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ABSTRACT

Let X beanalgebraic /{3 surface. Fixanampledivisor H on X, L € Pic(X)
andce € Z. Let My (r; L, co) bethe moduli space of rank r, H -stable vector
bundles E over X withdet(E) = L and ca(E) = co. Thegoal of this paper
is to determine invariants (7; ¢1, co) for which My (r; L, c2) is birational to
some Hilbert scheme Hilb!(X).

1. Introduction

Let X be an algebraic K3 surface defined over the complex number field; i.e, X is an
algebraic surface with the trivial canonical line bundle Kx ~ Ox and the vanishing
irregularity ¢(X) = 0.

Fix an ample divisor H on X. For a line bundle L on X and an integer
ca € Z, let Mpy(r;L,c2) be the moduli space of rank r, H-stable (in the sense
of Mumford-Takemoto) vector bundles E over X with det(E) = L and c2(E) =
co. It is well known that for ¢y sufficiently large My (r; L, c2) is non-empty and
irreducible. Moreover, My (r; L, c2) is smooth and has the expected dimension equal
to —x(Endy(E)) = 2rco — (r—1)L? — (r? = 1)x(Ox) = 2rcy — (r — 1) L2 — 2(r? — 1).

In 1984, Mukai ([5]) proved that the moduli spaces of simple sheaves over X has
a symplectic structure. On the other hand, it is well known that the Hilbert schemes
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Hilb!(X) of O-dimensional subschemes of X with length [ have also a symplectic
structure and it seems natural to look for a closer relation between Hilbert schemes
Hilb'(X) and the moduli spaces My (r; L,cz). In [7], T. Nakashima proposes the
following:

Problem. To determine for arbitrary K3 surfaces X, all invariants (r; L, cy) for
which My (r; L, cy) are birational to some Hilb!(X).

For the rank 2 case, the first contribution to this problem is due to K. Zuo. He
proved:

Theorem ([12; Theorem 1])

Suppose X is an algebraic K3 surface and H is an ample line bundle on X.
Let My (2;0,k(n)) be the moduli space of H-stable rank 2 vector bundles E over X
with det(E) = 0, co(E) = k(n) := n’H? + 3, n € N* and let Hilb**™~3(X) be the
Hilbert scheme of 0-dimensional subschemes of X of length 2k(n) — 3. Then there
is a birational map

¢ My (2;0,k(n)) ~ Hilb*™M=3(X).

Later on T. Nakashima generalized Zuo’s Theorem to the triples (r;L,ca) =
(2; L, k(n)) where k(n) := (n® + n+ 3)L? + 3 and L is an arbitrary ample line
bundle ([6]). In the arbitrary rank case almost nothing is known. Very recently, T.
Nakashima has proved:

Theorem ([7; Theorem 0.2]; see also [10])

Let S be a K3 surface with (D, H) of degree one. If ¢ = %2 +7r+ 1 and
¢ > h%(D)+1 then My(r; D, c) is birational to the Hilbert scheme Hilb*(S) of zero
dimensional cycles of length c.

We would like to stress that the hypothesis (D, H) being of degree one is very
“restrictive”. The goal of this paper is to prove the following:

Theorem A

Let X be an algebraic K3 surface and H an ample line bundle on X. Let
My (r;c1,k(n)) be the moduli space of H-stable rank r vector bundles E over X

with det(F) = ¢1, co(E) = k(n) := % +2n H? +nc1H+ (r+1) and let Hilb'™ (X)
be the Hilbert scheme of 0-dimensional subschemes of X of length l(n). For n >> 0
there is a birational map:

¢ : My (rier, k(n)) — Hilb'™(X)
where I(n) := k(n) + ““Z2n2H? + (r — 1)ne  H.

Notice that when r = 2 we recover the results of K. Zuo and T. Nakashima.



K3 surfaces: moduli spaces and Hilbert schemes 275

2. Generalities

In this section we collect some basic facts needed in the sequel.

Let X be a smooth algebraic surface, Z C X a 0-dimensional subscheme of
length [ and D € Pic(X). Any r — 1 linearly independent elements ey, --,e,_1 €
Ext'(Iz(D),Ox) define an exact sequence:

0—O0%'—E—Iz(D)—0
where E is a rank r torsion free sheaf on X with Chern classes ¢;1(F) = D and
Co (E) =1.
DEFINITION 2.1. Let H be an ample divisor on a smooth algebraic surface X. For
a torsion free sheaf F' on X one sets
C1 (F)H
rk(F) ’

~ X(F®Ox(mH))

The sheaf F' is H-semistable (resp. G-semistable with respect to H) if

for all non-zero subsheaves £ C F with rk(E) < rk(F); if strict inequality holds
then F' is H-stable (resp. G-stable with respect to H).
One easily checks the implications:

H — stable = G — stable = G — semistable = H — semistable.

Let us recall the formulas for the Chern classes and the Euler-Poincaré cha-
racteristic for vector bundles on non-singular projective surfaces with canonical line
bundle K = Kx.

2.2. Let F be a rank r vector bundle on a non-singular projective variety of dimen-
sion n and let L be a line bundle on X. Then,

k

cRE®L) = (1:: i) ¢i(E)ey (L)F°.

=0

2.3. Let F be a rank r vector bundle on a non-singular projective surface. Let ¢
and ¢ be the Chern classes of E. Then,

X(E) => (1) dim H'(X, E) = (1 + pa(X)) + c1(—K/2) + (¢} — 2c2) /2.

=0
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Given a line bundle L on X, an integer c; and an ample line bundle H on
X, we will denote by M g (7; L; c2) the moduli space of rank r, torsion free sheaves
F on X, G-semistable with respect to H with ¢;(F) = L and ¢3(F) = co; and by
My (r; L c3) € Mg (r; L; co) the open subset parameterizing rank r, H-stable vector
bundles F' over X with ¢1(F) = L and c3(F) = cs.

We will end this section reviewing a well known result on moduli spaces of rank
r torsion free sheaves on smooth algebraic surfaces that we will use later on.

Theorem 2.4

Let X be a smooth algebraic surface, L an ample divisor on X and ¢, € Pic(X).
For all c; >> 0, the moduli space M (r;c1,co) of G-semistable with respect to
L, rank r torsion free sheaves on X (resp. My (r;c1,ca) of L-stable, rank r vector
bundles on X ), is a generically smooth, irreducible projective (resp. quasi-projective)
variety of the expected dimension 2rcy — (r — 1)c? — (r? — 1)x(Ox).

Proof. See [2], [8] and [9]. OJ

3. Main Construction

From now on, X is assumed to be an algebraic K 3-surface defined over the complex
number field; i.e., X is an algebraic surface with the trivial canonical line bundle
Kx ~ Ox and the vanishing irregularity ¢(X) = 0.

Let us fix a line bundle ¢; and an ample divisor H on X. Let ng be an integer
such that for all n > ng, ¢; + rnH is ample. Set:

2
k(n) := %1 + gn2H2 +neiH+(r+1);

I(n) :=k(n)+ Qn%ﬁ + (r—1)neci H.

Construction. Let F be the irreducible family of rank r torsion free sheaves F'
on X, G-semistable with respect to H with Chern classes (c1,k(n)) given by a
non-trivial extension

0— OY ' — F(nH) — Iz(c1 +rnH) — 0

where Z is a 0-dimensional subscheme of X of length |Z| = co(F(nH)) = ca( F) +
(r—1)nc (F)H + #nzH2 =k(n)+ (r— )ne H + #n2H2 = [(n) such that
hO(Iz(cy +rnH)) = 0.

Claim: For n >> 0, F is non-empty.
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Proof of the claim. We fix ¢}, € Z such that My (r;c1,ch) # 0 ([11]). It is well
known that there exists an integer n., € Z such that for all n > ne, and for any
E € My(r;c1,cy), E(nH) is generated by its global sections and x(E(nH)) > r—1.
We choose (r — 1) generic sections of F(nH) and we get an exact sequence:

0— O% ' — E(nH) — I;(c; +rnH) — 0

where Z is a O-dimensional subscheme of X of length |Z| = cy(E(nH)) = ¢ +
@nQH2 + (r—1)nc H.

Moreover, there exists an integer lcé € Z such that for all [ > lcfQ, if we choose
appropriately [ generic points pi,---,p; and a surjective map:

a:E— 6Bé’zl(cpj )

then F', the kernel of «, is a rank r, torsion free sheaf, G-semistable with respect to
H sitting into an exact sequence:

0— Oy ' — F(nH) — Iz(c; +nH) — 0

where Z = Z U {p1,---,p} . (See [9] for more details).
For n >> 0 we can assume k(n) — ¢y > Iy, and n > max{ny,no}. Define
l:=k(n) —c3 > . As we have seen, there exists an exact sequence:

0— OY ' — F(nH) — Iz(c; +rnH) — 0

where Z is a 0 dimensional subscheme of X of length

r(r—1)
2
r(r—1)
2

|Z|:|Z|+l: (C’2+ n2H2—|—(r—1)nclH>—|—l

= k(n)+ n?H? + (r — \)ne H
and F' is a rank r, torsion free sheaf, G-semistable with respect to H with Chern
classes ¢1(F') = ¢ and co(F) = k(n).

Since ¢; +rnH is ample, by Kodaira’s vanishing Theorem h?(Ox (c;+rnH)) = 0
for ¢ > 0; and applying Riemann-Roch’s Theorem we get:

2

2
K’ (Ox(c1 +rnH)) = x(Ox(c1 + rnH)) = 02—1 + %nQHQ +rneiH + 2.
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On the other hand,

-1
|Z| = k(n)+ 7”(7“2 )n2H2 +(r—1naH

A r?
=5 + 7n2H2 +rnciH + (r+1).
Therefore, since 0 < r — 1,
(1) K (Ox(ci +rnH)) —|Z| = —(r—1) <0

and hence for [ >> 0 and [ generic points,
RO (Iz(cy +rnH)) =0.
Putting altogether we get F' € F, which proves our claim.

Lemma 3.1

With the above notation
dim F = 2I(n)

Proof. By definition,

dim F = 2|Z| + dimGr(r — 1, Ext' (Iz(c; +rnH),Ox))
— dimGr(r — 1, H(F(nH)))

where Gr(s,V) is the Grassmanian variety of s-dimensional subspaces of V' and
dim Gr(s,V) = s-dimV — s%.
Consider the exact cohomology sequence:
0— H°OY' — HF(nH) — H Iz(c; +rnH) — -
associated to the exact sequence:
0— O% ' — F(nH) — Iz(c; +rnH) — 0.

Since h%Iz(c; +mnH) = 0, we obtain:

ROF(nH) = 0% =r —1.
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On the other hand, the exact cohomology sequence:
0 — HIz(c; +rnH) — H°Ox(cy +rnH) — H°Oz(c; +rnH) —
— H'Iz(ci +rnH) — H'Ox(c; +rnH) — - -
associated to the exact sequence:
0— Iz(c1 +m™H) — Ox(c1 +rmH) — Oz(ci +™mH) — 0,

together with the fact that ¢; + rnH is ample and hence h'Ox(c; +rnH) = 0 for
t > 0, gives us:

dim Ext' (Iz(c1 +rnH)),0x) = h'Iz(c1 + rnH) = |Z| — h°Ox(c1 + rnH) = r — 1
where the last equality follows from (1). Putting altogether we conclude:

dim F = 2I(n) + (r — 1) dim Ext' (Iz(c1 + rnH),Ox) — (r — 1)?
= ((r =R (F(nH)) = (r = 1)) = 2l(n)

which proves the lemma. [J

Remark 3.2. Tt follows from the definition of I(n), k(n) and Lemma 3.1 that for
n >> 0,

dim F = dim Hilb"™ (X) = 2I(n) = 2rk(n) — (r — 1)¢2 — 2(r*> = 1)
= dim Mg (r;c1, k(n)).

4. The birational correspondence to the Hilbert Scheme

The goal of this section is to prove Theorem A. We keep the notation introduced
in section 3.

Theorem 4.1

Any torsion free sheaf F' € F is simple.
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Proof. Applying the functor Hom(F(nH),-) to the exact sequence:
(2) 0— O% ' — F(nH) — Iz(c; +rnH) — 0
we get the exact sequence

0 — Hom(F(nH),0% ') — Hom(F(nH), F(nH))
— Hom(F(nH),Iz(c1 +rnH)) — - - -.

Since n >> 0, by Serre’s duality we have:
dim Hom(F(nH),0% ') = (r — 1)h*F(nH) = 0.

Therefore, it is sufficient to see that dim Hom(F(nH),Iz(c; +rnH)) = 1. To this
end, we consider the exact sequence

0 — Hom(I;(c1 + rnH),I1z(c1 + rnH)) — Hom(F(nH),Iz(c1 +rnH))
— Hom(Og(_l,IZ(cl +rnH)) — -

obtained applying the functor Hom(-, Iz (c1 +rnH)) to the exact sequence (2). Since
FeF,hIz(c; +rnH) =0 and we get:

dim Hom (F(nH),1z(c1 +rnH)) = dimHom(Iz(cy + rnH),Iz(c; +rnH)) =1

which proves the Lemma. [J

For n >> 0, we have two natural rational morphisms:

T F — Hilb™(X);
e: F — MH(r;cl,k(n)).

The fiber 771(Z) over Z € Hilb'™(X) is identified with a non-empty open subset
of the Grassmanian variety

G’I”(T‘ — 1,E$t1(Iz(Cl + THH),O)())

and the fiber e }(F) over F € Mg(r;c1,k(n)) is canonically isomorphic to a non
empty Zariski open subset of

Gr(r—1,H°(F(nH))).
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Notice that for the dimension computations of section 3, we have:
dim(7~(2)) = dim(e™*(F)) = 0

for all generic Z € Hilb!(™)(X) and for all generic F € My (r;¢1, k(n)) respectively.
Let us see that e is an injection. Assume that there are two non trivial exten-
sions: N N
0 — O ' 2LF(nH)220I4(ci +rnH) — 0;
0— OS{I&F(TLH)&IZ/(C;[ +rmH) — 0
where Z and Z’ are 0-dimensional subschemes of X of length [(n).
From the fact that h°Iz(c; +rnH) = h%Iz/(c; + rnH) = 0 we get:

dim Hom (O ', Iz (c1 +rnH)) = dimHom(Og(_l, Iz(c1+rnH)) =0.

Thus, B2 0 a1 = ag o 1 = 0. So, there exists v € Aut(F(nH)) ~ C (Lemma 4.1)
such that B = v o ap. Therefore, Z ~ Z’ and hence, e is an injection.
Since h°F(nH) = r — 1, 7 is also an injection and by Remark 3.2

dim F = dim Hilb"™ (X) = dim M g (r; 1, k(n)) .
Hence, e and 7 are birational maps. Composing, we get a birational map:
er ' =9 : My(rie1, k(n)) — Hilb' ™ (X).

Moreover, since My (r;c1,k(n)) is an open dense subset of M (r;cy,k(n)), res-
tricting v to Mg (r;c1,k(n)) we obtain the birational morphism claimed in the
Theorem A.

Remark 4.2. The pullback of the symplectic structure on Hilb!(™)(X) via the bira-
tional map ¢ of Theorem A, gives a symplectic structure on My (r;c1,k(n)). This
symplectic structure coincides with the symplectic structure given by Mukai ([5]).

Remark 4.3. In ([4]) we describe explicitly the birational map ¢: My (r;c1, k(n))—
Hilb"™ (X) and, as application, we check that the Hodge numbers of the moduli
space M (r;c1,k(n)) and the Hilbert scheme Hilb!(™)(X) coincide. Furthermore,
since the Hodge numbers of Hilb!("™) (X can be expressed in terms of the Hodge num-
bers h?9(X) of X (see [3]; [1]), we deduce that the Hodge numbers of M g (7; c1, k(n))
can be computed in terms of h??(X).
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