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ZEB1 protects skeletal muscle from damage and is
required for its regeneration

Laura Siles!, Chiara Ninfali', Marlies Cortés', Douglas S. Darling? & Antonio Postigo'34

The mechanisms linking muscle injury and regeneration are not fully understood. Here we
report an unexpected role for ZEB1 regulating inflammatory and repair responses in dys-
trophic and acutely injured muscles. ZEB1 is upregulated in the undamaged and regenerating
myofibers of injured muscles. Compared to wild-type counterparts, Zebl-deficient injured
muscles exhibit enhanced damage that corresponds with a retarded p38-MAPK-dependent
transition of their macrophages towards an anti-inflammatory phenotype. Zebl-deficient
injured muscles also display a delayed and poorer regeneration that is accounted by the
retarded anti-inflammatory macrophage transition and their intrinsically deficient muscle
satellite cells (MuSCs). Macrophages in Zebl-deficient injured muscles show lower phos-
phorylation of p38 and its forced activation reverts the enhanced muscle damage and poorer
regeneration. MuSCs require ZEB1 to maintain their quiescence, prevent their premature
activation following injury, and drive efficient regeneration in dystrophic muscles. These data
indicate that ZEB1 protects muscle from damage and is required for its regeneration.
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he capacity of skeletal muscle to regenerate in response to

damage lies on its progenitor cells known as muscle

satellite cells (MuSCs)!»2. MuSCs are normally quiescent
but they become activated, proliferate, and differentiate in
response to stress and injury!-3. In muscle dystrophies, myofibers
display greater fragility and undergo continuous cycles of
degeneration, inflammation, and progressively impaired regen-
eration®. In addition to structurally unstable myofibers, deficient
regeneration in patients with Duchenne muscular dystrophy
(DMD), and in the mdx mouse, an experimental model of DMD,
is also related to functionally defective MuSCs>".

During muscle damage the release of soluble factors—notably,
the CCL2 chemokine—by injured myofibers, as well as by acti-
vated MuSCs and stromal cells prompts the recruitment and
infiltration of circulating immune cells, mainly monocytes®~13,
The inflammatory milieu at the site of injury (e.g., Tumor
Necrosis Factor-a [TNFa], Interferon-y [IFNy]) both activates
monocytes toward pro-inflammatory macrophages (F4/807,
Ly6Chigh) and triggers the expansion of MuSCs—also referred at
that point as proliferating myoblasts—while blocking their
differentiation!»1>. The subsequent decline of TNFa and IFNy
levels and the increase of IL10 promote the transition of pro-
inflammatory macrophages toward an anti-inflammatory phe-
notype (F4/807, Ly6Clow, MRC1/CD2061), a requisite for MuSCs
to begin their differentiation”-1-18. This macrophage switch is
driven by the activation of the p38-MAPK and its balance with
DUSP1 (MKP-1)7. In cycling myoblasts, MyoD activates
proliferation-associated genes but not differentiation genes,
whose regulatory regions are repressed by ZEB1 (also known as
SEF1 and ZEB) and SNAII/SNAI2 transcription factors!®-21.
Only after myoblasts have exited the cell cycle, MyoD displaces
ZEB1 and SNAII/SNAI2 from these genes to drive myoblast
differentiation into myofibers.

ZEB1 is best known for triggering an epithelial-to-
mesenchymal transition (EMT) in cancer cells to promote
tumor progression?>»23. ZEBI also plays important roles in
embryogenesis—Zebl (—/—) mice die before birth—and it is
expressed in the primary myotome, where the first muscle pro-
genitors arise?. ZEB1 imposes a stage-dependent inhibition of
muscle differentiation, so Zebl (—/—) embryos exhibit the pre-
mature expression of adult muscle differentiation genes?!. Inter-
estingly, ZEB1 maintains stemness in cancer cells>>2%. However,
the expression and role of ZEB1 in the specification and differ-
entiation of normal adult stem cells, including MuSCs, or its
potential role in tissue regeneration have not been explored.

The above evidence prompted us to question whether ZEB1
plays a role in MuSC myogenic progression in the context of
muscle injury and regeneration. Using a chronic muscular dys-
trophic mouse [mdx (Dmd™¥x)] and a model of acute muscle
injury, we show that ZEB1 protects skeletal muscle from damage
and is required for its regeneration. ZEBI is upregulated in
injured muscles being expressed by undamaged and regenerating
myofibers. Downregulation of Zebl in mice [Zebl (+/—)] results
in an increased and more prolonged immune infiltration and
damage of their muscles in response to injury, as well as in a
retarded and poorer muscle regeneration. ZEB1 transcriptionally
represses the Ccl2 promoter and, compared to wild-type coun-
terparts, Zebl (+4/—) injured muscles show increased
CCL2 secretion by their myofibers and MuSCs. Infiltrating
macrophages from Zeb1 (4/—) injured muscles display a retarded
transition to an anti-inflammatory phenotype, which corre-
sponded to a deficient upregulation of phosphorylated p38-
MAPK and of Duspl in response to injury. In vivo forced acti-
vation of p38 in Zebl (4/—) injured muscles revert their
enhanced damage and poorer regeneration to the same levels
than in wild-type injured muscles. Delayed and poorer

regeneration in Zebl (+/—) injured muscles is accounted by the
retarded transition of Zebl (4-/—) macrophages, as well as their
functional deficient MuSCs. MuSCs require ZEB1 to maintain
their quiescence—via the inhibition of Myod1, the transcriptional
activation of Foxo3, and the upregulation of Notch target genes—
and for the efficient engraftment and regeneration of damaged
muscles.

Therapeutic approaches to muscular dystrophies aim both to
modulate the inflammatory response and to improve MuSCs’
regenerative capacity. However, the mechanisms linking both
processes are still not fully understood. Our results reveal an
unexpected role for ZEB1 regulating the inflammatory and repair
responses during muscle damage and can potentially open new
strategies in the treatment of muscular dystrophies.

Results

ZEB1 is upregulated in dystrophic muscles and is expressed by
undamaged myofibers. We first examined ZEB1 expression in
the gastrocnemius of wild-type and mdx mice and found that
Zebl messenger RNA (mRNA) was upregulated in dystrophic
muscles (Fig. 1a). In the healthy muscle of wild-type mice, ZEB1
was restricted to a subset of peripheral nuclei (a representative
nucleus is labeled with an arrow in Fig. 1b and in Supplementary
Fig. 1a). In contrast, in areas of mdx muscles with morphological
signs of damage, ZEB1 was expressed not only in peripheral
nuclei but also in the cytoplasm of some fibers (Fig. 1b and
Supplementary Fig. 1a). Notably, ZEB1 was not expressed in mdx
damaged myofibers and/or with infiltration by immune cells.

In contrast to human dystrophic muscles, where muscle repair
is more limited, muscles in young mdx mice display numerous
centralized nuclei, a marker of regeneration?’. Many of these
centralized nuclei were also positive for ZEB1 (arrowheads in
Fig. 1b and in Supplementary Fig. 1A, B). The percentage of
ZEB17 peripheral nuclei was higher in mdx muscles than in wild-
type ones (Fig. 1c). Of note, a given myofiber can harbor both
ZEB1* and ZEB1- nuclei (Supplementary Fig. 1b). ZEB1 was also
examined in mdx mice that before euthanasia had
been injected with Evans blue (EBD), a red fluorescent dye that
is incorporated in vivo by damaged myofibers. ZEB1 was
expressed by undamaged myofibers but not by EBD' damaged
fibers (Fig. 1d and Supplementary Fig. 1c). To summarize, ZEB1
was upregulated in dystrophic muscles (Fig. la), but its
expression was restricted to undamaged or regenerating myofi-
bers (Fig. 1b, d).

As in wild-type mice, ZEB1 was found in a subset of peripheral
nuclei of healthy human muscles (arrows in Fig. le and
Supplementary Fig. 1d). In turn, and in parallel with the mdx
mouse, in human muscular dystrophies, ZEB1 was expressed not
only in peripheral nuclei but also in centralized nuclei and in the
cytoplasm of some fibers (Fig. le and Supplementary Fig. 1d).

Tissue damage in muscle dystrophies is accompanied by
elevated serum levels of creatine kinase (CK)%. Interestingly, CK
levels in muscular dystrophy patients maintained a strong
negative correlation with ZEB1 (Spearman’s p: —0.80) (Fig. 1f).
The number of ZEB1+ myofibers was higher among patients with
lower CKs (Fig. 1g and Supplementary Fig. le). These data
suggest that ZEB1 expression in human and mouse dystrophic
muscles associates with reduced damage.

ZEB]1 protects dystrophic muscles from damage. ZEB1’s tumor
promoting functions depend on a fine threshold of its expression
and the deletion of one Zeb1 allele in either cancer cells or tumor-
associated macrophages is sufficient to block tumor progression
in Zebl (4+/—) mice?8-30, Here, we also used the Zebl (+/—)
mouse model to investigate if the role of ZEB1 in normal and
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injured muscle depends on a similarly fine threshold. Gastroc-
nemius muscles in Zebl (+/—) mice—that expresses around half
of ZEBI levels than in wild-type mice (Fig. 1h, i and left panel of
Supplementary Fig. 1f)—displayed normal weight, and normal
macroscopic and histological structure (Fig. 1j and Supplemen-
tary Fig. 1g, h). Nevertheless, Zebl (+/—) myofibers have a larger
average size than wild-type counterparts with fewer smaller size
fibers and more larger size ones (Supplementary Fig. 1i, j).

To test whether ZEB1 protects dystrophic muscle from
damage, Zebl expression was downregulated in mdx mice by
crossing them with ZebI (4-/—) ones to generate mdx;Zeb1 (+/—)
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mice (Fig. 1lh, i and right panel of Supplementary Fig. 1f).
Compared to wild-type counterparts, mdx mice younger than
2.5-months have lighter muscles but in older mdx mice muscles
are heavier and their myofibers larger3!-32. The gastrocnemius
muscles of 2-months-old mdx;ZebI (+/—) mice were lighter and
have a higher proportion of smaller size myofibers than those in
mdx mice with full levels of Zebl [hereafter referred as mdx;Zebl
(4+/4)] (Supplementary Fig. 2a, b). However, at 10-15 months of
age, mdx;Zebl (4/—) muscles were heavier and have a higher
proportion of larger size myofibers than mdx;Zebl (+/+)
counterparts (Supplementary Fig. 2a, ¢, d).
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Fig. 1 ZEB1 is upregulated in dystrophic muscles and is expressed by undamaged myofibers. a Zebl mRNA levels in the gastrocnemius muscles of 2-month-
old wild-type and mdx mice were assessed by gRT-PCR. Data are the average of six mice for each genotype. Throughout the Figures, relative data in

percentage are shown with the value of the wild-type or control condition arbitrarily set to 100. b The gastrocnemius muscles of wild-type and mdx mice
were assessed for ZEB1 (clone H102) and laminin (4H8-2) along with DAPI for nuclear staining. Representative peripheral and centralized nuclei were
labeled with arrows and arrowheads, respectively. For mdx muscles, two different areas are shown: one that predominantly exhibits damaged fibers (upper
panel), and another with signs of regeneration (lower panel). See Supplementary Fig. 1A for individual staining captures. Scale bars: 25 pm (wild-type mice)
50 pm (mdx mice). € The percentage of ZEB1+ peripheral nuclei in b was calculated either out of the total number of nuclei (peripheral plus centralized) or
only with respect to peripheral nuclei. Data are the mean of at least five fields from three mice for each genotype. d As in b, but 9-12 h before euthanasia
mice were injected with EBD. See Supplementary Fig. 1C for individual staining. Scale bar: 50 pm. e Human healthy and dystrophic muscles were stained for
ZEB1 (HPA027524) and laminin (4H8-2) along with DAPI. Representative peripheral and centralized nuclei were labeled with arrows and arrowheads,
respectively. A representative area with immune cell infiltration is labeled with an asterisk (“*"). See Supplementary Fig. 1D for single staining captures.
Scale bar: 50 pm. f Correlation between ZEBT expression and CK levels in dystrophic human muscles. g Relative number of fibers expressing ZEB1in human
dystrophic muscles with respect to their CK levels below or above the median. See Supplementary Fig. 1E for representative scores of ZEBT staining. h Left
panel: Gastrocnemius muscle lysates from 2-month-old wild-type and Zeb1 (4/—) mice (two per genotype, labeled as 1 and 2) were blotted for ZEB1

(HPA027524) and GAPDH (14C10) as loading control. Right panel: As in the left panel but from 2-month-old mdx;Zeb7 (+/+) and mdx;Zeb1 (+/—) mice,
three for each genotype. See Supplementary Fig. 1F for full unedited blots. i ZebT MRNA levels in the gastrocnemius of the four genotypes were determined

by gRT-PCR. Data are the average of six mice per genotype. j Wild-type and Zebl (+/—) gastrocnemius muscles were either counterstained with
hematoxylin/eosin (H&E) (upper panel) or immunostained for laminin (4H8-2) and DAPI (lower panel). Scale bars: 50 and 100 um, respectively

Dystrophic muscles display histologic abnormalities and
greater fiber size variability than healthy muscles*. Accordingly,
and compared to wild-type ones (Fig. 1j), the gastrocnemius of
mdx mice—independently of Zeb1 levels—exhibited myofibers of
widely different sizes and areas of degeneration, inflammation,
and regeneration (Fig. 2a and Supplementary Fig. 2e). However,
fiber damage and inflammatory infiltration was more intense and
extensive in mdx;Zebl (+/—) muscles than in mdx;Zebl (+/+)
ones (Fig. 2a). As expected, expression of ZEB1 was lower in mdx;
Zebl (+/—) muscles (Fig. 2b and Supplementary Fig. 2f). EBD
staining confirmed that the damaged area in mdx;Zebl (+/—)
muscles was larger than in mdx;Zebl (+/+) muscles (Fig. 2¢, d).
A decline over time in the EBD staining of mdx muscles has been
reported (e.g., ref. 33). Altogether, these data indicate that ZEBI
has a protective role in dystrophic mdx muscles while its
downregulation in the mdx;Zebl (+/—) mouse enhanced
myofiber damage.

ZEB]1 protects muscle against acute exogenous injury. We then
evaluated the response of wild-type and Zebl (4/—) muscles to
the injection of the snake venom cardiotoxin (CTX), a well-
established model of acute muscle injury>#3°. During the first
2 days, wild-type and Zebl (+/—) muscles displayed local
necrosis and abundant inflammatory infiltrate but both processes
were more intense and extensive in Zebl (+/—) muscles (Fig. 1j
for day 0 and Fig. 2e). By day 4 post-injection, muscles started to
show signs of regeneration but necrosis and inflammation
remained higher in Zebl (+/—) mice. By day 7, wild-type muscles
had most of their inflammatory infiltration already resolved and
numerous myofibers had centralized nuclei, indicative of regen-
eration. In contrast, Zebl (+/—) muscles still showed areas of
necrosis and inflammatory infiltrate, as well as abnormal regen-
eration with myofibers of diverse sizes. Fourteen days after CTX
injection, the overall histological architecture of wild-type mus-
cles have been largely restored; meantime, Zebl (4/—) muscles
exhibited scattered regions of necrosis and infiltrate along with
regenerating areas. Despite enhanced damage in Zebl (+/—)
muscles, their myofibers were smaller and fewer of them dis-
played centralized nuclei suggesting a compromised and/or
delayed muscle regeneration (see below). Lastly, 21 days after
injury, muscles from both genotypes achieved nearly complete
regeneration although scattered centralized nuclei are still visible,
particularly in ZebI (4/—) muscles.

As in dystrophic mdx muscles (Fig. 1a), ZebI mRNA increased
following CTX injection (Fig. 2f). Likewise, Zebl (+/—) injured

muscles contained fewer ZEB1+ myofibers than wild-type injured
muscles (Fig. 2g, h and Supplementary Fig. 2g). Again, ZEB1
expression associated with reduced muscle damage. Like in
dystrophic muscles (Fig. 1b, d, e), ZEB1 was expressed in non-
infiltrated fibers of CTX-injured muscles but not in damaged
fibers (Fig. 2g and Supplementary Fig. 2g). Higher inflammatory
infiltration in Zebl (+/—) gastrocnemius translated into heavier
muscles following CTX-induced injury (Supplementary Fig. 2h).
Altogether, these results suggest that—in both dystrophic and
acutely injured muscles—ZEB1 inhibits immune cell infiltration,
reduces muscle damage, and accelerates the resolution of
inflammation.

IGF-1 upregulates ZEB1 and promotes its ERK/MEK-depen-
dent cytoplasmic translocation. Despite being a transcription
factor, ZEB1 can also be found in the cytoplasm of some
cancer cells, probably reflecting that high levels of ZEB1 saturate
the nuclear translocation system36-38, However, the potential role
of ZEB1 (if any) in the cytoplasm of cancer cells remains
unknown.

The above data indicated that some non-infiltrated myofibers
of injured muscles also expressed ZEB1 in their cytoplasm. In
some fibroblastic and epithelial established cell lines, the cellular
localization of selective truncated ZEB1 peptides is regulated
through phosphorylation by phorbol ester and IGF-138. Interest-
ingly, IGF-1 downregulates the inflammatory response following
muscle injury and accelerates muscle regeneration’?. It was found
here that IGF-1 increased ZEB1 expression in C2C12 myotubes
and promoted its partial translocation to the cytoplasm (Fig. 3a, b
and Supplementary Fig. 3a, b). Given that IGF-1 signals through
PI3K and MEK/ERK pathways, C2C12 myotubes were incubated
in the presence or absence of IGF-1 and/or inhibitors of PI3K
(LY294002) or of MEK/ERK (PD98059). The partial cytoplasmic
translocation of ZEB1 induced by IGF-1 was inhibited by
PD98059—which also upregulated ZEB1 expression—but not
by LY294002 (Fig. 3c—e and Supplementary Fig. 3c). These data
indicate that IGF-1, through MEK/ERK, upregulates ZEB1 and
increases its cytoplasmic localization.

ZEB]1 inhibits the expression of CCL2 and pro-inflammatory
marKkers in response to injury. During the first 24 h following an
acute muscle injury, the inflammatory infiltrate is constituted
mainly by granulocytes, which are later replaced by
macrophages”1340, Figure 2a, e indicated that Zebl down-
regulation increases the inflammatory infiltrate and delays its
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Fig. 2 ZEB1 protects dystrophic and acutely injured muscles from damage. a The gastrocnemius muscles from 2-month- and 10-15-month-old mdx;Zeb1
(+/4) and mdx;ZebT (+/—) mice were stained for hematoxylin/eosin. Representative pictures from at least ten mice for each genotype. Scale bar: 50 pm.
b ZEB1 expression (H102) in 2-month-old mdx;ZebT (+/+) and mdx;Zeb1 (+/—) gastrocnemius was assessed by immunofluorescence as in
Supplementary Fig. 2F. ¢ As in a, but 9-12 h before euthanasia mice were injected with EBD. Samples were also stained for DAPI. Representative figures
from at least eight mice per genotype. Scale bar: 400 um. d Quantification of EBD* areas in ¢. e The gastrocnemius of 2-month-old wild-type and Zeb1
(4+/-) mice were injected with CTX. Mice were then euthanized at the indicated times to assess muscular histological alterations by hematoxylin/eosin
staining. Representative captures for at least three mice per genotype and day. Scale bar: 50 pm. f Two-month-old wild-type mice were injected with CTX
and ZebT mRNA levels were assessed by gRT-PCR in at least four mice per genotype. g The gastrocnemius muscles of wild-type and Zeb1 (4-/—) mice were
assessed for ZEB1 (H102) and laminin (4H8-2) expression along with DAPI. Representative merged pictures of four mice per genotype. See Supplementary
Fig. 2G for single staining. Scale bar: 50 pm. h Quantification of ZEB1+ myofibers per field in g

resolution. ZEB1 plays important roles in malignant lymphocytes  injured muscles displayed, in absolute terms, higher inflammatory
and in tumor-associated macrophages3%-41:42, but its expression infiltration than wild-type muscles (Fig. 2e), FACS analysis did
and role in immune cells in the context of tissue damage and not find major differences in the relative distribution of the
repair has not been studied. Even though Zebl (4+/—) CTX- immune cell subpopulations (Fig. 4a). CTX injection upregulated
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Fig. 3 IGF-1 upregulates ZEB1 and promotes its ERK/MEK-dependent cytoplasmic translocation. a C2C12 myotubes were cultured in the presence or
absence of 100 ng/ml of IGF-1 for 1h and the expression of ZEB1 (H-102) was assessed by immunofluorescence. See Supplementary Fig. 3A for DAPI
staining and additional staining combinations. Representative captures of four independent experiments. Scale bar: 50 um. b Left panel: Zeb1 mRNA levels
were determined by gRT-PCR in C2C12 myotubes cultured in the presence or absence of 100 ng/ml of IGF-1for 1h. Right panel: ZEB1 protein (HPA027524)
levels in C2C12 myotubes cultured in the absence of presence of IGF-1 for 30 or 60 min were assessed by western blot along with a-tubulin (T6074).
Representative blots from four independent experiments. See Supplementary Fig. 3B for the full unedited blot. ¢ As in a, C2C12 myotubes were incubated
during 1h with or without 100 ng/ml of IGF-1 and/or either 20 pm of LY294002 or 40 pm of PD98059. Cells were assessed for their ZEB1 cytoplasmic
expression by immunofluorescence as in a. Data shown are the average of five fields per condition from four independent experiments. d As in ¢, C2C12
myotubes were treated with or without IGF-1 and/or PD98059 and cell lysates were blotted for ZEB and a-tubulin as in b. Blots are the representative of
four independent experiments. Supplementary Fig. 3C for full unedited blots. e As in d, but ZebT expression was determined by gRT-PCR. Data are the

average of four independent experiments

Zebl mRNA levels in isolated myofibers but not in isolated
immune cells (Fig. 4b).

Secretion of the CCL2 chemokine, mainly by damaged
myofibers but also by macrophages and activated MuSCs, drives
the recruitment of circulating pro-inflammatory monocytes into
acutely injured and dystrophic muscles”-*10:1213 Although CTX-
induced injury upregulated CCL2 production in muscles of both
genotypes, CCL2 levels were higher in Zebl (+/—) muscles
(Fig. 4c, d). The conditioned medium (CM) collected from Zebl
(+/—) myofibers—isolated from ZeblI (+/—) injured muscles and
cultured for 24 h—contained more CCL2 than that obtained from
wild-type myofiber cultures (Fig. 4e). In contrast, macrophages
isolated from injured muscles of both genotypes secreted similar
levels of CCL2 (Fig. 4e).

ZEB1 can either directly activate or repress the transcription of
its target genes by recruitment of other transcription factors or
non-DNA binding cofactors in a promoter- and tissue-specific
manner®3-47. We identified high-affinity ZEB1 binding sites in
the first 2kb fragment of the Ccl2 promoter and confirmed the
binding of ZEBI to this promoter in chromatin immunopreci-
pitation (ChIP) assays (Fig. 4f). When C2CI12 cells were

6

transfected with a reporter containing the mouse Ccl2 promoter
fused to luciferase, knockdown of endogenous Zebl with small
interfering RNA (siRNA) (Supplementary Fig. 4a), upregulated
Ccl2 promoter’s activity, whereas Zebl overexpression repressed
it (Fig. 4g, h, respectively). Repression of Ccl2 by ZEBI is
consistent with the higher inflammatory infiltration in Zebl
(+/—) injured muscles.

At day 2 post-CTX injection, Zebl (4/—) muscles expressed
higher levels of pro-inflammatory markers (1l6, Ifng, Tnf, Nos2/
INOS) and lower of anti-inflammatory ones (1110, Mrc1/Cd206,
Cx3crl) than wild-type muscles (Fig. 4i). Notably, 7 days after
CTX injection, Zebl (4+/—) muscles still exhibited higher
expression of pro-inflammatory markers (Fig. 4j), suggesting a
delay in the switch of Zebl (+/—) macrophages toward an anti-
inflammatory phenotype.

ZEB1 accelerates the switch of macrophages towards an anti-
inflammatory phenotype through activation of p38. In line with
Fig. 2a, e, dystrophic and acutely injured Zebl (4/—) muscles
contained a higher absolute number of infiltrating F4/807" cells
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Fig. 4 ZEBT inhibits the expression of CCL2 and pro-inflammatory markers in response to injury. a Analysis by FACS of immune cell subpopulations in 2-
month-old wild-type and Zeb1 (4/—) gastrocnemius 48 h after CTX injection. Histograms represent the fold change of each subpopulation in Zeb? (+/—)
muscles with respect to wild-type counterparts. Data originated from three mice per genotype. b ZebT mRNA levels in total muscle, in isolated immune
(CD4571) cells, and in isolated myofibers from untreated and CTX-injured wild-type and ZebT (4+/—) muscles after 48 h. Data are the average of at least
three mice per genotype and condition. ¢ Wild-type and Zeb1 (+/—) mice were injected with PBS or CTX and 48 h later their gastrocnemius were assessed
for CCL2 production by ELISA. Data are the mean of at least three mice per genotype and condition. d As in b, wild-type and Zeb1 (+/—) gastrocnemius
were assessed for Ccl2 mRNA levels by gRT-PCR 48 h after CTX injection. Data are the mean of at least five mice per genotype. e Wild-type and Zebl
(+/-) mice were injected with CTX and 48 h later their myofibers and macrophages were isolated and their secretion of CCL2 after 24 h of ex vivo culture
was quantified by ELISA. Data are the mean of four mice per genotype. f Upper panel: Scheme of 2 kb of the mouse Ccl2 promoter. Consensus binding sites
for ZEB1 are marked as vertical red lines. The promoter region assessed by ChIP for a ZEB1 binding site at —1526 bp (Supplementary Methods) is
represented by a horizontal blue line. Lower panel: DNA from C2C12 cells was immunoprecipitated with antibodies against ZEB1 (E-20) or control goat IgG
and amplified by gRT-PCR for the indicated Cc/2 promoter region. Data are the mean of five independent experiments. g C2C12 myoblasts were transiently
interfered with 50-100 nM of a siRNA control (siCtl) or siRNAs against Zeb1 (siZebl-A, siZeb1-B, siZeb1-C) and co-transfected with 0.4 pg of a luciferase
reporter for the mouse Ccl2 promoter. ZEB1 knockdown is shown in Supplementary Fig. 4A. Data are representative of four independent experiments. h As
in g, but C2C12 cells were transfected with 0.6 pg of an empty expression vector or the corresponding equal molar amount of the same vector encoding
full-length Zebl. Data are representative of four independent experiments. i, j Two or 7 days after CTX injection wild-type and ZebT (+/—) gastrocnemius
were assessed for the expression of the indicated genes by gRT-PCR. Data are the mean of at least five mice per genotype
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than wild-type muscles (Fig. 5a, b). FACS analysis of macrophage
populations (CD11b* F4/807) isolated from the gastrocnemius
of mice of both genotypes 2 days after CTX injection showed that
the share of Ly6Chigh pro-inflammatory macrophages was higher
in Zebl (+/—) muscles (Fig. 5¢ d and Supplementary Fig. 5a). In

assays

turn, the share of eosinophils [CD45b*t CD11bt CD170+
(SIGLECF*)]—which also participate in muscle injury and
regeneration (e.g. ref. 48)—was similar in wild-type and Zebl
(4/—) injured muscles (Supplementary Fig. 5b, c). The upregu-
lation of the anti-inflammatory macrophage marker CD206
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Fig. 5 ZEB1 accelerates the p38-dependent transition of macrophages toward an anti-inflammatory phenotype and reduces their cytotoxic effect. a The
gastrocnemius of mice from both genotypes were stained for F4/80 (BM8) along with DAPI. Scale bar: 50 um. b As in a, but in wild-type and Zeb1 (+/-)
muscles 2 or 7 days after CTX injection. Scale bar: 50 pm. ¢ The gastrocnemius of wild-type and Zeb1 (+/—) mice were injected with CTX and infiltrating
macrophages (CD11b* F4/80%) were characterized for Ly6C (HK1.4) by FACS. Data are the mean of at least six mice per genotype. d Representative
FACS plot for c. See Supplementary Fig. S5A for plots of other subpopulations. e Wild-type and Zebl (+/—) gastrocnemius were assessed for CD206/
MRC1 (MR5D3) expression up to 14 days following CTX injection (see Supplementary Fig. 5D). f Left panel: Lysates from macrophages isolated from wild-
type and Zeb1 (+/—) muscles 48 h after CTX injection were blotted for phosphorylated p38 (P-p38) (9211L) and total p38 (M0800). See Supplementary
Fig. 5E for full unedited blots. Representative blots from three independent experiments. Right panel: Duspl mRNA levels in wild-type and Zebl (+/—)

muscles before (day O, untreated) and 2 days after CTX injection were determined by gRT-PCR. Data are the mean of at least four mice per genotype. g
The gastrocnemius of wild-type and Zeb1 (+/—) mice were injected 10 pm of CTX along with 15 pg of anisomycin per gram of body weight. Sixty hours
later the infiltrating macrophages were sorted out by FACS and assessed for p38 phosphorylation as in f. See Supplementary Fig. 5F for full unedited blots.
h Left panel: Hematoxylin/eosin staining of the gastrocnemius of mice of both genotypes injected with CTX along with either PBS or 15 pg/g of anisomycin
during 60 h. Captures are representative of four mice per genotype and condition. Scale bar: 500 pm. Right panel: Quantification of all mice as in the left
panel. i Left panel: As in h, but muscle damage was assessed by EBD staining injected 9-12 h before euthanasia. Captures are representative of four mice
per genotype and condition. Scale bar: 500 pm. Right panel: Quantification of EBD* areas for all mice in the left panel. j Left panel: As in i, but muscles were
examined for CD206 expression. Captures are representative of four mice per genotype and condition. Scale bar: 50 pm. See Supplementary Fig. 5G for
individual staining. Right panel: Quantification of CD2067 cells for all mice in the left panel. k Macrophages from both genotypes labeled with CFSE were
injected into the gastrocnemius of 6-month-old mdx;Zeb1 (+/4) mice. Nine hours before euthanasia mice were also injected with EBD to assess muscle
damage. Muscles were harvested 2 days after macrophage transplant. Left panel: Representative merged pictures of at least five mice per genotype. See
Supplementary Fig. 5! for individual staining captures. Scale bar: 50 um. Right panel: Quantification of EBD areas associated to CSFE-labeled macrophages
for all mice as in the left panel. I As in k, mdx muscles transplanted with macrophages of either genotype were analyzed for gene expression by gRT-PCR.
Data are the mean of at least four mice per condition. m Left panel: Scheme of the experiment. Right panel: Macrophages isolated from wild-type and Zeb1
(4/—-) gastrocnemius injected with CTX and either PBS or anisomycin were assessed for in vitro cytotoxicity on C2C12 myotubes. Macrophages originated

from at least three mice per genotype and condition

(MRC1) was retarded in Zebl (4/—) CTX-injured muscles
(Fig. 5e and Supplementary Fig. 5d). Altogether these data indi-
cate that ZEBI not only inhibits muscle infiltration by pro-
inflammatory macrophages upon injury but that ZEB1 is also
required for their switch toward an anti-inflammatory phenotype.

The transition of pro-inflammatory macrophages toward an
anti-inflammatory stage is regulated by the degree of activation of
the p38-MAPK—that reaches its phosphorylation peak at day 2-3
post-injury—and its balance with DUSP1 (MKP-1), both a p38
target and its own inactivating phosphatasel”. Forty eight hours
after the CTX injection, and compared to wild-type counterparts,
the phosphorylation of p38 in Zebl (+/—) macrophages was
greatly reduced (Fig. 5f, left panel and Supplementary Fig. 5e)
and, accordingly, it was accompanied by lower levels of Duspl
(Fig. 5f, right panel).

We then investigated whether deficient p38 activation in Zebl
(+/—) macrophages accounts for the enhanced infiltration,
delayed macrophage transition, and greater damage found in
Zebl (4/—) injured muscles. The gastrocnemius of wild-type and
Zebl (+/—) mice were injected with CTX along with anisomycin,
a potent p38 activator®®. At day 2.5 post-CTX injection, p38 is
phosphorylated at maximum levels in wild-type macrophages
and, consequently, anisomycin did not induce further activation.
However, anisomycin efficiently phosphorylated p38 in Zebl
(4+/—) macrophages to similar levels than that in wild-type
macrophages (Fig. 5g and Supplementary Fig. 5f). Interestingly,
anisomycin reverted the enhanced immune cell infiltration and
tissue damage in Zebl (+/—) muscles to similar levels than in
wild-type ones (Fig. 5h, i). Likewise, anisomycin accelerated the
transition of Zebl (4/—) macrophages to an anti-inflammatory
status (Fig. 5j and Supplementary Fig. 5g). Noteworthy, the failure
of anisomycin to induce further p38 phosphorylation in wild-type
macrophages at day 2.5 post-CTX injection correlated with its
lack of effect on immune cell infiltration, tissue damage, or
macrophage transition in wild-type muscles (Fig. 5g-j). Alto-
gether, these results indicate that the deficient activation of p38-
MAPK in Zebl (4+/—) muscles accounts for their greater immune
cell infiltration and enhanced damage after injury.

Regulatory T (Treg) (CD4" FOXP3T) cells accumulate in
acutely injured muscles and limit macrophage response to IFN-

y40:50-52 Although the depletion of Treg cells in CTX-injured
mice yields a phenotype that resembles that found in Zeb1 (+/—)
injured muscles®2, we found no significant difference between the
share of TReg cells in wild-type and Zebl (4-/—) injured muscles
(Supplementary Fig. 5h).

Zebl (+/—) macrophages produce greater muscle damage than
wild-type counterparts. The Zebl (+/—) mouse model does not
allow to examine the effect in muscle damage of downregulating
Zebl specifically in macrophages. Therefore, we tested whether
isolated Zebl (+/—) macrophages can cause greater damage than
wild-type counterparts in a cell-autonomous manner. Wild-type
and Zebl (+/—) macrophages labeled with the 5(6)-Carboxy-
fluorecein diacetate N-succinimidyl ester (CFSE) fluorescent
tracer were injected into the gastrocnemius of mdx;Zebl (+/+)
mice whose damage was then assessed by EBD uptake. Exam-
ination of CFSET macrophage infiltrated areas revealed that Zeb1
(4+/—) macrophages induced greater muscle damage than wild-
type ones (Fig. 5k and Supplementary Fig. 5i). Muscles injected
with Zebl (+/—) macrophages expressed higher levels of pro-
inflammatory markers than those that had received wild-type
macrophages (Fig. 51).

Additionally, Zebl (+/—) macrophages displayed greater
cytotoxic activity on myotubes than wild-type counterparts
(Fig. 5m). This enhanced cytotoxicity of Zebl (+/—) macro-
phages was reduced to similar levels than that of wild-type
macrophages when CTX-injured muscles were simultaneously
injected with anisomycin (Fig. 5m), supporting that the deficient
phosphorylation of p38 in Zebl (4/—) macrophages is respon-
sible for the greater damage found in Zebl (4/—) injured
muscles.

It can be, therefore, concluded that Zebl (4/—) macrophages
are intrinsically capable—both in vitro and in vivo, and
independently of the host background—of inducing greater tissue
damage. These results also indicate that full levels of ZEB1 in the
infiltrating macrophages, not only in myofibers, protect muscle
from damage.

ZEB1 is required for efficient muscle regeneration upon injury.
ZEB1 expression in the centralized nuclei of dystrophic muscles
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hallmark of regeneration in adult muscle>>—in 2-month-old
mdx;Zebl (+/+) mice doubled that in mdx;Zebl (+/—) muscles
(Fig. 6b, c), suggesting that Zebl downregulation resulted in
poorer regeneration of dystrophic mdx muscles.
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Fig. 6 ZEB1 is required for efficient muscle regeneration upon injury. a Left panel: The gastrocnemius of 2-month-old mdx;Zeb1 (+/+) and mdx;Zeb1 (+/—)
mice were stained for laminin (4H8-2) and DAPI. Right panel: Quantification of the percentage of centralized nuclei in the left panel for at least four mice
per genotype. Scale bar: 100 pm. b As in a, but muscles were stained for eMHC (F1.652), laminin (4H8-2), and DAPI. Representative pictures from at least
six mice per genotype. Scale bar: 500 pm. ¢ Quantification of eMHC™ areas in b. Data are the mean of six mice per genotype. d Myh3 mRNA levels were
determined by gRT-PCR in the gastrocnemius of wild-type and Zeb? (+/—) mice either untreated or at day 2 and 7 after CTX injection. Data are the mean
of at least three mice per genotype. e As in d, but wild-type and ZebT (+/—) muscles were stained for eMHC (F1.652), laminin (4H8-2), and DAPI 4 or
7 days after CTX injection. Pictures are representative from at least four mice per genotype. Scale bar: 100 pm. f Quantification of eMHC* areas in e from
at least four mice per genotype. g The gastrocnemius of wild-type muscles either untreated or 7 days after CTX injection were assessed for ZEB1 (H-102)
expression—quantified as mean fluorescence intensity (MFI)—in regenerating eMHC* myofibers. Data are the mean of at least three mice. h Four days
after CTX injection, wild-type gastrocnemius were stained for ZEBT (H-102), NCAM (AF2408), and DAPI. Representative merged pictures from three
mice. See Supplementary Fig. 6A for single staining. Scale bar: 50 pm. i As in h, but wild-type gastrocnemius were stained for ZEB1 (H-102), eMHC
(F1.652), and DAPI 7 days after CTX injection. Representative merged pictures from three mice. See Supplementary Fig. 6B for single staining captures.
Scale bar: 50 pm. j As in e, but wild-type and ZebT (4/—) gastrocnemius were stained for eMHC 3 days after being injected with CTX and anisomycin.
Representative merged pictures from four mice per genotype and condition. Scale bar: 50 pm. k Quantification of eMHC™ fibers per field. Five independent
fields at x20 were assessed from of all mice in j. | The gastrocnemius of wild-type and ZebT (+/—) mice were injected with two rounds of CTX and 14 days
after they were stained for hematoxilin/eosin (H&E) (upper panel) or for laminin (4H8-2) and DAPI (lower panel). Representative captures from four mice
per genotype. See Supplementary Fig. 6C for additional H&E captures. Scale bars for H&E and immunofluorescence pictures represent 50 and 100 um,
respectively. m As in |, but gastrocnemius were stained for CD206 (MR5D3) and DAPI.. Representative merged pictures from at least four mice per
genotype. See Supplementary Fig. 6D for single staining. Scale bar: 50 pm. n Gastrocnemius muscles as in I were stained for eMHC, laminin, and DAPI as in

e. Scale bar: 100 pm. o Quantification of eMHC™ areas out of the total tissue section area in n. Data are the mean from four mice per genotype

The role of ZEBL1 in the regulation of eMHC during muscle
regeneration was also examined in CTX-induced acute injury.
The expression of Myh3 (the gene encoding eMHC) mRNA and
eMHC protein at days 2 and 4 after CTX injection, respectively,
were lower in Zebl (4/—) muscles than in wild-type muscles
(Fig. 6d-f). Tissue damage in wild-type muscles has been repaired
to a large extent by day 7 post-CTX; however, Zebl (+/—)
muscles still showed wide areas of infiltration and early
regeneration (Fig. 2e). Accordingly, 7 days after CTX injection
Mpyh3 and eMHC were higher in Zebl (4-/—) muscles than in
wild-type ones (Fig. 6d-f), indicating that muscle regeneration is
retarded in Zebl (+/—) mice.

ZEBI increased in wild-type eMHC™ regenerating myofibers
and was coexpressed with NCAM (CD56)—another marker of
muscle regeneration®*>>—and eMHC at days 4 and 7 post-CTX,
respectively (Fig. 6g-i and Supplementary Fig. 6a, b).

The p38-dependent transition of macrophages toward an anti-
inflammatory state modulates the timing of MuSC differentiation
in injured muscles!37-1317. We found that anisomycin increased
eMHC expression in Zebl (+/—) muscles at day 3 post-CTX
injection up to similar levels than in wild-type muscles (Fig. 6j, k)
suggesting that deficient p38 phosphorylation in Zebl (+/-)
macrophages not only contributes to the enhanced immune
infiltration and tissue damage in Zebl (4/—) injured muscles
(Fig. 5h-j) but, at least in part, also to their poorer regeneration.

The above results cannot exclude that the delayed and poorer
muscle repair in Zebl (4/—) muscles is also due to their
intrinsically deficient MuSCs. To examine this, we challenged
muscle regenerative capacity by administering two rounds of
acute injury®® (Fig. 6l). Fourteen days after the second CTX
injection, wild-type muscles still harbored myofibers with
centralized nuclei but they had already recovered a relatively
normal histological structure (Fig. 61 and Supplementary Fig. 6¢).
In contrast, Zebl (4+/—) muscles still displayed areas with
abundant immune cell infiltration, including CD206™" anti-
inflammatory macrophages that were not found in wild-type
muscles (Fig. 61, m and Supplementary Fig. 6C, D). Zebl (+/—)
muscles also exhibited impaired regeneration with myofibers of
heterogenous size and aberrant shapes and lower expression of
eMHC (Fig. 6], n, o). In sum, while after a single injury insult
Zebl (4/—) muscles were able to fully regenerate albeit displaying
a delayed repair (Fig. 2e), a second injury further compromised
their regeneration, thus suggesting that Zebl (+/—) MuSCs are
functionally deficient.

MuSCs require full levels of ZEB1 to maintain their quiescence.
The activation and myogenic progression of MuSCs is determined
by a well-defined gene signature!=3>7. Quiescent MuSCs express
PAX7 but not MYOD1 (PAX7*MYODI1") and do not incorporate
BrdU. When MuSCs are activated by injury or stress, they uptake
BrdU and gain MYOD1 expression (PAX7TMYOD1%), being
then referred as adult myoblasts or muscle progenitor cells. Only
after myoblasts have exited the cell cycle and differentiate do they
lose PAX7 (PAX7- MYODIT). Lastly, they acquire MYOG,
initially in coexpression with MYOD11.

We first examined by immunofluorescence the expression of
ZEB1 and/or PAX7 in wild-type muscles. In the absence of injury,
most ZEB1T nuclei were negative for PAX7, only 11.3% were
also positive for PAX7 (Supplementary Fig. 7a). In turn, among
PAX7* nuclei, 78.1% were co-stained for ZEB1 for 21.9% that did
not (Supplementary Fig. 7a). These data indicate that only a small
fraction of ZEB1T peripheral nuclei in Fig. 1b, ¢ were MuSCs
while most MuSCs expressed ZEB1.

Next, we explored whether ZEB1 expression modulates the
in vivo distribution of PAX71 subpopulations in response to
muscle injury. At day 4 post-CTX injection, and compared to
wild-type counterparts, the share of PAX7+ MYOD1~ cells was
lower in Zebl (4/—) muscles while that of PAX7+ MYODI1™+
proliferating myoblasts was higher (Fig. 7a). However, 28 days
after injury, the two PAX71 fractions were similar in both
genotypes (Fig. 7a). These results indicate that injury activated a
larger share of MuSCs in Zebl (+/—) muscles than in wild-type
ones but the former were eventually able to recover their pool of
quiescent MuSCs (PAX7+T MYOD1") just as wild-type muscles
did.

Muscles from both genotypes were also stained for MYOD1
and/or MYOG at day 4 post-CTX injection. Compared to wild-
type counterparts, the share of differentiating myoblasts was
higher in Zebl (4/—) muscles (Fig. 7b), indicating that ZEB1
inhibits MuSC myogenic conversion while its downregulation
drives MuSCs towards a differentiating stage.

Gene expression was also examined ex vivo in MuSCs isolated
by FACS from wild-type and Zebl (+/—) muscles either
untreated or 2 days after CTX injection (Supplementary
Fig. 7b-d). In untreated mice, Zebl (4/—) MuSCs expressed
lower levels of Zebl and Pax7 and higher of Myodl than wild-
type MuSCs (Fig. 7¢). As expected, CTX-induced injury activated
MuSCs in both genotypes and caused the downregulation of Pax7
and the upregulation of Myod! but, notably, injury brought the
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Fig. 7 MuSCs require full levels of ZEB1 to maintain their quiescence. a The gastrocnemius muscles of wild-type and ZebT (4/—) mice were injected with
CTX and 4 or 28 days later, muscle sections were characterized for PAX7 (DSHB) and/or MYOD1 (C-20) expression. Data represent the percentage of
each subpopulation out of total PAX7+ cells. Five independent fields at x40 from at least three mice per genotype were quantified. b Wild-type and Zeb1
(+/-) injured gastrocnemius were assessed for MYOD1 (C-20) and MYOG (G-20) 4 days after CTX. Data represent the percentage of each
subpopulation out of the total number of DAPI stained nuclei. Five independent fields at x40 from at least three mice per genotype were quantified.

¢ MuSCs isolated by FACS from wild-type and Zeb1 (+/—) mice either untreated or 48 h after CTX injection were examined for Zebl, Pax7, and Myod1 by
gRT-PCR. Data are the mean of at least three mice per genotype. See Supplementary Fig. 7B-D for the sorting strategy. d MuSCs isolated by FACS from
wild-type and Zeb1 (4/—) mice were immunostained for PAX7 (DSHB) and MYOD1 (C-20) at the time of isolation and upon activation by ex vivo culture
for 24 and 72 h. See Supplementary Fig. 7E for representative captures. Data are the mean of at least four mice per genotype. e As in d, but MuSCs were
characterized for their PAX7 (DSHB) and/or BrdU uptake after 24 h of ex vivo culture. See Supplementary Fig. 7F for representative captures. f-h MuSCs
isolated by FACS from wild-type and ZebT (+/—) mice were analyzed for mRNA levels of the indicated genes by qRT-PCR at the time of isolation, as well as
during their activation by ex vivo culture. Data are the average of least four mice per genotype. i Upper panel: Wild-type MuSCs isolated by FACS were
cultured for 72 h and stained for ZEB1 (E-20), PAX7 (DSHB), and MYOD1 (C-20). See Supplementary Fig. 7] for individual staining and additional staining
combinations. Scale bar: 50 pm. Middle panel: Distribution of the indicated wild-type MuSC subpopulations quantified from at least three mice as in the
upper panel. Lower panel: PAX7, MYODI1, and ZEB1 expression during MuSC activation and myogenic conversion

expression of all three genes in wild-type MuSCs to similar levels ex vivo®$?. Freshly isolated (0h) wild-type MuSCs consist
than in Zebl (+/—) counterparts (Fig. 7c and see below). mainly (70-80%) of quiescent cells (PAX7+ MYOD1-), but they

Besides muscle injury, quiescent MuSCs can be also activated—  also contain a small subpopulation (around 15-25%) of PAX7+
and subsequently proliferate and differentiate—when cultured MYODI1™ cells and <5% of PAX7~ MYOD™ cells (Fig. 7d and
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Supplementary Fig. 7e). In contrast, less than half of freshly
isolated Zebl (+/—) MuSCs were PAX7T MYODI1~ while the
majority exhibited an activated phenotype (PAX7+ MYODI1T)
and the share of differentiating cells (PAX7~ MYOD™) was also
larger than in wild-type counterparts (Fig. 7d and Supplementary
Fig. 7e). As expected, ex vivo culture of wild-type MuSCs for up
to 72 h reduced the share of PAX7T MYOD1 " cells and increased
that of PAX7+ MYOD1+ and PAX7- MYOD™ cells. However,
while differentiated myoblasts (PAX7~ MYOD1™) remained the
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smallest subpopulation in cultures of wild-type MuSCs after 72 h,
this fraction represented the largest in Zebl (4/—) MuSC
cultures. Lastly, unike wild-type MuSCs, the majority of Zebl
(4+/—) MuSCs after 24 h of ex vivo culture were PAX7+ BrdU™*
(Fig. 7e and Supplementary Fig. 7f).

ZEBI expression itself was also examined in MuSCs sorted by
FACS. At the time of isolation, wild-type MuSCs expressed more
than twice the levels of Zeb1 than Zebl (+/—) MuSCs (Fig. 7f). In
line with in vivo MuSC activation by injury (Fig. 7¢), activation of
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Fig. 8 ZEB1 inhibits CCL2 and induces FOXO3 and HES1/HES6 in MuSCs and is required for MuSCs to drive muscle regeneration. a The gastrocnemius of
wild-type and ZebT (+/—) mice were injured with CTX and 48 h later their MuSCs were isolated by FACS and assessed for CCL2 at the time of isolation or
from their conditioned medium (CM) after 24 h in culture. Data are the mean of at least three mice per genotype. b Left panel: Wild-type and Zeb1 (+/-)
gastrocnemius were injured with CTX and 48 h later their macrophages were isolated and cultured for 24 h. Wild-type MuSCs were then cultured for 24 h
with either plain culture medium or with the CM collected from macrophages of either genotype. Right panel: Ccl2 expression was assessed by gRT-PCR.
Data are the mean of at least three mice per genotype and condition. € Foxo3 mRNA levels were determined by gRT-PCR in wild-type and Zebl (+/—)
MuSCs at the time of isolation or after ex vivo culture for the indicated times. Data are the mean of least four mice per genotype. d Upper panel: Scheme of
1kb of the mouse Foxo3 promoter. Consensus binding sites for ZEB1 are marked as vertical red lines. The promoter region assessed by ChIP for a ZEB1
binding site at —404 bp (Supplementary Methods) is represented by a horizontal blue line. Lower panel: DNA from C2C12 myoblasts was
immunoprecipitated with antibodies against ZEB1 (E-20) or control goat IgG and amplified by qRT-PCR for the indicated Foxo3 promoter region. Data are
the mean of four independent experiments. e Wild-type and ZebT (+/—) MuSCs were assessed for HesT and Hes6 mRNA levels by gRT-PCR either at the
time of isolation or after 24 h in culture. Data are the mean of at least four mice per genotype. f GFP-labeled wild-type and Zebl (+/—) MuSCs (see
Supplementary Fig. 8A) were transplanted into the gastrocnemius of mdx;ZebT (+/+) mice that had been injected 24 h earlier with CTX. Four weeks later
mice were euthanized and their gastrocnemius assessed for muscle regeneration. g Left panel: As in f, muscle regeneration was evaluated by the presence
of GFPT myofibers assessed by immunostaining for GFP (GFP-1020), laminin (4H8-2), and DAPI. See Supplementary Fig. 8B for higher magnification
captures and individual staining of the inset area. Representative captures of at least four mice per genotype. Scale bar: 100 um. Right panel: Quantification
of areas stained for GFP as in the left panel. h As in g, but regeneration was assessed by immunostaining for dystrophin (MANDRA-1). Left panel:
representative captures from at least four mice per genotype. Scale bar: 100 um. Right panel: Quantification of areas stained for dystrophin as in the left

panel

wild-type MuSCs by ex vivo culture downregulated Zebl to
similar levels than in freshly isolated ZebI (4+/—) MuSCs (Fig. 7f).
When MuSCs from both genotypes were allowed to differentiate
in vitro Zebl mRNA levels remained relatively stable (Supple-
mentary Fig. 7g) while Myh4—a marker of terminal muscle
differentiation®>—increased and was expressed at higher levels in
Zebl (+/—) MuSCs (Supplementary Fig. 7h). These data suggest
that Zebl downregulation primes MuSCs for both activation and
myogenic conversion.

In line with Fig. 7c, at the time of their isolation by FACS Zeb1
(+/—) MuSCs expressed lower levels of Pax7 and higher of
Mpyod] than wild-type counterparts (Fig. 7g). Ex vivo culture of
wild-type MuSCs also downregulated Pax7 to the same levels
than those exhibited by Zebl (4/—) MuSCs while Myodl
increased in both genotypes (Fig. 7g), supporting our conclusion
above that ZEB1 inhibits the premature activation of MuSCs.
Freshly isolated wild-type MuSCs also expressed higher levels of
the cyclin-dependent kinase inhibitor Cdknlc/p57KIP2, which
were downregulated upon ex vivo culture to similar levels than
those in Zebl (+/—) MuSCs (Fig. 7h). Given that M-cadherin
(Cdhi5) is expressed in both quiescent and activated MuSCs>>,
we also examined its expression in isolated wild-type and Zeb1l
(+/—) MuSCs along with that of E-cadherin (Cdhl) and N-
cadherin (Cdh2). Cdh2 and Cdhl15 were expressed at higher levels
in Zebl (4+/—) MuSCs while Cdhl was undetectable in MuSCs
from both genotypes (Supplementary Fig. 7i).

ZEBI1 expression was also assessed in the different subpopula-
tions of wild-type MuSC isolated by FACS. ZEB1 was found in
both quiescent PAX7T MYOD1~ MuSCs and activated PAX7+
MYODI1T myoblasts, as well as in a fraction of differentiating
PAX7~ MYOD1™T myoblasts (Fig. 7i and Supplementary Fig. 7j).
This expression pattern suggests that ZEB1 is expressed in
quiescent MuSCs but it is downregulated as MuSCs differentiate
into myoblasts.

The conclusions from the above data are twofold. First, under
basal conditions, wild-type MuSCs display a more quiescent
signature than Zebl (4/—) MuSCs that are already in a “primed”
or “preactivated” stage. In other words, MuSCs require full levels
of Zebl to maintain their quiescence and a partial downregulation
of Zebl is sufficient to prompt their premature activation and
myogenic progression in response to injury or following ex vivo
culture. Second, activation of wild-type MuSCs by muscle injury
or ex vivo culture brought their expression of Pax7, Myodl,
Cdknlc, and of Zebl itself to similar levels than those in Zebl
(+/—) MuSCs.

ZEB]1 inhibits the positive feedback loop between MuSCs and
macrophages. Activated MuSCs secrete CCL2 to promote
monocyte chemotaxis into injured muscles®. Figure 4c, e showed
that CTX-injured Zebl (4/—) total muscles and isolated myofi-
bers produced more CCL2 than wild-type counterparts. MuSCs
isolated from Zebl (+/—) CTX-injured muscles also produced
more CCL2 than MuSCs isolated from wild-type peers (Fig. 8a),
supporting the enhanced macrophage infiltration in Zebl (4/—)
muscles upon injury. As for other genes (Fig. 7g, h), CCL2 se-
cretion by MuSCs became similar in both genotypes upon ex vivo
culture (Fig. 8a).

We next explored the other side of the macrophage-MuSC
crosstalk and investigated whether wild-type and Zebl (+4/-—)
macrophages have a differential effect on CCL2 production by
MuSCs. Wild-type MuSCs were incubated with plain culture
medium or with the conditioned medium (CM) produced by
macrophages isolated from wild-type and Zebl (4+/—) CTX-
injured muscles. Compared to plain medium, the CM collected
from wild-type and Zebl (+/—) macrophages increased Ccl2 in
wild-type MuSCs but this upregulation was much larger with the
CM from Zebl (4/—) macrophages (Fig. 8b).

Collectively, data in Fig. 8a, b indicate that ZEB1 expression in
MuSCs and macrophages has an inhibitory effect on both sides of
the positive feedback loop existing between these cell types and
that promotes macrophage migration upon injury.

MuSCs depend on ZEB1 to induce FOXO3 and NOTCH tar-
gets, and to drive muscle regeneration. FOXO3 is required for
MuSCs self-renewal during muscle regeneration®®. Foxo3 (—/—)
muscles exhibit retarded regeneration in response to injury and
their MuSCs are unable to maintain quiescence®®%0, As for Pax7
(Fig. 7g), Foxo3 mRNA levels in freshly isolated wild-type MuSCs
were about twice of those in ZebI (+/—) counterparts but ex vivo
culture reduced them to those in ZebI (4/—) MuSCs (Fig. 8c).
Examination of the mouse Foxo3 promoter revealed the existence
of several high-affinity consensus binding sites for ZEB1 and
ChIP assays confirmed ZEB1 binding to the Foxo3 promoter
(Fig. 8d).

Notch signaling maintains MuSC quiescence by repression of
Myodl either directly through Notch target genes of the HES and
HEY families or indirectly via Pax7 activation®”-61-63, In line with
their premature activation, Zebl (+/—) MuSCs exhibited lower
expression of Hesl and Hes6 than wild-type counterparts
(Fig. 8e).
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Fig. 9 ZEB1 protects skeletal muscle from damage and is required for its regeneration. See main text for details

Results in Fig. 6l suggested that poorer regeneration of Zebl
(+/-) injured muscles is related, at least in part, to their
intrinsically deficient MuSCs. As the Zebl (4+/—) mouse model
does not allow examining the effect in muscle regeneration of
downregulating Zebl specifically in MuSCs, isolated wild-type
and Zebl (+/—) MuSCs were transplanted into the same
recipient background—the mdx;Zebl (4/4) mouse—and com-
pared in their regenerative capacity. Exogenous injury of mdx
dystrophic muscles prior to MuSC transplant enhances engraft-
ment and muscle regeneration®. Thus, GFP-labeled MuSCs
isolated from both genotypes were injected into the gastro-
cnemius of CTX-injured mdx;Zebl (+4/4) mice (Fig. 8f and
Supplementary Fig. 8a). Four weeks later, mice were euthanized
and the presence of myofibers positive for GFP or dystrophin—
for which mdx muscles are deficient—were assessed by
immunofluorescence as proxies of newly formed myofibers
derived from the transplanted MuSCs. Through both approaches,
it was found that wild-type MuSCs generated about twice as
many more new myofibers than Zebl (+/—) MuSCs (Fig. 8g, h
and Supplementary Fig. 8b). From these data, it can be concluded
that MuSCs require full levels of ZEB1 to drive efficient muscle
regeneration.

Discussion
Muscle injury and regeneration are closely linked processes as the
latter depends on the precise and timely sequencing of the pro-

inflammatory and anti-inflammatory signals that occur in the
context of muscle damage!l17. The molecular mechanisms that
coordinate muscle injury and regeneration are only partially
understood. Here, we show that ZEB1 protects muscle from
damage and is required for its regeneration (Fig. 9).

The role of ZEBI in muscle injury and regeneration uncovered
here occurs at multiple levels and in different cell types. Mono-
cytes/macrophages, the predominant immune cell that infiltrates
damaged muscles, are recruited from pro-inflammatory circu-
lating monocytes by CCL2 and other chemokines produced by
damaged myofibers, activated MuSCs, and infiltrated macro-
phages themselves®7-%10:13_ We found that ZEB1 has an inhibi-
tory effect on both sides of the positive feedback loop between
MuSCs and macrophages that promotes macrophage infiltration
upon injury, loop that is amplified in Zebl (+/—) muscles. Thus,
on the one hand, ZEBI directly repressed the Ccl2 promoter and,
accordingly, Zebl (+/—) myofibers and MuSCs produced higher
levels of CCL2 than wild-type counterparts. On the other hand,
soluble factors secreted by macrophages of both genotypes, but at
higher levels by Zeb1 (++/—) ones, stimulated CCL2 production by
MuSCs.

ZEB1 not only inhibited CCL2-mediated macrophage infiltra-
tion of injured muscles but its expression in macrophages sup-
pressed their cytotoxic activity on muscle cells and accelerated
their transition toward an anti-inflammatory status. Thus, Zeb1l
(4+/—) macrophages were intrinsically capable of producing
greater damage than wild-type ones and produced higher levels of
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pro-inflammatory cytokines. The switch of pro-inflammatory
macrophages first toward an anti-inflammatory phenotype and
later to a cytokine exhaustion stage is driven by the level of
phosphorylation of p38-MAPK and its balance with DUSP117. In
response to injury, Zebl (4+/—) macrophages displayed deficient
p38 activation and, at least for the timeframe examined, lower
DUSP1 levels. Anisomycin efficiently phosphorylate p38 in Zebl
(4+/—) macrophages and reverted the enhanced infiltration and
damage in Zebl (+/—) injured muscles to the same levels than in
wild-type counterparts. Reduced Dusp1 expression in Zebl (4/—)
muscles suggests that their deficient p38 activation following
injury is not due to its de-phosphorylation by DUSP1. Interest-
ingly, p38 signaling is required for TGFB-induced EMT®> and we
are currently investigating the precise mechanism by which
ZEB1 stimulates p38 phosphorylation.

ZEB1 also promoted muscle repair through, at least, two
independent mechanisms. First, the delayed and poorer regen-
eration of Zebl (4/—) injured muscles was related to the retarded
transition of their macrophages towards an anti-inflammatory
stage. Accordingly, forced p38 phosphorylation in Zebl (+/—)
muscles by anisomycin increased the number of eMHC regen-
erating myofibers to similar levels than in wild-type muscles. It is
possible that the improved muscle regeneration induced by ani-
somycin results from a direct effect in MuSCs. How-
ever, p38 signaling inhibits MuSC expansion in mdx mice while
its genetic ablation or pharmacological blockade expands MuSCs
and increases the number of activated MuSCs!460:67, Addition-
ally, the defective muscle regeneration in Duspl (—/—) mice
depends on the alteration of the p38/DUSP1 balance in macro-
phages, not in MuSCs, as it is rescued by bone marrow
transplantation!”.

Second, poorer regeneration in Zebl (+/—) muscles was also
related to their intrinsically defective MuSCs. MuSCs required full
homeostatic levels of ZEB1 to mount an efficient engraftment
upon transplantation in dystrophic muscles. Data indicated that
Zebl (+/—) MuSCs are already “primed” towards an activated/
differentiated stage. Early during activation, ZebI (+/—) MuSCs
contained a smaller share of quiescent cells and a higher fraction
of proliferating and differentiating myoblasts than the activation
of wild-type MuSCs. Expression of Zebl and of quiescence-
associated genes (Pax7, Foxo3, Hesl, Hes6) in freshly isolated
Zebl (4+/—) MuSCs was between a third and a half of those found
in wild-type MuSCs. Interestingly, activation of wild-type MuSCs
downregulated the expression of all these genes to the same levels
than those found in Zebl (+/—) MuSCs at the time of isolation.
ZEB1’s role maintaining MuSC quiescence seems to depend on a
gene expression threshold of these quiescence-associated genes
and of ZEBI itself below which MuSCs become primed toward an
accelerated activation and differentiation. Of note, ZEB1 is
upregulated in cancer and tumor microenvironment cells but its
downregulation to around half of the original upregulated levels is
sufficient to block tumor progression28-30.

MuSCs depend on ZEB1 for their expression of several
quiescence-associated genes suggesting that ZEB1 acts through a
common upstream regulator. Notch signaling maintains MuSC
quiescence by both direct and indirect inhibition of MYOD161-63,
We showed here that ZEB1 inhibits MyodI expression and it has
been reported that ZEBI represses MYODI] transcriptional activity,
and displace MYODI1 from its DNA binding sites on target
genes! %2168, FOXO3 supports MuSC quiescence through Notch
signaling®® and, alternatively, ZEBI may induce a quiescence-
associated signature in MuSCs via its direct activation of the Foxo3
promoter found here. Like in Zebl (+/—) mice, Foxo3 (—/—)
muscles exhibit delayed regeneration that is severely impaired after
two rounds of injury but not after a single challenge>6:60,

Current therapies in muscular dystrophies aim at modulating the
inflammatory response and improving the regenerative capacity of
MuSCs. Our results here established ZEB1 as an important factor in
the regulation of both processes, thus potentially opening new
avenues in the treatment of muscular dystrophies.

Methods

Mouse and human samples. The source of mouse and human samples is detailed
in Supplementary Methods. The use of animals in this study followed the guide-
lines of the Animal Experimentation Ethics Committee at the University of Bar-
celona (Barcelona, Spain) and was approved under reference UB/385/17. All
human samples were obtained with the informed consent of patients, conformed to
the principles of the Helsinki Declaration, and their use was approved by the
Clinical Ethics Research Committee at Hospital Clinic of Barcelona (Barcelona,
Spain) under reference HCB/17/0815.

Antibodies, and DNA and RNA oligonucleotides. The antibodies used in the
immunostaining, and in the isolation and characterization of immune cells and
MuSCs are detailed in Supplementary Methods. DNA oligonucleotides used as
primers in quantitative real time PCR (qQRT-PCR) and RNA oligonucleotides used
in RNA interference are described in Supplementary Methods.

Immunostaining. The immunohistochemistry and immunofluorescence staining
of mouse and human tissue samples, as well as cross-section area (CSA) analysis of
muscle sections are described in Supplementary Methods.

Cell surface protein expression and cell sorting by FACS. Characterization of
infiltrating immune cells in injured muscles and isolation of macrophages and
MuSCs from injured and/or non-injured muscles were performed by FACS as
described in Supplementary Methods.

Gene and protein expression. RNA extraction and subsequent analysis of gene
expression by qRT-PCR, transcriptional analyses of promoter activity with luci-
ferase reporters, chromatin immunoprecipitation (ChIP) assays, and assessment of
protein expression by western blot are described in Supplementary Methods.

Characterization and transplant of macrophages and MuSCs. The phenotypic
and functional characterization of macrophages and MuSCs, as well as their
adoptive transfer into mdx mice are described in Supplementary Methods.

Statistical analysis. Statistical analysis of data shown was performed using Prism
for Mac version 5.0a (GraphPad Software Inc., La Jolla, CA, USA). Statistical
significance was assessed with a two-sided non-parametric Mann-Whitney U-test.
Correlations were assessed by the Spearman correlation test. Error bars in histo-
grams represent standard errors of means. Relevant comparisons were labeled as
either significant at p <0.001 (***), p<0.01 (**) or p<0.05 (*) levels, or non-
significant (ns) for values of p>0.05.

Data availability

All relevant data are available from the authors.
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