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1 Introduction

1.1 Prediction versus Causal Inference

Causality and impact policy evaluation researchers have a long tradition in eco-
nomics. However, as pointed out by Kleinberg et al. (2015), there are many eco-
nomic applications where causal inference is not central, but instead where pre-
diction may be more suitable. Recently, several economist authors started paying
attention to prediction economy problems. Subfields of economics such as crime
policy (Chandler et al., 2011; Berk, 2012; Goel et al., 2016), political economy
(Grimmer and Stewart, 2013; Kang et al., 2013), insurance and risk economics
(Bjorkegren and Grissen, 2018; Ascarza, 2018), public-sector resource allocations
(Naik et al.; 2016; Engstrom et al., 2016), wealth economics (Blumenstock et al.,
2015; Jean et al., 2016; Glaeser et al., 2016), energy economics (Yu et al., 2008; Yu
et al., 2014; Afkhami et al., 2017; Chen et al., 2018), etc., are nowadays common
examples.

Several factors have contributed to rethinking the way in which empiricists eval-
uate economic problems: First, data is notably expanding with new technologies
(90% of the data today was created in the last two years -see Figure 1.1-); sec-
ond, private and public sector are continuously increasing the amount and quality
of collected data (structured and unstructured data-see Table 1.1); third, with the in-
creasing use of machine learning and deep learning techniques, we can now exploit
large data-sets and find much more complex patterns.
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2008 2009 2010 20m 2012 2013 2014 2015 2006 2017 2018 2019 2020

Figure 1.1. Data Volume Growth by Year in Zettabytes.
source: Hammad et al. (2015)

Platform Measure 2018

Netflix Users stream per Hrs 97,222
Youtube Videos watched 4,333,560
Twitter Tweets 473,400
Skype Calls 176,220
Instagram | Photo posts 49,380
Spotify Songs streamed 750,000
Google Searches 3,877,140
Internet Use of data (GB) 3,138,420

Table 1.1. Data Generated per Minute.
Note: Table Based on Data Never Sleep 6.0 by Domo Platform

Traditionally, statistic models in economics are almost used exclusively for causal
inference where a common assumption is that models that posses high explanatory
power naturally posses high predictive power. However, not distinguishing between
prediction and causal inference, has a large impact on the statistical assumptions and
on its implications. In predicting problems, the focus is on methods that enhance
prediction capabilities as opposed to the assessment of marginal effects on target
variables. Moreover, they take into account the importance of performance in terms
of out-of-sample errors.

But, why causal inference and predicting are conceptually different? Causal in-
ference tries to answer the question of how much underlying factors affect a depen-
dent variable, that is, they try to test causal hypotheses that emerge from theoretical
models. Contrarily, prediction models are solving fundamentally different problems
compared with much of the empirical work in economics. Predictive models seek
to predict new observations, that is, predict new values of the dependent variable
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given their new values of input variables. In short, the difference arises because the
goal in causal inference is to match the statistical model and the theoretical model
as closely as possible. In contrast, in predictive modeling the statistical model is
used as a tool for generating good predictions of a target variable.

This disparity can also be expressed mathematically. For instance, Mean Squared
Error (MSE) of a new point xg can be decomposed in the following way (Hastie et
al., 2009):

MSE(x0) = Bias*+ Var(f(xo)) + o>

Bias is the result of misspecifying the statistical model f. Var(f(xo)) is the
variance which is the result of using samples to estimate the statistical model. o is
the error term that exists even if the model is correctly specified. This formulation
reveals the disparity between causal inference and prediction. The former focuses
on minimizing the bias (Ordinary least square, for instance, is the best linear unbi-
ased estimator), i.e to get the most accurate representation of the underlying theory.
However, if we ensure zero bias, we cannot trade bias for variance reduction. In
spite of causal inference, predictive modeling exploits empirically this trade-off to
get best performance in out-sample data. It seeks to minimize the combination of
bias and variance, occasionally sacrificing interpretability.

These several differences are summarized in Table 1.2.

Causal Inference Prediction

. o Association: The statistic model
. Causation: The statistic model o
Definition . seek the association between target
represents a causal function. . .

variables and predictors.

The statistic model is constructed

based on a theoretical model that tries The statistic model is a representation
Foundation to assess the relation between from the data. Interpretability
a dependent variable and explicative variables is usually not required.
and to test the causal hypothesis.
Focus To test already existing hypotheses. To predict new observations.
Target Bias Variance

Table 1.2. Difference Between Causal Inference and Predictive Models

In the end, ML and traditional statistical models have different goals. Traditional
econometric models are based on theoretical foundations which are mathematically
proven. However, they require that the input data satisfies strong assumptions (like
random sampling observations, perfect collinearity, etc.) and a particular distribu-
tion for the error term. On the other hand, ML and DL are data driven models, and
the only assumptions that we make are that observations are independent (which
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sometimes is not even necessary) and that the training and test set follows the same
joint distribution. Additionally, as ML and DL are focused on out-sample perfor-
mance, it is expected that they get better results in terms of prediction. On the
other hand, statistical models focus on goodness-of-fit (discrepancy between ob-
served values and the values expected under the model), i.e. bias, which increase
complexity and may decrease predictive power. Therefore, we expect that by com-
bining those techniques, we can compensate the disadvantages of both and we can
enhance and robust our results.

1.2 Why Machine Learning and Deep Learning?

Machine Learning (ML) and Deep Learning (DL) techniques are particularly ef-
fective in predicting. This branch of computer science, which gained popularity
in the 1980s, has recently been successfully employed in several fields thanks to
a number of technological advances. Basically they are algorithms that are used
for prediction, classification and clustering with structured and unstructured data
(see Varian, 2014 and Athey, 2017 for an overview of some of the most popular
methods). These, combined with the development of new and more efficient pro-
gramming languages, have drastically reduced the computational time. We favor
the application of ML and DL algorithms over more traditional techniques sim-
ply because most empirical approaches are not accurate enough in their forecasts
(Zhang and Xie, 2008; Kleinberg et al., 2015; Zhao et al., 2018). Prediction prob-
lems should be more exclusively focused on the target variable and on the accuracy
of the prediction, and not on dependent variables and their causal effect. They
also strive to obtain better performance in the measurement error. In this sense,
traditional econometric methods are not optimal, given that they focus mainly on
unbiasedness. When it comes to prediction, therefore, they tend to be “overfitted”
(i.e., fitted too closely to a particular data-set), and, in consequence, to generalize
poorly to new, unseen data.

As we explained, ensuring unbiasedness in in-sample error allows no trade-off
with variance reduction. In spite of traditional econometric techniques, ML and
DL fully exploit the possibility of this trade-off to get the best performance in out-
sample data. By focusing on prediction problems, ML and DL models can minimize
forecasting error by trading off bias and variance.

It follows, therefore, that ML and DL algorithms are specifically designed for
making predictions. Moreover, ML and DL are able to exploit several data types
and complexities. But perhaps their main advantage is the fact that computers can
be programmed to learn from data, revealing previously hidden findings as they



1.3 Structure and Objectives of this Thesis

discover historical relationships and trends. ML and DL techniques can improve the
accuracy of predictions by removing noise and by taking into account many types
of estimations, although not necessarily without bias. Moreover, ML and DL allows
for a wide range of data, even when we have more predictors than observations, and
it admits almost every type of functional form when using decision trees, ensuring
a large interaction depth between variables. Of course, the downside of ML and DL
techniques is biased coefficients; however, if our main concern is the accuracy of the
prediction, then any concern regarding biased estimators becomes almost irrelevant.

1.3 Structure and Objectives of this Thesis

Beyond the advantages of ML and DL techniques, the main relevant objective here
is to aboard empirically several economic prediction problems. Our empirical ap-
plication in the next chapters highlights how improved prediction using machine
learning and deep learning techniques can have large impacts on economics com-
pared to traditional econometric techniques.

Although we center on three main economic fields (transport, energy and insur-
ance), the cases we introduce are real world cases regarding traditional and well-
known economic problems, and they aboard a large variety of sub-fields (from su-
pervised, semi-supervised, unsupervised learning, to complex deep learning and
time series models). This lets us obtain a better knowledge on how traditional eco-
nomic problems can be enriched by those techniques.

The thesis is structured in six chapters of which introduction is the first. Chapter
2 “Predicting Collusive Patterns in Electricity Markets: Case of Liberalized
Markets with Regulated Long-Term Tariffs” tries to shed light on the question
of how mandated auctions affect liberalized electricity markets and to what extent
collusion and price volatility can be accountable for price increments. Thereby, we
examine the Spanish electricity market and the introduction of fixed-price forward
contract obligations implemented between 2007 and 2013. The last auction was
held on December 2013, however, the next day, the energy regulator declared it
invalid. Although the final auction price was 7 percent higher than the daily price,
the regulator explained that the causes were essentially exogenous to the firms and
no penalties were imposed. An arising question is however, whether this result
was extraordinary at all but rather a repeated hidden action. Thereby, we seek to
validate the hypothesis of the existence of strong incentives to increase prices in
daily electricity markets when fixed long-term tariffs are applied. To do so, we seek
answers to the following questions: Do regulated long-term tariff auctions trigger
collusion in daily markets, i.e. will companies try to influence prices expectations
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in daily markets to get better deals in the auction market? Furthermore, to what
extent could they be affecting daily prices?

Respectively, predicting the collusive phases in price is the first contribution of
this dissertation. One of our major results is that prices increased by 15 percent 70
days before the mandated auctions. This result is contrary to what literature to date
has been claimed, that the introduction of such tariffs increases competition and
leads to supply prices that are closer to the marginal costs.

Strong insight of the collusive behavior are derived from a theoretical model:
First, the inherent characteristics of markets of this type serve as an incentive to
collusion. This is supported by the Spanish electricity market characteristics: a
high concentration of generation capacity and a low level of interconnectivity. Sec-
ond, possible exogenous price shocks generate a perfect subgame equilibrium where
prices are higher than without them, which is very related to the liberalized process
in the Spanish market. A deficient design (repeated auctions and fixed prices) in an
environment of natural concentration and high price volatility seems to be the main
reasons why firms colluded.

The third chapter “Machine Learning Forecasts of Public Transport Demand:
A comparative analysis of supervised algorithms using smart card data’ con-
tributes towards predicting public transport demand using smart card data and un-
derstating how it is affected by nominal increases in fares.

Public transport in the Autonomous City of Buenos Aires (the capital city of
Argentina) is provided in an integrated system that combines urban buses with sub-
urban buses, an incipient underground metro network and inter-city trains. Pas-
sengers use a smart card (SUBE card) which provides extremely rich and reliable
source of data. In the analysis period, bus fares suffered three different nominal
increases, which gives us a unique opportunity to evaluate not only interpretability
and predictive power but also demand elasticity. Thus, chapter three presents vari-
ous supervised machine learning and linear model estimations which use smart card
data in order to compare predictive power, interpretability and demand elasticities.
Given the obtained results from the empirical exercise, it seems that supervised ma-
chine learning algorithms are much more accurate than linear models for predicting
demand. Second, both type of models show very similar outcomes: Time vari-
ables, cross elasticities and weather precipitations are the most influential variables
in predicting public transport demand. One particularly notable outcome is that
none of the supervised algorithms showed responsiveness to nominal fare increases
(We have evaluated this formulation during a period where nominal fares increased
around 80 percent and real fares did not change at all). Contrarily, our lineal model
specification showed a demand elasticity of -0.31, with an initial shock of -0.47,
supporting the hypothesis of a money illusion effect.



1.3 Structure and Objectives of this Thesis

Chapter 4 “Abnormal Pattern Prediction in the Insurance Market: Fraud-
ulent Property Claims” addresses a well-known predictive problem in insurance
markets but which is also very difficult to aboard because of its nature: Fraud. It has
been estimated that fraud cases represent up to 10 percent of all claims in Europe
(€204 billion claimed cost) and account for around 10-19 percent of the payout bill
(The Impact of Insurance Fraud, 2013).

In practice, fraud detection prediction problems are characterized by the simulta-
neous presence of skewed data (Phua et al. -2010- find that more than 80 percent of
areview of 10 years of fraud detection studies have a percentage of fraud cases be-
low 30 percent), a large number of unlabeled data (information available is usually
only related to investigated cases) and a dynamic and changing pattern.

In this chapter, we propose a methodology based on semi-supervised techniques
and we introduce a new metric — the Cluster Score- for fraud detection which can
deal with these practical challenges. To represent this case, we draw on informa-
tion provided by a leading insurance company. Particularly, we seek to predict
fraudulent property claims which has been largely neglected by the fraud insurance
literature.

Out of a total of 303,166 property claims submitted between January 2015 and
January 2017, only 7,000 cases were investigated by the Investigation Office (10).
Of these, only 2,641 were actually true positives (0.8 percent from the total). This
means, we do not know which class the remaining cases belong to. Our main re-
sults of the proposed methodology reveals that we are able to predict 97 percent
of the total cases. However, the added value depends on the fraud cases that were
never investigated (because they were not considered as suspicious cases) and are
predicted as fraudulent. We, therefore, randomly set aside 10 percent of the data
(30,317 claims). Of these, we were able not only to predict the total fraud cases
(271 claims) but, additionally, 367 non-investigated cases were predicted as fraudu-
lent. Those cases were sent to the 10 for analysis, which 333 were found to present
a very high probability of being fraudulent. In short, we managed to increase the
efficiency of fraud detection by 122.8%.

Lastly, the fifth chapter “Risk Categorization and Self-Reported Mechanisms
in Automobile Insurance Markets’ also presents a well known asymmetry in-
formation problem: Before a contract can be signed, insurance companies know
next to nothing about their potential new customers, while the latter tend to un-
derreport prior claims when switching to a new company. Basic insurance theory
suggests that risky customers will not reveal their true nature, and therefore, a sub-
optimal Pareto equilibrium with an average premium will be reached (Arrow, 1963;
Akerloff, 1970). However, the first questions we seek to address is: Are always all
“bad risks” pretending to be “good risks” as theory suggests? Or is it more nuanced,
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in that only a subset misreport their history?

In this chapter, using past performance shared data from representative insurers in
Spain, we test the hypothesis that not all high risk individuals pretend to be low risk.
Based on this hypothesis, we combine self-reported data and observable character-
istics from potential customers to enhance predictive power of risk classification,
to identify the main features that drive misreporting and to find the most important
variables for predicting risk.

Especially, we propose using a deep variational autoencoder (VAE) model and
the match between internal customer data and potential customers data. We then
approximate the risk by employing clusters as input variables. The VAE model not
only allows us to reduce the large number of variables to their true nature but it
can also be transformed into a powerful outlier model. With this methodology, we
are able to predict (ex-ante) 80-87% of the risky customers. However, we fail to
predict risky customers if we do not combine self-reported data and the observable
characteristics. This result is supported by a theoretical model which states that,
combining self-reported and risk categorization mechanisms, a private monopoly
can get higher profits than the classic private information equilibrium.

Additionally, we find that the most important variables for measuring risk are
not related to self-reported prior claims but rather to self-reported years as insured.
In addition, cluster constructed variables related to the customers’ zip code and
customer characteristics were very significant. Similarly, the following were also
found to be systematically important variables: if the insured was the owner and
first driver in the policy, if the customer’s age was higher than 65, if the insured was
male or female and the number of license years.

Lastly, Chapter 6 concludes the thesis with a presentation of the main results
from the previous chapters and provides some insights of the predictive models in
the economic field.



2 Predicting Collusive Patterns in
Electricity Markets: Case of

Liberalized Markets with
Regulated Long-Term Tariffs

2.1 Introduction!

When considering liberalized electricity markets, we assume the existence of strong
competition between firms that leads to lower consumer prices. However, it is well
known that electricity generation markets tend towards natural concentration due to
their structural characteristics (few participants, transparent information, frequent
interaction, high sunk costs and high market-shares). Moreover, liberalized markets
often face high price volatility, derived from their instantaneous nature (dependency
on international prices, real time demand, wind, non-availability, and interconnec-
tivity restrictions). This tends to have a negative effect on the price consumers pay
resulting in unpredictable and higher tariffs. Regulation may, therefore, represent
a tool that can help provide an essential and, what is more, an affordable service.
Long-term contract auctions are a widely used mechanism in many deregulated
markets. In these, regulators mandate auctions where suppliers can make offers
to provide an amount of energy at a fixed price during a set period of time. The
main objective of such policies is to guarantee both a reasonable and predictable
price to the consumer (assignative efficiency) through an efficient mechanism like
that provided by an auction. In keeping with this line of thinking, Wolak (2000)
claims that the introduction of fixed-price forward contract obligations increases
competition and leads to supply prices that are closer to marginal costs. On the one
hand, if suppliers raise their prices, they could end up selling less in the short-term
market than in the long-term market. On the other hand, if the resulting market-

!Article published at Energy Policy Journal. Reference: Palacio, S.M., 2020. Predicting collu-
sive patterns in a liberalized electricity market with mandatory auctions of forward contracts. Energy
Policy Journal, 139, April 2020. DOI: https://doi.org/10.1016/j.enpol.2020.111311
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clear price is high enough, it could generate higher opportunity costs than the gains
to be made from exercising market power. Likewise, Woo et al. (2004) contend
that electricity companies can reduce volatility and uncertainty by using forward
contract purchases. Similarly, Strbac and Wolak (2017) explain that fixed-price
forward contract obligations limit the incentive to exercise market power in the
short-term market. Moreover, they argue that a large quantity of contracts of this
type enhances competition, because if suppliers have enough quantity committed
to fixed-price forward contract obligations, they will bid very aggressively to sell
their output in the short-term market. Wolak (2017) presents empirical evidence of
this effect in the Singapore electricity market, where the entrance of independent
retailers competing with incumbents in the futures market yielded prices that were
between 10-20% lower.

However, the success of these kinds of mechanisms is inconclusive and there are
still several aspects that need to be studied, including the effect on daily markets. In
this vein, our principal objective is to analyze the effect of the introduction of regu-
lated long-term tariffs on liberalized electricity generation markets. Particularly, in
this study, we examine the impact of mandated auctions on daily electricity markets
and how collusion may impact daily prices. To do so, we seek answers to the fol-
lowing questions: Do regulated long-term tariff auctions trigger collusion in daily
markets, i.e. will companies try to influence prices expectations in daily markets
to get better deals in the auction market? Furthermore, to what extent could they
be affecting daily prices? Here, we focus on the Spanish electricity market which
provides us with a unique opportunity to analyze and use the Contratos de Energia
para el Suministro de Ultimo Recurso (CESUR) auction as a natural experiment.

The Spanish market is essentially divided between a daily and an intra-daily mar-
ket, with the former accounting for most operations. Electricity generators offer
the quantity of electricity they want to supply and the price at which they want to
supply it for every hour of the day. Using a marginal price rule (lower price sup-
pliers dispatch first), the market operator constructs demand and supply curves in
real time, with the intersection being the equilibrium market price (corresponding
basically to a uniform auction). In response to the problem outlined above, the
CESUR auction emerged as a way to foster liquidity in long-term markets and to
stabilize the consumers’ tariff cost. Between 2007 and 2013, there were twenty-five
CESUR auctions, which here serve as our natural experiment. In short, the auction
was a long-term contract for a fixed quantity with the price being determined by a
descending price auction. The auction ended when supply had satisfied demand.
These CESUR auctions operated as a parallel market to the daily market and the
contracts had a duration of between 3 and 6 months. The last CESUR auction was
held on 19 December 2013. The next day, the Spanish energy regulator (National
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Commission on Markets and Competition, CNMC) declared it invalid. The auc-
tion price was 7% higher than the daily price for the previous day. The CNMC
explained that the fall in competitive pressure was a consequence of an unfavorable
environment, based on low eolian production, high unavailability, a fall in trade
on the inter-daily market, increasing demand, higher generation costs and a lim-
ited interconnection capacity. All these factors were essentially considered as being
exogenous to the firms. Subsequently, no penalties were imposed. However, the
CNMC may have failed to analyze the whole spectrum and perhaps the result was
not so extraordinary after all, but rather a repeated hidden action.

Electric companies had several incentives to get higher CESUR prices. Besides
risk premium, they received payments and discounts on the energy supplied in this
market. The question is, how could they get better prices? There were two ways (see
Fabra and Fabra Utray, 2012): (i) by taking off their supply offers during the auction
(and, therefore, reducing the competitive pressure), and (ii) by affecting parallel
market expectations, i.e, artificially increasing market daily prices the days previous
to the auctions to get better deals on these. In this chapter we focus on (i1). We first
present a theoretical framework which analyses two principal hypotheses: (a) the
possibility that the inherent characteristics of these markets might trigger collusion
and, as a result, “avoiding” pro-competitive regulation is a natural reaction; and, (b)
that long-term tariffs in markets with excessive volatility may induce firms to try to
reduce the adverse results by increasing their prices.

Second, and despite arguments in favor of the potentially positive effects of
competition, we present empirical analysis which finds that the introduction of
fixed-price forward contracts is associated with increases in electricity prices. A
difference-in-difference-in-differences model estimates that the increase in prices
was approximately 15% during the collusive phases. Moreover, ARMAX and
LSTM simulations suggest that collusive agreements occurred 70 days before the
CESUR auctions.

Following the above analysis, the main contribution of this chapter is to develop
and validate the hypothesis of the existence of strong incentives to increase prices on
daily markets before the regulatory policies of fixed long-term tariffs are applied.
To the best of our knowledge, this is the first study that identifies that collusive
behaviors in mandated auctions translate to daily markets, and that identifies and
quantifies the collusive effect of mandated auctions over daily prices. This chapter
also contributes to previous authors’ analyses on CESUR auctions (Fabra and Fabra
Utray, 2012; Capitan Herraiz and Monroy, 2014; Cartea and Villaplana, 2014; Pefia
and Rodriguez, 2018). In contrast to their papers, we focus on daily price increases
instead of ex-post forward premiums. We first present an empirical model that
detects abnormal price periods and then we compute the relative increase in daily
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prices between normal and abnormal periods.

The empirical and the theoretical findings support our policy implications: The
uncompetitive outcome seems to be explained by a highly concentrated market, a
high elasticity to react to competitive regulations in a context of excessive volatility
and the particularities of the auction design. Thus, well-designed mechanisms need
to take into account the specific characteristics of the electricity market.

The rest of this chapter is organized as follows. In the next sections we present the
literature review and our case study. In sections 4 and 5, we present the theoretical
and the empirical models, respectively. In section 6, we present the results. Finally,
in section 7, we conclude.

2.2 Literature Review

The process of deregulation in electricity markets where strong tendency to con-
centration exists, has introduced the necessity of tools that enhance competition.
Forward contracts through auction mechanisms has been applied in many countries
by regulators, based on the hypotheses that they can provide efficient production,
competitive prices and foster investments.

Economic literature has traditionally argued that long-term forward contracts re-
duce market power. To illustrate this situation, a two Cournot duopolist model with
N periods is presented in Allaz and Vila (1993). They show that, in equilibrium and
with an increasing number of periods, duopolists will tend to the competitive solu-
tion if forward markets exist. In the same line, Green (1999) presents a model where
generators with “Bertrand” conjectures in the forward market lead to the competi-
tive solution in the spot market, and generators with “Cournot” conjectures do not
participate in the contract market (unless they get a premium risk). The conclusion
is that generators may hedge their output with forward contract sales. This will re-
duce the market power, because they will have a limited portion uncontracted in the
spot market.

However, several authors claim that collusion is strongly related to auctions,
particularly to repeated auctions (Graham and Marshall, 1987; McMillan, 1991;
McAfee and McMillan, 1992; Porter and Zona, 1993; Aoyagi, 2003; Skrzypacz
and Hopenhayn, 2004; Athey et al., 2004). Given that auctions exploit competi-
tion among agents, they create strong incentives to collude. As Green and Porter
(1984) show, while collusion may keep profits higher than under no collusion, firms
may learn to coordinate their strategies so as not to compete but still raise their dis-
counted future benefits (Rotemberg and Saloner, 1986, and Haltiwanger and Har-
rington, 1991, draw similar conclusions). However, several authors argue that it is,
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in fact, the auction format that will or will not trigger collusion. For example, Fabra
(2003) shows that uniform auctions facilitate collusion more than do discriminatory
auctions. Marshall and Marx (2009) find that cartels which control their members’
bids can eliminate competition at second-price but not at first-price auctions. Pavlov
(2008) and Che and Kim (2009) show how the information asymmetries in the auc-
tion design can be used to reach a competitive equilibrium. Benjamin (2011) finds
that threats of future punishment allow players to reach a self-enforcing collusive
equilibrium with greater payoffs than those of the static Nash equilibrium. Chas-
sang and Ortner (2018) show that under collusion, bidding constraints can improve
competition by limiting the scope for punishment.

In the field of energy economics, the theoretical analysis of auctions was ini-
tially developed by von der Fehr and Harbord (1992), Green and Newbery (1992)
and von der Fehr and Harbord (1993), with particular reference to the structure
of the UK market. Authors that include Fabra et al. (2002), Fabra (2003), Fabra
(2006), Fabra et al. (2006), De Frutos and Fabra (2011), Fabra and Reguant (2014)
and Fabra and Garcia (2015) likewise studied auction design in electricity markets,
taking into account such factors as capacity, multiple offers, demand-elasticity, un-
certainty and switching costs. On the empirical side, the seminal paper by Porter
(1983) studies collusion in a railroad cartel that controlled eastbound freight ship-
ments. The author uses a switching regression between periods of collusion and
periods of competition, based on the stochastic process of being or not being in a
collusive phase to evaluate his hypothesis. Other relevant studies that develop em-
pirical methods to detect collusion are Ellison (1994) and Ishii (2008) who evaluate
the empirical implications of the theoretical models of Green and Porter and Rotem-
berg and Saloner, by identifying price war patterns. Porter and Zona (1993, 1999)
analyze bidding behavior in auctions for state highway construction contracts and
a school milk procurement process, respectively. Borenstein and Shepard (1996)
evaluate the conclusions of Haltiwanger and Harrington (1991). By using OLS and
ARI1 estimations, they find evidence of tacit collusion in the gasoline market in 60
cities between 1986 and 1992. Fabra and Toro (2005) model pool price patterns in
Spain by means of an autoregressive Markov-switching model with time varying
transition probabilities. Based on Bajari and Ye’s (2003) approach to test for bid
rigging in procurement auctions, Chassang and Ortner (2018) show that collusion
is weakened by the introduction of bidding constraints in procurement data.

There is also a long tradition of the evaluation of price dynamics in electric-
ity markets. Authors that include Engle (1982), Bollerslev (1986), Escribano et
al. (2002), Goto and Karoly (2004), Leon and Rubia (2004), Worthington et al.
(2005), Misiorek et al. (2006), Weron and Misiorek (2008) analyze price volatility
using ARCH, ARX and GARCH processes. Cho et al. (1995), Huang (1997),
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Huang and Shih (2003), Nowicka-Zagrajek and Weron (2002), Contreras et al.
(2003), Cuaresma et al. (2004), Conejo et al. (2005), Zhou et al. (2006), Tan
et al. (2010) and Yang et al. (2017) study price dynamics using ARIMA models.
In the same line, several authors use ARIMA and SARIMA estimations to model
hourly demand predictions (Ramanathan et al., 1997; Soares and Medeiros, 2005;
Soares and Souza, 2006). Artificial neural networks and machine-learning models
are also becoming quite popular for modeling prices: Szkuta et al. (1999), Fan et
al. (2007), Catalao et al. (2007), Che and Wang (2010), Lin et al. (2010), Xiao et
al. (2017), Wang et al. (2017). While there is plenty of academic literature about
electricity price forecasting, we particularly recommend Aggarwal et al. (2009),
Weron (2014), and Lago et al. (2018) who compare several machine-learning, deep-
learning and linear models to forecast electricity spot prices.

Several studies have analyzed the case study of CESUR auctions. One of the
first studies is Arnedillo Blanco (2011), who analyzes various concentration indices
in the Spanish market during the period the auctions were held. Although he has
found some statistical evidence that between 2009 and 2011 CESUR prices were
systematically higher than the spot price, the evidence presented is inconclusive
about market power over spot and CESUR prices. Fabra and Fabra Utray (2010,
2012) present and exhaustive analysis about market power and regulatory deficien-
cies in the Spanish market. They explain the perverse incentives that the CESUR
auction introduced and that the main cause was a defective policy design. Although
they provide very useful insights for our study, the analysis remains on basic statis-
tical indicators. Pefia and Rodriguez (2018) is probably the most detailed study on
CESUR auctions.They analyze ex-post forward premiums and they find that win-
ning bidders got a yearly average premium of 7.22%. What is interesting on this
paper is that they are the first to analyze the full set of auctions, finding causal
relations between number of bidders, spot price volatility and ex-post forward pre-
mium. Additionally, and supporting part of our main results, they find that hedging
and speculative activities in derivative markets increases in dates near the auctions.

However, none of the reviewed studies considered modelling the impact of CESUR
auctions on daily prices. We do include this aspect in our study by implementing a
triple differences model-DDD- (Gruber, 1994; Berck and Villas-Boas, 2016). Aside
from the advantages of using a double differences model (Angrist and Krueger,
1992; Card and Krueger, 1994; Meyer, 1995), we can additionally reduce the bias
in our estimations by implementing a DDD model. As well, we identify the ab-
normal dynamic pattern of daily prices in dates near the auctions, by presenting an
ARMAX model and a Long Short-Term Memory network. We will describe our
empirical methodology in detail in Section 2.5.
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2.3 Case Study

In 1997, the Spanish electricity market was liberalized (Law 54/1997). The market
is divided between day-ahead and intraday operations, with the former concentrat-
ing most of the business. In the day-ahead market, agents submit the price and
quantity offers that they are willing to accept over the next 24 hours. The market
operator then constructs supply and demand curves by order of merit. The curve’s
intersection is the market clearing price (a marginal price system) that is paid to all
suppliers offering a lower or equal market price.

The CESUR auctions were begun in 2007 in order to foster liquidity in spot mar-
kets and to stabilize price volatility. At these dynamic descending price auctions,
agents competed in prices, and the winner was committed to supply energy by a
fixed period.

In general, the CESUR auctions assigned contracts to supply users by means of a
dynamic (descending) auction which was organized by rounds (the initial price be-
ing set by the market regulator). When the offers met the fixed demand, equilibrium
was reached. Before the auction started, there was a phase in which qualified and
pre-qualified agents were approved or not based on a set of normative requirements.
Once approval had been granted, agents could then submit their offers. When the
round was closed, the market operator analyzed the offers, if there was excess sup-
ply, a new round was opened with a lower price than the previous round’s (see
Figure 2.1).
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Figure 2.1. Auction Design

Under Law 54/1997, the organization, operation and liquidation of the CESUR
auction were the responsibility of the Iberian market operator (OMIE). The su-
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pervision and validation of the results was the job of the Comision Nacional de
Mercados y la Competencia (CNMC), as provided by complementary resolutions
ITC/1659/2009 and ITC/1601/2010, and in keeping with principles of transparency,
competitiveness and non-discrimination.

A total of twenty-five auctions were held. The last one took place on 19 Decem-
ber 2013, in line with the conditions laid down by the Energy Secretary’s resolutions
of 11 June 2010, 20 November 2013 and 11 December 2013 and with the criteria
included in complementary resolutions ITC/1601/2010 and ITC/1659/2009. On 20
December 2013, however, the CNMC declared the auction void and published a
report in which it offered the following reasons: Low eolian production, high un-
availability, fall in transactions on the intraday market, increasing demand, rising
generation costs and a limited interconnection capacity. According to the CNMC,
these concerns led the auction participants to behave atypically. Qualified suppliers
were lower in number and offers were withdrawn earlier than at other auctions. The
auction was closed in the earliest round ever and, as a result, the resulting equilib-
rium price was 7% higher than that on the day-ahead market.

Auction . Round AuctionAmount | Auction Price
Date Number Qualified Numbers Awarded (MW) (€/MWh)
15/12/2009 10 31 17 26 10,740 40.40
23/06/2010 11 33 14 30 4,536 45.21
21/09/2010 12 31 14 30 4,392 47.48
14/12/2010 13 25 12 22 4,306 49.42
22/03/2011 14 23 14 21 4,406 52.10
28/06/2011 15 26 17 23 4,288 53.75
27/09/2011 16 26 12 25 4,258 58.53
20/12/2011 17 28 19 28 4,363 53.40
21/03/2012 18 28 14 26 3,451 51.69
26/06/2012 19 29 18 25 3,575 57.09
25/09/2012 20 28 16 20 3,334 49.75
21/12/2012 21 28 18 30 3,345 54.90
20/03/2013 22 32 22 29 2,880 46.27
25/06/2013 23 34 18 48 3072 49.30
24/09/2013 24 37 12 44 2,852 48.74
19/12/2013 25 36 7 - 2,833 61.83

Table 2.1. CESUR Auctions. Columns contain date, the auction number, the
number of qualified suppliers, the number of rounds, the number of
winning bidders, the auctioned amount and the final auction price.

Table 2.1 shows that the number of qualifiers was similar to previous auctions,
however, the final number of rounds was the lowest. In addition, the initial volume
auctioned was lower than previous auctions (2,833 MW). During the first round,
suppliers reduced their volume offers by 30.6% (the largest amount ever declined
in a first round). Between 8 to 12 agents decided not to participate in the sec-
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ond round. The second most important volume reduction was in the sixth round
(15.2%), and the equilibrium was finally reached in the seventh round with a price
of 61.83 €/ MWh.

One of the characteristics of the CESUR auction was that the information about
previous rounds was in aggregated terms, consequently, agents did not have precise
and complete information about supply excess (i.e. they did not know if they were
pivotal agents). However, in each round, they knew a range of supply excess. For
example, in the 25th auction, during the first two rounds, agents knew that there
was a supply excess of 200% (named the blind range). When the third round was
finished, they knew that the supply excess was around 150-175% (4,250-4,958 MW
offered versus 2,833 auctioned). As a result, qualified suppliers had information
that the auction was outside the blind range (and, therefore, close to the equilibrium
price). After the fifth round, they already knew that the supply excess was lower
than 66%.

One of the most striking features of the decision of not applying penalizations was
that the CNMC, despite finding evidence of abnormal prices and an unconventional
auction, identified only exogenous factors as justification for their stance. Indeed,
their understanding was that the low competitive pressure was caused by the neg-
ative environment affecting firms, and while they did not validate the results, they
did justify their actions. Subsequently, no penalties were imposed.

The main reasons the CNMC argued were: a low eolian production, high un-
availability, increasing demand, and higher generation costs. Figure 2.2 presents
an overview of those factors. Top figure shows eolic source production over total
sources production. During December 2013, 21% of total electricity was produced
by eolic sources. The month previous to the 24th auction, eolic sources represented
around 15% of total sources. Furthermore, the eolic production since the first auc-
tion was 14% on average.

Additionally, it is not visually clear in the second plot that a large increase in
demand could explain this situation. During December 2013 16,699 GW were de-
manded, a very similar number to December 2012 (16,267 GW) while still far from
other peak months like April (18,002 GW) or January (17,443 GW).

In terms of power unavailability, 4,961 GW were unavailable in December 2013.
The average between July 2007 and November 2013 was 5,369 GW. Moreover, in
the 24th CESUR auction, 8,386 GW were unavailable.

As fossil fuel sources are usually the most expensive technologies, we also show
historical data about the International Petrol Price per barrel (USD) in Europe and
the International Gas Price (USD/BTU). While the average petrol price during 2012
was 111.62 USD per barrel, in December 2013, the average price was 110.75,
marginally higher than December 2012 (109.45) and lower than months like Oc-
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tober 2013 and September 2013 (around 111 USD per barrel). The price of gas
in December 2013 was slightly higher than the same month in 2012 (4.28 versus
3.45 USD/BTU), however, it was not excessively different from many other months
during the period analysis.
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Figure 2.2. Main Factors Argued by the CNMC. Plots contain wind production
over total production, total demand (GWh), unavailable power (GW),
international petrol price (USD per barrel) and international gas price

(USD/BTU).

On one hand, it is true that there was a lower volume auctioned and that there
were higher declined volumes, on the other hand, it is hard to explain that there were
exogenous factors that could explain this situation. However, it is still not clear if
agents could extract information (due to the auction design) that may contribute to
tacit collusion and if the output in this particular auction was an isolated case or was
part of a repeated hidden action.

As was pointed out by Fabra and Fabra Utray (2012), Electric companies had
several incentives to keep a higher CESUR price. Besides risk premiums to cover
volatility in the spot market, there were also payments and discounts tied to the
energy sell. The question is then: if collusion exists, which mechanisms through
suppliers could have affected the CESUR price?

First, as we mentioned before, they could take off their bids, i.e. reduce compet-
itive pressure. Second, they could alter expectations by artificially increasing daily
market prices the days previous to the auctions. In this chapter, and as data about
bidder identities or transactions on previous auctions is not public, we focus on the
second mechanism.
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2.3.1 Forward Premium?

The ex-post forward premium is defined as the difference between the auction price
and the spot price during the delivery period. Competitive auctions imply ex-post
forward premiums close to zero.

Table 2.2 compares prices for the auctions delivered by the market operator. The
average ex-post forward premium during this period was 9.42%3>. In only 3 out
of 19 auctions, ex-post premium was negative. The same conclusion is stated by
Pefia and Rodriguez (2018). They do the same analysis considering the total num-
ber of CESUR auctions, finding an ex-post forward premium average of 7.22%.
This translated into euros represented around 1,000 million overpaid cost for the

consumers.
Date Auction | Auction Price | Daily Price | Ex-Post Forward | Ex-Post Forward | Petroleum Price Gas Price
Number €/MWh (€/MWh) | Premium (€/ MWh) Premium (%) Variation (%) | Variation (%)
25/09/2008 6 72.48 64.65 7.83 10.80 % 522 % 239 %
16/12/2008 7 56.47 43.1 13.37 23.68 % -18.7 % -29.1 %
26/03/2009 8 36.84 36.99 -0.15 -0.41 % 321 % -15.7 %
25/06/2009 9 44.54 33.96 10.58 23.76 % 20.6 % 3.4 %
15/12/2009 10 40.40 39.96 0.44 1.10 % 8.7 % 21.9 %
23/06/2010 11 45.21 44.07 1.14 2.51 % -0.2 % -11.8 %
21/09/2010 12 47.48 43.33 4.15 8.74 % 93 % -8.7 %
14/12/2010 13 49.42 4522 4.20 8.50 % 21.0 % 9.5 %
22/03/2011 14 52.10 48.12 3.98 7.64 % 155 % 31%
28/06/2011 15 53.75 54.23 -0.48 -0.89 % -3.4 % -6.7 %
27/09/2011 16 58.53 52.01 6.52 11.14 % -3.5% -14.7 %
20/12/2011 17 53.40 50.64 2.76 5.17 % 8.3 % -27.7 %
21/03/2012 18 51.69 46.07 5.62 10.87 % -8.6 % 53 %
26/06/2012 19 57.09 49.09 8.00 14.02 % 1.2 % 22.5 %
25/09/2012 20 49.75 43.16 6.59 13.25 % 0.4 % 20.8 %
21/12/2012 21 54.90 40.34 14.56 26.52 % 22 % -1.6 %
20/03/2013 22 46.27 34.26 12.01 25.96 % -8.8 % 16.9 %
25/06/2013 23 49.30 49.81 -0.51 -1.03 % 7.5 % -13.0 %
24/09/2013 24 48.74 54.73 -5.99 -12.28 % -1.7 % 2.8 %

Table 2.2. Auction Prices Compared to Daily Prices

A reason usually argued for why long-term contracts auctions may result in pos-
itive ex-post forward premiums is that bidders are expecting a risk premium. As
they are taking risk by selling long-term fixed contracts, they should be able to
cover their generation costs. This is mainly relevant for fossil generators that are
tied to international price fluctuations. However, as we will see later, Spain has quite
a diversified energy source structure where fossil fuels are not the main resource.
In addition, columns in Table 2.2 contain petroleum and gas price variations during
delivery periods. If the risk premium argument would be true, negative price vari-
ations should be related to non-positive ex-post forward premiums, and vice versa,
although a majority of periods with negative variations have had positive premiums.

2We thank an anonymous referee for this suggestion.
Pcesur—Pspot

3The ex-post forward premium is calculated as T
po
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2 Predicting Collusive Patterns in Electricity Markets

2.3.2 Sector Concentration

Since 1997, privatization and liberalization processes in Spain’s electricity genera-
tion market have tended to concentrate the sector. At the start of the auctions, two
enterprises accounted for 64% of the country’s generation capacity (Agosti et al.,
2007). Table 2.3 summarizes the shares of net power installed *.

Firm Net Power (MW) Shares
Iberdrola Generacion S.A. 20,017 34.8%
Endesa Generacion S.A. 16,614 28.9%
Unidén Fenosa Generacién S.A. 5,959 10.4%
Gas Natural SDG, S.A. 2,791 4.9%
Hidroeléctrica del Cantébrico, S.A. 2,428 4.2%
Enel Viesgo Generacion, S.L. 2,259 3.9%
Others 7,408 12.9%
Total MW 57,476

Table 2.3. Installed Capacity by firms
Source: Agosti et al. (2007)

These two firms had a pivotal index rate® below 110% for more than 5% of the
time, the threshold for considering the existence of a power market according to
the European Commission. Moreover, interconnection with Europe was limited
(excluding Portugal and Morocco). More particularly, Spain was under the 10%
interconnection threshold recommended by the European Commission. Could these
factors have contributed to price collusion?

It is therefore not surprising that after the 25th auction, 80% of the total auctioned
volume was distributed between two firms: Iberdrola and Endesa® (see Table 2.4).

In addition to the inherent characteristics of the Spanish market, other factors
could have affected prices. For instance, the external volatility may have adversely
affected the firms’ price decisions. According to this hypothesis, the design of the
auctions (a fixed price during a fixed period) incentivized firms to charge a risk
bonus which was also transferred to the daily market.

Determining whether prices are driven by external shocks is important for any
subsequent impact analysis. Here, we propose exploiting the introduction of the
CESUR auction across time and the market to identify the causal effect of introduc-
ing fixed long-term tariffs on prices using a triple difference-in-difference approach.

“This excludes generators with a power below 50 MW.

>The pivotal index rate seeks to show whether it is possible to supply the prevalent demand
without a particular supplier.

®Union Fenosa was acquired by Gas Natural in July 2008.
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Auction Price (€/MWh) 61.83
Auction Amount (MW) 2,833
Iberdrola Generacion S.A. | 924
Endesa Generacion S.A. 1,336
Gas Natural SDG, S.A. 480
Others 93

Table 2.4. Winning Bidders - Auction 25th

2.3.3 Nord Pool

Nord Pool AS is the electrical energy market operating in Norway, Denmark, Swe-
den, Finland, Estonia, Latvia, Lithuania, Germany and the UK (but, note, that dur-
ing the period analyzed Germany and the UK were not yet members and Lithuania
did not join until June 2013). Here, we use the day-ahead Nord Pool market as a
control group for the Spanish market given that the two markets were not related
during the period analyzed.

As mentioned above, the CESUR auction was operational between 2007 and
2013. However, we should highlight that data for the control group are only avail-
able from 2013 onwards. Therefore, our estimations here refer to the period of days
between 2013 and 2014, where 2013 is considered as a treated year (during which
three auctions were held) and 2014 as a control year.

Table 2.5 shows total production (MWh) by country in the period analyzed. As
can be seen, Norway and Sweden produced more than 70% of Nord Pool’s total
production.

Year

Norway

Sweden

Finland

Denmark

Latvia

Lithuania

Spain

2013

133,385,250

147,770,389

65,952,798

32,491,906

2,795,241

3,543,888

186,569,806

2014

141,158,884

149,710,633

64,587,200

30,648,162

4,903,420

2,959,173

170,399,215

Shares

35%

38%

17%

8%

1%

1%

Table 2.5. Total Production (MWh) by Country

Table 2.6 reports the sources of electricity generation by country. While Spain
has quite a homogeneous structure, Nord Pool presents, overall, a highly depen-
dent generation structure. For instance, 97% of Norwegian and 48% of Swedish
production are extremely dependent on hydraulic sources.

2.4 Theoretical Model

We construct a very simple model to illustrate the possible implications of introduc-
ing fixed-price contract obligations. We consider two symmetric firms which sell
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2 Predicting Collusive Patterns in Electricity Markets

Source Norway | Sweden | Finland | Denmark | Spain
Eolic 1.08% | 4.40% | 0.74% 26.28% | 21.10%
Other Renewables | 0.00% 6.69% | 15.36% | 31.89% | 20.00%
Fossil Fuels 230% | 2.85% | 25.26% | 41.84% | 23.60%
Nuclear 0.00% | 37.92% | 32.64% 0.00% | 20.40%
Hydraulic 96.62% | 48.14% | 24.67% 0.00% 11.80%
Others 0.00% | 0.00% 1.33% 0.00% 3.10%

Table 2.6. Share of Electricity Generation by Country

a homogeneous good with constant marginal cost c. We also assume that they are
risk neutral. The firms offer ¢ which is covered perfectly by the demand.

We consider two auction formats: a uniform-price auction (the price received is
the market price) and a discriminatory-price auction (the price received is equal to
its own bid).

We have two markets: a daily market where the price mechanism is a uniform-
price auction and a discriminatory-price auction which works every 2¢ periods. The
timing of the game is represented as follows: Each firm simultaneously and inde-
pendently submits a bid in the daily market specifying the minimum price at which
it is willing to supply. As demand perfectly matched supply, both firms dispatch
their total production. On the other market, the firms submit different bids b7, and
the lower bidder is the only firm that can deliver at that price. However, the quantity
that is produced in this market (a fixed quantity g set by the auctioneer) cannot be
delivered in the daily market.

Formally, the quantity produced by the firm 7 (¢« = 1,2) in the daily market is
given by:

d %—q b < bj'

4% = (2.1)
gi by > b3

The lowest accepted bid b¢ in the auction is referred to as the market price P, and

can be expressed as:

d/,, . d d
[ LACORR 2.2)
b (qi) b9 > bf

In the secondary market (the discriminatory-price auction) the price is set by the
lowest auction, i.e., b° = min(bf, b; ), and the quantity produced is:

g b <bd
g=q0 = (23)
0 bj > b;
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At the end of each stage, the two firms receive their profits. The auctioneer
announces the market price in the daily market and which firm is to deliver in the
secondary market (if it is a 2¢ period).

We explore an infinitely repeated game, with a strategy profile (.5;,5;) and the
payoff for each firm is the sum of their discounted profits, where p € (0,1) is the
discount rate.

If the firms collude they will set a price P in the daily market and a price b° in
the secondary market. However, as the winning firm in the secondary market is not
able to sell ¢ in the daily market, it should earn at least b > P. The discounted
future benefits if the firms ¢ collude are:

nf = (P=c)gf(1+p+p" . )+ =g (0" +p'+..)

When the firms do not collude, they compete in the daily market and set a com-
petitive price b in the secondary market. However, the firms set a b bid equal at least
to the daily market price (i.e., b > P). If the firms ¢ do not collude, future discounted
benefits can be expressed as:

T C=(P=)gl (14 p+p" . )+ (=g (PP +p". )

We consider trigger strategies where the firms sustain a collusion price in the set
P, b in each period if and only if the firms do not deviate in previous periods, i.e.,
the collusion price path is an equilibrium of the perfect subgame equilibrium if and

only if:
7C(t,p) > 7N (t, )Vt
Formally,
1 = = -
7C —NC = 1_(P—P)q,d+ Y -0 >0
—r =1

The left side of the equation corresponds to the benefits of colluding in the daily
market, while the right side corresponds to the benefits of colluding in the secondary
market. If the firms do not collude in the secondary market, they can deviate in the
secondary market and set a bid b — ¢ and obtain all the profits. This means that
firms will compete until they obtain a price P, which guarantees them at least the
same profits as in the daily market. Therefore, the low boundary bid has tobe b > P.
Likewise, for both firms to make a profit, and not to deviate in the secondary market,
one firm has to profit from losing the secondary market auction, i.e., obtain profits
in the daily market, that is, P> P.
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2 Predicting Collusive Patterns in Electricity Markets

Proposition 1 Exists p € (0,1) such that the set price {b;,b;, P, P}° is a sus-
tainable equilibrium of the perfect subgame if and only if p € (p,1).

What is interesting about the results is that the fixed-price contract (the secondary
market auction) introduces an additional effect in the collusive pattern. Without
this, the incentives to collude would be the same as those not to collude, because
there would be no motivation to raise prices in the daily market. Yet, with the
introduction of the secondary market, both firms have to set higher prices to ensure
that the auction loser obtains at least the same benefits as those obtained by the
winner. To guarantee that the loser obtains the same benefits for the g ratio, the

firms have to set a price P at least higher than that of the bids (b7, bj)

Proposition 2 Consider €, an exogenous positive price shock which affects the
daily market price immediately after the second market auction is finished. Then,
the subgame equilibrium is one where b > b*, where b* is the price obtained in the

secondary market when there are no shock prices.

To prove Proposition 2, we assume an € > (0 which affects spot market prices
immediately after the second market auction is held, with probability p. To simplify,
we assume one of the firms always loses the auction and the other always wins. We
can express the future discounted benefits of the firm that wins the auctions as:

mw=(P—=c)qw - (L+p+p° . )+ (b—)a(p*+p*. .. ) +pe(p*+p*. . ) (aw — )

And the future discounted benefits of the firm that loses as:

wp = (P—e)qp(1+p+p°.. ) +pe(p®+p'. . ar

For colluding firms, the price path is an equilibrium of the perfect subgame equi-
librium if and only if:

7TVV(tvp) :WL(tHO) \

Then, we can rearrange as:
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1 o0
my — 7 = (P —c)(aw _QL)T,@ +pe Y p*(aw —qr)—
t=1

q|(P—c)——+peY 6|+ Y p*(b—c)=0

L=p t=1 t=1

To simplify the results (which does not affect the general conclusions), we as-
sume that both firms produce the same quantity (¢ = qr,):

The first left-hand term is the opportunity cost of the winning firm not selling
¢ in the daily market. The second term is the opportunity cost of its not deriving
the positive shock in the quantities sold ¢. Finally, the third term is the profit made
from winning the auction in the secondary market. Without a shock, the second
term is null, and therefore, the profits of the secondary market auction derived from
Proposition 1 have only to cover the opportunity cost of not selling in the daily
market. However, in this new equilibrium, to be sustainable (with p, ¢ and ¢ fixed),
i.e. to keep this equality, b must be higher than b*. Also P is higher than the
equilibrium price without a positive shock.

A number of preliminary conclusions can be derived from these two propositions.
Artificially applying fixed-price auctions of this kind creates incentives to increase
prices in the daily market. As seen, this effect could emerge for two reasons: First,
repeated auctions trigger collusion because of their inherent format and because of
the structural collusion present in the daily market (Proposition 1). Second, un-
certainty in the daily market pushes firms to follow the expected price path in the
secondary market (Proposition 2). In conclusion, for whatever reason, what trig-
gers collusion is not the introduction of the regulation per se, but the actual design
of that mechanism. In the following section, we present the empirical methodology
to measure the size of this effect.

2.5 Methodology

In the following sections we describe our methodology to evaluate the impact of
introducing fixed long-term tariffs on prices in the Spanish case. We are interested
in two aspects: a) identifying abnormal patterns in the daily market due to the in-
troduction of the CESUR auction, b) measuring the economic impact in terms of
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2 Predicting Collusive Patterns in Electricity Markets

higher daily prices. As we explained previously, electric companies had incentives
to get higher CESUR prices. The mechanism we are focusing on is one in which
firms could be influencing parallel markets to inflate CESUR price expectations.
Therefore, we divide our analysis as follows: in Section 2.5.1, we present an AR-
MAX model combined with Instrumental Variables (IV) to identify if there were
abnormal behaviors on daily prices during the previous days to the auctions, i.e.
find evidence that firms were inflating expectations in the daily market to get better
prices in the CESUR auction. Once we identify abnormal price behavior we pro-
pose in 2.5.2 a triple differences model (DDD) to measure the economic impact on
energy prices.

2.5.1 Price Dynamic in Electrical Markets

The dependent variable in our analysis is the logarithm of the daily price. The
database includes daily data on prices and production obtained from OMIE and
Nord Pool during the period 2013-2014. The weather condition variables are from
National Centers for Environmental Information. We also include the International
Petrol Price in Europe, the International Price of Gas (USD/BTU) and Spain’s Risk
Premium relative to Germany. Finally, three auctions were held in 2013: 20 March
2013, 25 June 2013 and 24 December 2013.

If there were abnormal price phases during the period analyzed (whether resulting
from collusion or not), the question is how these periods can be best defined. Our
main objective is to understand when the dynamics of prices in the Spanish market
and that of prices in the Nord Pool market present a different pattern. To do so,
we add a dummy variable (/P - Investigation Period) before, during and after the
auctions that is equal to one for each specific time window. We test our results for
the three auctions held in 2013. In addition, given that the auctions were canceled
in 2014, we can use this year as a falsification test.

As we are modeling electricity prices that are simultaneously set by supply and
demand, several questions have to be addressed before we continue. Ordinary least
square (OLS) estimates are based on the assumption that all independent variables
are uncorrelated with the error term (exogeneity assumption). When this occurs, the
conditional expected error term is equal to zero for each observation, which implies
that the regressors are orthogonal to the error term.

However, we might expect the error term to be correlated with quantity, given
that quantity depends on other factors (omitted bias). Additionally, the prices and
quantities observed reflect equilibrium sets between supply and demand, i.e. they
are determined simultaneously and the estimation may therefore be affected by the
simultaneity bias (Angrist and Krueger, 2001). As such, we cannot infer if changes
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in price are due to supply or demand shifts.

In addition, the nature of the product (perfect synchronization without storage
capacity) causes high price volatility. This means the price is highly affected by
its dynamics which inherits some of the distinctive features of demand, such as
seasonality effects (Fezzi, 2007). Moreover, supply and demand must be constantly
balanced, but as shocks cannot be smoothed, they are immediately transferred to
prices.

All these issues are crucial elements to take into account when estimating elec-
tricity price dynamics: Simultaneity bias, non-stationarity, non-normality and serial
correlation should each be carefully examined.

Formally, we initially define an autoregressive moving average model with ex-
ogenous input terms (ARMAX) that can be expressed as:

p
Y di—it+ Y Ot 24
i=1 j=1

m

where y; is the dependent variable and is equal to log(Pspqin/PNPool). Fspain
is the daily arithmetic average price of the spot market in Spain, and Py p,; is the
daily arithmetic average price of the spot market in Nord Pool. I P is the indicator
which reflects switching phases and Q{ V' is the quantity production of each market
(Spain, Nord Pool expressed in logarithms), both quantities being instrumental vari-
ables (see section Appendix A: Instrumental Variables Tests). X is the vector that
represents explanatory variables and the model orders p, m refer to p autoregressive
and m moving average terms.

Following the practical approach developed by Box et al. (2015) to select an
appropriate ARMA model with the corresponding extensions applied to ARMAX
models (Andrews et al., 2013) — see Appendix B: ARMAX Model-Building Process
— we choose our main exogenous candidate variables which are reported in Table
2.7. All the variables are expressed in MWh (as logarithms). Dummy Null Price
are two atypical days in April 2013, when prices in Spain were equal to zero.

2.5.2 Identification and Estimation Methods

Our second objective is to identify the average effect of mandated auctions on prices
in the market and the year in which regulations of this type were introduced. Specif-
ically, we are interested in comparing prices the days before mandated auctions
were introduced with the counterfactual, i.e. prices in a different market on the
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2 Predicting Collusive Patterns in Electricity Markets

Exogeneous-Variables Candidates
Nord Pool Production

Spain Production

Portugal Production

Spain Production Lag-1

Spain Imports

Dummy Null Price

Table 2.7. Stepwise Regression Variable Candidates

same days.

A major concern is that the country that chose to introduce the regulation is likely
to be different from the country that did not and that such differences may be cor-
related with prices. In principle, many of the unobservable characteristics that may
confound identification are those that vary across markets but are fixed over time.
A widely used method for controlling time-invariant unobserved characteristics and
unexpected variations is to use panel data and estimate difference-in-differences
models.

A difference-in-differences estimation (Angrist and Krueger, 1992; Card and
Krueger, 1994; Meyer, 1995 are the precursors) measures the impact of a policy
change on an outcome variable by removing the effects of time and place. When
the outcome depends on the policy, time, place or other variables, we can addition-
ally reduce the bias in the estimated effect by using a triple difference-in-differences
(Berck and Villas-Boas, 2016). The goal of this empirical study is to capture the
effect of fixed price long-term auctions held in 2013 (experimental year) and which
impacted Spain (treatment group). Identifying this effect implies controlling at the
same time for any systemic shocks that could have disturbed the electricity market
outcomes of the treatment group in the experimental year. Higher prices in Spain
when the regulations are in place can then be considered as the net effect of regula-
tion. To control for economic changes that are unrelated to the program, we use a
market (Nord Pool) which was unaffected by the regulation.

The overall difference-in-differences can be written as:

DD =E[(Y' - YE)|IP, =1]- E[(YS =Y )|IP, = 0]

where Y;T is the treated group in time ¢ (Spain, 70 days before each auction in
2013), Y;C is the control group in time ¢ (Nord Pool, 70 days before each auction in
2013) and [ P, is an indicator of the policy effect.

Recall that, in 2014, the law governing CESUR auctions was lifted; thus, we can
use 2014 as an additional control by using triple differences (DDD):
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DDD = B[V} ~ Y )P =1] - B[V - YE)|IP =]
B[V =Y TP = 1) = (VG — Yi§ 1) [P = 0

where Yﬁg is the treated group in time ¢ + 2 (Spain, 70 days before the same day
the auctions where celebrated but in 2014), and YgQ is the control group in time
t + 2 (Nord Pool, 70 days before the same day the auctions were held but in 2014).

The left part of the equation expresses two concepts: first, the difference between
daily prices of the treatment and control group 70 before each auction (Y, — YtC).
This term should be positive if mandated auctions introduce incentives to increase
prices. Second, the difference between daily prices of the treatment and control
group during previous periods considered as untreated (YE1 — Ytgl). This control
for unobservables that affect differences in daily prices and are constant over time.

The right-part of the equation introduces another two concepts: first, the differ-
ence between treatment and control group in the non-experimental year (Y1, —
YtﬂQ).It controls market individual differences that may affect prices in days in
which auctions would have been applied (in 2014) if they were not cancelled. Sec-
ond, (Yﬁ;l — Ygl) controls for market individual differences that affect prices dur-
ing the same days that auctions would have not been applied. Overall, it controls
omitted variables that cause differences in daily prices to change over the period.

This can be simplified as:

DDD = DDsyi13—DDap14

DDD will consistently identify the effect of the policy if two conditions hold:
First, the differences in prices in 2013 are related to the auctions, i.e., D Dyg13 > 0.
Second, there are no differences in prices in the counterfactual year, i.e., D Dog14 =
0.

2.6 Results

In this section, the model results are analyzed. As mentioned before, we first iden-
tify abnormal periods in the daily market. Second, we present our identification
strategy and, third, we measure the average effect of mandated auctions on prices.
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2.6.1 Windows Choice

We present the equation (1) estimation results in Table 2.8. We analyze whether
daily prices are consistent with the hypothesis of expected inflation near auction
dates. Our focus is on the Investigation Period variable (IP), which is a dummy that
takes one during days surrounding auctions. We test whether there are significant
differences between Spanish daily prices and Nord Pool daily prices. Additionally,
we validate our analysis conducting the same experiment during a year without
auctions.

The table highlights that, during 2013, there are significant, positive and per-
sistent price differences between 0 and 70 days before the CESUR auctions. The
differences are between the daily average Spanish prices and the daily average of
the Nord Pool market. Those differences oscillate between 68% and 222%. After
that, we find no conclusive evidence of increasing prices.

We also report estimations during 2014 of the Investigation Period variable. As
we mentioned earlier, auctions were cancelled after December 2013. Therefore,
we would expect no relation between the Investigation Period variable and daily
prices. The results from the simulation in 2014 are also displayed in Table 2.8. As
expected, we do not find any evidence of price differences, which initially supports
the hypothesis that regulation negatively affected consumers.

Days | 90 | -85 | -80 75 70 -65 60 | 55 | -50 | 45 30 | 25 20 15
IP2013 [-0.07 | 031 | 035 | 037 | 084" | 0.83%F | 0.52% | 0.72%%F [ 0.65%* | 17" | 0.85%% | 0.62%* | 0.63*** | 0.86***
IP2014 | 020 | 018 | 005 | 0.0 | 005 | 008 | 002 | 007 | 032 | 019 | 008 | 004 | 005 | 0.02

Days -10 -7 -5 -3 0 3 5 7 10 15 20 25 30 45
IP 2013 | 0.34 | 0.54%% | 0.92%%* | 0.70%** | 0.79%** | -0.99%** | 041 | 1.11¥¥* | 0.56% | 0.71** 0.14 -0.34 -0.33 -0.15
IP 2014 | 0.22 | -0.05 -0.03 0.22 -0.02 0.03 0.06 0.23 -0.01 -0.20 0.09 0.12 0.06 0.28*

Table 2.8. Window Time Choice

To validate that 70 days before each auction is representative of abnormal be-
havior in daily prices, we propose a long short-term memory network model (see
Appendix C for a complete specification of the model). Here, our main concern is
to demonstrate that the abnormal period of collusion chosen is in fact correct. To do
so, we employ a deep learning model operating as an outlier detection model. The
advantage of models of this type is that they are well suited to predicting patterns.
Although we cannot assess the marginal impact of the variables, we can use these
models to verify if our switching regression pivotal variable is correctly defined.

In Figure 2.3 we illustrate the results for the normal observations. The upper
panel of the figure plots the true values, predicted values and error values, while the
lower panel shows the logarithm of the probability density function of the error test
using the mean and the covariance of the training error vector. If values are below
the “normal” threshold, they are considered abnormalities.
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Normal Data. Using 7 timestep
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Figure 2.3. Normal Data Test

In this particular case, when testing the normal data for 2013, only five days were
considered to be abnormal. However, when we focus on the 70 day-period before
the CESUR auctions (see Figure 2.4), almost every day is abnormal. Specifically,
we obtain a Precision of 100% and a Recall of 81%".

Abnormal Data. Using 7 timestep
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Figure 2.4. Abnormal Data Test

Therefore, empirical evidence supports the hypothesis of inflating prices the day
previous to the auction. The introduction of long-term tariff auctions is related to
large price differences between Spanish and Nord Pool markets. Thus, our choice

"Precision = True Negatives / (True Negatives + False Positives), Recall = True Positives / (True
Positives + False Negatives)
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of the 70-day time period prior to the CESUR auctions as our main candidate seems
to be accurate. Indeed, during this period, we captured recurrent abnormal patterns
in energy prices.Hereinafter, therefore, we propose using the dummy 70 days before
a CESUR auction as our collusive or abnormal phase variable. We now turn to the
question of what the net impact on prices when long-term tariffs were introduced.
To shed light on this point, we compute triple differences between Spanish and Nord
Pool markets and between 2013 and 2014.

2.6.2 Identification Strategy

Although market regulators introduce mandated auctions to foster competition and
provide energy at a competitive price, we have found that the particular character-
istics of electricity markets (high concentration and high volatility) may produce
undesired effects on daily markets. In this section, we study to what extent daily
prices were affected by the introduction of regulation.

To measure the effect on the actual price increase due to the CESUR auctions,
it would be necessary to observe how the electric market behaves in two different
states: one in which the regulation was applied, and one in which it was never
applied. The increase in prices when the auction is held compared to when it is not
would therefore be the actual effect of the regulation. As it is impossible to observe
the same market in a counterfactual state, the best approach is to use “comparables”.
Thus, it is necessary to create counterfactuals that are nearly identical and which
will enable us to control for additional sources of omitted variable bias.

However, it is almost impossible to have two virtually equal markets. Here is
where a triple differences estimation is useful. A difference-in-differences model
controls for omitted variables that could affect differences in daily prices between
the Spanish market and the Nord Pool market, and that are constant over time. The
main advantage of using a DDD model is that, in addition to controlling for those
factors, we will also be able to control for omitted variables that affect differences
in daily prices over time for each of those markets. This will help us get better
unbiased estimates of the true effect of mandated auctions.

Table 2.9 summarizes individuals’ statistics in the treatment and the control group
and in experimental and non-experimental years. The Difference column shows
difference in means tests. In Spain, there were almost no significant differences in
the source production structure. However, there is a decrease in the fossil production
(explained by a decrease in combined cycle power production) that can be related to
oil and gas price variations (which are also significant). Therefore, it is important to
include them as control variables. Eolic production also has a significant difference,
but we believe that this difference is quite small and should not bias the results.
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Spain 2014 2013 Difference
. 133,168 | 132,258 | -909.6
Portugal Production (MW) =580 53 "54.185.1) | (24.518.5)
- 199,384 | 155,749 | -43,635%%%
Unavailability MW) =656 5y (64,542.2) | (48,173.5)
. 56,434 | 52,555 48785
Hydraulic (MW) 323200 | (34.864) | (37.143)
37,306 | 34,542 | -2.764.6
Nuclear (MW) (28,634.1) | (28,042.1) | (40,547.4)
. 299,025 | 334,845 | 35,820%%
Fossil (MW) (64,232) | (67,410) | (79,368)
. 0.19 0.20 0.0077%
Eolic (%) 005 | (0.04) 0.02)
o 99.05 108.62 | 9.57%%*
Qil Price (USD/Barrel) 14.76) @63 (16.38)
. 431 3.76 20.50%%%
Gas Price (USD/BTU) 0.49) 0.36) 0.65)
Risk Promium 149.69 144.57 502
2776) | (48.69) (2832)
16.83 17.16 03
Temperature (C%) (5.4%) 6.08) 2.8%)
. 1.42 1.63 0.210
Precipitations (mm) 6.85) 3.62) ©.07)
0.70 0.69 20.01
Workday=1 046) | (045 .10
Nord Pool 2014 2013 Difference
. 1,060,728 | 1,040,001 | -20,981%*
Quantity (MW) (186.611) | (197.833) | (86.992)
o 0.06 0.07 0.008
Precipitations(mm) 0.12) 0.1 ©.179)
11 1.07 20.04
Temperature (C°) 047 | (0.54) 0.39)
0.71 0.70 ~0.008
Workday=1 (0.46) (0.46) (0.53)

Table 2.9. Difference in Means between Experimental-Non Experimental Years
and Control-Treatment Groups

There is quite an increase of unavailability power during 2014. This increase should
have put more pressure on prices in 2014 and, therefore could have hidden the
auction effects. Then risk premium, Portugal production, and weather conditions do
not have significant differences between experimental and non-experimental years.
In terms of production, the Nord Pool market has a significant increase in 2014,
however this is related to the entry of Lithuania and, as a consequence, we will
control for this factor. We do not find evidence of different weather conditions
between experimental and non-experimental years. In summary, we control for
fossil prices, unavailability, and the Lithuanian entry. Due to a limited number of
observable characteristics, there are potential omitted variables that may affect the
price in each group and year differently. However, as we are using data from across
markets and time periods, we expect that with a triple differences model we can
control for unobservable variables that affect prices across groups and over time.
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The identifying assumption of the DDD (Gruber, 1994) only requires that there
be no shock that affects the relative outcomes of the treatment group in the same
country-year as the regulation.

In short, our treatment group is Spain while our control group is Nord Pool (i.e.,
the market unaffected by the policy). However, the counterfactuals are also consid-
ered between experimental and non-experimental years.

Therefore, we transform our data-set to panel data and adopt a triple difference-
in-differences approach. By comparing changes, we control for observed and un-
observed time-invariant market characteristics that might be correlated with the in-
troduction of the policy decision as well as with prices.

Formally, the DDD model can be specified as:

Piji = Brxije + Bad Py + B3pj + Bali + Bsp; I P+
Bel PyT; + Brp; T + Bepj I Py T + €550 (2.5)

where P;j; is the logarithm of the price in the market ¢ (Spain, Nord Pool), in the
experimental year j (2013, 2014) on day ¢. I F; is an indicator variable that takes
a value of one 70 days before the auctions and zero otherwise. 7; is a fixed effect
unique to market 7 and p; is a time effect common to both markets in year j. x;;; 1s a
vector of covariates that vary across markets and time. Among the control variables,
we maintain the autoregressive terms and the instrumental variables to control for
the biases discussed above (see Bertrand et al., 2004, for a detailed discussion).

B are several control variables that are unique for each market and causes dif-
ferences in daily prices (We include Oil Price, Gas Price, Power Unavailability,
Autoregressive Terms, a production variable estimated through instrumented vari-
ables, a dummy that takes into account the entrance of Lithuania to the Nord Pool
market and a Workday variable). 35 controls for any change that affects daily prices
and is changing over time in both experimental and non-experimental years. (4
controls for anything that affects daily prices, that differs between markets, that dif-
fers between experimental/non-experimental years and that is constant within the
years. (35 controls for everything that changes over time in the experimental year.
Be controls for any factors that affect daily prices across time for both markets but
are constant across experimental and non-experimental years. 37 controls for dif-
ferences between Spanish and Nord Pool markets in the experimental year and are
constant over time.

The third-level interaction (g captures the DDD estimation, i.e. the variation
in prices specific to the treatment market in the experimental year, 70 days before
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the auctions (relative to the control market, non-experimental year and untreated
period). The key identifying assumption for this interpretation is that the change
in prices is an unbiased estimate of the counterfactual. While we cannot directly
test this assumption, we can test the hypothesis of parallel trends in the control and
treatment markets during pre-intervention periods and during the non-experimental
year. If the trends are the same in the pre-intervention periods, then we would expect
the same pattern in the post-intervention period in both markets.

Further insights into this behavior are provided in Figure 2.5 where auctions num-
ber 24 and 25 are depicted. Note that we only have information from January 2013
onwards and so we cannot test the parallel trend assumption prior to the first auc-
tion. We use the Hodrick-Prescott filter to remove the cyclical component (Hodrick
and Prescott, 1997). Treatment days lie between the dotted and solid lines. Before
the dotted lines, we would expect to find parallel trends, and thereafter, divergent
trends. As can be seen, in the pre-intervention period, prices in both markets present
a similar pattern. However, immediately after treatment, while the pattern of prices
in the Nord Pool market did not change, the prices in the Spanish market increased.

Parallel Trends
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(a) Auction Number 24

Parallel Trends
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(b) Auction Number 25

Figure 2.5. Parallel Trend
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We formally test that the pre-intervention time trends and the non-experimental
year for both the control and treatment groups are not different in the absence of
regulation. This requires that the difference between the two markets is constant
over time. In this model, we have multiple treated periods which makes it difficult
to provide a simple visual inspection. One way to test the assumption of parallel
trends is to evaluate the leads (LE) and lags (LA) of the treatment effect (Pischke,
2005). Thus, instead of a single treatment effect, we include m leads and ¢ lags:

Pijt = Brwije+ Bl P+ B3pj + BaTi + Bspj I P+

q
BeI PiTi+ BrpiTi+ Y awyjIP* Ty +e€ijr (2.6)

t=—m

where oy is the coefficient of the ¢th lead or lag. In Figure 2.6, we illustrate
what it is we are looking for. Thus, in 2013, we would expect the treatment effect
to show a divergent trend (a1, ai, a3 are positive). On the other hand, before the
treatment effect we would expect to find a parallel trend (a1, av—2, a3 are zero).
However, in 2014, we would expect to find a parallel trend across the whole period
and, therefore, all v coefficients should be zero.

o> 0 oy 0 oy >0
70 days before I 70 davs before I 70 davs before | 2013
1 I T
o_3=0 G =0 2 o 1=0 A
= g &
(a) Year 2013
ocg= 0 o= 0 o =10
70 days before | 70 days before | 70 days before | 2014
I I T
‘—I—' 8 —_— ] —_— A
%_y=10 ; o_p=0 ; o_;=0 3
(b) Year 2014

Figure 2.6. Schematic Representation of Leads and Lags

Our results are reported in Table 2.10: The key assumption of parallel trends
before the treatment effect is fulfilled. Again, we should stress that we only have
information from January 2013 onwards and we cannot, therefore, test the parallel
trend effect prior to the first auction.
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Parallel Trends coef

LA_trend_3_2013

02161+
(0.11)
20.0586
(0.084)
0.1699%%+
(0.046)
0.0921
(0.064)
0.1257+%
(0.058)
0.047
(0.109)
~0.1351
(0.083)
-0.1837

LE_trend_3_2013

LA_trend_2_2013

LE_trend_2_2013

LA_trend_1_2013

LE_trend_1_2013

LA_trend_3_2014

LE_trend_3_2014

LA_trend_2_2014

©.121)
LE_trend_2_2014 (?)(())‘;?‘;
LA_trend_1_2014 3)(?;32)
LE_trend_1_2014 (()(i]lll%

Table 2.10. Parallel Trend Estimation

In the methodology section, we explain why in this particular context difference-
in-difference-in-differences estimations (DDD) are the most appropriate. There, we
stressed that to employ this methodology two conditions must be met: Namely, (1)
the differences in prices during 2013 must be related to the auctions, and (2) there
must be no differences in prices in the counterfactual year.

Let’s begin with the first condition. Using only data for 2013, we can evaluate a
difference-in-differences estimation in which the treated group is the Spanish elec-
tricity market (7; = 1) and the control group is the Nord Pool electricity market
(T; = 0). Recall, that in 2013 there were three auctions. Here, we seek to determine
if the introduction of these auctions artificially raised the market price before they
were held. If this is found to be the case, condition (1) is fulfilled.

From the results derived above, we use a 70-day time window before each auc-
tion. Therefore, our treatment variable is equal to 1 in those periods (/ P, = 1), and 0
otherwise (I P; = 0). The difference-in-differences estimator is thus the coefficient
of I P xT;. As can be seen in Table 2.11, the results show a significant increase in
prices before the CESUR auction in the Spanish market when compared to prices
in the Nord Pool market. We can, therefore, conclude that condition (1) is fulfilled.

The gap between the Spanish market and the Nord Pool market increased on
average 11%, 70 days before each auction in 2013.We can then conduct the same
analysis but this time for 2014, the year in which the auction was eliminated as a
regulatory mechanism. If condition (2) is fulfilled, we would expect no increase in
prices during those same periods in which auctions were held. The results, reported
in Table 2.12, confirm that there was no significant increase in prices before the
CESUR auction in the Spanish market compared to prices in the Nord Pool market
in 2014. Thus, condition (2) is also fulfilled.
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38

Difference-in-Difference

(2013) Pit
0.1047%**
[Fy+ T, (0.051)
FE i, 1
AR Yes
Instrumental Variables Yes
Control Variables Yes
Trend 1% pertod

Table 2.11. Difference-in-Differences Estimation: Year 2013

Difference-in-Difference

(2014) Fit
-0.0442
[Py =T (0.032)
FE i,
AR Yes
Instrumental Variables Yes
Control Variables Yes
Trend 1*period

Table 2.12. Difference-in-Differences Falsification Test



2.6 Results

2.6.3 The Effect of Mandated Auctions on Prices

Table 2.13 summarizes the averages values of the triple differences estimation (DDD).
The top panel compares the average prices recorded in the Spanish market in the ex-
perimental year (2013) with those in the non-experimental year (2014). Each cell
contains average values, standard errors and number of observations. There was a
2.68-euro increase in price in the periods before the auction over the 2013 price,
compared to an 8.88-euro price fall in 2014. There was an 11.56-euro relative in-
crease in the Spanish market price before the auctions (the difference-in-difference
effect). However, if there was a distinct market shock in Spain, this estimate does
not identify the true impact of the auctions. In the bottom panel, we perform the
same analysis for the Nord Pool market. We find an increase in the 2013 price
relative to that for 2014 of 3.29 euros, considerably lower than that recorded in
the Spanish market. If we consider the difference between the treatment and con-
trol groups, then there was an 8.47-euro increase in the relative markets in the year
when auctions were held, compared to the change in relative price recorded in 2014.

However, the comparisons in Table 2.13 do not take into consideration other
sources of variation in these price differences. As we explained earlier, to obtain
the difference-in-differences between the Spanish and Nord Pool market, we must
control for factors that vary over time and between markets. Differencing those fac-
tors will result in more accurate estimations. In Table 2.14 we present the equation
(2) estimation results. Columns (1) to (6) contain data from the Spanish and the
Nord Pool market in 2013-2014, and columns (7) and (8) summarize the double
difference analysis in 2013 and 2014, respectively. Column (1) shows the regres-
sion when no autoregressive terms are considered. Serial correlation is very present
in electricity prices (see Fezzi, 2007 for a detailed analysis) and we cannot there-
fore rely on a model that does not take these factors into account (see Appendix
B: ARMAX Model-Building Process section). When we take the simplest model
which also considers the autoregressive terms, our results drastically change. The
estimated effect of the mandated auction on prices is statistically significant at a 5%
level and it represents a relative increase of 12% in the treated market (the Spanish
market compared to the Nord Pool market) during the experimental year (2013).
Column (3) does not consider control variables (as we mentioned earlier, we are
including the Oil Price, Gas Price, Unavailable Power and the entrance of Lithuania
to the Nord Pool Market and weather condition variables). The effect on prices drop
to 9% but is still significant at 5% level. Columns (4) and (5) do not incorporate an
instrumental variable estimation for quantities and fixed effects (see Appendix A:
Instrumental Variables Tests section), respectively. Both show similar results with
a net increase on prices around 16.5-16.7%.
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Market / Year IP=0 IP=1 Policy Difference
in market
A. Treated Market: Spain
2013 41.97 44.65 2.68
(17.69) (17.54) (24.91)
[137] [228]
2014 47.40 38.52 -8.88
(12.69) (16.67) (20.95)
[136] [228]
Year difference in market -5.43 6.13
(21.77) (24.20)
Difference-in-Difference 11.56
(32.55)
A. Treated Market: Nord Pool
2013 37.54 38.44 0.90
6.24) (5.42) (8.27)
[137] [228]
2014 31.11 28.72 -2.39
(3.41) (4.56) (5.70)
[136] [228]
Year difference in market 6.44 9.72
(7.11)  (7.08)
Difference-in-Difference 3.29
(10.04)
DDD 8.27
(34.07)

Table 2.13. Average DDD values. Note: Cells contain mean log daily price for the

group identified. Standard errors are given in parentheses; sample
sizes are given in square brackets.
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DDD Estimation DD 2013 DD 2014
Variables 1) 2) (€)] (@)] 5) 6) (7) (€]
[P +T % p; 0.02120  0.1134** 0.087**  0.1543*%%  (,1529%*%  (,1404%*
PToRT (0.09) (0.048) (0.04) (0.056) (0.057) (0.055)
T -0.00120  0.0871%** 0.01930  -0.1629*#** -0.1268***  (.0969***  -0.2044%**  (.24930
¢ (0.064) (0.037) (0.024) (0.062) (0.037) (0.035) (0.076) (0.6)
P, 0.010 0.0686***  (0.0154* 0.059%**  0.0466%**  (0.0434%%** -0.0226 0.02460
' (0.024) (0.023) (0.009) (0.021) (0.015) (0.015) (0.012) (0.02)
, 0.0020  0.2333%** (0, 1013*** (.1887***  (.1373%**  (.1478%**
Pi (0.043) (0.053) (0.029) (0.041) (0.036) (0.036)
1P %o -0.0080  -0.0523%* 0.00780  -0.0792%**  -0.0689*** -0.0654%***
1P (0.027) (0.022) (0.013) (0.023) (0.019) (0.018)
Tow s -0.01890 -0.1173*** -0.0967**  -0.0586* -0.072%* -0.0666*
PP (0.059) (0.043) (0.039) (0.035) (0.036) (0.036)
TP 0.01330  -0.0713* -0.03510 -0.0673* -0.05480 -0.05040 0.1047#*  -0.04420
' ¢ (0.057) (0.039) (0.035) (0.035) (0.036) (0.034) (0.051) (0.032)
AR No Yes Yes Yes Yes Yes Yes Yes
CONTROL Yes No No Yes Yes Yes Yes Yes
v Yes No Yes No Yes Yes Yes Yes
FE Yes No Yes Yes No Yes Yes Yes
Obs 1452 1452 1452 1452 1452 1452 724 728
R2 0.069 0.579 0.621 0.648 0.616 0.641 0.648 0.642

Table 2.14. Triple Differences and Difference-in-Differences Results of The Effect
of Mandated Auctions on Prices

Column (6) incorporates autoregressive terms, control variables, a quantity esti-
mation using instrumental variables and fixed effects. The coefficient of I P T} * p;
indicates that the relative price increased by around 15.07 percent in the treated mar-
ket during the experimental year. These estimates are highly significant and present

more robust standard errors compare to a difference-in-differences model (because
of the double difference).

Columns (7) and (8) show the difference-in-differences results for 2013 and 2014,
respectively. As we mentioned previously, two of our identification assumptions
were that the coefficient on the 7; * I P; should be positive for 2013 and not sig-
nificant for 2014. Column (7) reveals that the interaction is 11% and is significant
at the 5% level. And column (8) reveals that this interaction is statistically non-
significant. However, a double differences model only controls for unobservable
factors that affect daily prices and are different between markets, but are constant
over time. The triple differences models presented additionally control for unob-
servable factors that cause differences in daily prices for both markets to change
over time.

Every column with autoregressive terms shows a similar outcome. The results
confirm the conclusion that before the CESUR auctions the Spanish market ex-
perienced significant price increases. Specifically, we find a total increase in the
difference of Spanish and Nord Pool markets between 9 and 17% when CESUR
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auctions were introduced. If the objective of mandated auctions is to enhance com-
petition, these results seem to contradict the initial assumption and what was stated
empirically and theoretically by several authors (Allaz and Vila, 1993; Green, 1999;
Wolak, 2000; Woo et al, 2004; Strbac and Wolak, 2017; Wolak, 2017). Because
mandated auctions do not merely affect their own market, it requires careful eval-
uation when regulators are considering improving assignative and productive effi-
ciencies.

We acknowledge that the model has two important limitations. First, we do not
have data before 2013 for the Nord Pool market, which could enhance our results
and make them more robust with a large period and a large number of auctions. Sec-
ond, microdata about CESUR auctions is incomplete and unavailable, particularly
related to the other mechanism in which firms may have affected prices by retiring
quantity offers. This could enrich the analysis and explain some of the differences
in CESUR prices.

2.7 Conclusions and Policy Implications

Natural concentration and price volatility are two common characteristics of liber-
alized electricity markets. As such, regulation should serve as a tool for delivering
an essential service at an affordable price. In accordance with this line of thinking,
several authors have argued that the introduction of fixed-price forward contract
obligations increases competition and leads to prices that are closer to marginal
costs. Auctions are usually used as a competitive mechanism to get both efficient
supply and a competitive price. However, even though the auction that assigns the
contracts is competitive enough, bidders who have market power over spot prices
may influence the final outcome of the auctions by inflating price expectations. This
chapter contributes to the literature on the results of the introduction of mandated
auctions by studying the dynamics of differences in daily prices between two mar-
kets: one with regulation and the other without.

Between 2007 and 2013, the Spanish government held the Contratos de Energia
para el Suministro de Ultimo Recurso (CESUR) auctions. The auctions were long-
term contracts for a fixed quantity at a price determined by a descendant price auc-
tion. This solution emerged as a way to foster liquidity in long-term markets and
to stabilize the consumers’ tariff cost. Comparing this market with the Nord Pool
market (a control group that did not apply this regulation during the same period),
we derive the following findings: (i) empirical evidence supports that daily prices
suffered anomalous increases in days surrounding auctions, specifically, during the
last 70 days before each auction. (ii) Using a combination of different methods we
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find that electricity market prices rose by approximately 15 percent in the year when
regulation was introduced in the Spanish market compared to the Nord Pool mar-
ket. A number of factors lead us to conclude that the link between this regulation
and the price increase is causal. First, the treatment and control groups presented
similar trends in the pre-intervention period and second, these two groups presented
similar trends once the auction was no longer operational.

Electric companies had several incentives to get higher CESUR prices. Besides
risk volatility, they received payments and discounts on the energy supplied in this
market. Clear evidence of ex-post forward premiums is presented in Pefia and Ro-
driguez (2018), where they find a total premium average of 7.22%. However, the
mechanisms by which firms could have got higher prices were not closely studied.
Firms had two alternatives to influence prices (Fabra and Fabra Utray, 2012): (i) by
taking off their supply offers during the auction (and therefore reducing competitive
pressure), and (ii) by affecting parallel market expectations. As a consequence, we
focus on the second mechanism as the first mechanism is hard to analyze due to
incomplete and unavailable microdata about the CESUR auctions.

The theoretical model developed herein supports our main conclusions. We de-
rive two propositions for the above result: First, the inherent characteristics of mar-
kets of this kind serve as an incentive to collusion. In other words, there is a thresh-
old at which the set of collusive prices in both markets is a sustainable equilibrium
of the perfect subgame. The natural reaction, therefore, is to avoid pro-competitive
regulations. Second, expected exogenous price shocks, which originate once the
auction is held, generate a perfect subgame equilibrium where prices are higher
than without it. Conceptually, this suggests that a fixed tariff in a market charac-
terized by high volatility — as is the case of the electricity market —induces firms to
seek to minimize adverse outcomes by raising their prices.

Our main policy conclusion is that the uncompetitive outcome was originated in
the deficient design of this particular regulatory mechanism. Well-designed mecha-
nisms need to take into account the specific characteristics of the electricity market.
As argued at the outset to this chapter, the power of Spanish firms to react seems
to stem from anti-competitive structures, a low level of interconnectivity — with just
two firms concentrating 64% of generation capacity, and a pivotal index rate below
110% for more than 5% of the time when the regulation was introduced. Moreover,
liberalization exposed the electricity market to high price volatility. A format of
repeated auctions and fixed prices in an environment of natural concentration and
high volatility in prices seem to be the main reasons why firms colluded (either to
protect the inherent characteristics of the market or to absorb the volatility risk).
Additionally, some particularities of the auction design may have discouraged com-
petition. Especially that they knew the ranges of supply excess from where they
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could have intuited their pivotal power. Consequently, regulators who are interested
in limiting market power should mainly be focused on the macro and micro aspects
of this kind of regulation.

We can think of two different alternatives to improve competitive results. First
and most obvious is that market regulators may consider deregulating the long-term
contract market. However, removing mandated auctions and liberalizing the sector
when the market has severe concentration problems and low levels of interconnec-
tivity does not seem reasonable. Electricity demand is inelastic per se, therefore,
liberalizing where there is no competition may yield to worsening uncompetitive
equilibriums. This is explained by Green (2004), who shows that retail competi-
tion when price volatility is high disincentives long-term contracts and produces
higher prices. Furthermore, international empirical evidence is still inconclusive
regarding this point. Mobility between companies tends to be very low and static
due to contract complexities and high switching costs. Additionally, prices between
incumbent companies and competitors do not converge in many cases, and price
discrimination by region is a common practice. Moreover, companies that usually
take control are incumbents from other industrial sectors or from other regions (see
Defeuilley, 2009 for a detailed analysis on retail competition evidence).

Second, instead of deregulating in order to obtain a competitive situation, where
consumers can choose between different contract options, an alternative suggested
by some authors is mandatory basic electricity services -wholesale price plus a reg-
ulated margin- (see Joskow, 2000). In theory this would provide a competitive
benchmark where consumers could compare options. This mechanism is simple and
transparent, and works as an alternative for the consumer when other options have
higher prices than the market price. However, more research is needed to support
this statement. Mandatory basic electricity services are based on the assumption
that electricity markets are competitive enough to be a representative benchmark.
But, as we stated in our main results, it would be hard to expect that retailers (which
in the Spanish market are in general holding groups or subsidiaries from companies
that are present in the generation market) do not seek mechanisms to inflate expecta-
tions. An intermediate solution could be the introduction of “Price to Beat” policies
(variable prices adapted to the generation cost). In this case, incumbent companies
are only allowed to offer a lower price than the price to beat if, and only if, a certain
amount of time has passed or after a share of residential and small business cus-
tomers are served by other suppliers (Adib and Zarnikau, 2006 and NERA, 2007).
Whatever the alternative, what is clear is that getting completely rid of regulation
frameworks leaves market operators with very limited control over concentrated
markets. Liberalizing where no competition exists is not a prudent decision. We
want to emphasize that our study does not seek to be critical of the mandated auc-
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tion regulation, quite the opposite: to focus attention on the problem that lies in the
deficient design of this regulatory mechanism and not in the regulation, per se.

Appendix A: Instrumental Variables Tests

As discussed above, a problem that can arise with the OLS estimation is the pres-
ence of endogeneity in the quantities of energy (i.e., ¢; is correlated with ;). This
means we cannot infer whether the changes in price and quantity are due to shifts in
demand or supply. Wright (1928) suggested that this problem can be addressed by
using curve shifters, i.e. if we find instruments that are related to the demand con-
ditions but which do not affect the cost function, then we would be able to identify
the supply correctly.

To do so, we need instruments Z that satisfy two conditions: First, they need to
be correlated with the endogenous variable (cov(Z,q) = 0) and, second, the instru-
ments must be orthogonal to the error term (cov(Z, ) = 0). The second condition
cannot be empirically proven (as we do not know 1); thus, the validity has to be left
to economic reasoning. To test the first condition, we can express the reduced form
equation of ¢; by conducting a two-stage least squares estimation. Therefore, in the
first stage we can construct an equation such as:

QG =714+

And using the predicted values ¢;, we can run a second stage as:

ytIBXt—i-”}/IPt—i-Oéth—F,ut

As ¢y is uncorrelated with ji, the classic endogeneity assumption remains.

Specifically, we propose using a working day dummy variable as our instrument
(which takes a value of 0 on weekends and national holidays, and 1 otherwise).
Thus, the assumption we make is that working days are correlated with the quanti-
ties demanded but do not directly affect the prices offered.

When we use a vector of instruments z we expect them to satisfy: (1) z is uncor-
related with the error term; (2) z is correlated with the instrumental variable; (3) z
is strongly correlated with the instrumental variable. The first condition invalidates
the instrument, the second condition makes the instrument irrelevant, and the third
condition makes the model weakly identified.

We use a two-stage least squares estimation to evaluate these conditions. The first
requirement is difficult to evaluate because we cannot observe the error term. But
we can test the second requirement using a reduced form with all the exogenous
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variables. As can be seen in Table 2.15, both the quantities for Spain and those
for Nord Pool satisfy condition (2). Similarly, the F-statistics of the instrumental
variables (under the null hypothesis that all instrument coefficients are null) validate
the third condition. However, serial correlation, non-stationarity and non-normality
problems may persist.

First Stage coef std error t P > [t| | [0.025 | 0.975] | F-statistic | F-value
Workday Spain 0.1469%** 0.013 11.483 | 0.00 | 0.122 | 0.172 85.49 0.00
Workday Nord Pool | 0.0636*%** |  0.011 5918 0.00 | 0.042 | 0.085 18.92 0.00

Table 2.15. Reduced Form ¢ = vz + S1x1 + Baxa. .. +

Appendix B: ARMAX Model-Building Process

As we validated the instruments used, the classic endogeneity assumption remains.
However, serial correlation, non-stationarity and non-normality problems could per-
sist.

The autoregressive moving average (ARMA) is a time-series model that uses two
polynomial terms to describe stationary stochastic processes: autoregressors (AR)
and moving averages (MA) (Box et al., 2015). If, in addition, we include exogenous
input terms, we obtain the ARMAX model.

The primary advantage of ARMAX models is that they allow us to correct the
effects of serial correlation (especially present in electricity market prices) which
may invalidate the estimations. However, models of this kind rely on very strong
assumptions that have to be proved before any conclusions can be drawn. They
include:

)

. The dependent variable series must be stationary.
2. The residual series must not exhibit serial correlation.

3. The estimated coefficients of exogenous variables must be significantly dif-
ferent from zero.

n

. The sign of coefficients must be reasonable.

o)

. Exogenous variables must not exhibit multicollinearity.

Figure 2.7 shows the ARMAX model building approach proposed by Andrews
et al. (2013) and based on the practical approach developed originally by Box and
Jenkins (1970). The extensions applied to ARMAX models involve the introduction
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of new exogenous variables that may disrupt the white-noise pattern of the residuals
and which, therefore, might change the order of the autoregressive and moving
average terms.
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Figure 2.7. Armax Building-Model Process

The first assumption of the ARMAX model is that the dependent variable is sta-
tionary, i.e., the mean and variance do not change over time. We use an Augmented
Dickey-Fuller (ADF) test (Fuller, 1976; Dickey and Fuller 1979) to evaluate this
assumption. Under the null hypothesis, the time-series is a unit root, i.e., it is non-
stationary.

Table 2.16 reports the ADF test result. We apply second differences to make the
dependent variable time-series stationary. This differencing schema is also applied
to exogenous-variable candidates, which permits correlations to be more stable over

time.

log(Pspain/ PN Pool) Diff(0) | Diff(2)
Test Statistic -2.99 | -12.29
p-value 0.04 0.00
Lags Used 14 12
Number of Observations Used | 381 381
Critical Value (1%) -3.45 -3.45
Critical Value (5%) -2.87 -2.87
Critical Value (10%) -2.57 -2.57

Table 2.16. Augmented Dickey-Fuller Test

We use a forward stepwise regression procedure to identify the most relevant
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exogenous-variable candidates (see Table 2.7). This method seeks to fit a sub-
set of attributes by successively incorporating new variables while evaluating the
performance. Those attributes that improve performance can then be maintained
definitively.

The ARMAX model works under the assumption that the residuals are white
noise, i.e., a random sequence that cannot be predicted or, what amounts to the
same thing, that the residuals are stationary and do not exhibit significant serial cor-
relation. Serial correlation implies that the error term observations are correlated.
Patterns in the error term could bias the significance of the exogenous variables. As
shown in Table 2.17, the ADF test provides evidence that the residuals are station-

ary.
ADF Test - Residuals

Test Statistic -11.00
p-value 0.00
Lags Used 6
Number of Observations Used | 314
Critical Value (1%) -3.45
Critical Value (5%) -2.87
Critical Value (10%) -2.57

Table 2.17. Residuals Stationarity Test

To test serial correlation, we use the Ljung-Box test (Ljung and Box, 1978) which
checks under the null hypothesis if the data are independently distributed®. The p-
values from the Ljung-Box test (see Table 2.18) support the rejection of the null
hypothesis. This is an indicator that we must add appropriate combinations of
AR/MA terms which are identified from partial autocorrelation and autocorrelation
functions, respectively.

L1 L2 L3 L4 LS L6 L7 L8 L9 L10
QLJB | 77.45 | 80.33 | 90.65 | 94.25 | 94.33 | 94.62 | 97.59 | 106.64 | 109.28 | 109.76
p-value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 0.00

Table 2.18. Residuals Serial Correlation Test

The autocorrelation function (ACF) describes the correlation between observa-
tions and observations at a prior time step. The partial autocorrelation function
(PACF) is the autocorrelation between observations in a time series with observa-

8 As it tests the overall randomness based on the number of lags, we use the rule proposed by
Hyndman and Athanasopoulos (2018) where lags are equal to min(10,7'/5) for non-seasonal time
series.
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tions at prior time steps but with the relationships of intervening observations re-

moved. If autocorrelation exists, then there is some information that could explain

the movements of the dependent variable but we are not capturing it.

We use the Bayesian Information Criterion (BIC) (Schwarz, 1978) to select the
optimal combination of AR/MA terms. The BIC is based on a likelihood function

which also introduces a penalty term to avoid overfitting”.

Based on this criterion, we add seven AR terms and no MA terms. Our model is
therefore an ARMAX(7, 0). Figure 2.8 illustrates the ACF and the PACF after the
introduction of the autoregressive terms. This shows that autocorrelation and partial

autocorrelation have been removed.
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Additionally, in Table 2.19, we present the Ljung-Box test with the new configu-

ration which also reveals strong evidence of no serial correlation.

L1 | L2 | L3 |14 | LS | Lé | L7 | L8 | L9 | L10
QLJB | 0.23 |0.38|0.55|0.62|0.62]|0.81|0.81|0.88|1.82|1.93
p-value | 0.63 | 0.83 | 0.91 | 0.96 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99

Table 2.19. Residuals Serial Correlation Test with ARMAX(7, 0)

The next assumption in the ARMAX building procedure is that the estimated

coefficients must be significant. Verification of this is provided by the t-statistics

9BIC = In(n)k — 2In(L) where L is the maximized value of the likelihood function of the
model M, n are the number of data points and &k the number of variables.
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in the regression output. As shown in Table 2.20, every variable is still significant
at a 95% confidence level. The assumption that the sign of the coefficient for each
variable must be reasonable also seems to be satisfied.

coef  stderr z P>z [0.025 0.975]

Nord Pool Production 3.8710  0.445 8.706 0.000  3.000 4.742

Spain Production -2.3440 0.271  -8.637 0.000 -2.876 -1.812
Spain Imports 0.2538 0.054 4.697 0.000 0.148 0.360
Dummy Null Price -1.6598 0484 -3.426 0.001 -2.609 -0.710

Spain Production -1 0.5664 0.238  2.382 0.018  0.100 1.032
Portugal Production  -1.0529 0.270 -3.906  0.000 -1.581 -0.525

ar.LL1 -0.9185 0.059 -15.602 0.000 -1.034 -0.803
ar.L.2 -0.7691 0.077 -10.046 0.000 -0.919 -0.619
ar.LL.3 -0.5345 0.089 -6.028 0.000 -0.708 -0.361
ar.L4 -0.4354 0.089 -4.890 0.000 -0.610 -0.261
ar.LL5 -0.3639 0.089 -4.068 0.000 -0.539 -0.189
ar.LL6 -0.2941  0.077 -3.824  0.000 -0.445 -0.143
ar.L7 -0.1983 0.061  -3.233  0.001 -0.319 -0.078

Dep. Variable:  log(Pspain/Pnpooi) Obs: 321

Model: ARMAX(7, 0) R? 0.6422

Durbin-Watson 2.02 BIC 456.192

Table 2.20. ARMAX Model Results

Next, we test the assumption that the surviving exogenous variables do not ex-
hibit a significant level of multicollinearity, since this could cause standard errors
to become too large (i.e., to overstate the p-values). We use the variance inflation
factor (VIF) !0 to check if the variables are linearly independent. This measures
just how much the variance of an estimated regression coefficient is increased as a
result of collinearity. A rule of thumb threshold is that the VIF must be lower than
10, which is equivalent to each independent variable’s variation being less than 90
percent explainable. Table 2.21 shows that multicollinearity is not a problem in the
chosen exogenous variables.

Appendix C: LSTM Specification

Specifically, the long short-term memory (LSTM) network (Hochreiter and Schmid-
huber, 1997) is a type of recurrent neural network that is useful for identifying long-
term dependencies. Instead of using neurons, LSTM uses memory blocks connected

WYVIF=1/(1-R?)
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Features VIF
Nord Pool Production | 2.70
Spain Production 2.33
Spain Imports 1.78

Dummy Null Price 1.04
Spain Production- 1 | 1.30
Portugal Production | 2.44

Table 2.21. Variance Inflation Factor Index

through layers. A block has different gates that are used to manage the states and
outputs. The input vector and the output from the previous step pass through a mem-
ory cell (using a sigmoid activation function) that retains any relevant information
from the new input and forgets irrelevant information (if any) from the past. The
forget gate resets the memory contents when they become irrelevant and the output

gate applies a sigmoid activation function to the memory cell output (see Figure
2.9).

h; = tanh(s;) * o,

o = o D
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Figure 2.9. Schematic Diagram of the LSTM unit with forget gates

In this case, we use LSTM as an anomaly detection model, training only with
normal data (here the year 2014 provides us with our training data) and using the
prediction error as an outlier indicator. The prediction error of the normal data is
constructed as a Gaussian distribution from which we derive mean and variance
using a maximum likelihood estimation. On the test data, which contains normal
and abnormal data (year 2013), we calculate the log probability densities of errors.
Lower values indicate a greater likelihood of the observation being an anomaly.

By definition, we are using a stacked LSTM (i.e., comprising several layers) with
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memory between batches. This allows us to identify when the state of the network
is reset by using the final state of the sample ¢ of the current batch as the initial
state for ¢ the sample of the next batch. Maintaining the state is crucial in data
that present a long repeated pattern, because if not, the model will be influenced
mostly by recent observations. Therefore, we maintain the state over all the training
batches, and reset it only when the next batch is about to start, tuning the weights
over different epochs, and allowing the LSTM to store relevant activations in the
cell state.

As discussed, for training purposes we use the year 2014, which we assume to be
a normal period. In this way, our test data correspond to 2013, for which we have
anomaly data (70 days before each auction) and normal data (remaining observa-
tions). Based on this definition, we proceed to employ a typical semi-supervised
outlier model. Our recurrent neural network comprises three recurrent layers each
made up of 100 LSTM units, with a final dense output layer with one neuron that
uses a linear activation function. In order to prevent overfitting, we use two differ-
ent regularization methods: a dropout of 20% and early stopping set to 2 epochs.
The dropout is a regularization method that randomly drops out a number (or per-
centage) of layer outputs. It experiments with different architectures of the same
network in parallel, which becomes a more robust model as the training process is
noisy and nodes are forced to actually learn a sparse representation (Srivastava et
al., 2014). Additionally, we use early stopping which provides a rule of how many
iterations we can run before the learner overfit (i.e., when the test loss starts to be
worse than the training loss).

We use an Adagrad optimizer (Duchi et al., 2011) to adapt the learning rate to
the parameters. This is achieved by performing smaller updates for parameters
associated with frequent features, and larger updates for parameters associated with
infrequent features. The main advantage of this optimizer is that it works well with
sparse data. As Dean et al. (2012) show, the method greatly improves the robustness
of the stochastic gradient descent optimizer.

We set the loss function as the mean squared error, which is well suited to prob-
lems in which real-value quantities are predicted. Thus, we calculate the average of
the squared differences between the predicted and the real values.

Activation functions define the output of neurons given the previous input. Each
layer is trained by using the hyperbolic tangent activation function (unless the input
and output gates use sigmoid functions), which has the advantage of being less
likely to become stuck (as it strongly maps negative inputs to negatives outputs).

In our experiment, we use 50 epochs (i.e., the number of times we go through the
training set) and a batch size of 50 steps per epoch (i.e., the sample used in each
iteration).

52



2.7 Conclusions and Policy Implications

As we proposed a 70-day time window before auctions as our anomaly pattern,
we expect the model to fail to reconstruct the prediction error (fail, that is, in terms
of reconstructing a multivariate normal probability density function similar to that
derived from the training error vector). By using a valid-set, we are able to define
an optimal threshold that separates anomalies from normal behavior. Finally, this
threshold is applied to the test error vector where we expect lower values to indicate
that the observation is more likely to be an anomaly.
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3 Machine Learning Forecasts of
Public Transport Demand: The
Case Study of Buenos Aires,
Argentina

3.1 Introduction

The use of smart cards is becoming increasingly popular on public transport ser-
vices. They are especially convenient for users as they reduce their transactional
costs and boarding times, whereas for bus companies, they enable them to plan
their schedules more effectively, improve commercial bus speeds, while indirectly
allow them to reduce personnel and maintenance costs. But the cards have a further
advantage that has yet to be exploited: they provide massive amounts of informa-
tion ranging from tariffs to GPS-generated mobility patterns. Such a rich seam of
data, if mined properly, should have great policy implications for public transporta-
tion authorities, sector regulators, transport operators and other interested parties,
as well as the public in general.

Many recent studies stress the potential of smart card data as a tool for transport
management and planning (Blythe, 2004; Bagchi and White, 2005; Agard et al.,
2006; Utsunomiya et al., 2006; Morency et al., 2007; Pelletier et al., 2011; Mu-
nizaga and Palma, 2012; Ma et al., 2013; Kusakabe and Asakura, 2014; Briand et
al., 2017; Maetal., 2017, Li et al., 2018). Here, a particularly interesting dimension
of analysis is estimating demand given that smart cards record the commuting char-
acteristics of each passenger, including data about travel dates, time of day, origin
and destination, journey times, etc. Indeed, if transport authorities and regulators
could exploit this demand information, they would be able to optimize the transport
network as a whole. Several examples can be found: Dou et al. (2015) use smart
card data from the public transport service in Queensland city to predict individ-
ual mobility patterns. Zhou et al. (2017a) analyze the responses of passengers to
weather conditions by combining meteorological data with large-scale smart card
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data in the city of Shenzhen. Zhou et al. (2017b) use information of card swip-
ing times to estimate bus arrival more precisely in Beijing. Kumar et al. (2018)
use several features collected from the smart card data in the Minneapolis transport
integrated network to develop an innovative method for trip chaining. Huang et
al. (2018) combine mobile phone data, subway smart card data and taxi GPS data
from Shenzhen to predict real time urban travel demand. Zhao et al. (2018) utilize
transit smart card records from the rail-based system in London to predict the next
trip within a day and its attributes. Ingvardson et al. (2018) analyze passenger ar-
rivals and waiting times at rail stations in Copenhagen using smart card data from
the public transport system in Denmark. Zhang et al. (2018) fusion self-reported
revealed preferences data with smart card data collected from the Guangzhou city
metro system to forecast metro passengers’ path choices.

To date, however, few studies have resorted to the use of smart cards for their
input data to predict demand and elasticities. Those that have include Seaborn et al.
(2009), Munizaga and Palma (2012), Tao et al. (2014), Tao et al. (2016). One of
the most innovative examples is provided by Arana et al. (2014) who analyze smart
card data to predict demand. They use multiple linear regression analysis to assess
the impact of weather conditions on the number of trips taken and the underlying
motives for these trips. However, it was hard to find literature related to fare impact
on public transport demand using smart card data. Examples are de Grange et al.
(2013) who estimate demand elasticities for the integrated system in Santiago de
Chile and Wang et al. (2015) who analyze fare changes in the Beijing Metro to
calculate price demand elasticity. Nevertheless, demand elasticity is a problem that
economic literature has widely aboard using other sources (Just to mention some
examples: Goodwin, 1992; Preston, 1998; Nijkamp and Pepping, 1998, Hensher,
1998; FitzRoy and Smith, 1998; Bonnel and Chausse, 2000; Hanly et al., 2002;
Matas, 2004; Bresson et al., 2003, 2004; Balcombe et al., 2004; Paulley et al.,
2006; Garcia-Ferrer et al., 2006; Holmgren, 2007; Crotte, 2008; Graham et al.,
2009; Albalate and Bel, 2010; Tsai et al., 2014, Tsai and Mulley, 2014).

Regarding time-series forecasts of public transport, quite number of authors ap-
ply Autoregressive Moving Average regressions (ARMA). This kind of model and
its variations maintain the interpretation of traditional linear models but also take
into account the residuals pattern. Examples are Ahmed and Cook (1979) who ap-
ply ARMA models to forecast traffic state in USA, Williams et al. (1998) who use
SARIMA models in traffic seasonal flows, Suwardo et al. (2010) apply ARIMA
models to predict bus travel time in Malaysia, Gong et al. (2014) who use a
SARIMA model to predict the arrival passengers and the number of waiting passen-
gers, Xue et al. (2015) who forecast short-term passenger demand based on smart
card data from Shenzhen, China and Milenkovic et al. (2018) who use SARIMA
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models to forecast railway passenger flows in Serbia. However, most analyses in
the literature employ linear models, which means they make demand predictions
using techniques that are better suited for finding causal relationships. Kremers et
al. (2002) show that from 79 studies related to public transport demand, 55 models
were estimated using log-linear models and 24 used linear models.

In this study, our focus is very clearly on methods that enhance prediction capa-
bilities as opposed to the assessment of marginal effects on target variables. More-
over, traditional models fail to take into account the importance of performance in
terms of out-of-sample errors (Mullainathan and Spiess, 2017). Their focus on in-
sample data is not an optimal approach to forecasting demand. Here, in contrast,
we highlight the importance of testing a prediction model with out-of-sample data
from smart cards, given that the results of a forecast and the fulfillment of actual
events may differ.

The objectives of this chapter can therefore be clearly stated. First, we present
various supervised machine learning (SML) techniques for predicting public trans-
port demand using smart card data. SML techniques train models using historical
data in such a way that they learn from the patterns that emerge. However, more
importantly, machine learning techniques are validated with test data so that their
real predictive power can be determined. Second, we then compare these results to
linear models outcomes to determine the gain in performance achieved with SML
techniques. The comparative analysis is focused in three aspects: interpretability,
predictive power and demand elasticity.

It follows, therefore, that machine learning (ML) algorithms are specifically de-
signed for making predictions, while linear models are not (Xie et al., 2003; Zhang
and Xie, 2008; Kleinberg et al., 2015; Zhao et al., 2018). Moreover, ML are able
to exploit several data types and complexities. But perhaps their main advantage is
the fact that computers can be programmed to learn from data, revealing previously
hidden findings as they discover historical relationships and trends. ML techniques
can improve the accuracy of predictions by removing noise and by taking into ac-
count many types of estimation, although not necessarily without bias. Moreover,
ML allows for a wide range of data, even when we have more predictors than ob-
servations, and it admits almost every type of functional form when using decision
trees, ensuring a large interaction depth between variables. Of course, the down-
side of ML techniques is biased coefficients; however, if our main concern is the
accuracy of the prediction, then any concerns regarding biased estimators become
irrelevant.

Thus, number of recent studies have suggested that machine learning algorithms
are well suited to predict travel behavior (Omrani et al., 2013; Omrani, 2015; Ha-
genauer and Helbich, 2017; Golshani et al., 2018; Wang and Ross, 2018; Zhao
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et al., 2018; Gu et al., 2018). There are several applications of machine learning
techniques related to predicting traffic flow, traffic speed, travel time and travel be-
havior. For instance, Yu et al. (2011) compared several supervised models to predict
bus arrival times and bus stops using survey data from Hong Kong. Pitombo et al.
(2017) find that tree based decision models outperform traditional gravity models
in predicting destination choices. Ke et al. (2017) analyze on-demand ride ser-
vice data in Hangzhou city and try to forecast short-term passenger demand via a
long short-term memory network. Liu and Chen (2017) also use supervised deep
learning models but to predict the hourly passenger flow in Xiamen city. Similarly,
Wu et al. (2018) utilize deep learning models to explore traffic flow prediction
by exploiting detectors data from an interstate highway. Xu et al. (2018) forecast
bike sharing travel demand using a deep-learning approach and data collected form
Nanjing city. Sekula et al. (2018) compare diverse supervised models and predict
hourly traffic volumes by combining data from automatic traffic recording and sev-
eral data sources from Maryland city. Wang et al. (2019) predict traffic speed with
a variety of supervised models, exploiting data collected from automatic vehicle
identification detectors in Xuancheng city. Ma et al. (2019) use a combination of
unsupervised and supervised algorithms to predict bus travel time by using vehicle
trajectories and bus smart card data. Liu et al. (2019) compare several deep learning
architectures to predict short-term metro passenger flow using data collected from
the Nanjing city metro system. Other applications of machine learning techniques
are related to driving safety and efficiency: Yuang and Cheu (2003) use several
SVM classifiers to detect arterial and freeway incidents in peak periods in survey
data from Singapore. Guo et al. (2018) fusion multiple supervised models to predict
short-term traffic and capture traffic uncertainties such as incidents and accidents.
Bejani and Ghatee (2018) propose a driving style evaluation system by comparing
a variety of supervised algorithms based on smartphone sensor data. Similarly, Yi
et al. (2019) use smartphone data to develop a personalized driving state recogni-
tion system using several supervised classifiers. In this way, given that the literature
informs us that SML methods are better than traditional econometric prediction
techniques, our hypothesis is that this should also be illustrated in transport demand
predictions based on data retrieved from smart cards.

Here, we study the case of the Autonomous City of Buenos Aires (CABA in
its Spanish acronym), the capital city of Argentina. We analyze the use of the
SUBE (Sistema Unico de Boleto Electrénico), a smart card employed on the city’s
public transport services (train, metro and bus) since 2009, and which has now been
extended for use throughout the country. The card (similar in many respects to a
credit card) collects multiple details about travelers and the journeys they make, and
provides information about the location of vehicles using GPS and is, therefore, an
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extremely rich and reliable source of information. This smart card data gives us
a great opportunity to evaluate not only interpretability and predictive power but
also demand elasticity. During the period analyzed, fares suffered three different
nominal increases which permit us to evaluate short-term price elasticity.

This chapter makes two main contributions to the literature. First, we apply ML
techniques to public transport data using smart card data in the particular case of
CABA. These algorithms, of frequent application in other areas, when used in the
transport sector, show substantial improvements on previous forecasts. Second, we
compare interpretability power, we show the potential of ML techniques for making
predictions in comparison to those obtained using traditional econometric estima-
tions and we examine short-term demand elasticity with an increase in nominal
fares.

In short, we present a broad overview of the comparative between SML auto-
mated tools and traditional time-series models for exploiting public transport smart
card data, and, in so doing, we contribute to the discussion on the trade-off between
accuracy and causality, and why this is fundamental for empirical predictions.

The remainder of this chapter is structured as follows. Section 2 presents the
study case and the data collection. Section 3 summarizes the methodology applied.
In Section 4, the results are shown regarding: interpretability, predictive power and
demand elasticity. Finally, conclusions are provided in Section 5.

3.2 Case Study and Data

Public transport in CABA is provided in an integrated system that combines urban
buses — starting and terminating within the city’s limits — with suburban buses —
starting (terminating) in CABA and terminating (starting) in another district, an
incipient underground metro network and inter-city trains.

Figure 3.1 shows that 80% of all trips are made by bus, with the train operating
primarily as a feeder from the suburbs. Given, therefore, the predominance of the
bus as the main public transport service, the analysis we undertake herein focuses
exclusively on this particular transport mode.

Figure 3.2 shows the routes taken by buses in real time one day in March 2016 at
08:00 a.m. On average, there are 1,271 travelers per hour per bus route and, within
the analyzed time period, there are approximately 32 active bus routes. Each month,
an average of 20-30 million trips are registered.

In general, CABA has a temperate climate, without any extreme temperatures.
The city is sited on the Rio de La Plata, and so humidity levels are quite high
(around 70-80%). In summer, the average temperature oscillates around 25 C°® and
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Figure 3.1. Domiciliary Mobility Survey (2013)
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Figure 3.2. Location of CABA
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3.2 Case Study and Data

in winter around 10 C°. Figure 3.3 shows that during midsummer rain is abundant.
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Figure 3.3. Weather Conditions in CABA (source INTA)

During the period from November 2013 to June 2016, the public system suffered
three fare increases. The first increase was in January 2014, the second one in July
2014 and the last one in April 2016. As can be seen in Figure 3.4, the number of
passengers follows a cyclical trend with low demand peaks during summer holiday
periods (January-February). From this illustration, it is hard to conclude if there
was a price effect on demand.
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Figure 3.4. Number of Passengers by Day

In addition, as we are evaluating demand elasticity, it is important to remark that
during the period analyzed there was a persistent inflation. If we deflate fares, there
is almost no increase in prices. In fact, fare increases intended to recover the original
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3 Machine Learning Forecasts of Public Transport Demand

real value. For instance, the weighted average nominal increase in May 2016 was
around 80%. However, the real increase was only 1-dollar cent. See Figure 3.5.
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Figure 3.5. Nominal and Real Fares Evolution

This money illusion effect give us a great opportunity to evaluate the nominal
demand elasticity. As the real effect was negligible, we would expect that demand
have not decreased with higher nominal fares. Any other result should be considered
part of a money illusion effect. The last part of this study is therefore going to be
dedicated to analyze the demand behavior.

3.2.1 SUBE

We use data from the SUBE, sorted primarily by bus route and by hour during the
period that extends from September 2013 to June 2016. It should be borne in mind
that the bus system has undergone no modifications or developments since 2012, in
accordance with Ministerial Resolution 422/12. This means that during the period
analyzed, the system’s supply did not vary in terms of routes, vehicles, frequency
of services or quality (all buses being identical as they have to respect the techni-
cal specifications stipulated under provincial law). In addition, use of the SUBE is
obligatory for all companies and it is not possible to use an alternative form of pay-
ment. These facts are significant with regards to potential problems of endogeneity,
given that we seek to predict demand. Furthermore, note that competition between
firms operating the system is meaningless because the government controls not only
their costs but their profits too (as well as defining service quality and quantity and
fares).
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3.3 Methodology

3.2.2 Weather

All data concerning weather conditions are provided by the nearest climate stations,
under the management of INTA (National Institute of Agricultural Technology).
There are three monitoring stations in the study area that report climate data every
fifteen minutes. Several spectra of variables are available, but we use those of tem-
perature, wind and precipitation so that we can compare our outcomes with those
of Arana et al. (2014).

3.2.3 Economics

We use monthly wage index historical series (base 2012=100) and the economic ac-
tivity monthly estimator from Instituto Nacional de Estadisticas y Censos (INDEC).
As the price index during some periods is not fully reliable, we use the consumer
price index from the statistic institute of Buenos Aires city. From the same source
we also obtained the automotive fleet evolution of the city. From Confederacion
de Entidades del Comercio de Hidrocarburos y Afines de la Repiiblica Argentina
(CECHA), we got the daily petrol final price. Finally, we use an online source to

get exchange rate series!.

3.3 Methodology

3.3.1 Basic Statistics

First of all, we evaluate if passenger data is stationary, i.e. if the statistical properties
do not change over time (mean, variance, etc.). In other words, we would expect
series without trends, with constant variance and no seasonality or autocorrelation
(weak stationarity process definition). Several statistical forecasting methods are
based on this assumption (e.g., ARIMA models). Without this property, models
could provide meaningless sample statistics and invalid estimations.

In Figure 3.6 we decompose” the passenger series to evaluate how it behaves.
It does not seem to exhibit a long-run trend effect and decomposed residuals also
seem quite random. However, the series exhibits a strong cyclical pattern. This
seasonality is apparently due to the weekdays-weekends effect. Every weekend,
there is a massive fall in passengers, as you can appreciate in Figure 3.7, where we
zoom the first weeks of the series.

Isource:investing.com
2we apply a multiplicative decomposition expressed as: y = z * trend * seasonality * error
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Figure 3.6. Multiplicative Decomposition

VNV VOV

04 11 18 25 02
Nov Dec

2013
DATE

Figure 3.7. Seasonality Pattern

One popular stationarity test is the Augmented Dickey-Fuller test —ADF- (Fuller,
1976; Dickey and Fuller, 1979). Under the null hypothesis the time-series is a
unit root, i.e. not only the shocks have permanent effects but also the variance is
time dependent. If the null hypothesis is not rejected, we should apply difference
operators to the series.

Despite the ADF rejected the null hypothesis (i.e., the series does not follow a unit
root process), we take the seven difference of the series to smooth the seasonality
effect.

As can be appreciated in Figure 3.8, the passenger series looks more stable and it
seems to follow a stationarity process. There are still some strong peaks which are
actually related to general strikes (specifically, 10th April 2014, 31st March 2015,
Oth June 2015). The results of the ADF test are reported in Table 3.1.

We also check stationarity on the predictors to avoid spurious regressions, and
we differentiate if it is needed (Newbold and Granger, 1974).

Additionally, we run a Darwin-Watson Test —-DW- (Durbin and Watson; 1950,
1951, 1971) to check autocorrelation. The test statistic is approximately equal to
2% (1 —r) where r is the sample autocorrelation of the residuals. Thus, for r = 0,
indicating no serial correlation, the test statistic equals 2. We get a DW of 1.872,
therefore, we do not find evidence of serial correlation.
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—— Original
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Figure 3.8. Series Stationarity

Passengersy — Passengersy_z
Test Statistic -14.45
p-value 0.00
Lags Used 7
Number of Observations Used | 928
Critical Value (1%) -3.44
Critical Value (5%) -2.86
Critical Value (10%) -2.57

Table 3.1. Augmented Dickey-Fuller Test
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3.3.2 Ordinary Least Squares

Our first model is a log linear Ordinary Least Squares (OLS). The initial model can
be stated as:

log(ys) = B+ €

Where y; is the seven difference of number of passengers in the period ¢, and z
is the vector that represents explanatory variables.

To complete the comparative analysis, we take as our starting point the predictive
study reported by Arana et al. (2014), which undertake a multiple linear regression
analysis, using smart card and weather data, to predict demand. We also introduce
a number of additional considerations which enriches our estimations considerably.
The results of the OLS regression are shown in Table 3.2.

coef  std err t P>t [0.025 0.975]

National Day -0.9238 0.114 -8.070 0.000 -1.149 -0.699
Workday -0.0930 0.056 -1.666 0.096 -0.203 0.017
Strike -3.0036 0345 -8.706 0.000 -3.681 -2.326
Government -0.0000 0.000 -1.454 0.146 -0.000 0.000
Precipitation (mm) -0.0045 0.002 -2.544 0.011 -0.008 -0.001
Temperature (C°) 0.0129 0.009 1.516 0.130 -0.004 0.030
Strong Wind 02765 0.252 1.098 0.273 -0.218 0.771

Exchange Rate (ARS/USD) 0.0457 0.557 0.082 0935 -1.048 1.140
Economic Activity Index -0.0138 0.016 -0.881 0.378 -0.045 0.017

Real Wage Index -9.4126 6.108 -1.541 0.124 -21.405 2.580
Relative Fare (Metro/Bus) 2.5289 0.907 2.787  0.005 0.747  4.311
Oil Final Price (ARS) -0.9386 0.534 -1.758 0.079 -1.987 0.110
Relative Fare (Train/Bus) 0.2102 0.093 2248 0.025 0.027 0.394
Fleet 0.0004 0.000 6.376 0.000  0.000 0.000
Nominal Fare (ARS) -0.1180 0.101 -1.172 0.241 -0.316  0.080
Trend 0.0001  0.000 0914 0361 -0.000 0.000
Vehicle Fleet 0.0000 0.000 0.961 0.337 -0.000 0.000

Dep. Variable: Pax - Pax(-7) Model: OLS

No. Observations: 701 R-squared: 0.301

Durbin-Watson: 1.872 Adj. R-squared: 0.285

Table 3.2. OLS Regression Results

We proceeded to include several time variables (Hauer, 1971), which we deem
important for quantifying demand and which are essential to ensure a good quality
analysis. We added a dummy variable controlling a government transition (Gov-
ernment) and a dummy variable related to general strikes (Strike). We incorporated
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3.3 Methodology

a variable that differentiates working days from non-working days -i.e., Saturdays,
Sundays- (Workday) and a variable for national holidays (National Day).

We then added the three weather variables considered by Arana et al. (2014)
with slight differences. We included as a dummy the notion of Strong Wind, that is,
a wind with a velocity greater than 50 km/hour on the Beaufort scale, as we con-
sider it to be more readily interpretable in terms of its explanatory power. Also we
introduce the precipitation level (Precipitation (mm)) and the average temperature
(Temperature (C°)).

We complemented the above with the only offer relevant variable, namely Fleet,
which computes the total number of buses circulating each day. All the other char-
acteristics (e.g., quality, new routes, etc.) are static and, therefore, we assume there
is no endogeneity between supply and demand.

The last variables we introduced are related to the bus fare, prices and the eco-
nomic situation. Following Holmgren (2007) we added a real wage index to take
into account the income-elasticity (Real Wage Index), the price of petrol (Oil Fi-
nal Price (ARS)) and the relative price between bus and substitutes (Relative Fare
(Metro/Bus) and Relative Fare (Train/Bus)). Finally, we included a variable re-
lated to the economic activity in CABA (Economic Activity Index), the nominal fare
(Nominal Fare (ARS)) and a trend variable.

All the variables present their expected signs, however not all of them are signif-
icant. In summary, during national days and strikes, less passengers are recorded.
Precipitation is the only weather variable which seems to have a significant impact.
The results also show that bus is a substitute service for train and metro. Addition-
ally, the size of the fleet presents a positive relation with a larger number of travelers
and there is no evidence of income-elasticity effects. Finally, the nominal fare does
not show any significant impact.

The results of this OLS time-series model could however be very influenced by
serial correlation, i.e. the error term observations could be correlated. A pattern in
the error term (when we are assuming that it is white noise) could bias the signifi-
cance of the explanatory variables.

As many time-series models work under the assumption that residuals are white
noise (i.e., a random sequence which cannot be predicted), we should evaluate if
they are stationary and if they do not present any serial correlation problem. For
testing stationarity, we apply the ADF test which rejects the null hypothesis of unit
root (see Table 3.3).

Now we know that the errors are stationary, we evaluate serial correlation. We
apply the Ljung-Box test (Ljung and Box, 1978) which checks if whether any of
a group of autocorrelations of the series are statistically different from zero (under
the null hypothesis the data is independently distributed). It tests the overall ran-

67



3 Machine Learning Forecasts of Public Transport Demand

Residuals

Test Statistic -11.39
p-value 0.00
Lags Used 7
Number of Observations Used | 693
Critical Value (1%) -3.44
Critical Value (5%) -2.86
Critical Value (10%) -2.57

Table 3.3. OLS: Augmented Dickey-Fuller Test

domness based on a number of lags. We use the rule proposed by Hyndman and
Athanasopoulos (2018) and set the number of lags equal to min(2m,T'/5), where
m is the period of seasonality and 7" is the length of the time series.

L1 | L2 | L3 | L4 | LS L6 L7 L8 L9 L10 | L11 | L12 | L13 | L14
QLJB | 378 | 432 | 4.67 | 480 | 4.85 | 12.50 | 73.68 | 74.51 | 74.79 | 75.65 | 75.88 | 76.17 | 76.55 | 76.89
pvalue | 0.05 | 0.12 | 0.20 | 0.31 | 043 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Table 3.4. OLS: Serial Correlation

As shown in Table 3.4, we reject the null hypothesis of no serial correlation for
several lags and we cannot consequently affirm that residuals are white noise. Be-
fore continuing with the machine learning algorithms, we are therefore going to
introduce a SARIMAX model.

3.3.3 SARIMAX

Autoregressive Integrated Moving Average (ARIMA) is a time-series model which
uses two polynomials terms to describe stationary stochastic processes: autoregres-
sors (AR) and moving averages (MA), and an initial differentiating step. Seasonal
Autoregressive Integrated Moving Average (SARIMA) is an extension of ARIMA
models which explicitly takes into account seasonal components: ARIM A(p,d,q)
z(P,D,Q)s where P is the number of seasonal autoregressive (SAR) terms, D is
the number of seasonal differences, and () the number of seasonal moving average
(SMA). If we also add exogenous input terms we get the SARIMAX definition.
For choosing the correct model specification we have to evaluate the autocorre-
lation function (ACF) and the partial autocorrelation function (PACF). The ACF
describes the autocorrelation between observations and observations at a prior time
step. The PACEF is the autocorrelation between observations in a time series with
observations at prior time steps with the relationships of intervening observations
removed. When autocorrelation is present, the error term follows a pattern, invali-
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3.3 Methodology

dating essential assumptions of time-series models. If autocorrelation exists, there
is some information that could be explaining the movements of the dependent vari-
able and we are not able to capture. In Figure 3.9 we plot the ACF and the PACF.

Autocorrelation

0 5 10 15 20 25 30 35 40
Partial Autocorrelation

Figure 3.9. Series Stationarity

The passenger variable does not seem to show a strong autocorrelation with days
before. Remember that now the dependent variable is the difference between the
number of passengers and the number of passengers one week before. With this in
mind, there is some correlation with the same difference but one week before. We
therefore add an autoregressive variable of order 7 (AR7) to the predictors. Besides,
in the partial autocorrelation plot, we can appreciate a seasonality pattern every 7
lags. This can be solved by using seasonality ARIMA models, particularly, by
applying moving averages terms for the cyclical pattern (SMA).

Statistic p-value

Ljung-Box (Q)  24.28 0.98

Table 3.5. SARIMAX: Serial Correlation

Table 3.5 reports the Ljung-Box test after we added to the model the temporal
terms. As can be appreciated, we cannot now reject the null hypothesis of no serial
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correlation. Knowing that the residuals are white noise, we therefore present the
results of the SARIMAX model (see Table 3.6)°.

coef  stderr z P>|z| [0.025 0.975]

National Day -0.9210 0.123  -7.506  0.000 -1.162 -0.681
Strike -3.3073  0.075 -43.891 0.000 -3.455 -3.160
Precipitation (mm) -0.0048 0.002 -2.155 0.031 -0.009 -0.000

Relative Fare (Metro/Bus) 1.9968  0.877 2.278 0.023 0.279 3.715
Relative Fare (Train/Bus) 0.1625  0.059 2.774 0.006 0.048 0.277

Fleet 0.0003 0.000 8.084  0.000 0.000 0.000
Nominal Fare (ARS) -0.0865 0.044 -1.984 0.047 -0.172 -0.001
AR7 -0.4725 0.015 -32.131 0.000 -0.501 -0.444
ma.S.L7 0.0789 0.020 3.889  0.000 0.039 0.119
ma.S.L.14 -0.2104 0.025 -8.277  0.000 -0.260 -0.161
Dep. Variable: Pax - Pax(-7) Model: SARIMAX(1, 0, 2,7)
No. Observations: 701 R-squared: 0.532
Ljung-Box (Q): 24.28 Prob(Q): 0.98

Table 3.6. SARIMAX Model Results

In comparison with the OLS model, we obtain quite similar results. But now,
either AR7 and the seasonal MA are very significant.

However, this tells us nothing in terms of demand forecasts; indeed, causality
would appear not to be directly relevant. Clearly, we would all expect the number
of passengers to decrease on national days and for rain to act as a deterrent to mo-
bility. What bus operators and transport regulators need also to know is the likely
number of passengers at any specific time, that is, they need accurate forecasts. In
other words, they need answers to such questions as: How many passengers will
there be if it rains tomorrow? The smart card is an excellent tool — a highly innova-
tive technology — that provides us with daily feedback for use in predictive analyses.
Smart cards facilitate the construction of an unparalleled base learner that is con-
stantly improving itself. Given the availability of these data, the next step is to start
using algorithms that can exploit this advantage.

Therefore, we are going to compare traditional models in three ways: inter-
pretability, predictive power in out-of-sample data, and demand-elasticity estima-
tion. But before, let us briefly introduce some of the most popular supervised ma-
chine learning algorithms.

31t is important to remark that we followes the practical approach proposed by Andrews et al.
(2013) to select the appropriate SARIMAX model.
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3.3.4 Machine Learning Algorithms
Penalized Linear Regressions

Penalized linear regression (PLR) is a method designed to overcome some of the
problems associated with OLS, basically that of overfitting (i.e., the impossibility
to generalize well from the training data to out-of-sample data). They allow degrees
of freedom to be reduced to fit data and model complexity. They are especially good
methods when degrees of freedom are tight.

We adopt a shrinkage approach in our estimations, that is, we augment the error
criteria that is being minimized with a data-independent penalty term (or regulariza-
tion parameter ). The problem we seek to solve by using « is a problem inherent
to all predictions, namely, the trade-off between bias and variance (or overfitting).
P(p) is the penalty function that can take several forms. The most common are the
ridge regression (Tikhonov and Arsenin, 1977)-which uses the squares of [3- and
the lasso regression (Santosa and Symes, 1986)-which uses the absolute values of
(. Elastic net regression combines these two methods, as shown below:

(yi — (Bo+2i))* + Aap|B]+(1 = NagB’ B)

(ngE

1
B5, B = argmings g«(—
0 .0

So that when A = 1, it corresponds to a lasso penalization, and when A = 0, it
corresponds to a ridge regression.

In summary, here, what we seek is a good quality trade-off between bias and
variance. If we can achieve a greater reduction in variance than the corresponding
increase in bias, then we can obtain higher accuracy. To choose o we applied the
Elastic net regression with iterative fitting along a regularization path (using 5-Folds
cross validation). The « that minimizes the mean-squared error is 0.21, as can be
seen in the Figure 3.10.

Binary Decision Trees

A decision tree consists of a set of tree-structured decisions that takes Boolean de-
cisions. A set of features is tested from the root node, and by a recursive process
(which optimizes the splits) we obtain the prediction when the leaf node is reached.
The disadvantages of this kind of model are that it tends to be noisy and to overfit
(Last et al., 2002; Quinlan, 2014). To avoid these problems, we present a variety
of ensemble methods. Ensemble methods use a set of algorithms that combine dif-
ferent predictions (base learners like binary decision trees) and the combination of
these results offers better outcomes than those obtained from random guessing.
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Figure 3.10. Elastic Net 5-Fold CV

Aggregation Algorithm (Bagging)

Bagging (Breiman, 1996) uses bootstrap samples (i.e., samples with repetition)
from the training data and then it trains a base-learner in each of these samples.
The combination of independent base learners leads to a decrease in the loss func-
tion. Finally, it takes a simple average of their outcomes.

Bagging primarily addresses the variance error, but it has some issues with the
bias error. This means that it needs good depth (given that it is a simple model that
generates splitting points concentrated in the same place).

Random Forest

Bagging only constructs trees using bootstrap samples of data, whereas random for-
est —RF-(Breiman, 2001) also uses a random sample on predictors before each node
is split, until the tree conditions are fulfilled. This ensures greater independence
between trees, because of the combination of bootstrap samples and random draws
of predictors. Consequently, we can take advantage of averaging a large number of
trees (and so obtain better levels of variance reduction). Similarly, we can gain in
terms of bias reduction, because we can employ a very large number of predictors
(more even than the number of observations), and local feature predictors can play
arole in tree construction.

In conclusion, this method has all the advantages of bagging combined with a
lower propensity to overfit (each tree fits, or overfits, a part of the training set, and in
the end these errors cancel each other out, at least partially), and, as we see below, it
is easier to tune than gradient boosting (GB). Thus, RF works particularly well with
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fully grown decision trees (low bias, high variance). Moreover, it tackles the error
reduction task in the opposite way, that is, by reducing variance. In contrast to GB,
trees are made uncorrelated to maximize the decrease in variance, but RF cannot
reduce bias (which is slightly higher than that of a simple binary tree). Hence, the
need for large unpruned trees, so that the bias is as low as possible at the outset.

In contrast to decision trees, we can reduce the number of observations in the
terminal nodes, because RF is less likely to overfit. However, we maintain the same
splits rule. Finally, we have to set the number of predictors sampled, and this is a
key tuning parameter that will affect performance. There exist several rules, but the
most common is k = loga(n) + 1 (as recommended by Breiman, 2001).

Gradient Boosting

What GB (Friedman, 2001) does is to train a set of trees, where every tree is trained
on the error of the previous ensemble models. GB starts in the same way as bag-
ging, but it focuses on the areas that present most mistakes. This gives a better
approximation, without the need for greater depth, which is an essential advantage.
In contrast with RF, GB works well when based on weak learners in terms of high
bias and low variance (even as small as decision stumps). GB reduces the error pri-
marily by reducing bias, and to some extent the variance, by aggregating the output
from many models.

In summary, RF trains with a random sample of data in addition to randomizing
features. It relies on this randomization to give a better generalization performance
on out-of-sample data. GB, on the other hand, additionally seeks to find the optimal
linear combination of trees, where the final model is the weighted sum of predictions
of individual trees applied to the training data.

3.4 Results

We evaluate the results in three different ways: interpretability, predictive power
and demand elasticity. In doing so, we split our data-set in three sequential samples
(see Figure 3.11):

1. Test (54 obs): This is the period with the last fare increase (approximately
80%) and which we are going to use at the end of the study to test our hy-
pothesis about demand elasticity (from April 2016 to June 2016).

2. Train (713 obs): 80% of the total sample without taking into account the test
sample (from November 2013 to October 2015). During this period we have
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two fare increases: On 1st of January 2014 fares increased 67% and on 1st of
July 2014 fares increased 16%).

3. Valid (177 obs): 20% of the total sample without taking into account the test
sample (from October 2015 to April 2016).

#=1.00 =1.67 1=1.94 1=3.54

, 17 [}
g, " ‘ “0,
%, <, %,
24 “ T I
7, @, @,
< 0,} \0 /\5\ ~ f//
| . J
f f |
Train Valid Test

Figure 3.11. Sample Split. Note: Fare evolution is given by t with base November
2013 = 1.00

3.4.1 Interpretability

The main advantage of linear models is interpretability, they are simple and intu-
itive. As their pursuit unbiased estimator we can get not only the relevant variables
but also their magnitudes (by partial derivatives). In contrast, machine-learning al-
gorithms tends to be “black box” (Klaiber and von Haefen, 2011; Zhao et al., 2018).
As their purse out-sample predictive power, the variance reduction is obtained by
biasing the estimators. However, we can develop feature importance ranking (Vel-
lido et al., 2012; Molnar, 2018) to get the significant variables of the model. Feature
importance provides a score which measures the importance of each attribute to im-
prove the performance (in terms of reducing the loss function). It is the average
improvement of each attribute in every decision tree (when a splitting point is se-
lected) weighted by the number of observations in the nodes.

In Table 3.7, we provide a comparison of the techniques presented earlier. In
general, they show quite similar results. The main problem with feature importance
ranking is however that we do not know the direction and the magnitude of the ef-
fects. Nevertheless, we can see that all the models agree in the importance of the
seasonal variables AR7, ma.S.L7 and ma.S.L14 (ML algorithms selected them as
the most relevant variables). Then, National Day is considered one of the most
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Variables OLS SARIMAX | Elastic | Binary | Bagging | Random | Gradient
Net Tree Forest | Boosting
National Day '0'(%_21318:)** '(1'09_ 21 12?;* - - 0.05 0.22 0.05
Workday -((())'.(())23; - - - 0.00 0.00 -
Strike -3.0036%** | -3.3073%%* ) ) ) ) )
(0.345) (0.075)
Government -0.0000 - - - - - -
(0.000)
Precipitation (mm) _(Z(?((;?)SZ:* _(Z(())(())?;;* -0.00 0.00 0.00 0.02 0.00
Temperature (°C) %%10299) - - 0.00 0.00 0.03 0.00
Strong Wind (%227 5625) - - - - - -
Exchange Rate (ARS/USD) (%0545577) - - - 0.00 0.01 0.00
Economic Activity Index '(%_(())11365)3 - - - - 0.00 -
Real Wage Index ;Z‘E)é? - - - 0.00 0.02 0.00
Relative Fare (Metro/Bus) 2(502 2(9);: : 1('(9).98678;* - - 0.00 0.02 -
Oil Final Price (ARS) -?09533?2; - - - - 0.00 -
Relative Fare (Train/Bus) 0((2)1(;)92,;* 0. (106(2)23? : - 0.01 0.00 0.09 0.00
Fleet 0(()(;)83:;: i 0(0(?8(3):;: i 0.00 - 0.00 0.31 0.00
Nominal Fare (ARS) ('8‘110118) '(28 ?)?J)k* - - - 0.00 -
Trend (%%00%1) - 0.00 0.00 0.00 0.01 0.00
Vehicle Fleet 0'28%48 - -0.00 - - 0.00 -
AR7 - -0.(4(1)?515;** - 0.00 0.10 0.45 0.01
ma.S.L7 - 0(007?)2;;* 0.25 0.67 0.13 0.70 0.65
ma.S.L14 - _O(?)l(());;** 0.38 1.00 1.00 1.00 1.00

Table 3.7. Interpretability: *p < 0.10, x*xp < 0.05, ***p < 0.01. Standard Errors
are given in parentheses
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significant variables (only Elastic Net and Binary Tree do not consider it). Precipi-
tation (mm), Fleet and relative fares are also pointed out by some methods. Surpris-
ingly, strikes are not considered by any machine learning algorithm, something that
could be explained by the minimum sample restrictions in the nodes splits.

3.4.2 Predictive Power

As explained earlier, the main advantage of ML algorithms is the ability to reduce
the variance, i.e., to get the best out-sample predictive power. We use two well-
known comparative metrics to evaluate this aspect: 1) Mean Squared Error, 2) Mean
Absolute Error.

Mean Squared Error

Mean Squared Error (MSE) calculates the squared difference between predicted
values (1) and the actual values y.

MSE =~ (yi—ii)*

3=
™=

1

7

Mean Absolute Error

Mean Absolute Error (MAE) is the average over the absolute differences between
prediction and actual values in the test sample. The main difference is that it is less
sensitive to outliers compared to MSE.

1 & R
MAE ==Y |yi — il
n,3

A comparison of our main results (see Table 3.8) shows that supervised machine
learning methods provide persistently much better results in terms of error perfor-
mance than linear models (RF gets a reduction of 93-100% compared to the OLS
model). This means we obtain much better accuracy in the out-sample data, which
is achieved by eliminating the linearity restrictions imposed by traditional methods
and by exploiting the potential of tree-based models.

3.4.3 Demand Elasticity

If we focus on the SARIMAX model, in terms of income elasticity, there is no clear
relation between income and passengers. The problem with income-elasticity is that
income could be correlated with other variables, which might make the effect noisy.
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Model MSE MAE
OLS 0.14 - 0.21 -
SARIMAX 0.43 | 207% | 0.35 | 101%
Elastic Net 0.04 | -69% | 0.14 | -49%
Binary Decision Tree | 0.04 | -68% | 0.08 | -88%
Bagging 0.02 | -87% | 0.09 | -87%
Random Forest 0.01 | -93% | 0.07 | -100%
Gradient Boosting 0.03 | -76% | 0.10 | -75%

Table 3.8. Predictive Power

For instance, higher income will raise the public transport demand demand. But,
for car owners, higher income not increase their demand. Since the probability of
owning a car increases with income, this might affect the total impact (Holmgren,
2007).

With regard to other transport modes, there is evidence of substitution effect be-
tween train, metro and bus. In contrast, we did not find evidence that supports
relation between bus and petrol price or automotive fleet.

However, what we are mainly concerned is about own price elasticity. Holmgren
(2007) collected 81 articles and estimated price-elasticities ranging from -0.009 to
-1.32, with a mean value of -0.38 (i.e., on average, public transport has an inelastic
demand). However, by region, the price elasticity was -0.75 in Europe and -0.59 in
USA, Canada and Australia.

In the city of Buenos Aires case and during the period analyzed, there were three
bus fare increases (see Table 3.9).

Period ARS USD
jan-13 | 1.81 - 0.37 -
jan-14 | 3.02 | 67% | 0.46 | 24%
jul-14 | 349 | 16% | 0.43 | -7%
apr-16 | 6.38 | 83% | 0.44 | 2%

Table 3.9. Fare Evolution

At the same time, Argentina have suffered from high inflation rates (an accumu-
lative inflation rate of 134%). As a result, real fares have barely changed. If there
is any effect on demand, it should therefore be a money illusion effect (controlling
for the other factors). Despite the fact that we have controlled by real income, price
of competitors (train price, metro price and petrol price) and other variables, all the
economic variables have a very similar trend evolution (see Figure 3.12).

At the outset, we set aside the period from 8th April 2016 to 31st May 2016.
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Figure 3.12. Economic Variables Evolution

During this period, fares have increased around 80%. Those months give us a great
opportunity to evaluate nominal price elasticities.

If we accept the results of our models, only SARIMAX model pointed out Nom-
inal Fare as a significant variable. However, as can be seen in Figure 3.13, compar-
ing days before and after the last increase, it seems to be a reduction in the absolute
number of passengers during the firsts weeks (a possible money illusion effect).
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Figure 3.13. Passenger (in millions) Before and After the Last Fare Increase

This simple plot analysis reveals that fare increase might affected transport de-
mand in the short-term. Although it was a money illusion effect (because real fare
was almost the same), our hypothesis is that during the first days, passengers nega-
tively reacted to the new fares trying to reduce their consume of public transport (or
the number of interconnections). However, as days went by, passengers internalized
the effect and started to use the public transport as usual. In the overall effect, we
will not see any change, because only a few days were affected and the algorithms
may confuse them with sparse or noisy data. But, if we are able to decompose the
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weekly effect, we would expect to find a significant pattern during the first days and
none effect during the weeks after.

In terms of prediction, as seen in Figure 3.14, every model seems to be capable
to forecast the passenger’s trend.
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Figure 3.14. Test Prediction

A problem with machine learning algorithms is that they are not able to use partial
derivative to get elasticity effects (because the coefficients are biased). However, we
can apply sensitivity analysis like the arc elasticity to compute a mean average effect
(Nunes et al., 2016; Alsger et al., 2016; Jung and Sohn, 2017; Miller, 2018; Zhao
et al., 2018). Essentially, we can measure how the predictions respond to changes
in the input fare.

We therefore propose to compute the arc elasticity as the difference between the
observed and the predicted values, assuming there was no fare increase, formally,

Py W10y,

However, it persists an error between the true and the predicted values (as showed
in Predictive Power subsection). Consequently, we propose to correct this estima-
tion by adding the error difference between the observed values (y(t')) and the pre-
dicted values with the fare increase (7(¢')). In the best of cases, this error tends
to zero. Introducing this correction term, we assure that the results are not biased
because of prediction errors. We can therefore calculate the arc elasticity as:

Py = MO0
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where e = y(t') — g (t').

We take for example the RF model, which performed better in terms of out-
sample prediction (see Figure 3.15). Both, PREDICTED (t’) (or (t')) and PRE-
DICTED (t) (or g(t)) seem to show no difference, i.e., the model is not affected by
fare changes. Consequently, they are mutually canceled: the differences between
OBSERVED(t’) and PREDICTED(t) can be only assigned to the prediction error
y(t') — y(t'). Thereby, the final result in the elasticity equation will be E(Y") = 0,

which is perfectly consistent with unresponsiveness to fare changes.
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Finally, we apply a difference in means test to evaluate if the mean difference
between the observed values and the predicted values with no fare increases (minus
the error term) is significant. Under the null hypothesis, two independent samples
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have identical average values. Table 3.10 reports the results.

Figure 3.15. Test Prediction with Random Forest

Model Elasticity | p-value
SARIMAX -0.3095%* | 0.047
Elastic Net - 1.000
Binary Decision Tree - 1.000
Bagging - 1.000
Random Forest - 1.000
Gradient Boosting - 1.000

Table 3.10. Elasticity and Difference in Means Test
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3.5 Conclusions

None of the ML models can reject the null hypothesis of difference in means and
demand elasticity remains in zero. On the contrary, the linear model estimates a
demand elasticity of -0.309, similar to the -0.30 often mentioned as rule of thumb
in public transport demand elasticity (Goodwin, 1992; Oum, et al., 1992, Bresson,
et al., 2003; Holmgren, 2007).

What is more interesting is however to examine what happened day by day. We
therefore expand the elasticity of the linear model using an accumulative mean (see
Figure 3.16).
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Figure 3.16. SARIMAX: Expanded Elasticity

SARIMAX model shows an initial impact immediately after the fare increase
(with absolute elasticity higher than 0.45). Then, as days go by, the elasticity tends
to rapidly decrease until it reaches a stable behavior. This is consistent with the
hypothesis we have stated before: During the first days, passengers negatively re-
acted to a nominal effect, but then, they tended to readjust their consume level to a

slightly lower level than before.

3.5 Conclusions

While previous studies have exploited smart cards to predict demand, they have
typically adopted an unbiased orientation to address a problem that is clearly pre-
dictive in nature. Here, we take an error focus and propose different supervised
machine learning algorithms for application to the smart card data obtained from
the SUBE system employed in Argentina. Specifically, we have examined the bus
system operating in the Autonomous City of Buenos Aires (CABA), thanks to the
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rich and reliable source of information it provides. We have compared a set of
machine learning algorithms with traditional time-series regression models in an
effort to identify the method that provides the best result in terms of: prediction,
interpretability and demand elasticity.

First, we have shown how machine learning algorithms, perform better (in terms
of predictive power) than linear demand predictions for public transport services.
Despite the concerns expressed in previous studies about out-of-sample data (which
means it is unclear how well they perform on new data), we conclude that supervised
machine learning methods, in general, perform 49-100% better than traditional un-
biased methods.

Second, while machine learning algorithms are often associated with “black-box™
results, we conclude that in terms of interpretability they show very similar findings
as linear models. We have undertaken a feature analysis to determine which vari-
ables have most impact on demand predictions and we find that the variables with
the greatest impact are not those directly related to weather conditions (except pre-
cipitations), but rather that time variables are persistently the most influential (sea-
sonal terms, national days, strikes). Other relevant factors are cross elasticities with
other public transport services and fleet size. But we do not find evidence about
elasticities with respect to price of petrol, income or vehicle fleet.

Finally, we applied a sensitivity analysis to measure demand elasticity. In doing
so, we proposed a corrected arc elasticity formulation to control for prediction error.
We have evaluated this formulation during a period where nominal fares increased
around 80%. None of SML algorithms showed responsiveness to change in nominal
fares. However, SARIMAX model revealed a short-term demand elasticity pattern
of 0.31, with an initial shock higher than 0.45. Then, as days go by, the elasticity
tends to rapidly decrease until it reaches a stable behavior.
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4 Abnormal Pattern Prediction in
the Insurance Market: Fraudulent
Property Claims

4.1 Introduction!

Predicting abnormalities in environments with highly unbalanced samples and a
huge mass of unlabeled data is receiving more attention as new technologies are de-
veloped (e.g., time-series monitoring, medical conditions, intrusion detection, de-
tecting patters in images, etc.). A typical example of such a situation is provided
by fraud detection (Hodge, 2004, Weiss, 2004, Phua et al., 2010, Ahuja and Singh,
2017). In general, we only have partial information about fraud cases, as well as
possibly some information about false positives, that is, cases that are considered
suspicious but which prove to be cases of non-fraud. The problem here is that we
cannot label these cases as “non-fraud” simply because they were initially consid-
ered suspicious. For this reason, we know nothing about non-fraud cases. Moreover,
fraud tends to be an outlier problem, given that we are dealing with atypical values
with respect to regular data. Hence, it is likely that we only dispose of informa-
tion about an extremely small sample. Yet, it so transpires, that this information
is extremely useful and should not be discarded. In contrast we have a consider-
able amount of data that may contain fraud and or non-fraud cases and, as such, we
cannot treat these data using traditional supervised algorithms.

To represent this typical case we apply an innovative semi-supervised methodol-
ogy to areal fraud case. Specifically, we draw on information provided by a leading
insurance company as we seek to predict fraudulent insurance claims®. In general
terms, fraud insurance claims fall into two categories: one, those that provide only
partial or untruthful information in the policy contract; and, two, those that are
based on misleading or untruthful circumstances (including exaggerations). It has

L Article published at Data Science Journal. Reference: Palacio, S.M., 2019. Abnormal Pat-
tern Prediction: Detecting Fraudulent Insurance Property Claims with Semi-Supervised Machine-
Learning. Data Science Journal, 18(1), p.35. DOI: http://doi.org/10.5334/dsj-2019-035

2The study is part of the development of a fraud detection system that was implemented in 2018.
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been estimated that cases of detected and undetected fraud represent up to 10% of
all claims in Europe (The Impact of Insurance Fraud, 2013), accounting for around
10-19% of the payout bill.

In the sector, the main services contracted are automobile and property insurance,
representing 76% of total claim costs. However, while many studies have examined
automobile fraud detection (see, for example, Artis et al., 1999 and 2002; Belhadji
et al., 2000; Stefano and Gisella, 2001; Brockett et al., 2002; Phua et al., 2004;
Viaene et al., 2007; Wilson, 2009; Nian et al., 2016), property fraud has been largely
neglected, perhaps because detection is more difficult as witnesses are infrequent or
they are typically cohabitants. One representative case is Bentley (2000) who uses
fuzzy logic rules to detect suspicious property insurance claims in an unbalanced
dataset of 98 fraudulent claims and 20,000 unknown cases. They got accuracy
rates of 60% based on three artificial assumptions of 0%-5%-10% proportions of
suspicious cases in the unknown claims.

In addition, private companies rarely share real fraud datasets and keep this in-
formation private to not reveal competitive details. Very small number of studies
have therefore been implemented as fraud systems in insurance companies (few
examples are Major and Riedinger, 1992; Cox, 1995).

Our main objective is therefore to present a variety of semi-supervised machine
learning models applied to a fraud insurance detection problem. In so doing, we aim
to develop a methodology capable of improving results in classification anomaly
problems of this type. The key being to avoid making assumptions about the un-
known fraud cases when resolving reoccurring practical problems (skewed data,
unlabeled data, dynamic and changing patterns) since this can bias results.

Our reasoning for using semi-supervised models is best explained as follows.
First, as pointed out by Phua et al. (2010), skewed data is a challenge in many fraud
studies. They find that more than 80% of the papers analyzed have a percentage of
fraud cases below 30%. For instance Bentley’s (2000) study have only 0.5% fraud
cases whilst 99.5% are unknown, and Foster and Stine (2004) use just 2,244 cases
of bankruptcies compared to 2.9 million credit card transactions to predict personal
bankruptcy. Statistically speaking, fraud can be considered a case of outliers, that is,
points in the data-set that differ significantly from the remaining data. Outliers do
not mean noise. We refer to outliers as observations that remarkably deviate from
normal data. Fraud is typically classified as abnormal behavior or a sudden change
of patterns and therefore differs from noise (Barnett and Lewis, 1994, Hodge and
Austin, 2004; Weiss, 2004; Aggarwal, 2015). Thus, skewed and unlabeled data
is a natural consequence. Such anomalies often result from unusual events that
generate anomalous patterns of activity. Were we to use unsupervised models —
that is, were we to assume that we are unable to distinguish between fraudulent
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and non-fraudulent cases — what we defined as outliers, noise or normal data would
be subjective and we would have to represent that noise as a boundary between
normal data and true anomalies without any information. But, as mentioned, the
number of fraud cases detected is small; however, they constitute a useful source of
information that cannot be discarded.

Second, supervised models are inappropriate because, in general, we face a major
problem of claim misclassifications when dealing with fraud detection (Artis et al.,
2002) which could generate a substantial mass of unknown data. Fraud detection,
typically, comprises two stages: first, it has to be determined whether the claim
is suspicious or not (Viaene et al., 2007); and, second, all cases considered suspi-
cious have to be examined by fraud investigators to determine whether the claim is
fraudulent or not. This means that unsuspicious cases are never examined, which
is reasonable in terms of efficiency, especially if the process cannot be automa-
tized. Insurance adjusters have little time to perform an exhaustive investigation.
Yet, the process does provide us with partial information, that is, labels for what
is a small sample. Clearly, using a supervised model in this instance adds bias to
the confusion matrix. Essentially, we will detect severe bias in false negatives and,
therefore, many cases which are in fact fraudulent will be predicted as being non-
fraudulent (Phua et al., 2004). Indeed, when using supervised algorithms we as-
sume that the system in place is capable of discerning perfectly between fraudulent
and non-fraudulent claims, an outcome that in practice is infrequent and referred
to in the literature as an “omission error” (Bollinger and David, 1997; Poterba and
Summers, 1995).

Finally, when fraud investigators analyze claims, they base their analysis on a
small suspicious subset from previous experience and tend to compare cases to what
they consider to be “normal” transactions. As data volume and the velocity of op-
erative processes increases exponentially, human analysis becomes poorly adapted
to changing patterns (Lei and Ghorbani, 2012).

Clearly, the information provided in relation to cases considered suspicious is
more likely to be specified correctly once we have passed the first stage in the fraud
detection process. This information will be useful for a part of the distribution (i.e.,
it will reveal if a fraudulent claim has been submitted), which is why it is very im-
portant this information be taken into account. For this reason, fraud detection in
insurance claims can be considered a semi-supervised problem because the ground
truth labeling of the data is partially known. Not many studies have used hybrids
of supervised/unsupervised models. Williams and Huang (1997) cluster data from
a Medicare Insurance, treating each cluster as a class and use them to construct a
decision tree that generate decision rules. As a result, they are able to identify pos-
sible groups of interest for further investigation. Williams (1999) continues down
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the same line, using a system that is able to evolve with the progression of claims.
Brockett et al. (1998) study automobile bodily injury insurance claims in over 387
cases. They ask loss-adjusters and investigators to group the cases by level of sus-
piciousness, and later use Self Organizing Maps to cluster the data and re-label
it. However, basing the construction of clusters on subjective boundaries between
fraud and non-fraud can bias the outcomes.

Other semi-supervised models use normal observable data to define abnormal
behavioral patterns: Aleskerov et al. (1997) use past behavior as normal data to
predict anomalies using Neural Networks. Kokkinaki (1997) detects atypical trans-
actions based on users’ profiles normal behavior. Murad and Pinkas (1999) identify
fraudulent patterns in phone-calls finding “significant deviation” from the normal
data (which is based on profiling). Kim et al. (2003) use normal product sales to
detect anomalous sales patterns. However, these studies assume we have informa-
tion about normal behavior, which is not always the case, and, it is questionable
whether or not the normal observable data was correctly defined as normal in the
first place.

We therefore seek to make three contributions to the literature: First, we ap-
ply semi-supervised techniques to an anomaly detection problem while trying to
solve three combined problems: skewed data, unlabeled data and change in patterns,
without making any subjective assumption that can bias the results. Second, we
create a metric based on the logic behind the F-Score which permit us to evaluate
the purity of abnormalities in the clusters. Finally, we build a fraud detection sys-
tem which is applied to an actual property insurance claim fraud problem, using a
real-world data-set provided by a leading insurance company.

4.2 Data

We use an insurance fraud data-set provided by a leading insurance company in
Spain, initially for the period 2015-2016. After sanitization, our main sample con-
sists of 303,166 property claims, some of which have been analyzed as possible
cases of fraud by the Investigation Office (10)°.

Of the cases analyzed by the 10, 48% proved to be fraudulent. A total of 2,641
cases were resolved as true positives (0.8% of total claims) during the period under
study. This means we do not know which class the remaining 99.2% of cases belong
to. However, the fraud cases detected provide very powerful information, as they
reveal the way in which fraudulent claims behave. Essentially, they serve as the
pivotal cluster for separating normal from abnormal data.

3The system applied before to detect fraud corresponds to a rule based methodology.
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A data lake was constructed during the process to generate sanitized data. A data
lake is a repository of stored raw data, which includes structured and unstructured
data in addition to transformed data used to perform tasks such as visualizing, an-
alyzing, etc. From the data lake, we obtain 20 bottles containing different types
of information related to claims. A bottle is a subset of transformed data which
comes from an extract-transform-load (ETL) process preparing data for analysis.
These bottles contain variables derived from the company’s daily operations, which
are transformed in several aspects. In total we have almost 1,300 variables. We
briefly present them in Table 4.1 to help explain which concepts were included in
the model.

Bottles Descriptions
ID ID about claims, policy, person, etc.
CUSTOMER Policyholder’s attributes embodied in insurance policies: name, sex, age, address, etc.
CUSTOMER_PROPERTY Customer related with the property data.
DATES Dates of about claims, policy, visits, etc.
GUARANTEES Coverage and guarantees of the subscribed policy.
ASSISTANCE Call center claim assistance.
PROPERTY Data related to the insured object.
PAYMENTS Policy payments made by the insured.
POLICY Policy contract data, including changes, duration, etc.
LOSS ADJUSTER Information about the process of the investigation but also about the loss adjuster.
CLAIM Brief, partial information about the claim, including date and location.
INTERMEDIARY Information about the policies’ intermediaries.
CUSTOMER_OBJECT_RESERVE The coverage and guarantees involved in the claim.
HISTORICAL_CLAIM Historical movements associated with the reference claim.
HISTORICAL_POLICY Historical movements associated with the reference policy (the policy involved in the claim).
HISTORICAL_OTHER_POLICIES Historical movements of any other policy (property or otherwise) related to the reference policy.
HISTORICAL_OTHER_CLAIM Historical claim associated with the reference policy (excluding the claim analyzed).
HISTORICAL_OTHER_POL_CLAIM | Other claim associated with other policies not in the reference policy (but related to the customer).
BLACK_LIST Every participant involved in a fraudulent claim (insured, loss-adjuster, intermediary, other professionals, etc.)
CROSS VARIABLES Several variables constructed with the interaction between the bottles.

Table 4.1. The 20 Data Bottles and their descriptions extracted from a Data Lake
created for this particular case study.

4.3 Methodology

If we have labeled data, the easiest way to proceed is to separate regular from out-
lier observations by employing a supervised algorithm. However, in the case of
fraud, this implies that we know everything about the two classes of observation,
1.e., we would know exactly who did and did not commit fraud, a situation that
is extremely rare. In contrast, if we know nothing about the labeling, that is, we
do not know who did and did not commit fraud, several unsupervised methods of
outlier detection can be employed, e.g. isolation forest (Liu et al., 2008), one-class
support vector machines (Scholkopf et al., 2001; Manevitz and Yousef, 2001) and
elliptic envelopment (Rousseeuw and Driessen, 1999). However, they tend to be
less precise and we have to assume some subjective boundary.

If, however, we have some label data about each class, we can implement a semi-
supervised algorithm, such as label propagation (Zhu and Ghahramani, 2002) or
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label spreading (Zhou et al., 2004). Yet, these methods require that we have some
information about every class in our problem, something that is not always possible.
Indeed, disposing of label data information about each class is quite infrequent in
certain practical problems. Additionally, we face the problem of unbalanced data,
which means we rarely have clean and regular data representing the population. In
fraud problems, as a norm, the data is highly imbalanced, which results in a high
but biased success rate.

In the light of these issues, we propose a semi-supervised technique that can
assess not only a skewed data-set problem but also one for which we have no in-
formation about certain classes. In this regard, fraud detection represents an outlier
problem for which we can usually identify some, but not all, of the cases. We
might, for example, have information about false positives, i.e., investigated cases
that proved not to be fraudulent. However, simply because they have raised sus-
picions mean they cannot be considered representative of non-fraudulent cases. In
short, what we usually have are some cases of fraud and a large volume of unknown
cases (among which it is highly likely cases of fraud are lurking).

Bearing this in mind, we propose the application of unsupervised models so as
to relabel the target variable. To do this, we use a new metric that measures how
well we approximate the minority class. We can then transform the model to a
semi-supervised algorithm. On completion of the relabeling process, our problem
can be simplified to a supervised model. This allows us not only to set an objective
boundary but to obtain a gain in accuracy when using partial information, as Trivedi
et al. (2015) have demonstrated.

4.3.1 Unsupervised Model Selection

We start with a data-set of 303,166 cases. The original data was collected for busi-
ness purposes, therefore a lot of time was put into sanitizing the data-set. It is im-
portant to remark that we set aside a 10% random subset for final evaluation. Hence,
our data-set consists of 270,479 non-identified cases and 2,370 cases of fraud.

The main problem we face in this unsupervised model is having to define a
subjective boundary. We have partial information about fraud cases, but have to
determine an acceptable threshold at which an unknown case can be considered
fraudulent. When calculating unsupervised classification models, we reduce the di-
mensions to clusters. Almost every algorithm will return several clusters containing
mixed-type data (fraud and unknown). Intuitively, we would want the fraud points
revealed to be highly concentrated into just a few clusters. Likewise, we would ex-
pect some non-revealed cases to be included with them, as in Figure 4.1a. On the
other hand, we would want to avoid situations in which abnormal and normal cases
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are uniformly distributed between groups, as in Figure 4.1b. Thus, a limit of some
kind has to be defined. But, how many of the “unknown” cases can we accept as
being fraudulent?

NORMAL 1

(a) Desired Clusters (b) Non-desired Clusters

Figure 4.1. Possible clusters. Figure 4.1a shows a separable and compact cluster of
the abnormal points. On the other side, Figure 4.1b shows abnormal
and normal cases uniformly distributed.

A boundary line might easily be drawn so that we accept only cases of detected
fraud or we accept every possible case as fraudulent. Yet, we know this to be unre-
alistic. If we seek to operate between these two extremes, intuition tells us that we
need to stay closer to the lower threshold, accepting only cases of fraud and very
few more, as Figure 4.2 illustrates.
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Figure 4.2. Schematic representation of the desired threshold, which is expected to
split high fraud probability cases from low fraud probability cases.

But once more, we do not know exactly what the correct limit is. In this way,
however, we have created an experimental metric that can help us assign a score
and, subsequently, define the threshold. This metric, which we shall refer to as the
cluster score (CS), calculates the weighted homogeneity of clusters based on the
minority and majority classes.

C1xC2

m WlthOé>0,0é€R
(6]

CSeq = (1+a?)
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Essentially, it assigns a score to both the minority-class (C1) and the majority-
class (C2) clusters based on the weighted conditional probability of each point. The
CS expression clearly resembles the well-known F-Score*, which is a measure of
the test’s accuracy. Particularly, C1 and recall, and C2 and precision, pursue the
same objectives, which in our case is to capture the maximum amount of fraud
cases while also paying attention to the quality of those cases. The CS measure
permits us to maximize homogeneity in the clusters. Since C1 and C2 are part of
the same subset space, we have to make trade-offs (just as with recall and precision)
between the optimization of C1 homogeneity and C2 homogeneity.

Moreover the o parameter allows us to maximize the homogeneity we are more
concerned about. If for example, we want to obtain a more homogeneous C1 (the
fraud cluster would include almost every possible case of revealed fraud), we can
set a higher «, taking into account that it possibly makes the C2 homogeneity worse.

C1 Score

Suppose an unsupervised model generates J clusters: {C*,C?,...,C”}. The number
of cases in cluster C7 is denoted by n/.

The C1 score calculates the probability that a revealed (i.e., confirmed) fraud case
belongs to cluster CV and this probability is weighted by the total number njcmu d
of fraud cases in that cluster CV, divided by the total number of N, of revealed
fraud cases in the dataset.

J
ZJ nfraud * J
j=1"nJi

Cl = fraud 19 1]

N fraud

Basically, we calculate the fraction of fraud cases in each cluster (n?cr wud! n’)
and we weight these fractions by the corresponding number of fraud cases in cluster
J (n;raud)‘

Our objective is to maximize C1. This means ensuring all revealed fraud cases are
in the same clusters. The limit C1=1 implies that all J clusters only contain revealed
fraud cases. Therefore, we have to balance this function with another function.

C2 Score

C2 is the counterpart of C1. The C2 score calculates the probability that an “un-
known” case belongs to cluster C7 and this probability is weighted by the total

4F-Score is defined as Fjg = (14 32)_Lrecisionsrecall

recall+[(2*precision
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J
unknown
ber of unknown cases in the data-set (N, known):

number (n ) of unknown cases in that cluster C7, divided by the total num-

Z‘,]_l nink@oum % J .
02 — )= nJ unrnown e [0’ 1]

N, unknown

J
unknown
the case of C1: to cluster the class of unknown cases without assigning revealed

Notice that n‘;r aud T — nJ. The objective is the same as that above in

fraud cases to these clusters.

Cluster Score

Individually maximizing C1 and C2 leaves us in an unwanted situation. Basically,
they are both trying to be split. Therefore, when we maximize one, we minimize the
other. If we maximize both together, this results in a trade-off between C1 and C2,
a trade-off in which we can choose. Moreover, as pointed out above, we actually
want to maximize C1 subject to C2. Consequently, the fraud score is constructed as
follows:

C1xC2
Cl1+C2x%a?
If o =1, C1 and C2 will have the same weight. But if we assign o > 1, this will

CSq = (1+a?) witha >0, a € R

reduce the weight of C2 (if o < 1, this will reduce the weight of C1). It is important
to highlight that the actual function of the cluster score is to choose between algo-
rithms (based on the purity of the cluster construction) and « is the way to balance
C1 and C2.

In conclusion, with this CS we have an objective parameter to tune the unsu-
pervised model because it permits us to homogeneously evaluate not only different
algorithms but also their parameters. While it is true that there exists a variety of
internal validation indices, this metric differs in that it can also exploit information
about the revealed fraud cases. That is, we take advantage of the sample that is la-
beled fraud to choose the best algorithm, something that internal validation indices
are not able to accomplish. The only decision that remains for us is to determine
the relevance of o. A numerical example can be consulted in Appendix 1.

We should stress that each time we retrieve more information about the one-class
cases that have been revealed, this threshold improves. This is precisely where
the entropy process of machine learning appears. As fraud is a dynamic process
that changes patterns over the time, using this approach the algorithm is capable
of adapting to those changes. In the one-class fraud problem discussed above, we
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4 Abnormal Pattern Prediction in the Insurance Market

start with an unknown distribution for which some data points are known (i.e., the
fraud sample). Our algorithms, using the proposed CS metric, will gradually get
closer to the best model that can fit these cases of fraud, while maintaining a margin
for undiscovered cases. Now, if we obtain new information about fraud cases, our
algorithms will readjust to provide the maximum CS again. As the algorithms work
with notions based on density and distances, they change their shapes to regularize
this new information.

Once the best unsupervised model is attained (i.e., the model that reaches the
maximum CS), we need to decide what to do with the clusters generated. Basically,
we need to determine which clusters comprise fraudulent and which comprise non-
fraudulent cases. The difficulty is that several clusters will be of mixed-type: e.g.,
minority-class points (fraud cases) and unidentified cases, as in Figure 4.3a, where
the Os are unidentified cases and the 1s are minority-class points.

Cluster 1

Cluster 0

1111111 luster L

1111111111111

Cluster 0 7~
1111111

1111111111111

1111111111111

PRPRPPPPREIRRRPIRE?

PPRRPPPERRRRPRERR 1111111111111 1111111111111

PRRIPPPRP2PIPRRDP

1111

PPPPPPPRPPPPPPRP?

PPPPPRPPRREPRPRPRERREY

1111111111111
111111111

1111111111111

111111111 -
~N=——_ ~ \
Fraud Cluster \
Cluster 2
Cluster 3 Cluster 3
(a) Unsupervised output (b) Relabeled clusters

Figure 4.3. Cluster Example Output. Figure 4.3a shows an example of a cluster
algorithm output over a sample of data points. Figure 4.3b shows how
the Cluster Score chooses the points that are relabeled as fraud cases
(points inside the doted line).

In defining a threshold for a fraud case, we make our strongest assumption. Here,
we assume that if a cluster is made up of more than 50% of fraud cases, this cluster
is a fraud cluster, otherwise, it is a non-fraud cluster. The distinction introduced
is clear: The non-fraud cluster is no longer an unidentified cluster. By introducing
this assumption, we state that they are actually non-fraudulent cases. This definition
acts as the key for our transition into a semi-supervised model. The assumption may
seem unrealistic but, as we will see later, the best unsupervised models are capable
of generating clusters with a proportion greater than 95% of fraud cases. We can,
therefore be even more stringent with this assumption.
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4.3 Methodology

As Figure 4.3b shows, cluster 1, being composed of more than 50% fraud cases,
now forms part of the more general fraud cluster, together, obviously, with the fraud
cases already detected. The remaining cases that do not belong to such a dense fraud
cluster are now considered non-fraud cases.

As mentioned, before applying the unsupervised algorithm, we had to make a
huge effort to sanitize the original data since it was collected for business purposes.
This included: handling categorized data, transforming variables, bad imputation,
filtering, etc. at each bottle level. Finally, we transformed the 20 bottles at a claim
level and put them together in a unique table which formed our model’s input.

After that, before using this data as input, we made some important transforma-
tions. First, we filled the missing values given that many models are unable to work
with them. There are simple ways to solve this, like using the mean or the median
value of the distribution. Since we did not want to modify the original distribution,
we implemented a multi-output Random Forest regressor (Breiman, 2001), to pre-
dict the missing values based on the other columns. The idea was, for each column
that had missing values, we used the column as a target variable. We trained with
the part without missing values, and by using the other features, we predicted the
target variable.

We iterated this process in every column that had missing values (0.058% of the
total values were missing). We also measured the performance of this technique
using the R-squared, which is based on the residual sum of squares. Our R-squared
was 89%.

Second, we normalized the data to, later, be able to apply a Principal Component
Analysis (PCA), and also because many machine-learning algorithms are sensible
to scale effects. Those using Euclidean distance are particularly sensitive to high
variation in the magnitudes of the features. In this case, we used a robust scale
approach® that is less affected by outliers since it uses the median value and the
interpercentile ranges (we chose 90%-10%). In general, standard normalization is
a widely use method. However, as in this case we are paying special attention to
outliers, a mean approach might not be the best option. Outliers can often influence
the sample mean/variance in a negative way. The robust scale approach removes
the median and scales the data according to a quantile range. Centering and scaling
happen independently on each feature by computing the relevant statistics on the
samples in the training set. Median and interquartile range are then stored to be
used on test/new data.

Third, we applied Principal Component Analysis to resolve the high dimension-
ality problem (we had almost 1,300 variables). This method reduces confusion in

SWe use the formulation Z = (z — Tpmedian )/ (Poo — P10)
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the algorithms and solves any possible collinearity problems. PCA decomposes
the data-set in a set of successive orthogonal components that explain a maximum
amount of the data-set’s variance. When setting a data-set’s variance threshold,
a trade-off between over-fitting and getting the variation in the data-set is made.
We chose a threshold of 95% (recommended threshold is between 95% and 99%),
which resulted in 324 components. After this transformations, the unsupervised
algorithm can thus be summarized as seen in Algorithm 1.

The main reason is that it has a low noise sensitivity as it ignores small variations
in the background (based on a maximum variation basis). While it is true that there
are several non-linear formulations for dimensionality reduction that may get better
results, some studies have actually found that non-linear techniques are often not ca-
pable of outperforming PCA. For instance Van Der Maaten et al. (2009) compared
PCA versus twelve non-linear dimensionality reduction techniques on several data-
sets and they couldn’t conclude that the non-linear techniques outperformed PCA.

4.3.2 Supervised Model Selection

We now have a redefined target variable that we can continue working with by
applying an easy-to-handle supervised model. The first step involves re-sampling
the fraud class to avoid unbalanced sample problems. Omitting this step, means
that our model could be affected by the distribution of classes, the reason being
that classifiers are in general more prone to detect the majority class rather than
the minority class. We, therefore, oversample the data-set to obtain a 50/50 bal-
anced sample. We use two oversampling methods, Adaptive Synthetic Sampling
Approach (ADASYN) by He et al. (2008), and balanced subsampling. ADASYN
finds the n-nearest neighbors in the minority class for each of the samples in the
class. It creates random samples from the connections and adds a random small
value to the points in order to scatter them and break the linear correlation with the
parent point. The balanced subsample method on the other hand, does not need to
create synthetic points since the samples used are already balanced. The balanced
samples are obtained by using weights inversely proportional to class frequencies
for each iteration in a supervised tree based algorithm.

The second step, involves conducting a grid search and a Stratified 5-fold cross-
validation (CV) based on the F-Score® to obtain the optimal parameters for three
different models: extreme randomized tree -ERT- (Geurts et al., 2006), gradient
boosting -GB- (Freund and Schapire, 1996) and a light XGB -LXGB- (Ke et al.,
2017). Cross-validation is a great way to avoid over-fitting, i.e., failing to predict
new data. We train using k — 1 folds (data subsets) and we validate our model by

The F-Score was constructed using 3 = 2, as we needed to place greater weight on the recall.
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Algorithm 1: Unsupervised algorithm

Data: Load transformed data-set. Oversample the fraud cases in order to
have the same amount as the number of unknown cases.

1 for k € K = {modely,models,...}where K is a set of unsupervised
models. do

2 for i € I where I is a matrix of parameter vectors containing all
possible combinations of the parameters in model k do

3 We fit the model k& with the parameters ¢ to the oversampled
data-set.;

4 We get the J clusters: {C',C?,...,C"} for the combination {k,i},
ie, Cri ={CL;C i CLiYs

5 For C}, ; we calculate C1 Score and C2 Score and we obtain the

cluster score C'S k,i» based on the acceptance threshold t*.;

6 Save the cluster score result C'Sy, ; € C'Sk 1, where C'Sk 1 is the
cluster score vector for each pair {k,7}.;

7 end

8 end

9 Choose the optimal C'S* where C'S* = max{CSk 1}

10 Relabel the fraud variable using the optimal clustering model derived from
C'S*. Each unknown case in a fraud cluster is now equal to 1, known
fraud cases are equal to 1 and remaining cases are equal to 0.
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testing it on the remaining fold. To prevent an imbalance problem in the folds, we
use a stratified k-folds strategy which returns subsets containing approximately the
same distribution of classes as the original data-set.

We have to be careful not to over-fit the model during the cross-validation pro-
cess, particularly when using oversampling methods. Step one and step two, there-
fore have to be executed simultaneously. Oversampling before cross-validating
would generate samples that are based on the total data-set. Consequently, for each
k — 1 training fold, we would include very similar instances in the remaining test
fold, and vice versa. This is resolved by first, stratifying the data, and then over-
sampling the k£ — 1 folds, without taking into account the validation fold. Finally,
we concatenate all the predictions.

Additionally, we combine the supervised models using stacking models. Stack-
ing models is combining different classifiers, applied to the same data-set, and get-
ting different predictions that can be “stacked” up to produce one final prediction
model. The idea is very similar to k-fold cross validation, dividing the training set
into several subsets or folds. For all £ — 1 folds, predictions are obtained by using
all the supervised models (called the base models). The predictions are stored to be
used as features for the stacking model in the full training data-set. Finally, a new
model (the stacking model or the Meta model) is fitted to the improved data-set.
The stacking model can discern whether a model performs well or poorly, which is
very useful since one model might have high performance when predicting fraud,
but not when predicting non-fraud, and vice versa. The combination of both could
therefore improve the results. We try three different ways of combining classifiers,
modifying the Meta model: GB and LXGB with Meta ERT, GB and ERT with Meta
LXGB, and LXGB and ERT with Meta GB.

Once we have the optimal parameters for each model, we calculate the optimal
threshold that defines the probability of a case being fraudulent or non-fraudulent,
respectively.

Finally, we identify the two models that perform best on the data-set — the best
acting as our main model implementation, the other controlling that the predicted
claims are generally consistent. The algorithm can be summarized as seen in Algo-
rithm 2.
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Algorithm 2: Supervised algorithm

Data: Load relabeled data-set.

1 for model; € M' = {M, S} where M is the set of supervised individual
models M and S the set of stacking models from M do

2 for {trainy, testy} folds in the Stratified k-Folds do

3 if Oversample==True then train) = oversample(train;) where
oversampling is applied to 50/50 using the ADASYN method.;

4 else train) = train) and the balanced subsampling option is
activated.;

5 Fit the model; in train), where model; € M' = {M,S}.;

6 Get predicted probabilities py of testy using model;.;

7 Save the probabilities py in P;, where P; is the concatenation of
model;’s probabilities.

8 end

9 for Vt; € [0, 1], where t is a probability threshold of the model; to
consider a case as fraudulent do

10 if P, >t;then P, =1;
1 else P, = 0;
12 Using F;, where now P; is a binary list, we calculate,
o 2 precisionxrecall . 9.
FSCOTBW - (1 +6 ) * recall+B2xprecision with § = 2.;
13 Save F'Score; in F'Score;, a list of vectors of model; with
F'Score results for each ¢.

14 end
15 | We get F'Score] =max{FScore;(t)}.
16 end
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4.4 Results

4.4.1 Performance

Table 4.2 shows the main unsupervised modeling results of the tuning process. We
tried different combinations of distance based models, density based models and
outlier models: Mini-Batch K-Means (Sculley, 2010), Isolation Forest (Liu, 2008),
DBSCAN (Ester et al., 1996), Gaussian Mixture and Bayesian Mixture (Figueiredo
and Jain, 2002). Mini-batch K-Means is not only much faster than the other mod-
els, it also provides the best results. It is similar to K-Means++, both using the
Euclidean distance between points as the objective function, however it can also re-
duce computation time. Subsets of the input data are taken and randomly sampled

in each iteration, converging more quickly to a local solution.

Model n Clusters C1 C2 CS(a=2)
Mini-Batch K-Means 4 96.6% 96.6% 96.6%
Isolation Forest 2 51.5% 51.1% 51.4%
DBSCAN 2 50.2% 49.8% 50.1%
Gaussian Mixture 5 95.0% 95.0% 96.3%
Bayesian Mixture 6 96.5% 96.4% 96.5%

Table 4.2. Unsupervised model results

C1 indicates that the minority-class (fraud) clusters comprise approximately 96.59%
of minority data points on a weighted average. In contrast, C2 indicates they are
made up of 96.59% of unknown cases. As can be seen in Table 4.3, more than
95% of the cases in the central cluster are fraudulent (well above our 50% assumed
threshold), but it also contains an additional 6,047 unknown cases (Cluster 0 now
contains an additional 5,890 cases, and Cluster 1 an additional 157 cases). This is
our core fraud cluster and the one we use when renaming the original labels.

After relabeling the target variable (with the Mini-Batch K-Means output), we
calculate the supervised models performance using Stratified 5-Fold CV on the data-
set. The results of each of the supervised models and of the stacking models is
shown in Table 4.4.

As can be appreciated, we have two recall values. The cluster recall is the metric
derived when using the relabeling target variable. The original recall emerges when
we recover the prior labeling (1 if it was fraud, O otherwise). As can be seen, the
results are strikingly consistent. We are able to predict fraud cluster with a recall of
up to 89-97% in every case. But, more impressively yet, we can capture the original
fraud cases with a recall close to 98%. The precision is slightly lower, but in almost
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Clusters Fraud Percentage

0 0 2%
1 98%
0 99%
1 1%
0 100%
1
0
1

0%
1%
99%

W W= =O

Table 4.3. Oversampled Unsupervised Mini-Batch K-Means

all cases it is higher than 67%. These are particularly good results for a problem that
began as an unsupervised high-dimensional problem with an extremely unbalanced

data-set.
Model Cluster Recall Original Recall Precision F-Score
ERT-ss 0.9734 0.9840 0.6718 0.8932
ERT-o0s 0.9647 0.9819 0.6937 0.8948
GB 0.9092 0.9376 0.6350 0.8369
LXGB 0.8901 0.9249 0.7484 0.8576
Stacked-ERT 0.8901 0.9283 0.7524 0.8587
Stacked-GB 0.8947 0.9287 0.7630 0.8649
Stacked-LXGB 0.9180 0.9464 0.6825 0.8588

Table 4.4. Supervised model results

The two best models are both extreme randomized trees: the first uses balanced
subsampling -ERT-ss- (i.e., for every random sample used during the iteration of
the trees, the sample is balanced by using weights inversely proportional to class
frequencies), and serves here as our base model; the second uses an ADASYN
oversampling method-ERT-os- and serves as our control model.

4.4.2 Investigation Office Validation

At the outset, we randomly set aside 10% of the data (30,317 claims). In this final
step, we want to go further and examine these initial claims as test data. Our results
are shown in Table 4.5.

As can be appreciated, the control model (Table 4.5b) has a recall of 97% while
the base model (Table 4.5a) has an impressive recall of 100%. However, the real
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Original Value Prediction Cases Original Value Prediction Cases
NON-INVESTIGATED NON-FRAUD 29.631 NON-INVESTIGATED NON-FRAUD 29.656
FRAUD NON-FRAUD 0 FRAUD NON-FRAUD 8
NON-INVESTIGATED FRAUD 415 NON-INVESTIGATED FRAUD 390
FRAUD FRAUD 271 FRAUD FRAUD 263
(a) ERT-ss Robustness Check. (b) ERT-o0s Robustness Check.

Table 4.5. Model Robustness Check.

added value depends on the non-investigated fraud cases, i.e., cases not previ-
ously detected but which would boost our results if shown to be fraudulent (non-
investigated predicted as fraud). We, therefore, sent these cases to the IO for analy-
sis.

The 10 investigated 367 cases (at the intersection between the ERT-ss and ERT-os
models). Two fraud investigators analyzed each of these cases, none of which they
had previously seen as the rule model had not detected them.

Of these 367 cases, 333 were found to present a very high probability of be-
ing fraudulent. This means that only 34 could be ruled out as not being fraudulent.
Recall that from the original sample of 415 cases, the fact that 333 presented indica-
tions of fraud means we have a precision of 88%. In short, we managed to increase
the efficiency of fraud detection by 122.8%. These final outcomes are summarized
in Table 4.6.

Original Value Prediction Cases
NON-INVESTIGATED NON-FRAUD 29.631
FRAUD NON-FRAUD 0
NON-FRAUD FRAUD (415-333)=82
FRAUD FRAUD (271 + 333) = 604

Table 4.6. Base Model Final Results

4.4.3 Dynamic Learning

One of the challenges in fraud detection is that it is a dynamic process which can
change its patterns over time. A year later, we retest the model with new data. We
now have 519,921 claims to evaluate. We initially start out with a similar proportion
of fraud cases (0.88%)- we are now able to train with 4,623 fraud cases to further
improve results.

First, we recalculate the unsupervised algorithm, getting a Cluster-Score of 96.89%.
As can be seen in Table 4.7, Cluster O contains almost every normal case. On
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the other hand, we can clearly distinguish two fraud clusters: Cluster 1, in which
99.31% are fraud cases, and Cluster 2, in which 97.36% are fraud cases. Our 50%

threshold therefore becomes insignificant again.

Clusters Fraud Percentage

0

NN == O

0

1
0
1
0
1

99.4%
0.6%
0.7%

99.3%
2.6%

97.4%

Table 4.7. Oversampled Unsupervised Mini-Batch K-Means

Using the Extreme Randomized Subsampled approach (ERT-ss) and the Extreme
Randomized oversampled with ADASYN (ERT-os), and the Stratified 5-fold cross
validation approach we retrain the model. Table 4.8 shows the main results.

PERIOD Janl15-Jan17 Janl5-Jan18
Claims 303,166 519,921
Observed Fraud 2,641 4,623
Cluster Score 96.59% 96.89%
Recall Score ERT-ss 97.34% 96.31%
Precision Score ERT-ss 67.18% 89.35%
F-Score ERT-ss 89.32% 94.84%
Recall Score ERT-o0s 96.47% 96.44%
Precision Score ERT-o0s 69.37% 92.18%
F-Score ERT-os 89.48% 95.56%

Table 4.8. Base Model with the machine-learning process applied

The base model greatly improves the homogeneity of the fraud and non-fraud
clusters. In particular, it provides a gain of 33% in the precision score and of 6.2-

6.8% in the F-Score.

4.5 Conclusion

This chapter has sought to offer a solution to the problems that arise when working
with highly unbalanced data-sets for which the labeling of the majority of cases is
unknown. In such cases, we may dispose of a few small samples that contain highly
valuable information. Here, we have presented a fraud detection case, drawing on
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the data provided by a leading insurance company, and have tested a new methodol-
ogy based on semi-supervised fundamentals to predict fraudulent property claims.

At the outset, the Investigation Office (IO) did not investigate many cases (around
7,000 cases from a total of 303,166). Of these, only 2,641 were actually true posi-
tives (0.8% of total claims), with a success rate of 48%. Thanks to the methodology
devised herein, which continuously readapts to dynamic and changing patterns, we
can now investigate the whole spectrum of cases automatically, obtaining a total
recall of 96% and a precision of 89-92%. In spite of the complexity of the initial
problem, where the challenge was to detect fraud dynamically without knowing
anything about 99.2% of the sample, the methodology described has been shown to
be capable of solving the problem with great success.

4.6 Appendix. Practical Example

Imagine we have the following output from an unsupervised model:

Class Label

0 1
0 2
0 3
0 1
1 2
1 2
1 3
0 3
0 3
0 2
0 1
0 3
1 2
0 1
1 2

Table 4.9. Class and Labels

The classes represent fraud (=1) and unlabeled (=0). The output label is the
clustering label. As can be seen, just 33% of cases represent detected fraud. If we
group the class by clusters:
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Label Class Subtotal Class Total

1 0 4 4
1 1 0 4
2 0 2 6
2 1 4 6
3 0 4 5
3 1 1 5

Table 4.10. Grouping Labels and Classes

As is evident, the fraud class tends to be assigned to the second cluster.
First we calculate C1.

C 9x04 g a4l

Cl= =0.5733
5
Then we calculate C2 using a similar formula.
194 4+2524+244
c2=4 b > =0.7867

10
As can be seen, C1 gives worst results as its core group (group 2) is quite con-
taminated (66% of observations actually correspond to cases of fraud). This effect
represents 93% of the total effect. The effect of mismatching the core group (1/5)
is negligible, which stresses the importance of constructing a strong core group.

This conclusion is notorious in the case of C2. Non-identified classes are highly
robust in two groups (1 and 3).

If we calculate the CS with oo = 2 (balanced C1 and C2) we obtain:

CS =0.6062

which is a value very close to 0.5733. This formula allows us to balance our results,
giving greater weight to the lower score. We should stress we want both good and
balanced scores; thus, C1=0, C2=1 is not the same as C1=0.5, C2=0.5. Indeed, the
former returns a CS=0. We compare the mean with the CS in Table 4.11.
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cl C2 Mean CS

00 1.0 05 0.00
0.1 09 05 0.18
02 08 05 032
03 07 05 042
04 06 05 048
05 05 05 050
06 04 05 048
07 03 05 042
08 02 05 032
09 01 05 0.18
1.0 00 05 0.00

Table 4.11. C'1 and C'2 Combinations

As can be seen, we obtain the same unbalanced scores as the balanced outcomes
for the mean score. CS penalizes the unbalanced scores. This is why we obtain
different results with the same proportions.

However, we can make adjustments in terms of the relevance we attach to each
group. If we raise o, we penalize the C2 results, and vice versa.

What happens if we choose o« > 2?

Cl 2 a=2 a=4 a=6

0.1 09 0.12 0.11 0.10
02 08 024 021 0.20
03 0.7 034 031 030
04 06 043 041 040
05 05 050 050 0.50
06 04 055 058 059
0.7 03 055 0.65 0.68
0.8 02 050 0.68 0.74
09 0.1 035 061 0.74

Table 4.12. C'1 and C'2 Combinations with o« > 2

As is evident, we obtain two effects. First, while C1 increases, CS also increases
(although C2 decreases at the same rate). But the effect present in the balanced case
now extends further. When we are at C1=0.7, the balanced effect tends to reverse

104



4.6 Appendix. Practical Example
the situation or to slow the increasing rate. The second effect is that the score curve

tends to a linear curve while we increase «. CS is now depending more strongly on
C1 being higher; while the higher « the stronger C1.
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5 Risk Categorization and
Self-Reported Mechanisms in
Automobile Insurance Markets

5.1 Introduction

In automobile insurance markets, companies face a severe problem of asymmetrical
information during the underwriting process: they know next to nothing about their
potential new customers, while the latter might tend to underreport prior claims
when switching to a new company. In these markets, risk classification is generally
explained by adverse selection which is a result of asymmetric information between
insured and insurers. The insured are a heterogeneous group that has more informa-
tion than the insurer, who is unable to differentiate between risk types. Indeed, it is
a costly process for the company to detect who the high risk individuals are, and the
latter have no incentives to reveal their true nature. This results in risk pooling (Ar-
row, 1963), which is necessarily inefficient as it averages the price between the low-
and high-risk insured (Akerlof, 1970). There is a chance that the costs and claims
will be higher than the premium paid by the customer. The opposite is to overrate
the premium, and thereby becoming noncompetitive in the market and reducing the
firm’s amount of customers.

In one period contracts, basic insurance theory suggests that risky customers will
not reveal their true nature and, therefore, a suboptimal Pareto equilibrium with
an average premium will be reached if no additional incentives are imposed (see
Rothschild and Stiglitz, 1976; Stiglitz, 1977). In this chapter we seek to address
the following questions: Are all “bad risks” pretending to be “good risks” as insur-
ance theory suggests? Or is it more nuanced, in that only a subset misreport their
history? How relevant is “misreporting” in predicting risk, i.e. are “misreporters”
particularly risky? And, is there any insight into what type of consumers are likely
to misreport? Using self-reported data and observable data on potential customers
from a leading insurance company in Spain, we find that combining self-reported
data with observable characteristics allow us to reach an equilibrium that is close to
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the public information equilibrium.

The first and most common mechanism to reduce asymmetry information is the
self-selection mechanism: Insureds with different risk types self-select themselves
among a menu of policies offered by the insurers. The result is a Pareto im-
provement compared to the single contract solution with an average premium (see
Crocker and Snow, 2000). Based on the hypothesis that the high-risk individuals
opt for higher coverage, empirical literature have evaluated conditional correlations
between insurance coverage and subscribers’ ex-post risk. The issue with this cor-
relation, however, is that it fails to address the problem of unobserved data, as re-
vealed ex-post the subscription process. Even though we assume that the coverage
is a proxy of the policyholders’ risk, there are additional unobserved differences
among the insured (e.g., risk aversion, precaution levels, etc.). Furthermore, the
fact that there is a correlation between coverage and risk does not mean that ad-
verse selection is assured as it might also reflect moral hazard (which could nullify
the effect). Finally, this correlation is not always conclusive (Dahlby, 1983, 1992;
Chiappori and Salanié, 2000; Saito, 2006).

A second well-known mechanism is risk categorization which is based on vari-
ables that are costless to observe and are correlated with the unobservable risk of
loss. For example, age, gender, type of car, etc. In this case, Pareto improvements
are obtained by using imperfect signals to categorize risks (Hoy, 1982; Crocker and
Snow, 1986). A well-known example is Dionne and Vanasse (1992) who find that
young male drivers are riskier than young female drivers, using data from Quebec
automobile drivers. However, this mechanism may generate an unfair price to the
insured driver as it is based on imperfect signals. Several authors have mentioned
this issue of underwriting and uncertainty. As early as 1982, de Wit pointed out that
the process of setting the premium in non-life insurance was much harder due to
the fact that using external data or shared company data is not always possible. The
insured premium is therefore calculated only by available and measurable factors.
In the end, what usually happens is that companies rely on simple judgment or de-
cision rules. Even more, as mentioned by Kunreuther et al. (1995), the pricing risk
tends to be higher in the existence of ambiguity about the probability of events. It is
very common that private information, hidden within the applicant pool (high-risk
observables as age, license years, etc.), explains a great part of the rejections.

However, if we assume that not all risky potential customers misreport as in-
surance theory suggests, we could combine this information with the traditional
risk categorization method to solve its inefficiencies when predicting risky potential
customers. Our main objective in this chapter is, therefore, to theoretically and em-
pirically evaluate the combination of risk categorization tools and self-reported data
in predicting risky customers ex-ante the policy is signed. Ideally, companies would
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want to know new customers’ unobserved characteristics (such as their past perfor-
mance in other companies, reliability, etc.) to be able to detect high-risk customers
and to distinguish them from those with good records. As we are usually unable
to know the past behavior of a new customer, we propose mixing two mechanisms:
First, observable data from the potential new customer and historical data from the
internal customers as a proxy of the unknown characteristics; second, self-reported
data about past performance behavior.

The Spanish insurance market offers us a good opportunity to evaluate the ques-
tions mentioned earlier and the ability to predict risky customers. Leading compa-
nies subscribe to a private service where they can share historical data about cus-
tomers. Thus, when a new customer switches to another company, prior claims can
be checked. The data comprises responses to only a few questions, but they are very
precise. Specifically, they provide information about the number of years as insured
and the number of previous claims. We can then use this information as validation
of our methodology. Additionally, in the underwriting process, the policies that are
offered are based, in part, on the responses to a number of questions by potential
new customers. These questions also refer to years as insured and previous perfor-
mance. If people were always to tell the truth about their own risk (i.e. revealing
unobserved characteristics), it would be easy to set a fair price. As we observe be-
low, only a very small number of people misreport (5.5% in our data-set), while
those that lie increase the premiums offered to the truthful and, in some cases, this
might even deter them from contracting with said company.

In doing so, we propose a new methodology for predicting risk. As companies
have little information about new customers (but a considerable amount about their
own), and only a small percentage lie about their true risk status, we show below
that we can reduce the asymmetric information problem to one of anomaly detec-
tion. To do so, we propose applying deep variational autoencoder (VAE) models,
that is, representations of neural networks, based on the idea of compressing and de-
compressing data. VAE models learn from a compressed representation of the data
and from the latent variables obtained from the input. We expect the VAE model to
minimize the asymmetric information problem by using a database containing only
observables about new customers and internal customer data. In this way we seek
to construct a model that can detect anomalies during the underwriting process and,
thus, allow a fair price to be set as underreported claims should have been detected.

We conclude that combining self-reported data with risk categorization leads to
two main outcomes: First, we are capable of predicting riskier customers ex-ante
the policy is subscribed, something which we are not capable of when using only
observable data. Second, we show that the most influential variables accounting for
adverse selection are self-reported years as insured, cluster constructed variables
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related to customers’ zip code and characteristics, if the insured was the owner and
first driver in the policy, if the insured’s age was higher than 65, if the customer
was male or female and the number of license years. The evidence we present is
supported by empirical findings, which reveal that a great proportion of high risk
individuals do not misreport their risk nature. Additionally, we present a theoretical
model which helps explaining how combining self-reported data with risk catego-
rization improves the potential profit for the insurer monopoly.

5.2 Literature Review

There is a vast literature on asymmetric information in insurance markets that has
been strongly influenced by contract theory (Rothschild and Stiglitz, 1976; Stiglitz,
1977; Wilson, 1977; Miyazaki, 1977; Spence, 1978; Hoy, 1982; Kunreuther and
Pauly, 1985; Dionne and Lasserre, 1985, 1987; Hellwig, 1986, Cooper and Hayes,
1987; Hosios and Peters, 1989; Nilssen, 2000; Dionne, 1992; Dionne and Do-
herty, 1994; Fombaron, 1997, 2000; Crocker and Snow, 1985, 1986, 2013). Several
mechanisms have been proposed to reduce the inefficiency associated with adverse
selection. The first and most common is the self-selection mechanism, where in-
sureds with different risk types self-select themselves among a menu of policies
offered by the insurers. The result is a Pareto improvement compared to the single
contract solution with an average premium.

With the increasing availability of data (especially, in insurance companies), em-
pirical evidence of adverse selection has acquired relevance. Several studies have
evaluated conditional correlations between insurance coverage and subscribers’ ex-
post risk, based on the hypothesis that the high-risk insured opt for higher cover-
age. Thus, many authors report a positive correlation between risk and coverage
(Brugiavini, 1993; Puelz and Snow, 1994; Chiappori, 1994; Dionne et al., 1999;
Philipson and Cawley, 1999; Richaudeau, 1999; Dionne et al., 2000; Cardon and
Hendel, 2001, Chippori et al., 2002; Finkelstein and Poterba, 2002, 2004; Davidoff
and Welke, 2004; Cohen, 2005; Finkelstein and McGarry, 2006; Chiappori et al.,
2006; He, 2009; Einav et al., 2010; Cohen and Siegelman, 2010).

A second type of mechanisms proposed to solve this resource allocation problem
relies on multi-period contracts theory. Long-term contracting adjust ex-post in-
surance premiums or coverage to past behavior. Several studies have discussed the
static notion of asymmetric information and introduce the notion of dynamic data
to handle the issue of asymmetric learning (Abbring et al., 2003a, 2003b). Based
on historical claims data, we can expect a positive correlation between past and fu-
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ture claims, which reveals the policyholder’s risk type!. Both insured and insurer
may garner information about a policyholder’s risk type. Hendel and Lizzeri (2003)
find strong evidence of dynamic learning based on long-term contracts with a com-
mitment to renew. Finkelstein et al. (2005) and Finkelstein and McGarry (2006)
provide support for this evidence by using data on long-term care insurance. Fur-
thermore, the learning process may not be symmetrical, and the policyholder can
gain an advantage over the insurer. For instance, Cohen (2005) reports a positive
correlation between coverage and risk for new customers with three or more years
of driving experience, but finds no-correlation amongst new customers with less
experience.

However, dynamic learning can only solve the lack of information problem ex-
post the contract is signed, i.e., companies have to wait until policy renewal to
resolve the problem. Additionally, companies are reticent to share past informa-
tion about their own customers. Given that new customers tend to underreport
prior claims when switching to a new insurer, each insurance company does in
fact have an informational advantage over other companies as regards repeat cus-
tomers. However, as D’Arcy and Doherty (1990) point out, insurance companies
do not allow intermediaries to sell private information about their customers, and
so by retaining information hold on to their market power. This practice has also
been studied by Cohen (2008) who finds evidence consistent with insurance com-
panies retaining private information about repeat customers. She demonstrates that
companies obtain higher profits from repeat customers who have good records, and
that these profits rise the longer the customer remains with the company. During
the course of a contract, a customer’s risk level may be revealed and this enhanced
ability to determine an appropriate premium risk should result in higher profits.
In this way, companies can discriminate their prices so that, eventually, customers
with good records stay and those with bad records switch to another company. The
problem remains, however, insofar as the company to which a customer is switch-
ing does not have this information and cannot, therefore, distinguish between those
with bad records and those that switch due to exogenous factors.

A third type of mechanisms are those related with categorization of risks. In
this case, Pareto improvements are obtained by using imperfect signals to catego-
rize risks. Hoy (1982) is the first to theoretically analyze the effect of risk catego-
rization in the market equilibrium, however, his conclusions about the usefulness of
the method are ambiguous. Crocker and Snow (1986) compare utility-possibility
frontiers with and without risk categorization, and they find that prior categoriza-
tion results in a Pareto improvement below a specific threshold. Empirically, private

Other relevant studies are Israel (2004) and Dionne et al. (2013).
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information and rejections in insurance was studied by several authors. High-risk
observable characteristics are usually applied by insurers to deter potential high-risk
insureds. Murtaugh et al. (1995), in long-term care insurance, estimate that between
12-23% of potential customers would be rejected if everyone applied at the age of
65 (20-31% if applied at 75). Hendren (2013) reports that between 2007 and 2009,
1 in 7 applicants to the four largest health insurance companies in the United States
were rejected, and shows how the existence of private risk information implied that
insurance companies rejected people only based on observables (for three different
health insurance markets). There is a vast literature that relates risk classification
and observable characteristics. Puelz and Kemmsies (1993), Lemaire (1995) and
Doerpinhaus et al. (2008) evaluate the impact of gender and other demographic
variables on premium pricing. Age and risk classification is another well-studied
relation (Brown et al., 2007; Braver and Trempel, 2004; Tefft, 2008). Dionne and
Vanasse (1992) find strong evidence between risk and young males, and also be-
tween risk and classes of driver’s license.

Several authors propose different classification systems to classify risk in insur-
ance: statistical measures (Tryfos, 1980; Freifelder, 1985; Lemaire, 1985; Samson,
1986; Dionne and Vanasse, 1992), linear models (Samson and Thomas, 1987; Ohls-
son and Johansson, 2010; Bortoluzzo et al., 2011; David, 2015), clustering tech-
niques (Williams and Huang, 1997; Smith et al., 2000; Yeo et al., 2001). However,
these kinds of models have several limitations regarding: solving non-linear rela-
tions, the existence of too many variables, and high dispersion (which is quite com-
mon for insurance databases). A few recent studies have started to apply machine-
learning and data mining techniques to claims and risk (Gepp et al., 2012; Guelman,
2012; Liu et al., 2014; Yang et al., 2015; Kascelan et al., 2015). In our case, we pro-
pose using a deep Variational Autoencoder approach. Autoencoder networks have
traditionally been used in image classification (Tan et al., 2010; Krizhevsky and
Hinton, 2011; Hinton et al., 2011; Walker et al., 2016; Pu et al., 2016; Theis et al.,
2017); however, they have recently been used more frequently with structure data,
especially in relation to anomaly detection problems (Dau and Song, 2014; An and
Cho, 2015; Andrews et al., 2016; Zhai et al., 2016; L. Paula et al., 2016; Zhou and
Paffenroth, 2017; Cozzolino and Verdoliva, 2017; D’ Avino et al., 2017; Schreyer
et al., 2017). The main advantages of using variational autoencoder networks are:
Firstly, they can reduce data to their true nature, cleansing them of any undesired
features and noise. Here, we have a large data-set containing many variables about
internal customers, but as we do not know which are relevant for predicting risky po-
tential customers, VAE should be able to help us address this problem. It works by
reducing the number of nodes through hidden layers, so that we can extract the ac-
tual features representing the data. Secondly, existing outlier detection approaches
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are usually based on notions of distance and density, meaning they work in the orig-
inal data’s space. As a result, they tend to underperform when applied to nonlinear
structures. To solve this issue, a deep autoencoder model can be transformed into a
powerful semi-supervised outlier detection model.

5.3 Theoretical Model

The model developed by Rothschild and Stiglitz (1976) and further elaborated by
Stiglitz (1977) introduces a risk neutral private monopoly that offers insurance cov-
erage ((3;) for an insurance premium (c;) in a single-period contract and under pub-
lic information. For simplicity, there are three types of risk (i € {L, M, H}). Ini-
tially, we assume that risk type A and M have the exact same level of risk. Thus,
pH = pum > pr- Each insured owns a risky asset with monetary value D(x) which
depends on two possible states of the world x € {n,a}: a represents the accident
state with probability p;, and n represents the no accident state with probability
1 —p;, such that D(a) = 0 in state a and D(n) = D in state n.

The expected utility of the insured under the contract C; = {«;,3;} and initial
wealth W), is equal to:

V(Cilpi) = piU(Wo — D — B;) + (1 — p; )U(Wo — ;)

which is strictly concave and satisfies the von Neumann-Morgenstern axioms?.

Therefore, with public information and without transaction cost, the problem can
be summarized as:

Jnax. Y ail(1—pi)ai —pif3i]

Subject to the participating constraint V (C;|p;) > V;O (the monopoly can extract
all the consumer surplus). In presence of public information about insureds’ risk, it
can be proved that insureds get full insurance coverage (58; = D — o), that there is
no consumer surplus, and that ay, < apy = ay. We illustrate this solution in Figure
5.1. As the monopoly can distinguish between insureds, it offers one of three con-
tracts: {C7,C%,,Cj;} to which insureds are indifferent between the offered contract
and the self-insurance contract Cj.

Hereinafter, we assume the existence of private information about insureds’ risk
types. Theory suggests that if the monopoly offers the same contract to different
risk types, it is rational for both, H and M, to move to a contract C';, and, the
consequence is a pooled equilibrium where the monopoly cannot distinguish among

U >0,U" <.
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Wa A

Wo-D

Figure 5.1. Public Information Equilibrium

individuals. In this case, introducing incentives will allow low risk individuals to
reveal their true nature by subscribing a policy with limited coverage at a lower
price. Formally, a self-selection constraint is defined as:

Basically, it guarantees that insured 7 prefers his or her own contract over any
other contract. From Figure 5.1, it is clear that if the contracts {C},C},,Cy;} are
offered, both L and H will pool in C';. Therefore, in order to avoid a pooled equilib-
rium, the monopoly should offer a combination of contracts that does not encourage
high risk individuals to pool with low risk individuals. For instance, the insurer can
offer a set of contracts where high risk insureds are indifferent between the low risk
contract and their own contract. And, if they are indifferent, low risk insureds will
strictly prefer their own contract. Therefore, the maximization problem is defined
as:

Jnax Y ail(1—pi)ovi — piBi)
sa. V(Cjlp;) =2V (Crlp;) j=H,M .1y
V(Cilpr) > U}
Figure 5.2 shows the solution of this maximization. The monopoly offers C}} =
C37 to H and M who are indifferent between this contract and the contract C7*
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offered to L. It also shows that '} = C}} is strictly preferred to C%; = C7},, which
means that the participation constraint is not binding for these groups (and, there-
fore, their consumer surplus is not fully extracted). Additionally, insureds L get no
surplus but they strictly prefer their contract to the one offered to M and H individ-
uals. Finally, individuals L get a lower coverage and a lower price compared to the
contract C7 .

\‘C-'a s
H 33 — h:]i?)
Wo-D | H=M
L
Wn

Figure 5.2. Private Information Equilibrium

In conclusion, monopoly profits are increased compared to a situation without
any revelation mechanism, which does not necessarily correspond to the best risk
allocation or the maximum profit allocation, as good risk individuals are partially
covered (they may even refrain from purchasing any insurance at all). Specifically,
it can be demonstrated that S ;, = D — 04’1‘2}‘7 ;and B, <D —aj".

5.3.1 Self Selection Mechanism

This subsection presents a extension of the model first developed by Rothschild and
Stiglitz (1976) and extended by Stiglitz (1976). As we will test empirically below,
in certain cases one might find that some high risk individuals reveal their true na-
ture (we will discuss later why those insureds might be willing to self-report their
true nature). For now, we know that insurance theory suggests that with private
information and without incentive constraints, high risk individuals choose to pool
with low risk individuals because by doing this they can get full coverage at a lower
price. Then, suppose that we have the same groups of insureds but one group (the M
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insureds), for some reason (idiosyncratic reasons, fear to future penalization, differ-
ences in risk aversion, etc.), reveals its true nature and, therefore, the monopoly has
public information about it. In this case, the monopoly can increase its benefits by
offering a new contract to which this group is indifferent between the new contract
and self-insurance (see Figure 5.3).

Wa 4

Wo-D

Wn
Figure 5.3. Semi-Private Information Equilibrium

In this situation, the monopoly must still separate between H and L and, thus,
the maximization profit problem can be defined as:

Y Y al(1—pi)ai —pifi]
sa. V(Cjlpj) =V (Cilpj) j=HM (5.2)
V(Crlpr) > U}
Proposition 1. In the presence of semi-private information, i.e., a situation where

the monopoly knows the nature of some high-risk individuals (e.g., insureds M ), the

optimal one-period contract equilibrium has the following characteristics:

e The monopoly offers Cyrx such that individuals M have no consumer sur-
plus: V(Ci/lpa) = Vi)

e The monopoly offers C7* to insureds L and it also extracts the consumer
surplus: V(C5*|pr) = V).
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o Insureds H strictly prefer C; to Cyrx and they are indifferent between C7*
and C%f. Consumer surplus is positive: V (Ci5|pu) > Vi

e Both, H and M get full coverage equal to 377 = D — o7 and 33, = D — o}
Individuals L get partial coverage (or no coverage) at a lower price, more

precisely, 7% < B < By and o7 < ajf < oy

e The monopoly profit is in this case higher than in the full private infor-
mation equilibrium but lower than in the public information equilibrium:

7( z*a X}acﬁ)<7( Z*, 7\/[?0}?)<7T( Z: X470;I>'

In conclusion, the monopoly increases the profits compared to the private infor-
mation case. However, partial coverage (and even no coverage) and offering a lower
price to low risk individuals is still necessary to separate between high and low risk
individuals.

5.3.2 Risk Categorization

The monopoly can combine information from some of the high risk individuals that
have revealed their true nature and a risk categorization mechanism to separate high
risk individuals from low risk individuals. The risk categorization theory suggests
that imperfect information such as observable characteristics can be used to obtain
Pareto improvements for resource allocation (Hoy, 1982; Crocker and Snow, 1986).

Suppose for example that we have derived two possible groups from the observ-
able characteristics of self-selected insureds. Then, we assume that insureds differ
in characteristics that are costless to observe and which are also correlated with the
unobservable risk. By using this information, we separate between: Group A with
a proportion of high risk individuals wf[ and low risk individuals wf, and group B
with a proportion of high risk individuals wg and low risk individuals wf . The ob-
servable characteristics determine the proportion of high risk individuals is higher
in the group A than in the group B, that is, wg > wfl and wf > wf (wfl =1- wf
and wf[ =1- wf). Bearing this in mind, we derive the proposition below. For sim-
plicity, we add a group C' in which we know all individuals are type M individuals.
The size of each group is defined as: qr,, qps and gz, respectively.

Proposition 2. In the presence of semi-private information, it is possible to reach
the Pareto optimal equilibrium under perfect information if there are characteristics
that are costless to observe and which correlate perfectly with the unobservable risk
of loss.

To demonstrate this, we first define the profit definition under perfect information:
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pi* = qrm(Crlpr) +amm(Cyrloa) + aamChlpm)

If the monopoly knows that the characteristics are highly correlated with the risk,
then it can offer group A (with a high proportion of low risk individuals) the contract
offered to L in the perfect information case (C7 ), and it can offer group B contract
C7;. Thus, the profits with risk categorization and self-reported risk can be formally
defined as:

7' = qalwim(Chlpa) + (1 = wip)w(Cflpr)]+

B * B * * (5'3)
qplwgm(Crlpn) + (1 —wg)7(CrlpL)] +qom(Chylpar)

If the categorization is accurate: wﬁ, — 0, wfl — 1,94 — qr, and gg — qg. Then,
we can conclude that:

aBC o

Proposition 3. In the presence of semi-private information, there exist equilibria
in which the monopoly can get higher profits than the private information equi-
librium (but strictly lower than the perfect information equilibrium), if there are
observable characteristics that are costless to observe and which do not correlate
perfectly with the unobservable risk of loss. The stability of these equilibria finally
depend on to which extent the risk categorization tool correlates with the risk.

If the monopoly offers group A contract C7, group B contract C';; and group C'
contract C';,, the monopoly profit can be defined as:

7R = g4(1 —wip)m(Chlpr) + qp(1 — wh)w (Cylpr) +

A v B_ (v . (5.4
qawym(Crlpm) +apwym(Crlpm) + aem(Chrlpar)
However, if the signal is imperfectly informative, then, some L individuals are
offered C7;. Thus, the participation constraint is violated because at this particular
utility level, L does not participate. As a result, 7(C|pr) = 0, which implies
that without a perfect signal, profits are strictly lower than the profits under perfect
information.
We now focus on the next part of the proposition. That is, if there exist equilibria
where imperfect information allows the monopoly to get higher benefits than with
private information. That is:

7TOR > ——

Which is equivalent to:
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R = g 1 —wh) (1 —pr)at —prBi]

+qawii[(1—pr)af — pu i)

+apwi[(1—pr) ot — paBu+]
+am[(1—par)ains —pm Byl > (5.5)

™ =qr[(1—pr)or —pLBL]

+am[(1—par)ans —pmBil

au|( —pu)oy —prby

Rearranging and replacing gy = qufI + quE, and g, = qa(1— wé) +qp(1—
wh):
qa(1—wip)[(1=pr)(af — o) —pr(B; - B1°)]
—qp(1—wi)[(1—pr)at’ —pLﬁL**]
(5.6)
+qawi[(1—pu)(af — o) = pu (5] = Bif)]
+apwil(1—pm) (g —aff) —pr (B — B3]

The first term is the profit from moving the L individuals in A from the contract
offered in the private information case (C7") to the perfect information contract
(C7). Since we know that 37 = D —aj and 87" < D — a7, then o] —aj" >
B7 —B7*. In consequence, we can conclude (by logically assuming that 1 —pr, > pr)
that this term is strictly positive.

The second term is the opportunity cost of the L types who previously were
placed in group B and who now decided to not participate (which is strictly nega-
tive).

The third term represents the loss obtained by offering H types in A the Cp*
contract instead of offering the C'}; contract. As we previously stated, ™ < o™ and
B7 > B3 . Therefore, this term is also negative.

Finally, the last term is the profit of moving H individuals from C7; to the con-
tract C%;. As aj; > g and B3, < 337, this term is positive.

For homothetic preferences we can derive that 57 — 37 = ajf —aj and 85 —
B3 = ajf — ajy, and assuming that g4 = gp, we can formally define:

(1 —wip)[(1 = pr)(af — o) = pr(B; = Bi)] +wh(af — afy)

B *k v *ok * (57)
> (1—wi)[(1—pr)ai prBi]+wi(af — o)

Based on the above, we know that the first two terms are positive. This inequality
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will always be satisfied if wfl — 1 and wé — 0. That is, the equilibrium is sus-
tainable if the group membership is sufficiently informative. In conclusion, we can
reach the perfect information equilibrium with an imperfect signal if it is sufficiently
informative.

5.4 Data

In this section we introduce the data that will be used to test, firstly, whether all
high risk individuals pretend to be low risk individuals as basic insurance theory
suggests; secondly, the advantage of using this information to predict ex-ante risk.
Our data set not only contains self-reported data about past claims but also data pro-
vided by an external database which is used to corroborate what potential insureds
have self-reported.

If our hypothesis that not all high risk individuals misreport is true, we expect that
adding self-reported data to observable characteristics will strengthen our predictive
power.

5.4.1 Description of the Data

The data comprises a sample of vehicle insurance policies that were offered to new
customers in Spain by a leading insurance company during the first six months of
2018 (14,817 observations). Each observation represents an offer made to a new
customer that may have been transformed into a policy or not.

Before the policy is subscribed, the potential customer provides information about
his or her observable characteristics and about the vehicle that is to be insured. The
company then asks a few questions about past performance, specifically about his-
torical claims and number of years as insured. This process takes place before the
customer is informed of the final price.

During the period of analysis, leading insurance companies in Spain also have
access to a source of unobservable risk data, which was provided by an external
service. This database held information about a potential new customer’s prior
claims with other companies. Every time a new customer wanted to subscribe a
new contract, this database was consulted using his or her national identification
number.

In our case study, the company asked a potential customer a series of questions
before offering a price. The answers given by the customer were later checked
against the information available in the database provided by the external service.
Customers were unaware of this process and so it provides us with a good opportu-
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nity to identify customers who fail to reveal their true risk status. By comparing the
answers provided by the new customers to the information held on the database, we
can verify just how capable we are of identifying individuals that underreport their
prior claims.

I . I Observable Data .
Answer questions
Collected (age, . .
. related to prior claims
gender, license years,

and years as insured

Potential Customers vehicle usage, tc.) . .
Price offer is

realized based Subscribe o
—— on bonus > .
no
al
|::> National Id |::> @ /malus
approach

External Service:
Returns objective

aANsSwers —_—

Figure 5.4. Policy Subscription

The company set the premium price as follows: After the potential customer
had answered questions relating to number of years as insured and number of
prior claims, a simulation bonus was calculated based on these answers. The ex-
ternal database was consulted and a corresponding bonus was generated. A final
bonus/malus was then offered after contrasting the simulations in line with certain
rules. Further details about customer responses and how the bonus was calculated
are included below in subsection 4.2: Target Variable.

As discussed, one of our main objectives is try to predict, ex-ante, risky cus-
tomers, especially, those individuals that misreport claims. As stressed, insurers
usually do not know whether a new customer is hiding risk information or not,
given that this information is essentially unobservable. We do however have access
to an external source, but our aim herein is to find a way to avoid having to resort
to using it. Therefore, in what follows, we only consult this database to control and
evaluate our results.

Internal Data

As emphasized above, the main problem we face is that we have no information
about unobservables, i.e. data related to the prior performance of new customers.
However, we do have a great deal of rich, detailed information about internal cus-
tomers. How might this help us predict risky potential customers? What we propose
is using the information we have about active customers as a proxy for the new cus-
tomers’ past behavior. We can achieve this by segmenting the observables of the
internal customers to detect which profiles are most likely to be risky. Thus, we
use a database containing information about customers that signed a vehicle policy
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between January 2013 and December 2017, and compare it with the characteristics
of the company’s potential customers during the first six months of 2018. In total
we have 191,746 customers after sanitization, with more than 50 variables concern-
ing the customer (gender, age, zip code, etc.), the vehicle (usage, type, brand, etc.),
the intermediary (number of policies, number of claims, etc.) and past performance
(number of policies, number of claims, number of guilty claims, claims cost, etc.).
The goal is to create aggregated pools of observable data that can be matched with
unobservables.

It should be borne in mind that each policy has a different life cycle, i.e., they do
not all necessarily start and finish on the same date and are, therefore, not directly
comparable. To rectify this, we normalize the past performance variables by the
number of days during which the policy was active. For instance, in the case of two
policies, each registering a single claim, but where one was signed a year later than
the other policy, the older of the two is assumed to have a lower risk. Basically, we
follow the formulation below:

g

(Nactivepolicydays + 1)/365

Ti=

Table 5.1 displays the variables in the internal data-set. It can be seen that the
average customer is 48.93 years old and has been a customer for an average of 2.32
years, 67% of all customers are male and 80% are Spanish. In general, a customer
has 1.51 policies (1.39 vehicle policies), and has been in possession of a driving
license for 25.62 years. On average, a customer has 0.49 claims per year, of which
36% are guilty claims, with an estimated cost of 243.36 euros. 80% of all the
policies sold by intermediaries are vehicle policies and, in general, for each, one
claim is registered. Finally, the vehicles are worth an average of 21,854.20 euros,
and are 9.62 years old.

Based on the observable variables in the internal customer database, we can pool
types associated with different risk levels. To do so, we use unsupervised meth-
ods to cluster our observable data and then rank the clusters in terms of risk (past
claims/cost). Thus, we expect to be able to capture riskier groups based on ob-
servables and to be able to match outcomes with the potential new customers’ ob-
servables. Based on several evaluation metrics, we use a K-means++ (Arthur and
Vassilvitskii, 2007) approach for obtaining four different categories of clusters: 1)
ZIP code risk, 2) Intermediary risk, 3) Object risk and 4) Customer risk (see Ap-
pendix: Clustering Observable Risk Variables for a more detailed analysis).
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Name Group Type Description mean std
Number of claims Claims Integer | Number of claims per year 0.49 1.03
Number of vehicle claims Claims Integer | Number of vehicle per year 0.47 1.01
Claim cost Claims Float Total claim cost per year 243.36 1,746.15
Refused claims Claims Integer | Number of refused claims 0.01 0.08
Guilty car claims Claims Integer | Total number of guilty car claims per year 0.37 0.84
Guilty claims percentage Claims Float Percentage of guilty claims respect to total claims 36.73 45.64
Gender Customer Boolean | If insured gender is male equals 1, otherwise 0 0.67 0.47
Age Customer Integer | Customer age 48.93 13.27
Years as a costumer Customer Integer | The number of years as a costumer 232 1.46
Postal code Customer Integer | Postal code number - -
Id type Customer String Customer national ID type - -
Birth date Customer Date Birth date - -
Nationality Customer String Customer nationality - -
Residence country Customer String Customer residence country - -
Initial date as a costumer Customer Date Initial date as a customer - -
Date of birth first driver Customer Date Date of birth first driver - -
Date of birth second driver Customer Date Date of birth second driver - -
License expedition date first driver Customer Date License expedition date first driver - -
Quantity of policies Customer Integer | Total number of policies 1.51 1.13
Quantity of car policies Customer Integer | Total number of car policies 1.39 0.97
Policy initial date Customer Date Policy initial date - -
Risk driver age Customer Boolean | If driver age is lower than 22 years old equals 1, otherwise 0 0.00 0.04
Risk second driver age Customer Boolean | If second driver age is lower than 22 years old equals 1, otherwise 0 0.01 0.09
License years Customer Integer | Number of years of the license 25.62 12.81
Risk license years Customer Boolean | If license years is lower or equal to 1, then 1, otherwise 0 0.00 0.06
Risk second driver license years Customer Boolean | If second driver license years is lower or equal to 1, then 1, otherwise 0 0.01 0.08
Nationality region Customer String Nationality region (South America, West Europe, etc.) - -
Foreigner Customer Boolean | If customer is not Spanish equals 1, otherwise 0 0.20 0.40
Intermediary: number of vehicle policies | Intermediary | Float Number of policies per year 500 793
Intermediary: number of vehicle claims | Intermediary | Float Number of claims per year 400 586
Intermediary risk Intermediary | Float Number of claims over the number of policies 0.98 0.49
Vehicle intermediary risk Intermediary | Float Number of vehicle claims over the number of vehicle policies 1.02 0.50
Vehicle policy share Intermediary | Float Number of vehicle policies of the intermediary and the number of total policies 0.80 0.19
Vehicle usage Object String Particular, rental, industrial, etc. - -
Vehicle value Object Float ‘Vehicle value in euros 21,854.20 | 11,455.52
Vehicle class Object String Pick up, familiar, track, etc. - -
Vehicle aggregation Object String Tourism, van, all terrain, etc. - -
Vehicle power Object Integer | Vehicle power 109.71 47.67
Vehicle brand Object String ‘Vehicle brand - -
Vehicle model Object String ‘Vehicle model - -
Vehicle category Object String Particular, Motorcycle, Others - -
Vehicle fuel type Object String Vehicle fuel type - -
Vehicle heavy Object Boolean | If vehicle weight is higher than 3,500 kg equals 1, otherwise 0 0.00 0.02
Vehicle age Object Integer | Vehicle age in years 9.62 7.27

Table 5.1. Internal Customer Data
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Offer Data

These data include details of the policy terms offered to potential new customers.
The information is very similar to that of our internal data and we can, therefore,
use this database as a comparable source. The ultimate goal is to match the labels
obtained above from the clusters with the observable variables associated with these
offers. For instance, to a potential customer of certain characteristics (that is, age,
gender, license year, etc.), we can assign him or her a risk level based on the cluster
labels. The other information about the customer and his or her vehicle can then
serve as our predictors.

5.4.2 Target Variable: The Definition of Risk

Once potential customers have reported details about their characteristics, the ve-
hicle they wish to insure and the policy type they are interested in purchasing,
the company applies its own specific rules in order to calculate the final price.
Each policy has a technical price (or base price) and, as Chiappori and Salaniee
(2000) explain, all insurers are required by law to apply a uniform price based on
a “bonus/malus” approach. The premium can, therefore, be defined as the product
price (technical price) plus a bonus coefficient:

Premium = 1+ bonus/malus

Each company has its own rules, but in general, the premium is closely correlated
to past claims and, to a lesser extent, years as insured.

In the case of this particular company, it asked customers various questions before
offering them a price. With the information obtained, it calculated a “simulated
bonus” based on answers to the following questions:

1. Years as insured.

2. Years as insured in a previous company.
3. Guilty claims.

4. Guilty claims in the last three years.

5. Previous company.

However, before subscribing the policy, the company accessed an external database
in which the leading insurers shared the same information regarding claims and
years as insured. Using these data, the company also set an “adjusted bonus” for
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the potential customer. For example, a person may had declared zero claims and so
obtained a positive simulated bonus, but on consulting the database if the company
found that, in fact, he had made five claims, then he received a negative adjusted
bonus. A comparison of the two outcomes allowed the insurance company to decide
whether to add a discount or a penalty to the technical premium. The company was
then in a position to offer a policy based on the “emission bonus”. The comparison
considered two components — level and percentage — and follows the rules set out
below:

1. If simulation bonus level < adjusted level bonus, emission bonus == simu-
lation bonus.

2. If simulation bonus level == adjusted level bonus, emission bonus == sim-
ulation bonus == adjusted bonus.

3. If simulation bonus level— adjusted bonus level == 1 and adjusted bonus
> 30%, emission bonus == simulation bonus.

4. If simulation bonus level — adjusted bonus level == 1 and adjusted bonus
< 30% , emission bonus == adjusted bonus.

5. If simulation bonus level — adjusted bonus level > 1, emission bonus ==
adjusted bonus.

If people always tell the truth, the price can be assumed to be fair. However, not
every potential customer reveals his or her true nature, which is why insurance com-
panies checked details to the external service. This external database held the true
responses to the previously asked questions and, so, calculated the discount/penalty
that had to be applied if the customer had not been truthful. In this way, the prob-
lem of risk categorization is reduced to simply detecting who has lied during the
underwriting process.

Thus, in accordance with the insurance company, a person was not telling the
truth when rules 4) and 5) did not hold, i.e., when the simulation bonus was replaced
by a lower adjusted bonus. Our target variable is, therefore, 1, when 4) and 5)
apply, which represents 5.5% of total offers. This is the key point to understand
our particular definition of risk: An algorithm detecting risk is actually an
algorithm that can detect who has misreported, that is the potential customers
who intentionally hide information about their true nature.

Here, we focus only on simulation bonuses that are zero or positive, because the
company’s system does not allow us to continue the process with negative bonuses.
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In Figure 5.5, we show the simulated and adjusted bonus distributions. Simulated
bonuses tend to be concentrated at 60%, and adjusted bonuses between 40-60%.
Based on the above rules, we obtain a target variable that indicates that 5.5% of
the policy offers have had their simulation bonus modified (see Figure 5.6). This
means that, in the case of almost 95% of the offers, checking the external database
was unnecessary as the simulation bonus was already correct, i.e., potential cus-
tomers had not lied. As such, the problem we face is detecting a small number of
potential new risky customers, in other words, we have to address an outlier prob-

lem.

5.5 Methodology

We carry out our tests by taking advantage of a deep Variational Autoencoder
model: A deep autoencoder is a representation of a neural network, trained by
unsupervised learning. It permits a dimensional reduction to be applied in a hi-
erarchical fashion and for learning to take place from reconstructions that are close
to its original input. By successively stacking encoders, it is capable of obtaining
more abstract features. The encoder and decoder are usually nonlinear mappings,
which consist of several layers of neurons. The encoder maps the input vector ()
to a hidden representation which is then mapped back by the decoder to a recon-
structed vector (). By reconstructing the data with low dimensions, we expect
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to obtain the data’s true nature or the specific target we seek, especially as we are
dealing with many variables without knowing which are relevant or not.

A major advantage here is that we can use the autoencoder as an outlier detection
model. Reconstruction errors in the data points (the difference between the original
value and the compress-decompress value) can be used as an anomaly score. The
idea is to transform the model into a semi-supervised model, using only normal
instances to train the autoencoder. Data points with high reconstruction errors are
considered anomalies. After training, the autoencoder is able to reconstruct normal
data whereas it is unable to do so when it encounters anomaly data, which it has not
seen before.

We can also exploit here variational autoencoder (VAE) models, which are a
modification of autoencoder models but with an added constraint on the encoded
representation. More specifically, it is an autoencoder that learns a latent variable
model from its input data. As such, the main difference is that the autoencoder
is a deterministic model that does not use probability foundation, while VAE is a
generative model. Instead of letting the neural network learn an arbitrary function, it
learns the parameters of a probability distribution that models the input data. Figure
5.7 illustrates a schematic VAE model (a detailed analysis and validation of the
model is presented in Appendix: Variational Autoencoder Model Validation).

We propose driving the VAE model as semi-supervised learning and comparing
it with other machine-learning and deep-learning models. We split our data-set in
the following way:

1. Training Set: 70% of the Normal data is used as the training set.
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2. Normal Test Set: Of the remaining 30%, we retain a percentage equivalent to
the abnormal set as part of the test set.

3. Abnormal Test Set: The other part of the test set is made up of the abnormal
cases. We therefore have a 50/50 test set.

4. Valid Test Set: The remaining normal data are used in the model as a valida-
tion set.

In short, we obtain the following samples:

1. Training Set (10,547 obs.)

2. Valid Set (3,649 obs.)

3. Normal Test Set (872 obs.)

4. Abnormal Test Set (872 obs.)

The final algorithm of the proposed method is shown in Algorithm 3.
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Algorithm 3: Semi-supervised Variational Autoencoder Model
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Data: Normal data-set 2y, Abnormal data-set z4(i) i =1,...,N ,
threshold t* € T'

Split the Normal data-set: (2% (5), 2881 (k), 2%¢° (i) € o

Train VAE model using the data-set x%ai"

valid
fL'N .

and the validation data-set

Initialize the encoder (f) and decoder (g) parameters.

for e epochs to convergence of f, g parameters do
for j to J do

We draw random samples L from € ~ A(0,1);

We get the random variable z(j, 1) from the deterministic
transformation based on €(5), %% (j), j € J, 1 € L;

We calculate V AEj,s5(2(j,1), 259" (5)) and
VAEloss(va})\(leid(k));

Update encoder f, decoder g parameters;

end
end

Use the trained model as anomaly detection model applied to
atest(i) = {alg*! (i), 2a(0) }:

fort €T do
fori=1t0 N do

2(1), Z10g(c) (1) from the encoder function f applied to z"***(i);

We draw random samples L from z ~ N (2,(i), 21040 (7)) for
l=1toL do
We get 2,(1,1), Z104(c) (4, 1) to calculate the probability of the
original data (parametrizing the decoder function g)
end

reconstructionerror(i) =
atest(i) — 3 X1y p(a?° 2, (i.1), £10g(o) (i,1)) where p is the
likelihood of the 2! given the latent variables which derive the
parameters of the original input variable distribution;

if reconstructionerror(i) > t then x'°*(3) is an anomaly, § = 1;

else /°*(4) is not an anomaly, §) = 0;
end

We calculate Fy(y,9)
end

We get ¢t* from F} = argmaz{Fi(t)}.
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5.6 Results

5.6.1 Misreporting Behavior: Testable Implications

The hypothesis to be tested in this section is whether all high risk individuals pretend
to be low risk as basic insurance theory suggests, or if it is more nuanced in that only
a subset misreports.

One limitation of this analysis is that the data on potential customers who got a
negative simulated bonus, and therefore did not continue with the policy subscrip-
tion, was not stored. This may affect the predictive power negatively, as we train
with a lower proportion of sincere customers (assuming that the probability of a
person telling the truth was higher in the rejected group). Also, this limits the de-
scriptive analysis, because we can only hypothesize about risky potential customers
between a limited range of the simulated bonus (from 0% to 60%). However, bonus
below 35% indicates at least one self-declared claim in the last three years.

In Table 5.2 we present the lower bound distribution of the simulated bonus. Thus
we have two potential risk simulated bonus outputs: 0% and 10%. Those results are
reached by a combination of at least one year as insured, between one and three
claims in the last five years or at least one claim in the last year. For instance,
we have 89 potential customers that declared between one and three claims and a
certain number of years as insured, but they finally got a negative bonus of 80%
(because they had more claims than they declared).

Theory suggests that customers with the same type of risk will be pooled together.
However, we find evidence that this relation is not empirically evident. The distribu-
tion is quite homogeneous between those who truly self-reported their nature (101
individuals reported their true risk) and those who misreported it (117 individuals).
Additionally, 337 individuals reported a higher risk than the actual assigned risk. A
feasible reason of this behavior is that they also revealed claims in which they were
not the guilty drivers, as a precaution of future penalties. Contrarily, the database
only reports cases in which they were considered as guilty drivers. The 438 cases
(337 plus 101) that did reveal their true nature are not negligible at all if we consider
that 872 individuals were finally labeled as risky customers.

One pending question is why people with similar risk chose to misreport or not.
Ex-ante, they had not been informed that their answer would affect their outcome
and they did not know that companies share this information®. However, they may
infer that revealing certain information related with past claims could impact the
final price. The reasons of misreporting seem to lie in unobservable differences

31t is important to remark that with the new General Data Protection Regulation implemented in
European Union since 2018, this database is no longer available.
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Simulated (%)
Adjusted (%) | 0% 10%

-80% 49 40
-40% 0 0
-25% 7 1
-20% 7 1
-10% 5 3

-5% 3 0

0% 22 5

10% 57 79
20% 0

30% 0 0

35% 44 27
40% 0 1

45% 88 32
50% 34 5

55% 40 9

Table 5.2. Simulated and Adjusted Bonus for High Risk Potential Customers

among potential customers, such as different level of risk aversion or idiosyncrasy,
that affect the choices of self-reporting (for a detailed analysis we recommend Co-
hen and Siegelman, 2010).

The question is, if there are any generalizable insights on what type of customers
are likely to misreport. We examine a probit model with several variables typi-
cally associated with risk categorization as the independent variables, and using the
probability of misreporting as the dependent variable. The information in Table 5.3
indicates that males or young people are more likely to misreport, which supports
the findings of Dionne and Vanasse (1992). Additionally, we find that the number
of license years reduce the risk and, surprisingly the vehicle age, which could be ex-
plained by a non-linear relation. Most important, however, is to see the effect of the
cluster variables which are proxies between observables and the risk of internal cus-
tomers. Results report that the four cluster variables are positively correlated with
the risk of potential customers and, therefore, support the evidence that observable

variables are correlated with the risk.

Bearing in mind that observable characteristics can explain risk, the main ques-
tion we want to solve is whether or not self-reported data is useful to predict risk.
Therefore, in the next section, we first present several models with only observable
data. Then, we repeat the process, but this time including additional self-reported

data, and compare results.
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Pr(Risk) dy/dx Std. Error Z
Gender 0.0287*** 0.004 6.694
Age (18-30ys) 0.0229*** 0.008 -2.858
License Years -0.0024%*%** 0.000 -15.14
Vehicle Age -0.0016%** 0.000 -5.698
ZIP Risk 0.0029%*%* 0.001 2.868
Intermediary Risk | 0.0162%*%* 0.003 6.219
Vehicle Risk 0.041%** 0.003 13.696
Customer Risk 0.008*** 0.001 6.986

Table 5.3. Estimates Probit Model

5.6.2 Predicting Misreporting Behavior with Observable
Characteristic

The input of the Variational Autoencoder model are the cluster variables, the poten-
tial insureds’ observable characteristics and the answers to the questions related to
their past performance. We predict whether a potential insured is risky before the
policy is subscribed and compare the models’ accuracy by using recall and preci-
sion metrics*. Prediction results for potential customers during the first six months
of 2018 will be displayed in detail below.

Table 5.4 reports the results regarding the predictive performance of the varia-
tional autoencoder network. That is, the ability to predict who has lied during the
underwriting process before subscribing the policy. This was applied to two test
data sets (two homogeneous samples which comprise 50/50 normal/abnormal ran-
domly selected cases). We compare these results with those obtained from the un-
supervised outlier detection model Isolation Forest (Liu, et al. 2008), the supervised
machine learning5 Extremely Randomized Trees (Geurts, et al., 2006) and then with
those of several deep-learning architectures: Deep Neural Networks (Ciresan et al.,
2012), Deep Residual Connection (He et al., 2016) and Inception Model (Szegedy
et al., 2016) and the Autoencoders model (Hinton and Salakhutdinov, 2006) also
applied as a semi-supervised model. To test our results, we use the F1 Score which
is a well-known accuracy test for binary classification problems®.

While it is true that the observable characteristics have explicative power, they
are not enough in predicting risk. None of the presented algorithms were able to
separate risky individuals from non-risky individuals. For instance, both the AE

“4Precision measures the ability to avoid including false positive cases — quality — and Recall
measures the ability to capture true positive cases — quantity.

SFor the supervising models (ERT, DNN, RC, IC), we use a stratified 5-Folds cross validation
approach.

6 1 — Score = 2 x Lrecisionxrecall
precision+recall
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Model Sample 1 Sample 2
Precision | Recall | F1-Score | Precision | Recall | F1-Score
Isolation Forest 0.616 0.103 0.177 0.654 0.078 0.139
Extremely Randomize Tree 0.674 0.355 0.465 0.651 0.321 0.430
Neural Network 0.500 1.000 0.667 0.500 1.000 0.667
Inception Model 0.546 0.486 0.515 0.529 0.477 0.502
Residual Connection Model 0.558 0.454 0.500 0.530 0.444 0.484
Autoencoder 0.500 1.000 0.667 0.497 0.984 0.660
Variational Autoencoder 0.500 1.000 0.667 0.500 1.000 0.667

Table 5.4. Comparative Results

and the VAE model classify all individuals as risky.

5.6.3 Combining Self-Reported Data and Observables

In Table 5.5, we report the results of combining the observable characteristics with
the self-reported data about years as insured and past claims. Our hypothesis is data
risk categorization will benefit from adding self-reported data.

Model Sample 1 Sample 2
Precision | Recall | F1-Score | Precision | Recall | F1-Score
Isolation Forest 0.909 0.252 0.395 0.898 0.264 0.408
Extremely Randomize Tree 0.966 0.603 0.743 0.959 0.594 0.733
Neural Network 0.500 1.000 0.667 0.500 1.000 0.667
Inception Model 0.927 0.174 0.293 0.938 0.174 0.294
Residual Connection Model 0.938 0.314 0471 0.977 0.298 0.457
Autoencoder 0.735 0.800 0.766 0.721 0.837 0.775
Variational Autoencoder 0.769 0.869 0.816 0.837 0.798 0.817

Table 5.5. Comparative Results

As a result, the predictive performance of VAE is significantly different from
those of the other models. With a consistent 81.6%-81.7% F1-Score, the results
show that the VAE model performs best in terms of predicting risky potential cus-
tomers.

5.6.4 Feature Importance of Risk

A feature importance ranking is created to check which main variables drive risk.
Feature importance provides a score that measures the importance of each attribute
for improving performance (in terms of reducing the loss function). It is calcu-
lated as the improvement average for each attribute in every decision tree (when
a splitting point is selected) weighted by the number of observations in the node.
We present two plots in Figure 5.8. The first figure shows the ten most important
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variables on average of a 5-Folds Cross Validation methodology, while the second
shows, as a bar plot, the number of times a variable appears in the ranking, and as a
line plot, its average position in the ranking.
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Figure 5.8. Feature Importance Ranking

Surprisingly, previous self-reported claims does not emerge as a relevant variable.
Rather, self-reported Years as Insured and Years Insured in the Last Company are
consistently the most influential variables for predicting risky potential customers
(with both always appearing in first and second place, respectively). In Figure 5.9
and Figure 5.10 we can observe this behavior more closely.

As can be seen, the correlation between risk and self-reported years as insured
seems to present a negative pattern. The distributions clearly differ for normal and
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abnormal points. Normal customers tend to self-report several years (more than
5 years) as insured, but also they tend to have had a long-term relationship (more
than 5 years) with their last company. On the other hand, abnormal customers tend
to report that they had a very short-term relationship with their last company, and
none of them accredits more than 3 years as insured. Even more, the majority of the
riskier customers self-reported less than one year as insured when, in fact, they had
past claims.

A reasonable explanation could be that potential customers do not lie about years
as insured, or do not have incentive to do so, because they do not associate it with
a modification to the final bonus. Similarly, they are certainly likely to expect that
their self-reported prior claims will be correlated with the final bonus offered and,
therefore, have an incentive to underreport. On the other hand, customers with good
records do not have any incentive to lie.

In line with this reasoning, why, therefore does the variable self-reported years
as insured consistently explain risk and self-reported claims do not? On one hand,
it seems that the answer lies in the fact that self-reported years as insured and self-
reported years insured in the last company could implicitly reveal past behavior.
Switching to a new company (after a very short term) may well conceal a strong
motive, i.e. companies seek to deter risky customers from renewing their contract.
As explained by dynamic learning theory (see Abbring et al., 2003a, 2003b; Hendel
and Lizzeri, 2003; Finkelstein et al., 2005; Cohen, 2005; Finkelstein and McGarry,
2006), insurance companies may learn about the policyholders’ risk type dynami-
cally. In Spain, for instance, if a customer has a bad record, companies can choose
not to renew the contract or they can deter renewal by imposing a high bonus. In
short, a small number of years insured in the last company could be indicative of
risky behavior. Inversely, this variable could be associated with a positive effect,
indicating that those with more years as insured have a better record because they
know how to behave. Therefore, customers with good records will reveal their true
state. On the other hand, it could also be a natural tendency for bad record cus-
tomers to underreport claims. But this behavior will naturally pool them with good
record customers (because they have few or no claims to self-declare) and, in con-
sequence, it could affect the ability of the algorithms to split normal from abnormal
customers.

Two cluster variables are also found to be highly representative in the feature
importance ranking: namely, the ZIP Risk Cluster and Customer Risk Cluster. As
will be explained, they respectively associate a customer’s ZIP code and certain
observable characteristics with the weighted number of claims. However, we did
not find any evidence that riskier intermediaries or vehicle characteristics had any
relevance. We can, therefore, conclude that risky behavior is essentially related to
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potential customer behavior.

Other relevant variables include whether the insured has signed the policy as the
owner and whether he or she is also the first driver. A plausible explanation is that
the insured as driver is likely to be more responsible with their own vehicle and with
their own policy.

Likewise, age above 65, gender, and license years are also important variables.
However, one of the main problems with feature importance ranking is that we do
not know the direction or magnitude of the effects. We cannot therefore make any
subjective assumptions about age or gender, but we would expect license years to
be negatively correlated with risky customers (see Figure 5.24).

Finally, the last variable among those ranked in the top ten is the only one related
to vehicle characteristics: If it is a van or truck. This could reflect the fact that,
in general, they are more likely to be used as working vehicles and, so, of being
on the road for many more hours, which makes them more likely to be involved in
accidents and to deteriorate.

5.7 Conclusion

During the underwriting process, insurance companies face a severe problem of
asymmetric information, i.e. they cannot distinguish between different risk behav-
iors. This information asymmetry is essentially attributable to the existence of un-
observable characteristics and a group of customers that might underreport their
prior claims. As a result, an unfair price is offered to sincere customers and prices
become noncompetitive for the company.

In light of these challenges, we have sought to address the following question:
Are all potential customers misreporting their true nature as insurance theory sug-
gests? Our first main finding is empirical evidence against this situation, which
leads to the following question: Can we combine this information with the tradi-
tional risk categorization methods to predict risky potential customers before an
insurance policy is signed (and, in the end, offer a fair price)?

Insurance markets are an ideal setting in which to conduct empirical analyses.
They dispose of large, rich databases about their own customers, and moreover, they
lend themselves to the use of machine-learning and deep-learning models, which
can exploit their large data-sets to find complex patterns. Here, the empirical evi-
dence provided by the Spanish market is especially appropriate for evaluating our
main objective, given that it operates with an external service via which leading
companies share historical customer information. Thus, we can validate if we are
actually able to predict risk based solely on customers’ observable characteristics,
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and the potential benefits of combining this with self-reported data.

Here, we have proposed using cluster variables based on the internal customers’
risk as a proxy for the risk of potential customers. By matching the observable
characteristics of the two groups, we can approach the unknown risk. Using K-
means++ and a variety of validation metrics, we have created several risk rankings
by customers, vehicles, ZIP codes and intermediaries. Next, we have used these
cluster variables — plus the observable variables — as input for a deep variational
autoencoder model. Here, one major computational issue is the fact that insurance
companies dispose of a considerable amount of data that may or may not be related
to the risk of a potential customer. Moreover, as we have shown, only a small
number of customers fail to reveal their true risk during the underwriting process
(5.5%). The VAE model allows us to reduce the data to its true nature and, at the
same time, the variational autoencoder can be transformed into a powerful outlier
model.

We have used a real-world data-set provided by a leading insurance company and
have shown how the model works in comparison with other machine learning and
deep learning models. The second main contribution we identify is the ability to
detect potential new customers who fail to reveal their risky nature by combining
self-reported data and observable characteristics. Our empirical evaluation sup-
ports the hypothesis that the VAE model outperforms other benchmark techniques,
achieving a precision of 77-84% and a recall of 80-87%.

The third major contribution of the methodology is its ability to identify the most
relevant variables for predicting risk. Here, we have shown that years as insured has
a significant influence while self-declared prior claims are unimportant. This may
be explained by the lower incentives to misreport associated with this variable and
its high correlation with customer performance. Additionally, two of the cluster risk
variables were found to be especially significant: one related to customer character-
istics and the other to zip code. The following were also found to be systematically
important variables: if the insured was the owner and first driver in the policy, if the
customer’s age was higher than 65, if the insured was male or female and, finally,
the number of license years.

Finally, a theoretical model was presented which supports the fact that the com-
bination of self-reported data and risk categorization can lead to an equilibrium in
which the monopoly gets higher profits than the private information equilibrium,
and that it can even reach a public information equilibrium.
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5.8 Appendix

5.8.1 Clustering Observable Risk Variables

To construct the clusters, we use K-means++ (Arthur and Vassilvitskii, 2007). K-
means (Lloyd, 1982) is a well-known distance based algorithm that operates by
choosing random centers. It tunes the centers’ location by minimizing the sum
of squared Euclidean distance from the points to the center and then assigns each
point to a particular center. The assignment of a point to a unique center provides
the cluster composition. The main problem with K-means is that it is highly sen-
sitive to initialization, i.e., the loss function is very susceptible to local minima.
Poor randomization of the initial centroids or seeds will therefore result in subopti-
mal clustering. In contrast, K-means++ uses a robust initialization mechanism that
guarantees convergence to an optimal solution. The idea is to maximize the distance
between initial centers and so create new centers. These are randomly drawn from
the probability distribution which emerges from the comparison between n possible
centers.

As this is an unsupervised algorithm, performance evaluation is typically more
complex as we do not have a defined target variable. Here, we follow a standard
procedure: First, we evaluate cluster existence and, second, we internally validate
the clusters.

To evaluate whether a cluster exists, we compare the hypothesis of the pattern’s
existence with the hypothesis of a uniformly distributed data-set. Here, we use
the Hopkins statistic (Hopkins and Skellam, 1954; Banerjee and Dave, 2004) to
evaluate the null hypothesis that the data are generated by a Poisson process (ho-
mogeneous distribution). The statistic takes values between 0 and 1, where a value
close to 1 indicates that the data are highly clustered, 0.5 indicates they are random
and a value close to O indicates they are uniformly distributed.

_ Yizind(pi)
Yic1.nd(pi) + Xiz1. nd(q:)

where d(p;) is the distance of the point p; to its nearest neighbor. d(g¢;) is the

H

distance of the point g; to its nearest neighbor, and ¢; are n random points uniformly
distributed in the same space of the data-set. The final Hopkins statistic result is
derived from computing the /{ index and calculating the average.

Internal validation is a way of validating clusters when there are no labels avail-
able and is based on cluster compactness (i.e., variance or distance, how closely
related the points are) and separation (i.e., distance or density, how well-separated a
cluster is from other clusters). A wide range of internal validation indexes exist but
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here we focus on three measures that have been shown to perform well in a wide
range of situations (Saitta et al., 2007; Liu et al., 2010; Arbelaitz et al., 2013): The
Silhouette score, the Calinski-Harabasz score and the Davies-Bouldin index.

The Silhouette score or SC (Rousseeuw, 1987) evaluates the pairwise difference
between and within the cluster distances. It also obtains an optimal number of
clusters and is defined as:

oL
maz(a,b)

where «a is the average distance between a sample and the remaining points of
the same class; and b is the average distance between a sample and the remaining
points of the nearest cluster. If it tends to -1 we have an incorrect cluster definition,
when it is 0 we have overlapping clusters, and when it tends to 1 we have compact
and separate clusters. The disadvantage of this metric is that it is higher for convex
clusters than for density-based clusters.

The Calinski-Harabasz score or CH (Calinski and Harabasz, 1974) evaluates the

average sum of squared dispersion between and within clusters, and it is defined as:

_ Tr(By)N —k

CH = Tr(Wi)k—1

where By, = ¥, ng(cq — ¢)(cq — )7 is the dispersion between clusters and W), =
Z’;:l Yaeco, (T —cq)(z — cq)T is the dispersion within clusters. For the cluster ,
C'H is the ratio of the average dispersion between clusters and the dispersion within.
The disadvantage is that it tends to be higher for convex clusters.

The Davies-Bouldin index or DB (Davies and Bouldin, 1979) evaluates, for each
cluster, the similarity between that cluster and the remaining clusters, and is defined
as:

1 oi+0o;
DB = ni:;-nmaxzﬁ (d(ci,cj))

where n is the number of clusters, ¢; the cluster ¢ centroid, o; the average distance
between the points in ¢ and the centroid, and d(c;,c;) is the distance between the
centroids ¢ and j.

Based on these three metrics, we use the k-means++ approach for four different
categories of clusters: 1) ZIP code, 2) Intermediary, 3) Object and 4) Customer.

For ZIP Code risk, we use a very simple approach. We group postal codes by
taking the weighted sum of vehicle claims by the number of policies.

For Intermediary risk, as the intermediary can sell other products, we create two
additional variables: The vehicle intermediary risk (the number of vehicle claims
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over the number of vehicle policies) and the vehicle policy share (the number of
vehicle policies sold by the intermediary and the number of total policies). We then
calculate the clusters grouped by the identification number of the intermediaries and
normalized by their antiquity.

For Object, we create a range of values based on vehicle price. Then, we group
the VeMy this price range, category, usage, type, number of years and whether
it is a heavy vehicle (more than 3500 kg).

For Customer, we group the number of claims and policies (normalized by the
time as active customer) by age, license years, risk license (less than a year), second
driver risk license (less than a year), risk driver age (between 18-21 years), risk
second driver age (between 18-21 years), gender and nationality.

Table 5.6 lists the results.

) Existence | Internal Validation

Risk k-clusters H SC CH DB
Postal Code 6 0.939 0.624 | 7,781 | 0.536
Intermediary 4 0.998 0.738 | 2,232 | 0.483
Object 3 0.997 0.840 | 37,869 | 0.490
Customer 6 0.998 0.780 | 1.992 | 0.358

Table 5.6. Cluster Validation using K-Means++

Based on these results, we obtain acceptable values to infer cluster existence as
well as the compactness and separation of these clusters.

Z1IP code

We depict the ZIP codes in Figure 5.11. Clusters are ranked from 0 to 5, where
0 is the cluster with the minimum weighted claims average, and 5 the maximum
weighted average.

As expected, the company’s customers concentrate in the main urban areas. Al-
though the risk seems to be more concentrated in the south, the riskiest places cor-
respond to two postal codes in Bilbao (with more than two claims per policy per
year, when, on average, there are 0.30 claims per policy per year).

Intermediary

Intermediaries provide us with four clusters. The lowest cluster has an average of
1.37 claims per policy sold per year, and the highest has an average of 2.52 claims
per policy sold per year. In fact, the latter corresponds to a single intermediary who
while being a leading seller performs poorly.
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Figure 5.11. ZIP Risk Clusters Map

Object

We have just three vehicle clusters. In Appendix 5.8.4, we show a set of different
plots with the vehicle variables used. For example, in Figure 5.19, we can see
that the majority of insured vehicles are owned by private individuals, and that the
distribution is concentrated between 0 and 2 claims per policy per year. Figure 5.20
plots the main categories of vehicle types. Cars have more claims per policy on
average than motorbikes and present a very similar distribution to that of Vans or
Trucks. In Figure 5.21 we plot the claims by vehicle value. The tails seem to reflect
lower risk levels than the average values. Finally, in Figure 5.22 we see an abrupt
fall in risk after 30 years, possibly correlated with collectible classic cars.

Customer

In Figure 5.23 we can see that older customers actually present a lower and de-
creasing risk ratio. As expected, customers with new licenses present a significant
risk difference compared to customers with more than five years’ driving experi-
ence (Figure 5.24). Neither gender nor nationality appear to be related to higher
risk ratios (Figure 5.25 and Figure 5.26).

5.8.2 Variational Autoencoder Model Validation
Theoretical Definition

When using Variational Autoencoder models (VAE) we are interested in finding a
joint distribution between input x and the latent variables z, which are not part of
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the data-set but that are representations of certain properties of the input. Using
a variational inference model (an encoder )(z|x)), we can approximate the input
data and their attributes. First, an encoder network turns the input samples x into
two parameters in a latent space, which we note as z;, and zj,4(,) (we assume the
encoder to be a multivariate Gaussian). The inference model generates the latent
vector z from input .

Second, we randomly sample similar points z from the latent normal distribu-
tion’ that is assumed to generate the data via z = z, + eZog(0)/2 ¢, where € is a
random normal tensor. This is known as a reparametrization trick. The decoder
takes samples from z to reconstruct x. But, backpropagation cannot pass through
a stochastic layer. Therefore, we take the sampling process outside to be com-
puted as z = 2, + ¢*l09()/2 x ¢, This overcomes the problems with high variance,
and avoids the random variable from the original distribution (Paisley et al., 2012).
This reparametrization should ensure that z follows the distribution of the encoder.
Finally, a decoder network P(z|z) maps these latent space points z back to the
original input data x.

However, to estimate the true distribution of our inputs, we must identify the re-
lationship between the encoder and the decoder. To do so, we can use the Kullback-
Leibler divergence (KL) to obtain the distance between these two conditional den-
sities.

D1 (Q(zl2)||P(z]2)) = EllogQ(=]x) - logP(=])]

Using Bayes’ theorem and rearranging terms, this can be defined as:

logP(x) — Dgr(Q(z]2)||P(z|z)) = E(logP(x|2)) — Dk (Q(z])|| P(2))

On the left-hand side we have P(x), the true distribution of z, and Dy (Q(z|z)||
P(z|z)), the error due to the distance between the encoder and the decoder. If
we minimize the K L distance, we are better able to encode the attributes x to z.
The right-hand side indicates that we have to maximize E(logP(z|z)) (the decoder
seeks to reconstruct x based on z samples — the Reconstruction Loss) and minimize
the K L distance between the encoder () and the prior P. By assuming that Q)(z|x)
is a multivariate Gaussian, the right KL term can be simplified to:

J
DL(Q(:12)]|P(2) :%Z (14+10g(0;)? = (17)% = (07)?)

"We assume that the relationship between the variables in the latent space is much simpler than
that in the input space.
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with 0; — 1 and p; — 0. We can summarize the VAE function as:

Cvae = Cre +Ck1L

The model’s parameters are trained via these two loss functions: the reconstruc-
tion loss forcing the decoded samples to match the initial inputs (exactly as in au-
toencoder networks) - (rc, and the divergence between the learned latent distribu-
tion and the prior distribution acting as a regularization term -(x ..

Model Setup

The first step is to construct the encoder network. As previously stated, this takes
the input vector and calculates the mean (z,) and the log variance (2;.4(4)) Of the
Gaussian distribution. Using both, we create a latent variable z by randomly sam-
pling points from the latent normal distribution, which is assumed to be generated
by z = z, + €*9(?)/2 x ¢ (where € is a random normal tensor with mean 0 and stan-
dard deviation 1). We then create the decoder network symmetrically with that of
the encoder. Next, we train the model using the variational autoencoder. We set
the loss function to be the sum of the reconstruction loss (based on the autoencoder
loss) and the KL divergence regularization function® between the learned distribu-
tion and the prior distribution (the latent loss):

VABigss = AEL0ss +0.5% (14 25,0 = 2 — €7106())

The left-hand side is the reconstruction error (or the autoencoder loss) and is
defined as the difference between the input vector x and the reconstruction z. The
right-hand side is the latent loss ((x ).

To calculate the reconstruction error, we use the mean squared error between the
input nodes x and the decoded values z. This calculates the squared difference
between predicted values (2) and the actual value x. The advantage of using mean
squared error in this scenario is that it is more sensitive to outliers. If we understand
that outliers represent anomalies, marked differences between input and predicted
data should be highlighted by a greater reconstruction loss.

In the experiments, we train autoencoder and variational autoencoder architec-
tures using symmetrical decoder/encoder designs. Figure 5.27 illustrates the opti-
mized deep-learning architecture used.

We use dense layers, which means that every neuron in the layer is fully con-
nected to the next one. There are no absolute rules for choosing the number of

8Kullback-Leibler divergence is defined between two distributions P,Q as Dy (P||Q) =

¥ P(i)log 3.
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layers and neurons. On the one hand, using too few neurons can lead to underfitting
but, on the other, using too many may result in overfitting. Similarly, if we use more
layers, the model can learn more complex representations, although this may result
in a loss of information as the data become compressed.

To avoid overfitting, we used three different regularization methods: a dropout
of 30%, sparsity constraints, and early stopping set to 2 epochs. The dropout is a
regularization method that randomly drops out a certain number (or percentage) of
layer outputs. It experiments with different architectures of the same network in
parallel and the robustness of this model increases as the training process is noisy
and we force the nodes to actually learn a sparse representation (Srivastava et al.,
2014). Likewise, sparsity constraints restrict some nodes from being triggered, as
some of them are restricted or not equal to zero. We use both L1 and L2 regular-
ization functions. L1 adds a restriction to the nodes as the sum of the square of the
weights, and L2 adds a restriction as the sum of the absolute value of the weights.
Finally, we use early stopping which provides a rule of how many iterations we can
run before the learner overfits (i.e., when the test loss starts to be worse than the
training loss).

We use an Adam optimizer (Kingma and Ba, 2015) as this has several advantages
over the classic stochastic gradient descent. The objective with optimization is to
minimize the loss function, i.e., the way in which we trace the curve of the loss func-
tion to its minima. Instead of using a single learning rate, it adapts the parameter
calculating an exponential moving average of the gradient and the squared gradient,
controlling the decay rates of these moving averages. As Ruder (2016) shows, the
Adam optimizer works better in empirical problems than other optimization meth-
ods. Its main advantages are that it improves performance on problems with sparse
gradients and it performs well on non-stationary problems.

The activation functions define the output of the neurons given the previous in-
put. Each autoencoder was trained using a hyperbolic tangent activation function’
which has the advantage of being less likely to become stuck (as it strongly maps
negative inputs to negatives outputs). The output is in the range (-1, 1), therefore, it
is recommended to re-scale the data within this range. The final activation function
is a sigmoid whose output values lie between 0 and 1, and is therefore ideal for
binary problems.

In our experiment, we use 1000 epochs (i.e., the number of times we go through
the training set) and 20 steps per epoch (i.e., the batch size definition). The algo-
rithm of the proposed method is shown in algorithm 3.

As An and Cho (2015) explain, the main advantages of using VAE models as
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opposed to autoencoders (essentially because of their deterministic nature) can be
summarized as follows: First, latent variables are derived from the probabilistic en-
coder, facilitating the use of the variance of the latent space. By so doing, we can
exploit the variance differences between normal and abnormal data (we expect ab-
normal data to present greater variance and to have higher reconstruction error than
normal data). Second, the reconstruction error considers not only the differences
between input and decoded values, but also the variance of the reconstruction (by
considering the variance of the distribution). Variables that have a large variance
will tolerate larger differences between the reconstruction and the original input
(and inversely with a small variance).

Reconstruction Error Validation

Our model is not a typical predictive model and, as such, in order to predict anoma-
lies (i.e., potential customers that did not tell the truth about their past performance),
we do not use probabilities as in the traditional case. What we seek to do is to recon-
struct the input values and compare them with the original input vector. We would
expect anomalies to have a greater error than normal points (and we use the mean
squared error to compare these differences). If the error is higher than a defined
threshold, then the points are considered anomalies. Here, we expect the recon-
struction of the VAE error to encounter problems when reconstructing anomalous
cases. Finally, we can check the validity of these results by comparing them to the
real target value.

After training with only normal cases and using the validation-set to optimize the
model, we are able to check how the errors behave, as seen in Figure 5.12. Both,
the training and the valid error seem to converge at approximately 40 epochs. The
question however is if the error loss is low enough.

We use the VAE model to predict the normal test data and the abnormal test
data, and then we calculate the error differences between their real and predicted
values. From Figure 5.13, the differences between the normal and the abnormal
reconstruction error distributions can be appreciated.

In Figure 5.14 we plot the reconstruction error of both test samples used (872
normal cases and 872 abnormal cases). The differences between the normal and
abnormal points in the VAE reconstruction are clear. The abnormal points have a
higher reconstruction error than that of the normal points. By using an optimized
threshold, we can almost separate both classes, which illustrate the power of the
VAE model as an outlier algorithm.
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5.8.3 Internal Cluster Validation Plots
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Figure 5.15. Cluster Internal Validation: Postal Code
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Figure 5.16. Cluster Internal Validation: Intermediaries
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Figure 5.17. Cluster Internal Validation: Object
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Figure 5.18. Cluster Internal Validation: Customer

5.8.4 Cluster Statistics Plots
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Figure 5.23. Customer Age versus Claims
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5 Risk Categorization and Self-Reported Mechanisms in Automobile Insurance Markets

5.8.5 Network Architecture
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Figure 5.27. Variational Deep Autoencoder
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6 Conclusions

The presented discourse followed several topics where every new chapter intro-
duced an economic prediction problem and showed how traditional approaches can
be complemented with new techniques like machine learning and deep learning.
These powerful tools combined with principles of economic theory is highly in-
creasing the scope for empiricists. Chapter 3 addressed this discussion. By pro-
gressively moving from Ordinary Least Squares, Penalized Linear Regressions and
Binary Trees to advanced ensemble trees. Results showed that ML algorithms sig-
nificantly outperform statistical models in terms of predictive accuracy. Specifically,
ML models perform 49-100% better than unbiased methods. However, we cannot
rely on parameter estimations. For example, Chapter 4 introduced a net prediction
problem regarding fraudulent property claims in insurance. Despite the fact that we
got extraordinary results in terms of predictive power, the complexity of the prob-
lem restricted us from getting behavioral insight. Contrarily, statistical models are
easily interpretable. Coefficients give us the sign, the magnitude and the statistical
significance. We can learn behavior from marginal impacts and elasticities. Chap-
ter 5 analyzed another prediction problem in the insurance market, particularly, how
the combination of self-reported data and risk categorization could improve the de-
tection of risky potential customers in insurance markets. Results were also quite
impressive in terms of prediction, but again, we did not know anything about the
direction or the magnitude of the features. However, by using a Probit model, we
showed the benefits of combining statistic models with ML-DL models. The Pro-
bit model let us get generalizable insights on what type of customers are likely to
misreport, enhancing our results. Likewise, Chapter 2 is a clear example of how
causal inference can benefit from ML and DL methods. These techniques allowed
us to capture that 70 days before each auction there were abnormal behaviors in
daily prices. By doing so, we could apply a solid statistical model and we could
estimate precisely what the net effect of the mandated auctions in Spain was. This
thesis aims at combining advantages of both methodologies, machine learning and
econometrics, boosting their strengths and attenuating their weaknesses. Thus, we
used ML and statistical methods side by side, exploring predictive performance and
interpretability.

Several conditions can be inferred from the nature of both approaches. First,
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as we have observed throughout the chapters, ML and traditional econometric ap-
proaches solve fundamentally different problems. We use ML and DL techniques
to predict, not in terms of traditional forecast, but making our models generalizable
to unseen data. On the other hand, traditional econometrics has been focused on
causal inference and parameter estimation. Therefore, ML is not replacing tradi-
tional techniques, but rather complementing them. Second, ML methods focus in
out-of-sample data instead of in-sample data, while statistical models typically fo-
cus on goodness-of-fit. It is then not surprising that ML techniques consistently out-
performed traditional techniques in terms of predictive accuracy. The cost is then
biased estimators. Third, the tradition in economics has been to choose a unique
model based on theoretical principles and to fit the full dataset on it and, in con-
sequence, obtaining unbiased estimators and their respective confidence intervals.
On the other hand, ML relies on data driven selection models, and does not con-
sider causal inference. Instead of manually choosing the covariates, the functional
form is determined by the data. This also translates to the main weakness of ML,
which is the lack of inference of the underlying data-generating process. l.e. we
cannot derive economically meaningful conclusions from the coefficients. Focus-
ing on out-of-sample performance comes at the expense of the ability to infer causal
effects, due to the lack of standard errors on the coefficients. Therefore, predictors
are typically biased, and estimators may not be normally distributed. Thus, we can
conclude that in terms of out-sample performance it is hard to compete against ML
models. However, ML cannot contend with the powerful insights that the causal
inference analysis gives us, which allow us not only to get the most important vari-
ables and their magnitude but also the ability to understand economic behaviors.

Thereby, to start with this thesis we tried to answer the question to what extent lib-
eralized electricity markets react to regulations that attempt to increase competition
and reduce price volatility. Respectively, in Chapter 2, taking Spain’s experience as
a framework for empirical analysis, we have examined the impact of mandated auc-
tions in daily electricity prices. Particularly, we tried to predict collusive patterns
when fixed-price forward contracts were applied in the Spanish electricity market.

The first target was to demonstrate when the abnormal price phases occurred.
We used an ARMAX model combined with instrumental variables to reproduce
the price dynamics in order to control for autocorrelation and endogeneity. By
doing so, we found that 70 days before the mandated auctions, prices were signifi-
cantly higher than other periods. This time window was also validated in two ways:
Firstly, with a falsification test by estimating the same model in a year in which the
policy was canceled. Secondly, by using a Long Short-Term memory network as an
anomaly detection model.

These results led directly to another question, namely, what the economic impact
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of mandated auctions in prices was. We employed a triple differences estimation,
where the goal of the empirical exercise was to capture the effect of fixed price
long-term auctions held in 2013 and which impacted Spain. To control for economic
changes that were unrelated to the program, we used a market which was unaffected
by the regulation (Nord Pool market) and a year in which regulation was canceled
(2014).

Our analysis suggests that prices increased by 15 percent 70 days before the man-
dated auctions (compared to prices in a control group, here the Nord Pool market)
and that this effect disappeared once the auctions were no longer held.

The first conclusion of this analysis is that results present evidence contrary to the
literature to date which argues that fixed-price forward contract obligations increase
competition and approximates prices to the marginal cost.

Second, based on the theoretical model developed, we conclude that two main
factors could lead to this result: On one hand, preexisting natural concentration in
the Spanish electricity market serves as an incentive to avoid pro-competitive regu-
lations. On the other hand, fixed tariff in a market characterized by high volatility
induces firms to charge a risk premium.

Finally, the presented results, naturally, lead to policy recommendations. Though,
the regulation had the intention to stabilize the consumers’ tariff cost, it did not take
into account the specific characteristics of the Spanish electricity market. The re-
action power of the Spanish firms seems to stem from high concentration (64% of
the generation capacity was in hand of two firms) and a pivotal index rate below
the threshold recommended by the European Commission. In addition, a low level
of interconnectivity could also have contributed to a collusion environment. More-
over, liberalization exposed the electricity market to high price volatility oscillating
between 0 and 180€/MHw in the period of analysis. Thereby, policy makers need
to keep in mind, when designing regulatory policies such auctions, that they have
to take into account the inherent characteristics of these markets. A format of re-
peated auctions and fixed prices in an environment of natural concentration and high
volatility in prices will logically lead to a noncompetitive reaction.

Chapter 3 evaluated the potential of smart card data to predict public transport de-
mand. By using a smart card employed in the Autonomous City of Buenos Aires’s
public transport services and combined with data concerning economic and weather
conditions, predictive power and most influential features in public transport mobil-
ity were measured in two different ways. On one hand, we have driven a traditional
SARIMAX time-series model. On the other hand, we have focused on supervised
machine learning methods which are designed to enhance prediction capabilities.
Given the predominance of the bus as the main public transport service (80% of all
trips are made by bus), we particularly focused on this transport mode.
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It turns out that the initial suspicion can be confirmed that supervised machine
learning algorithms consistently outperformed linear models in predictive power.
In terms of most influential features, while machine learning algorithms are often
associated with “black-box™ results, we found that both type of models show very
similar outcomes: As expected, national days, strikes and seasonal effects had a
notable impact. However, contrary to previous studies, the only significant variable
related to weather conditions was the amount of precipitation.

In terms of elasticity, we evaluated five different demand-elasticities usually dis-
cussed in the empirical literature. These are elasticities with respect to the price of
petrol, automotive fleet, income, other public transport services and fares.

When it comes to income elasticity, price of petrol and automotive fleet, none of
the presented models found a significant relation. However, elasticities with respect
to other public transport modes were consistently significant for every model: fare
increases in metro and train caused bus passengers to increase.

Finally, we have particularly focused on the own-price elasticity. During the anal-
ysis period a persistent inflation affected general prices. In this light, nominal bus
fares have had three increases. The last of them was around 80 percent even though
the real increase was negligible. This money illusion effect gave us a unique op-
portunity to evaluate the nominal own-price elasticity. By using a corrected form
of the arc elasticity we have compared the SARIMAX model with supervised ma-
chine learning algorithms. While none of the supervised models showed a relation
between nominal increases and passengers, the SARIMAX formulation subscribes
to the empirical rule of thumb of -0.3 (despite being related to real price increases).
Moreover, there was an initial shock effect of -0.45, which is consistent with the hy-
pothesis that passengers negatively overreacted to nominal fare increases, but after,
they readjusted their consume level.

Chapter 4 examined a typical prediction problem in insurance markets: Fraudu-
lent claims. Specifically, we focused on property claims which have been largely
neglected by the literature. By taking advantage of a claim data-set provided by
a leading Spanish insurance company, we presented a new methodology to detect
fraud. As we discussed in this chapter, the reason for using a semi-supervised algo-
rithm is derived from three key aspects of fraudulent claims: First, data is skewed.
It is not surprising that fraud is classified as an abnormal behavior, which means
that our data-sets are usually highly unbalanced. Second, as companies have little
time to perform exhaustive investigations and they receive thousands of claims per
month, there is a substantial mass of claims that are never investigated and, there-
fore, we do not know which class they belong to. Third, human analysis of fraud
cases is poorly adapted to changing patterns.

There are incipient studies which use hybrids of supervised/unsupervised models
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to predict fraud. However, they rely on subjective boundaries to define fraud and
non-fraud or they assume we always have information about normal behavior.

In this chapter, we tried to solve those three combined problems without making
any subjective assumptions that can bias the results. In doing so, we introduced the
Cluster Score which measures the abnormal homogeneity in cluster constructions.
The methodology involves transmuting unsupervised models to supervised models
using this metric, which defines the objective boundaries among clusters.

As we mentioned, we applied this methodology to a real problem of fraud de-
tection among property insurance claims. In the end, 479,454 claims were exam-
ined. Our analysis suggests, first, that this methodology considerably increased the
number of fraudulent claims detected and reduced the proportion of false positives.
Second, the results were not affected by time dynamics (instead, results improved).
The real added value, however, is not the ability to capture previously detected cases
by the investigation office but rather unsuspicious cases that we have predicted as
fraudulent. From a random subsample of 367 claims that were originally classified
as unsuspicious (and that we predicted as fraudulent), the investigation office con-
cluded that in fact 333 presented a very high probability to be fraud. This means, in
short, that with the methodology proposed we managed to increase fraud detection
by 122.8 percent.

Chapter 5 also focused on a well-known insurance problem during the underwrit-
ing process, that is, situations in which companies know next to nothing about the
risk of their potential new customers. Basic insurance theory suggests that risky
customers will not reveal their true nature and, therefore, a suboptimal Pareto equi-
librium with an average premium will be reached if no additional incentives are
imposed. However, if we assume that not all risky potential customers misreport as
insurance theory suggests, we could combine self-reported data with the traditional
risk categorization mechanism to solve its inefficiencies when predicting risky po-
tential customers.

In order to shed light in the question if all “bad risks" are misreporters, we used
past performance shared data from representative insurers. Thanks to two rich and
detailed data sources provided by a Spanish insurance company leader, we had a
unique opportunity to evaluate and to validate our main results. First, internal data
about customers that signed a vehicle policy permitted us to create proxy variables
(by clustering) for the unobservable risk behavior of potential customers. Second,
a sample of vehicle insurance policies that were offered to new customers (that
may have been transformed into a policy or not) which included details of the of-
fered policy terms. Additionally, it contained various questions related to previous
performance which outcome was contrasted with the third source of data: Before
subscribing to the policy, the company accessed an external database in which in-
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surers shared information regarding previous performance. If a potential customer
had not revealed the truth about his or her true nature, an adjusted price was ap-
plied. The problem of misreporting is thus reduced to detect who had lied during
the underwriting process.

For the empirical exercise, we decided to use a deep variation autoencoder model
(VAE) for two reasons: Firstly, insurance companies have considerable amount of
rich and reliable data. VAE models obtain compressed representation of the data
and, therefore, they can remove undesired features and noise. Secondly, as we
demonstrated in this chapter, only a 5.5 percent of potential new customers did not
tell the truth. VAE has the advantage that it can be transformed into a powerful
semi-supervised outlier detection model. By adopting this methodology, and by
combining self-reported data and observable characteristics data,we were able to
predict ex-ante between 80 and 87 percent of the risky customers. However, none
of the algorithms presented was able to split between risky and non-risky individuals
when self-reported data was not used.

In addition, a detailed feature importance analysis showed that the most relevant
aspects of policyholders’ risk were not related with self-reported prior claims but
rather to self-reported years as insured. Our hypothesis was that riskier customers
had no incentive to lie about years as insured, because they did not associate it with
the final price. However, this variable seems to be implicitly correlated with past
behavior. On one hand, a small number of years insured in the last company could
reflect a company that choose not to renew the contract to a customer with a bad
record. On the other hand, several years as insured could be associated with a good
record customer.

We found evidence suggesting that cluster constructed variables related to the
customers’ zip code and customer characteristics were significant as well. Simi-
larly, the following were also found to be systematically important variables: if the
insured was the owner and first driver in the policy, if the customer’s age was higher
than 65, if the insured was male or female and the number of license years.

The conclusions of the different empirical exercises and the resulting implications
of this thesis not only provide reliable results to applications where prediction is
more suitable than causal inference but as well a contribution to rethink the way in
which we can evaluate traditional economic problems.

6.1 Future Work

There remain some limitations, adaptations and experiments that we seek to address
in the future.
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6.1 Future Work

In chapter 2, firstly, and as pointed out by Fabra and Fabra Utray (2012), there are
two ways in which electric companies could get better prices: (i) by taking off their
supply offers during the auction (and, therefore, reducing the competitive pressure),
and (i1) by affecting parallel market expectations. We particularly focused on (ii)
as micro-data about CESUR auctions was incomplete or unavailable. Counting
on this data would let us understand the behavior at the firm level, particularly
behaviors related to the mechanisms in which they may have affected prices by
retiring quantity offers.

Secondly, our analysis of the economic impact on prices due to collusive patterns
is restricted to a control market whose data has only been available since 2013.
Therefore, we could only evaluate the last three CESUR auctions. If we are able to
get data from the start of the CESUR auctions (2007) or from a similar competitive
market as the NordPool, we would get more accurate and robust estimations.

In chapter 3, we have compared several supervised learning, time series and linear
models. It would be interesting to apply other increasing popular techniques in
the smart card data literature such as support vector machine and deep learning
algorithms which could improve our results. It would also be interesting to explore
new data about increasing fares and how long-inflation periods have affected the
monetary illusion effect.

In chapter 4, and as we previously mentioned, we got very impressing results in
terms of predictive power. However, due to the complexity and the nature of the
problem, we could not explore statistical models. Despite that, we think that we can
still consider less sophisticated approaches to understand what the main motivations
of fraud are. As with our methodology we were able to label the non-fraud cases and
we have increased the amount of detected fraud, we would like to explore reduced
forms of the problem and run several experiments that may reveal the main features
of fraud.
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