Consider the exact cohomology sequence:

0 −→ H0Or−1
X −→ H0F (nH) −→ H0IZ(c1 + rnH) −→ · · ·

associated to the exact sequence:

0 −→ Or−1
X −→ F (nH) −→ IZ(c1 + rnH) −→ 0 .

Since h0IZ(c1 + rnH) = 0, we obtain:

h0F (nH) = h0Or−1
X = r − 1 .
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On the other hand, the exact cohomology sequence:

0 −→ H0IZ(c1 + rnH) −→ H0OX(c1 + rnH) −→ H0OZ(c1 + rnH) −→

−→ H1IZ(c1 + rnH) −→ H1OX(c1 + rnH) −→ · · ·

associated to the exact sequence:

0 −→ IZ(c1 + rnH) −→ OX(c1 + rnH) −→ OZ(c1 + rnH) −→ 0 ,

together with the fact that c1 + rnH is ample and hence hiOX(c1 + rnH) = 0 for
i > 0, gives us:

dimExt1
(
IZ(c1 + rnH)

)
, OX) = h1IZ(c1 + rnH) = |Z| − h0OX(c1 + rnH) = r − 1

where the last equality follows from (1). Putting altogether we conclude:

dimF = 2l(n) + (r − 1) dimExt1
(
IZ(c1 + rnH), OX

)
− (r − 1)2

−
(
(r − 1)h0(F (nH)

)
− (r − 1)2) = 2l(n)

which proves the lemma. �

Remark 3.2. It follows from the definition of l(n), k(n) and Lemma 3.1 that for
n >> 0,

dimF = dimHilbl(n)(X) = 2l(n) = 2rk(n) − (r − 1)c21 − 2(r2 − 1)

= dimMH

(
r; c1, k(n)

)
.

4. The birational correspondence to the Hilbert Scheme

The goal of this section is to prove Theorem A. We keep the notation introduced
in section 3.

Theorem 4.1

Any torsion free sheaf F ∈ F is simple.
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Proof. Applying the functor Hom(F (nH), ·) to the exact sequence:

(2) 0 −→ Or−1
X −→ F (nH) −→ IZ(c1 + rnH) −→ 0

we get the exact sequence

0 −→ Hom
(
F (nH), Or−1

X

)
−→ Hom

(
F (nH), F (nH)

)
−→ Hom

(
F (nH), IZ(c1 + rnH)

)
−→ · · · .

Since n >> 0, by Serre’s duality we have:

dim Hom(F (nH), Or−1
X ) = (r − 1)h2F (nH) = 0 .

Therefore, it is sufficient to see that dim Hom(F (nH), IZ(c1 + rnH)) = 1. To this
end, we consider the exact sequence

0 −→ Hom(IZ(c1 + rnH), IZ(c1 + rnH)) −→ Hom
(
F (nH), IZ(c1 + rnH)

)
−→ Hom

(
Or−1

X , IZ(c1 + rnH)
)
−→ · · ·

obtained applying the functor Hom(·, IZ(c1+rnH)) to the exact sequence (2). Since
F ∈ F , h0IZ(c1 + rnH) = 0 and we get:

dim Hom
(
F (nH), IZ(c1 + rnH)

)
= dim Hom

(
IZ(c1 + rnH), IZ(c1 + rnH)

)
= 1

which proves the Lemma. �

For n >> 0, we have two natural rational morphisms:

π : F −→ Hilbl(n)(X) ;

e : F −→ MH

(
r; c1, k(n)

)
.

The fiber π−1(Z) over Z ∈ Hilbl(n)(X) is identified with a non-empty open subset
of the Grassmanian variety

Gr
(
r − 1, Ext1(IZ(c1 + rnH), OX)

)

and the fiber e−1(F ) over F ∈ MH(r; c1, k(n)) is canonically isomorphic to a non
empty Zariski open subset of

Gr
(
r − 1, H0(F (nH))

)
.
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Notice that for the dimension computations of section 3, we have:

dim(π−1(Z)) = dim(e−1(F )) = 0

for all generic Z ∈ Hilbl(n)(X) and for all generic F ∈ MH(r; c1, k(n)) respectively.
Let us see that e is an injection. Assume that there are two non trivial exten-

sions:
0 −→ Or−1

X
α1−→F (nH) α2−→IZ(c1 + rnH) −→ 0 ;

0 −→ Or−1
X

β1−→F (nH)
β2−→IZ′(c1 + rnH) −→ 0

where Z and Z ′ are 0-dimensional subschemes of X of length l(n).
From the fact that h0IZ(c1 + rnH) = h0IZ′(c1 + rnH) = 0 we get:

dim Hom
(
Or−1

X , IZ(c1 + rnH)
)

= dim Hom
(
Or−1

X , IZ′(c1 + rnH)
)

= 0 .

Thus, β2 ◦ α1 = α2 ◦ β1 = 0. So, there exists γ ∈ Aut(F (nH)) � C (Lemma 4.1)
such that β2 = γ ◦ α2. Therefore, Z � Z ′ and hence, e is an injection.

Since h0F (nH) = r − 1, π is also an injection and by Remark 3.2

dimF = dimHilbl(n)(X) = dimMH

(
r; c1, k(n)

)
.

Hence, e and π are birational maps. Composing, we get a birational map:

eπ−1 = ψ : MH

(
r; c1, k(n)

)
−→ Hilbl(n)(X) .

Moreover, since MH(r; c1, k(n)) is an open dense subset of MH(r; c1, k(n)), res-
tricting ψ to MH(r; c1, k(n)) we obtain the birational morphism claimed in the
Theorem A.

Remark 4.2. The pullback of the symplectic structure on Hilbl(n)(X) via the bira-
tional map φ of Theorem A, gives a symplectic structure on MH(r; c1, k(n)). This
symplectic structure coincides with the symplectic structure given by Mukai ([5]).

Remark 4.3. In ([4]) we describe explicitly the birational map φ:MH(r; c1, k(n))−→
Hilbl(n)(X) and, as application, we check that the Hodge numbers of the moduli
space MH(r; c1, k(n)) and the Hilbert scheme Hilbl(n)(X) coincide. Furthermore,
since the Hodge numbers of Hilbl(n)(X) can be expressed in terms of the Hodge num-
bers hp,q(X) ofX (see [3]; [1]), we deduce that the Hodge numbers ofMH(r; c1, k(n))
can be computed in terms of hp,q(X).
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