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ABSTRACT

Herein, the kinetics of the concerted [3+2] cycloaddition reaction between the [Mo3(µ3-S)(µ-
S)3Cl3(dmen)3]+ (dmen=N,N’-dimethyl-ethylenediamine) ([1]+) cluster and various alkynes to form 
dithiolene derivatives is thoroughly studied, with measurements at different temperatures and 
pressures allowing the determination of the free energies and volumes of activation. These 
parameters, together with the available single crystal X-ray diffraction structures are employed to 
test a number of commonly used DFT methods from across the Jacob’s ladder, as well as the effects 
associated with the size of the basis sets, the way in which solvent effects are taken into account, or 
the inclusion of dispersion effects. All in all, a protocol that leads to average deviations between 
experimental and computed ΔV# and ΔG# values similar to the uncertainty of the experimental 
measurements is obtained.

Introduction

Theory is expected to provide answers to the 
many questions related with the mechanism of 
chemical reactions. This goal requires of 
accurate computational methods, and for that 
purpose an adequate estimation of the 
activation parameters is critical. In this sense, 
recent analyses have highlighted that obtaining 
reliable and predictive mechanistic insight from 
modelling remains challenging.1-2 As the kinetic 
and mechanistic features of reactions are best 
evaluated by using activation parameters, an 
adequate refinement of computational 
methods for evaluating them is highly desired. 

Given the difficulties of the current 
methodology to separate enthalpic and 
entropic contributions, estimation of the 
experimental activation free energies is surely 
the best way to test the performance of 
computational methods. The activation volume, 
another activation parameter typically less used 
because of its higher experimental demands, is 
also fundamental for obtaining an adequate 
mechanistic picture of reactions, and so the 
development of adequate procedures for 
obtaining accurate computational estimations is 
also pursued. In the present work we tested the 
capability of the most commonly used DFT 
methods to model the activation parameters of 
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a series of concerted reactions between Mo/S 
species and alkynes. 

MoIV combines with sulfur to generate robust 
clusters with a [Mo3(μ3-S)(μ-S)3]4+ core.3-4 These 
structures thus feature two types of sulfur 
ligands, with each metal centre being 
coordinated to the capping (3-S) and two 
bridging (-S) ligands (see Scheme 1). 
Moreover, each metal centre features a 
distorted octahedral geometry if the Mo-Mo 
bonds are ignored, and therefore three 
additional coordination sites are normally 
occupied by mono- and/or polydentate ligands. 
Besides the reactivity associated to the Mo(IV) 
centres and its outer coordination 
environment,5 the three bridging (-S) ligands 
provide important reactivity paths. In fact, two 
main processes are known to occur at these 
sulphur sites: a) incorporation of a second 
metal (M’) to form heterometallic [Mo3M’S4]4+ 
clusters6; b) alkyne insertion to produce 
dithiolene adducts, as shown in Scheme 1.7 
According to previous findings, such insertion 
takes place through a concerted [3+2] 
cycloaddition process between a [Mo(μ-S)2] 
cluster moiety and the two sp carbon atoms of 
the alkyne, as illustrated in Scheme 1 (see also 
Figure S3).7 
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Scheme 1. [3+2] cycloaddition reaction between 
[1]+ and alkynes (dmen ligands represented as 
N^N). 

From a computational point of view, although 
DFT results have been used to explain all the 
observed trends in reactivity, we have found 
inconsistencies associated with errors of up to 
5-6 kcal/mol in the predicted free energies.8-10 
In this manuscript we have taken advantage of 
the clean reaction between the [1]+ cluster and 

some alkynes, dimethylacetylene dicarboxylate 
(dmad) and phenylacetylene (PhA), to identify 
which of the commonly used computational 
approaches produce the most accurate results. 
To do so, not only have we used the interatomic 
distances calculated from their single crystal X-
ray diffraction structures, but also free energy 
barriers and activation volumes kinetically 
determined. In this way, an optimised 
computational strategy has been developed 
that yields estimations of activation parameters 
that are typically within the standard deviation 
of the experimental determinations. 
Furthermore, the protocol was tested on other 
[3+2] cycloaddition reactions of [Mo3S4]4+ 
cuboidal clusters with similar results, thus 
highlighting its versatility. Thus, the conclusions 
of this work constitute an excellent starting 
point towards future calculations on catalytic 
processes involving these clusters.

Additionally, it is worth noting that such clusters 
are important in relation to Group-VI transition 
metal dichalcogenides (TMDs), a class of 
materials thoroughly studied nowadays due to 
their ability to catalyse the Hydrogen evolution 
reaction (HER).11 The location of the catalytic 
active sites of these materials is however still 
under debate, and in this sense, the use of 
homogeneous analogues able to mimic their 
structure has been cleverly used by some 
researchers to shed light into this dilemma.12 
Among those model species, [Mo3(μ3-S)(μ-S)3]4+ 
clusters share structural similarities with the 
basal planes of MoS2,13 and therefore any 
improvement in their computational 
characterisation will reverberate in a better 
understanding of HER catalysts.

Methods 

Chemical substances

The cluster [Mo3S4Cl3(dmen)3](BF4), [1](BF4), 
was prepared according to literature 
procedures.14-15 All other chemicals were 
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reagent grade commercially available and were 
used as received. 
Kinetic experiments

Ambient pressure kinetic experiments were 
carried out using an Applied Photophysics SX-
18MV stopped-flow spectrophotometer 
provided with a PDA1 photodiode array 
detector, and with a Cary 50 Bio UV-Vis 
spectrophotometer for conventional measures. 
All experiments were carried out at the desired 
temperatures in acetonitrile solution by mixing 
a stock solution of the cluster (2−5 ×10-4 M) 
with another solution containing the alkyne in a 
concentration range large enough (0.01–0.050 
M) to ensure pseudo-first order conditions of 
alkyne excess. Some experiments at two 
different cluster concentrations were also 
carried out to confirm the first order 
dependence of the observed rate constants on 
its concentration. Runs at variable high pressure 
were conducted with the same procedures, but 
using the pressurising systems and cells 
described previously.16 
All time-resolved data were collected as full 
(300-1000 nm) spectra and treated with the 
standard Specfit or ReactLab Kinetics 
software.17-18 Observed rate constants were 
obtained from the full time-resolved spectral 
changes or alternatively at the wavelength were 
a maximum change was observed (ca. 400 or 
900 nm). For the vast majority of the runs the 
changes agreed with the operation of an A→B 
single exponential equation when pseudo-first 
order conditions applied, and were fitted 
accordingly. In cases where a drift of the 
absorbance values was observed, the data were 
fitted to two consecutive exponentials but the 
values derived for the second rate constants 
showed erratic changes and were disregarded. 

Computational details

All calculations were performed with Gaussian 
09, Revision D.01.19 Optimisations were carried 
out in the gas phase without any symmetry 
constraint, and employed an integration grid 
obtained with 99 radial shells and 590 angular 
points per shell centred on each atom, which is 

Table 1. Summary of basis set systems used in this work.

Basis 
set 

system Mo centres S centres
Cl, N, O, C and 

H centres

BS1 SDD/ECP[a]
SDD/ECP[a] 
+ Pol[b] 6-31G(d,p)

BS2 SDD/ECP[a]
SDD/ECP[a] 
+ Pol[b] 6-311+G(2d,2p)

BS3 SDD/ECP[a] D95

BS4
cc-pVDZ-
PP[c] cc-pVTZ[d] cc-pVDZ[e]

BS5 Def2-TZVP[f] Def2-TZVP[f] Def2-TZVP[f]

 [a] SDD/ECP = Stuttgart / Dresden ECP, see Ref. 22. [b] 
Added polarisation function (= 0.503), see Ref. 23. [c] Ref. 
27. [d]  Ref. 28. [e] Ref. 29. [f] Ref. 26.

denoted as “ultrafine” in Gaussian 09. 
Vibrational frequencies were computed using 
the harmonic oscillator approximation on all 
optimised geometries at 1 atm and 298.15 K. 
This served to characterise them as either 
minima or transition states, as well as to obtain 
the thermal and entropic corrections required 
to further calculate free energy differences. The 
connection of transition states with the 
corresponding reactants and products was 
confirmed via intrinsic reaction coordinate (IRC) 
calculations20-21 and subsequent optimisation to 
minima. Unless otherwise stated, BS1 was 
employed for optimisation purposes and BS2 to 
obtain improved energetic values via single-
point calculations. A summary of how each 
basis set system is constructed is included in 
Table 1. BS1 uses the Stuttgart RECPs and 
corresponding basis sets to describe the Mo 
and S centres,22 with added polarisation on the 
latter (= 0.503),23 whereas the Pople style 6-
31G(d,p) basis set is used for all other atoms (Cl, 
N, O, C, H). Mo and S centres are described 
similarly in BS2, which only differs from BS1 in 
that the remaining atoms are modelled using 
the 6-311+G(2d,2p) basis set. Nevertheless, 
given that previous DFT studies on reactions 
involving Mo centres have shown a significant 
dependence of results on the quality of the 
basis set,24-25 additional optimisations and/or 
single-point calculations were performed with 
the basis set systems indicated in Table 1. This 
includes common basis set systems such as BS3, 
invoked in Gaussian software by using the SDD 
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command, a combination of Dunning's 
correlation consistent basis sets and effective 
core potentials in BS4, or the triple- valence 
basis set including polarisation functions Def2-
TZVP optimised by Weigend and Ahlrichs.26

A number of popular density functionals across 
the Jacob’s ladder30 were employed and they 
are included in Table 2. On each case, both 
optimisations and subsequent single-point 
calculations were carried out with the same 
density functional. The latter single-point 
calculations at the DFT/BS2 level included the 
effects of the solvent (acetonitrile) using either 
the IEFPCM31 (abbreviated PCM) or the SMD32 
approaches.
Dispersion effects were taken into account in 
different ways. No additional correction was 
applied to those functionals that already 
include these in some way, such as B97D3, 
wB97XD. For the remaining functionals, both 
Grimme’s D3(0) and D3(BJ) dispersion 
corrections were computed as single-point 
corrections whenever possible. Note that for 
the M06 series only the D3(0) correction could 
be applied due to the lack of Becke-Johnson 
parameters. In addition, in some cases 
Grimme’s D3(0) and D3(BJ) corrections were 
included self-consistently in the optimisation 
procedure, leading to the BP86D3(BJ), 
B3LYPD3(BJ), PBE0D3(0) and PBE0D3(BJ) 
combinations. Finally, no dispersion corrections 
were computed for the M11 functional.
A number of additional corrections were also 
considered in order to calculate activation free 
energies. Given that all reactions investigated 
take place in solution, a standard state of 1 M 
was employed. For that purpose, the quantity 
of R ln(24.46), 6.354 cal/mol·K, was subtracted 
from the raw entropies obtained from Gaussian 
09 for each computed species.33 Note that, in 
the present case, this subtraction results in a 
correction term of 1.89 kcal/mol for each 
species, which in turn leads to the same 1.89 
kcal/mol energy decrease on the free energy 
barrier (G#) for the forward reaction between 
cluster and alkynes, with the correction 
cancelling out in the case of the reverse barrier.

Table 2. Summary of Exchange-Correlation Functionals 
used in this work.

Name Type [a] X [b] Ref.
BP86 GGA 0 36-37

BP86D3(BJ) [c] GGA+D 0 36-39

B97D3 [c] GGA+D 0 40

TPSS mGGA 0 41

M06-L mGGA 0 42

TPSSh GH-mGGA 10 43-44

B3LYP GH-GGA 20 45

B3LYPD3(BJ) [c] GH-GGA+D 20 45

PBE0 GH-GGA 25 46-47

PBE0D3(0) [c] GH-GGA+D 25 38-39, 
46-47

PBE0D3(BJ) [c] GH-GGA+D 25 38-39, 
46-47

M06 GH-mGGA 27 48

M06-2X GH-mGGA 54 48

M06-HF GH-mGGA 100 49

M11 RSH-mGGA 42.8-100 50

wB97XD [d] RSH-
GGA+D

22.2-100 51-52

[a] GGA = generalised-gradient approximation; +D = addition 
of molecular mechanic dispersion corrections; GH-GGA = 
global hybrid GGA, GGA plus some percentage of nonlocal 
HF exchange; mGGA = meta-GGA, GGA plus local kinetic 
energy density and some percentage of nonlocal HF 
exchange; RSH = range-separated hybrid. [b] X denotes de 
percentage of Hartree-Fock exchange. A single value 
indicates a local (X=0) or hybrid (X≠0) functional, whereas 
two values indicate X at short and long inter-electronic 
separations. [c] These functionals include Grimme’s D3(BJ) 
correction, see Ref. 38-39. [d] This functional uses a version 
of Grimme’s D2 dispersion correction.

On the other hand, the molecular symmetry of 
the species has an impact on their rotational 
entropy. All optimised species in this study were 
computed with C1 symmetry, and therefore the 
effect of symmetry was subsequently added to 
the free energy. This was carried out by 
including the term R ln(), where  represents 
the symmetry number.34-35 In particular, 
symmetry numbers of 3 and 2 were used for 
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cluster and alkynes, respectively, which led to 
contributions of 0.65 and 0.41 kcal/mol. A 
symmetry number of 1 was used for the 
transition states and dithiolene products, thus 
resulting in no additional correction for these 
species. As a result, this symmetry correction 
leads to a decrease of 1.06 kcal/mol on the free 
energy barrier for the forward reaction 
between cluster and alkyne. 
All in all, the activation free energies reported in 
the text at a DFT2/BSX(solvent)//DFT1/BSY(gas) 
(X, Y= 1-5; solvent= PCM, SMD) level of theory 
are based on the electronic energies computed 
at the DFT2/BSX(solvent) level (note that in 
those cases in which DFT2 corresponds to a 
dispersion corrected functional, such dispersion 
correction is included in this term), and also 
include the free energy correction computed at 
the DFT1/BSY(gas) level, the standard state 
correction to change from 1 atm to 1 M, and 
the correction to account for the symmetry of 
the molecules. The molecular vdW volumes 
required to compute the ΔV╪ values were 
obtained using the default Gaussian09 
parameters for PCM and SMD solvation models, 
i.e. scaled (f = 1.1) UFF (Universal Force Field) 
and unscaled intrinsic atomic Coulomb radii, 
respectively.
A summary of the computed energies and vdW 
volumes for all optimized species is included in 
the Supporting Information, whereas their 
structures are available at the ioChem BD 
database,53 where they can be accessed via 
https://doi.org/10.19061/iochem-bd-6-34. 

Results and discussion 

Kinetics of the reaction of [1]+ with alkynes

The reaction of [1]+ with an excess of various 
alkynes (adc, dmad, PhA, DPhA, PrA) was 
preliminary investigated (adc = 
acetylenedicarboxylic acid; PrA = propargyl 
alcohol; DPhA = diphenylacetylene; PrA = 
propargyl alcohol). While no reaction with DPhA 
was observed even after 4 days at 60 ºC, the 
reaction with PhA and PrA occurred in a few 
hours at room temperature, and in seconds 
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Figure 1. Typical spectral changes for the 
reaction of cluster [1]+ with dmad in acetonitrile 
solution (25.0 ºC, [1]+ = 4.57×10-4 M, [dmad] = 
0.016 M). 
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 Figure 2. Representative plots of the 
dependence of the observed rate constants for 
the reaction of [1]+ with different alkynes in 
acetonitrile solution at 25.0 ºC (a): dmad 
(circles) and adc (triangles); b): PhA (circles) and 
PrA (triangles).

when adc and dmad were used (the kinetics of 
the reaction with dmad at 25ºC has been 
previously reported).13 The typical spectral 
changes observed for the reaction of [1]+ with 
an excess of dmad in acetonitrile solution are 
shown in Figure 1. A significant change in the 
intensity of the bands at 400 and 660 nm is 
evident, as well as the appearance of a new 
band at 885 nm, which is a characteristic 
feature of the dithiolene addition products.7

Similar spectral changes are observed with the 
other alkynes, and in all cases they can be fitted 
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to a single exponential A→B model, i.e. no 
reaction intermediate build-ups in significant 
concentration during the cycloaddition process. 
The concentration dependence of the obtained 
pseudo-first order rate constants (kobs, collected 
in Table S1 of the supporting information) are 
shown in Figure 2 for the different systems 
studied. Interestingly, the data show a non-zero 
intercept for the PhA and PrA alkyne systems, 
i.e. those showing the reactivity in the hours 
time scale, whereas the faster reacting 
activated dmad and adc alkynes feature a zero 
intercept. Such dependences can be explained 
by the rate law in eq 1, where k+ and k- 
correspond to the forward and reverse rate 
constants for the formation of the cycloaddition 
products in an equilibrium process. The 
equilibrium nature of the reactions with PhA 
and PrA is confirmed by the increasing 
magnitude of the absorbance changes when the 
alkyne concentration is increased. The reactions 
with dmad and adc can be considered to 
represent irreversible processes under the 
experimental conditions used. Table 3 collects 
the relevant kinetic parameters for all the 
systems studied (k- and k+) as well as the 
calculated equilibrium constants for the process 
(calcKeq = k+/k-). 

kobs = k- + k+·[alkyne] (1)

Table 3. Summary of kinetic and equilibrium parameters 
obtained for the reaction of [1]+ with the different alkynes 
studied.[a]

Parameter dmad PhA PrA  adc 
298k+/M-1s-1 0.72(2) 1.53(5)·10-3 2.62(4)·10-3 0.65(1)
298k-/s-1 - 2.6(1)·10-5 1.01(7)·10-5

log calcKeq - 2.51(6) 3.2(1)
[a] Numbers in parenthesis are errors in the last significant 
digit.

The variation of the kinetic parameters with 
temperature and pressure were also 
determined for the PhA and dmad systems, as 
representatives of the two types of kinetic 
trends in Figure 2. Figure 3 shows the Eyring 
and lnk/P plots for the systems studied (see also 
Figures S1 and S2), whereas Table 4 collects the 

corresponding thermal and pressure activation 
parameters derived. The activation enthalpy for 
the cycloaddition (forward process) is lower in 
the case of dmad, and the negative activation 
entropies are, in both cases, in agreement with 
an ordering on going to the transition state, a 
fact that is also shown by the negative 
activation volumes in the non-polar, non-protic 
media used for the study (acetonitrile). For the 
reaction with PhA the data even allow for a 
comprehensive description of the reversible 
process. The activation parameters for the 
forward and backward reaction lead to a 
reasonable estimation of the corresponding 
thermodynamic ΔH0 = 6.2 ± 2.6 kJ mol-1, ΔS0 = 
33 ± 8 J K-1 mol-1, and ΔV0 = -18 ± 2 cm3 mol-1. It 
is important to note that the values indicate 
that the overall reaction is thermodynamically 
favoured (ΔG0 <0), despite an unfavourable 
enthalpy term, due to its entropy changes.
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Figure 3. a) Eyring plot for the tempertaure 
dependence of the k+ rate constant for the 
reaction of the [1]+ cluster with dmad; b) ln(k) 
versus P plot for the k+ (triangles) and k-(circles) 
rate constants for the reaction of the [1]+ 
cluster with PhA.
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Table 4. Experimental activation parameters for the 
different reactions studied.[a]

Parameter

Reaction 1
PhA 

Forward

Reaction 2
PhA 

Reverse

Reaction 3
dmad 

Forward
ΔH#/kcal 
mol-1 19(1) 12(2) 9.9(1)
ΔS#/cal K-1 

mol-1 -6(3) -39(7) -26.3(5)
298ΔG#/kcal 
mol-1 21(1) 24(3) 17.7(2)
ΔV#/cm3 
mol-1 -14(2) 4(1) -16(1)
[a] Numbers in parenthesis are errors in the last significant 
digit.

Computational results on the reaction of [1]+ 
with alkynes 

The main purpose of this manuscript is to test 
which computational methodology is able to 
better model the previous experimental results. 
To do so, we have performed calculations 
aimed at determining not only the effect of the 
density functional, but also other important 
aspects such as the size of the basis set system, 
the inclusion of dispersion effects, or the way in 
which solvents effects are modelled.

Optimised structures

The X-ray diffraction structures of the cluster 
[1](BF4) and the product of its reaction with 
dmad ([1-dmad]2(Mo6Cl14) can be found in the 
literature.13-14 These have been employed to 
determine which functional leads to the most 
accurate optimised structures when using the 
basis set system BS1. The results, listed in 
Tables S3 and S4, show that differences 
between optimised and experimental 
interatomic distances are small, i.e. each 
functional performs relatively similarly for both 
structures. As expected, common DFT methods 
not including dispersion effects such as BP86 
and B3LYP systematically result in expanded 
structures, whereas those accounting for such 
effects lead to more compact structures.54 This 
palliates the systematic overestimation of 

Table 5. For the optimisation of [1]+ and [1-dmad]+ with the 
PBE0 functional and various basis set systems, summary 
of mean unsigned errors (MUEs) with respect to their X-
ray structures together with the number of resulting basis 
functions for each optimisation.

Basis 
set 

system
MUE
[1]+

MUE
[1-dmad]+

Basis 
functions for 

[1]+/ [1-dmad]+ 
BS1 0.010 0.009 658/828
BS2 0.011 0.009 1087/1411
BS3 0.034 0.036 495/607
BS4 0.014 0.017 811/981
BS5 0.018 0.018 1153/1499

internuclear distances and reduces the general 
overestimation of bond lengths. The effect is 
clear for instance when comparing B3LYP and 
B3LYPD3(BJ) data. The different flavours of the 
Minnesota M06 family of functionals behave 
quite similarly, only showing a small 
improvement in the mean unsigned error MUE 
values with respect to BP86 and B3LYP. 
From the data in Tables S3 and S4 it is difficult 
to determine a correlation between the 
percentage of HF exchange and the quality of 
the results, as dispersion effects seem to be 
much more important. In fact, among the two 
tested range-separated functionals, M11 and 
wB97XD, the latter gives generally better 
agreement with the experimental data probably 
because it contains a correction for dispersion 
effects. Interestingly, the best agreement 
(measured as the lowest MUE) within the 
functional selection herein is obtained for the 
PBE0 and its D3(0) and D3(BJ) dispersion-
corrected versions. The PBE0 functional is 
known to give relatively accurate geometries 
for transition metal complexes,55-59 
nevertheless, it is quite surprising that: a) it 
gives lower MUE values than most dispersion-
corrected functionals; b) the obtained MUE 
values are quite insensitive to the inclusion of 
dispersion corrections for this functional. The 
consequences of including solvent effects 
during the optimisation procedure have also 
been studied at the PBE0/BS1 level via PCM and 
SMD approaches (see the footnotes at Tables 
S3 and S4). Both for [1]+ and [1-dmad]+ this 
showed roughly no differences in terms of MUE 
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values when compared with the gas phase 
optimisations. On the contrary, the accuracy of 
the optimised structures strongly depends on 
the basis sets employed. The results of these 
calculations, carried out in the gas phase in 
combination with the PBE0 functional are 
included in Table 5. These show that the best 
agreement is obtained when BS1 and BS2 are 
employed, with only small differences between 
their MUE values. Given that BS1 and BS2 only 
differ in the way in which Cl, N, O, C, H atoms 
are modelled, with Pople style double- and 
triple-Z basis sets, respectively, it seems that 
the use of triple-Z basis set in the latter is not 
necessary to obtain accurate geometries. On 
the contrary, the accuracy decreases 
significantly when BS3 is employed, thus 
suggesting that the Dunning/Huzinaga full 
double zeta basis set is not appropriate for 
these optimisations. BS4 was selected on the 
basis of a recent computational assessment of 
DFT methods for Mo/W-mediated reactions.25 
As shown in Table 5, it leads to slightly larger 
MUE values than BS1, and a deeper analysis of 
the computed structures show that this is 
mostly originated by MoMo and MoS 
distances ca. 0.01-0.02 Å shorter when BS3 is 
employed. The last basis set system tested, the 
polarised triple zeta valence def2-TZVP (BS5), 
leads to the largest number of basis functions 
among the tested basis set systems. 
Surprisingly, the PBE0/BS5 optimised structures 
are not as good as expected, an outcome 
probably related to the absence of 
pseudopotentials in the description of the Mo 
and S centres. 
All in all, DFT calculations using the PBE0 
functional and its dispersion corrected D3(0) 
and D3(BJ) versions in combination with the BS1 
basis set constitutes the most accurate level of 
theory for optimisation purposes, leading to 
MUE values in the same range as the 
uncertainties of the X-ray diffraction 
determined interatomic distances.

Activation free energies

In spite of the fact that activation enthalpies 
and entropies have been obtained for the 
reaction of [1]+ with dmad and adc in 
acetonitrile solution, herein we have focussed 
on the computation of the resulting Gibbs free 
energies in Table 4. This choice is based on the 
fact that the continuum solvation models 
employed herein, PCM and SMD, are 
constructed to calculate Gibbs free energies of 
solvation and do not provide direct information 
about separate enthalpies and entropies of 
solvation.1 A wide range of density functionals 
have been tested and the results are included in 
Table S5. This allows comparing several 
common variables when trying to compute free 
energy barriers. For instance, regardless of how 
solvent effects are accounted for, the values 
obtained at levels of theory that do not include 
dispersion effects (entries 2, 5, 8, 11 and 14, 
Table S5) clearly overestimate the barriers for 
the forward reactions R1 and R3, whereas they 
underestimate the backward reaction R2, these 
discrepancies being in the range of 5-10 
kcal/mol. As expected, inclusion of dispersion 
effects on the computation of the free energy 
barriers leads to significant decreases in the 
barriers of R1 and R3, in agreement with the 
fact that such processes involve a change in 
molecularity from 2 to 1. On the contrary, the 
effect is much smaller for the backward 
reaction in R2, where there is no change in 
molecularity.
Although the extent of the decrease on the ΔG# 
values for R1 and R3 differs between the D3(0) 
and D3(BJ) corrections, with the latter being 
slightly more pronounced, such corrections are 
found to be generally too large, leading to an 
underestimation of the barriers. This is clearly 
exemplified when comparing the barrier for 
reaction R1 (experimental ΔG# value of 20.8 
kcal/mol, entry 1) with the computed values for 
the BP86 functional without and with added 
dispersion corrections (entries 2-4, Table S5). 
Focusing on the PCM results, these calculations 
overestimate the barrier by 5.3 kcal/mol when 
no dispersion effects are considered, whereas it 
becomes underestimated by 11.1 and 14.9 
kcal/mol after inclusion of D3(0) and D3(BJ) 
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corrections, respectively. The B3LYP results 
(entry 11, Table S5) are worth highlighting at 
this point, as they are the worst among the 
selected methodologies, overestimating the 
barriers for R1 and R3 by more than 15 
kcal/mol.
As previously shown for the BP86 functional, 
the best performer in terms of computed 
geometries (PBE0) also overestimates the 
barriers for R1 and R3 (entry 14, Table S5), and 
underestimates them when dispersion 
corrections are included (entries 15 and 16, 
Table S5). The obtained MUE values are 
however much better in this latter case, in part 
because the barrier for R2 is well accounted for 
in the three cases. The family of M06 
functionals represent a nice opportunity to 
analyse how the %HF exchange affects the 
computed energies. These functionals include 
dispersion effects in some extent, and therefore 
the D3(0) corrections are smaller than for other 
functionals and lead to minor changes in the 
barriers. Focussing first on the non-D3(0) 
corrected values in entries 17, 19, 21 and 23 
(Table S5), a clear correlation is easily spotted 
for the backward reaction R2, whose barrier 
linearly increases with the %HF exchange (R2 = 
0.98, see Figure S4) both for PCM and SMD 
solvent-corrected values). Among them, the 
data shows that the M06-2X variant is the best 
performer, being also worth noting that the 
addition of D3(0) correction improves the 
results up to MUE values of 1.3 and 2.5 
kcal/mol for the PCM and SMD solvent 
corrected data, respectively (entry 22, Table 
S5). In relation to the %HF exchange subject, it 
is observed that the range-separated hybrids 
M11 and wB97XD do not lead to significant 
improvements (entries 26 and 27, Table S5). 
The non-dispersion-corrected M11 functional 
generally overestimates barriers whereas the 
dispersion corrected wB97XD underestimates 
them.
In order to test whether it is more appropriate 
to include dispersion corrections during the 
optimisation procedure or afterwards as a 
single-point correction, optimisations were 
initially performed employing the D3(BJ) 

corrected versions of BP86, B3LYP, and PBE0 
functionals (entries 28-30, Table S5). As 
expected, comparison of the resulting free 
energy barriers with those in entries 4, 13, and 
16 (Table S5) shows that this variable has 
relatively little effect on the outcome 
(differences smaller than 1 kcal/mol). For the 
sake of completeness, optimisations were also 
performed with the PBE0D3(0) functional (entry 
31, Table S5), which again led to small 
differences with respect to the results obtained 
by adding the D3(0) correction to the PBE0 
energies (entry 15, Table S5).
The way in which solvent effects are taken into 
account in the calculations also represent an 
important ingredient of the computational 
methodology. Herein we have only compared 
the well-known PCM and SMD approaches. In 
general, the data obtained with the latter 
model leads to a small improvement on the free 
energy barriers, although the effect depends on 
the specific level of theory. All in all, the data in 
Table S5 indicates that M06-
2XD3(0)(BS2,PCM)/M06-2X(BS1) and 
PBE0D3(0)(BS2,SMD)/PBE0D3(0)(BS1) 
approaches, closely followed by 
PBE0D3(BJ)(BS2,SMD)/PBE0(BS1) and 
PBE0D3(BJ)(BS2,SMD)/PBE0D3(BJ)(BS1) are the 
most accurate among the tested ones. The 
dependence of the computed activation free 
energy barriers on the employed basis set 
system was analysed subsequently based on 
the PBE0/BS1 data (Table 6, entries 32-37). 
From the results in Table S5 it has already been 
shown that the D3(0) dispersion correction 
leads to lower MUE values than the D3(BJ) 
correction. The PBE0/BS1 structures have been 
used to confirm that this trend is independent 
of the employed basis set system, as clearly 
shown by the MUE values for entry 35 > 32, 36 
> 33, and 37 > 34 in Table 6. Thus, focusing on 
the D3(0) corrected energies, the results 
indicate that indeed when BS1 (entry 32) is 
substituted by BS2 (entry 15) there is an 
average MUE improvement of ca. 3 kcal/mol. 
The BS4 basis set system (entry 33) generates 
MUE values between those of BS2 and BS1, and 
therefore its use is not justified. On the 
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contrary, despite its relatively poor 
performance for optimisation purposes, BS5 
(entry 34) is found to be the best performer in 
terms of free energy barriers, in fact even 
better than BS2, reaching a MUE value of only 
0.9 kcal/mol when combined with the SMD 
solvent model. Based on these findings, a 
similar basis set analysis was carried out on the 
PBE0D3(0)(BS1) optimised geometries (entries 

38-40), which again showed that BS5 gives the 
best performance among the basis set systems 
tested for computing electronic energies. All in 
all, the results in this section indicate that the 
PBE0D3(0)(BS5,SMD)/PBE0D3(0)(BS1) level of 
theory allows achieving chemical accuracy (±1 
kcal/mol), as it results in an MUE value of 0.7 
kcal/mol, in the same range as the experimental 
errors. 

Table 6. Based on the gas-phase optimised geometries at the PBE0/BS1 level of theory, effect of the basis set system 
on the computed activation free energies (ΔG#, kcal/mol) for the forward and reverse reactions of [1]+ with PhA (R1 and 
R2, respectively) and the forward reaction of [1]+ with dmad (R3), and its mean unsigned error (MUE) with respect to the 
experimental values.

Solvent = PCM Solvent = SMD
Entr
y

Level of theory R1 R2 R3 MUE R1 R2 R3 MUE

1 Experimental 20.8 23.3 17.7 20.8 23.3 17.7

15 PBE0D3(0)(BS2,Solvent)/PBE0(BS1) 17.5 21.7 13.6 3.0 19.4 21.6 15.3 1.8

32 PBE0D3(0)(BS1,Solvent)/PBE0(BS1) 13.6 22.6 7.5 6.0 15.7 22.6 9.2 4.8

33 PBE0D3(0)(BS4,Solvent)/PBE0(BS1) 16.0 23.7 8.4 4.8 18.0 23.6 10.2 3.5

34 PBE0D3(0)(BS5,Solvent)/PBE0(BS1) 18.0 23.1 14.4 2.1 19.9 23.0 16.2 0.9

30 PBE0D3(BJ)(BS2,Solvent)/PBE0(BS1) 15.7 23.1 12.0 3.7 17.6 23.0 13.8 2.5

35 PBE0D3(BJ)(BS1,Solvent)/PBE0(BS1) 11.8 24.0 5.9 7.2 13.9 23.9 7.6 5.9

36 PBE0D3(BJ)(BS4,Solvent)/PBE0(BS1) 14.3 25.0 6.9 6.3 16.2 25.0 8.6 5.1

37 PBE0D3(BJ)(BS5,Solvent)/PBE0(BS1) 16.2 24.4 12.9 3.5 18.2 24.3 14.6 2.2

31 PBE0D3(0)(BS2,Solvent)/PBE0D3(0)(BS1) 17.8 21.8 13.6 2.9 19.9 21.8 15.3 1.6

38 PBE0D3(0)(BS1,Solvent)/PBE0D3(0)(BS1) 13.8 22.9 7.3 5.9 16.2 23.0 8.7 4.6

39 PBE0D3(0)(BS4,Solvent)/PBE0D3(0)(BS1) 16.3 24.0 8.3 4.9 18.5 24.0 9.8 3.6

40 PBE0D3(0)(BS5,Solvent)/PBE0D3(0)(BS1) 18.3 23.4 14.4 2.0 20.5 23.4 15.9 0.7

Activation volumes

The changes on the volumetric properties of a 
system along a reaction coordinate lead to the 
concept of volume profile. Similarly to energy 
profiles, within a volume profile it is possible to 
identify activation (ΔV#) and reaction volumes 
(ΔV).60 These magnitudes can be experimentally 
obtained by studying the effect of the pressure 
on the equilibrium and reaction constants of 
the process, as shown in Eq. 2 and 3. Moreover, 
within the framework of the transition state 
theory ΔV# and ΔVR are related to the partial 
molar volumes of the products, transition state 

and reactants according to Eq. 4 and 5. 
Interestingly, such correlations have been 
exploited by computational chemists to obtain 
theoretical volume profiles, which can be used 
to predict the structure of transition states by 
comparing them with experimentally 
determined activation volumes.61-62 

(2)
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 (3) 

ΔV# = V# - VR     (4)

ΔV = VP - VR (5)

For the concerted [3+2] cycloaddition processes 
studied herein, it provides important 
information in support of the proposed 
mechanism. Thus, the empirical negative 
activation volumes obtained for the forward 
reactions are a clear indication of the 
contraction associated with the TS formation 
from the separated species, whereas the 
positive value obtained for the reverse process 
highlights the expansion undergone by the 
dithiolene adducts in order dissociate the 
alkyne moiety at the TS structure. 
Interestingly, a specific computational method 
has been developed recently to study the effect 
of extreme pressure on reactions taking place in 
solution (XP-PCM),63-64 ultimately allowing to 
compute ΔVreac and ΔV# values.65 Unfortunately, 
the range of pressures required to obtain ΔV# 
values via XP-PCM calculations goes from 0 to 8-
10 GPa (1 GPa= 104 bar), i.e. two orders of 
magnitude larger than the highest pressures 
typically employed in the experiments (0-103 
bar). Herein we have instead computed ΔV╪ 
values based on the differences between the 
VdW volumes of transition state structures and 
reactants, a methodology successfully used for 
instance to study water exchange processes at 
transition metal complexes.66-67

The results so obtained, included in Table S6, 
are evidently very dependent on the way in 
which atomic radii are computed. By default, 
Gaussian09 uses different atomic radii models 
for the PCM and SMD approaches. Thus, while 
the scaled (f = 1.1) UFF is associated with PCM, 
an unscaled intrinsic atomic Coulomb radii is 
employed for SMD. The agreement between 
experimental and computed activation volumes 
in Table S6 is quite good in both cases. It is 
easily seen that the unscaled intrinsic atomic 
Coulomb radii leads to better results than the 
scaled UFF radii regardless of the employed DFT 

functional, with average MUE values of ca. 2 
and 4 cm3mol-1, respectively. Again, the errors 
are larger for R1 and R3 than for R2, an effect 
likely to be associated with the change in 
molecularity of the former reactions. As noted 
above, the computed ΔV# values show little 
dependence with the DFT functional at which 
the optimisations were carried out. This is not 
surprising given that, although the employed 
density functional has obviously an impact on 
the resulting structures (see above), those 
geometrical differences are not significant 
enough to provoke major changes in the 
resulting molecular VdW surfaces. All in all, the 
computations in this section show that the SMD 
solvation model predicts ΔV# values that in 
average deviate by ca. 2 cm3mol-1 with respect 
to the empirical ones, a value in fact very similar 
to the uncertainty of these empirical 
measurements.

Performance of the optimised procedure when 
modelling single temperature kinetic data

As the kinetics of reactions are often measured 
at a single temperature (typically 25ºC), we 
decided to test the performance of the 
optimised PBE0D3(0)(BS5, 
SMD)/PBE0D3(0)(BS1) protocol to model 
activation free energies obtained in this way. 
For this purpose, not only the reactions of [1]+ 
with adc and PrA (see Table 3) were tested, but 
also previously reported data for the related 
[Mo3S4(acac)3(py)3]+ cluster (acac = 
acetylacetonate; py = pyridine), for which 
differences between experimental and 
computed free energies of up to 5 kcal/mol 
have been noted.9-10 Notably, from the 
reactions of [1]+ a MUE value of 1.0 kcal/mol is 
obtained from the data in Table 7, thus 
indicating that the accuracy of the protocol 
remains relatively similar when tested on these 
alkynes. Furthermore, a similar MUE value 
results for the reactions of [Mo3S4(acac)3(py)3]+ 
with alkynes, which therefore indicates that the 
protocol is also valid to study the reactivity of 
other clusters with a [Mo3(μ3-S)(μ-S)3]4+ core.
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Table 7. Comparison of experimental and 
PBE0D3(0)(BS5,SMD)/PBE0D3(0)(BS1) computed values of 
ΔG# at 298 K for the [3+2] cycloaddition reaction of clusters 
[1]+ and [Mo3S4(acac)3(py)3]+ with various alkynes[a] in 
acetonitrile. 

Cluster Alkyne ΔG# at 298 K
Forward Reverse

Exp. DFT Exp. DFT
[1]+ adc 17.7 15.7

dmad 21.0 22.0 24.3 24.3
[Mo3S4(acac)3(py)3]+ adc 16.2 14.4

dmad 15.4 15.5
btd 20.3 21.8
PrA 20.8 21.3 23.0 22.1
PhA 20.8 20.0 22.3 20.9
FPhA 20.3 20.6
CF3PhA 21.4 20.6

[a] FPhA = 1-ethynyl-4-fluorobenzene; CF3PhA = 1-ethynyl-
3,5-bis(trifluoromethyl)benzene.

Conclusions

Free energies (ΔG#) and volumes (ΔV#) of 
activation for the [3+2] cycloaddition reaction 
between the [1]+ cluster and two alkynes, dmad 
and PhA, have been determined based on a 
kinetic study at different temperatures and 
pressures. These data, together with the 
already reported interatomic distances for the 
X-ray diffraction structures of [1](BF4) and [1-
dmad]2(Mo6Cl14) cluster salts have been 
subsequently employed to identify the most 
accurate computational protocol among those 
commonly employed for this purpose. To do so, 
different functionals and basis set systems have 
been studied and other important factors such 
as the inclusion of dispersion and solvent 
effects have also been taken into account. DFT 
calculations using the PBE0 functional and its 
dispersion corrected PBE0D3(0) version are the 
most accurate among the tested functionals, 
with similar performances in terms of 
interatomic distances, but the dispersion 
correction (either as single-point or included 
self-consistently in the optimisation procedure) 
has proven to be necessary in order to obtain 
accurate energetic data. Interestingly, little 
functional dependence was observed on the 

computation of activation volumes, a 
magnitude that is much more dependent on the 
way in which van der Waals surfaces are 
constructed. In general, the SMD solvation 
model was found to give better results than the 
PCM approach both in terms of ΔG# and ΔV#. 
Basis sets were also found to lead to significant 
changes both in terms of computed geometries 
and ΔG# values; BS1 and BS5 lead to the most 
accurate results when employed for geometry 
optimisation and subsequent single-point 
calculations, respectively. All in all, we 
concluded that the 
PBE0D3(0)(BS5,SMD)/PBE0D3(0)(BS1) protocol 
represents a good compromise between 
accuracy and computational cost, leading to a 
MUE value of only 0.7 kcal/mol for the ΔG# 
values computed for the reactions between [1]+ 
and the dmad and PhA alkynes. Thus, the 
computational protocol developed herein 
demonstrates that accurate estimations of the 
activation free energies and volumes can be 
obtained with an adequate choice of the 
computational method. Moreover, its predictive 
capability for the reaction of a different cluster 
indicates that it can be extended to other 
systems when a fine computational analysis of 
the structure and reactivity of [Mo3S4]4+ 
cuboidal clusters is required, and so we 
recommend its use.
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TEXT: Despite the pressure dependence of the rate of reactions allows obtaining its activation volume, 
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subsequently used to obtain a computational protocol featuring average errors of 0.7 kcal mol-1 and 2 
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Despite the pressure dependence of the rate of reactions allows obtaining its activation 
volume, this magnitude is rarely studied from a computational viewpoint. Along with their free 
energy barriers, herein the activation volume for the reaction of Mo3S4 clusters with alkynes is 
determined and subsequently used to obtain a computational protocol featuring average 
errors of 0.7 kcal mol-1 and 2 cm3mol-1, respectively.
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Table S1.-  Pseudo-first order rate constants obtained for the reaction of cluster [1]+ with different 
alkynes as a function of the alkyne concentration and temperature (at 4.57x10-4 M concentration of 
[1]+).

Alkyne T /ºC P /atm 103×[Alkyne] 
/M

103×kobs /s-1 

dmad 258 1 50 2.71
67 3.00
100 4.35
133 5.60

268 1 100 9.86
133 13.30
170 16.50

278 1 67 13.00
100 18.00
133 26.00

288 1 50 15.90
67 23.40
100 35.20
133 51.10
167 62.10

298 1 8.3 8.40
16 13.00
25 18.00
33 23.90
41 29.00
50 32.00
67 43.40
100 69.50
133 92.10
167 114.40

PhA 268 1 7.9 9.77x10-3

16 1.23x10-2

23 1.50x10-2

31 1.70x10-2

38 1.87x10-5

278 1 7.9 1.78x10-2

16 2.58x10-2

23 2.80x10-2

31 3.51x10-2

38 3.72x10-2

288 1 7.9 3.14x10-2

16 4.00x10-2

23 4.85x10-2

31 5.58x10-2

38 6.38x10-2

298 1 7.9 3.73x10-2

16 5.12x10-2

23 6.10x10-2

31 7.20x10-2
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38 8.50x10-2

363 0.94 2.7×10-1

4.7 3.6×10-1

8.4 5.0×10-1

12 5.8×10-1

16 7.0×10-1

PrA 298 1 8 3.13x10-2

12 4.18x10-2

16 5.15x10-2

20 6.20x10-2

25 7.62x10-2

adc 298 1 8.3 6.40
adc 16 11.30
adc 25 15.92
adc 33 20.63
adc 41 27.13
adc 50 33.1

Table S2.-  Second order rate constants obtained (typically errors of ca. 5%) for the reaction of 
cluster [1]+ with dmad and PhA as a function of the pressure.

Alkyne T /ºC [Alkyne] 
/M

P /atm kobs /s-1 k+ /M-1 s-1 k- /s-1

dmad 298 0.10 250 7.1×10-2 0.71 --
300 7.1×10-2 0.71 --
450 7.7×10-2 0.77 --
600 9.0×10-2 0.90 --
750 10×10-2 1.0 --
900 11×10-2 1.1 --
1000 11×10-2 1.1 --
1050 12×10-2 1.2 --
1200 12×10-2 1.2 --
1350 15×10-2 1.5 --
1500 16×10-2 1.6 --

PhA 363 0.0014 400 2.6×10-4

0.0041 4.0×10-4

0.012 7.1×10-4

0.015 7.7×10-4

3.8×10-2 2.3×10-4

0.0014 700 2.8×10-4

0.0041 3.8×10-4

0.0095 5.7×10-4

0.015 8.0×10-4

3.8×10-2 2.2×10-4

0.0014 1000 2.6×10-4

0.0041 4.2×10-4

0.012 7.5×10-4

0.015 9.4×10-4

4.8×10-2 2.0×10-4
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0.015 11×10-4

6.0×10-2 2.1×10-4
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Figure S1.- Eyring plot for the temperature dependence of the k+ () and k- () rate constants for 
the reaction of cluster [1]+ with PhA.
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Figure S2.- ln(k) versus P plot for the k+ rate constant for the reaction of cluster [1]+ with dmad.
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Figure S3.- Structure of [1]+ (left) and [1-dmad]+ (right). Colour code: Mo(cyan); S (yellow); N 
(blue); O (red); C (grey); H (white). 
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Table S3. For [1]+, summary of selected average bond lengths (Å) computed for each DFT 
functional in the gas phase using the BS1 basis set system, and its mean unsigned error (MUE) with 
respect to the X-ray structure. 

 Mo-Mo Mo-
(3-S)

Mo-(-
S)b

Mo-(-
S)c

Mo-Nd Mo-Ne Mo-Cl MUE

X-raya 2.759 2.335 2.301 2.288 2.278 2.298 2.492 g

BP86 2.793 2.375 2.335 2.326 2.316 2.347 2.503 0.035

B3LYP 2.796 2.372 2.328 2.317 2.326 2.356 2.516 0.037

PBE0f 2.754 2.349 2.309 2.297 2.287 2.315 2.484 0.01

TPSS 2.776 2.377 2.337 2.326 2.304 2.328 2.494 0.027

TPSSh 2.764 2.367 2.327 2.315 2.295 2.319 2.489 0.019

M06HF 2.691 2.318 2.292 2.271 2.256 2.281 2.507 0.024

M06 2.779 2.364 2.321 2.315 2.305 2.334 2.496 0.023

M062X 2.724 2.339 2.306 2.292 2.306 2.332 2.522 0.02

M06L 2.749 2.362 2.325 2.318 2.326 2.35 2.507 0.029

M11 2.735 2.343 2.308 2.293 2.293 2.318 2.511 0.014

wB97XD 2.754 2.349 2.31 2.301 2.301 2.328 2.502 0.015

B97D3 2.773 2.361 2.323 2.317 2.307 2.335 2.506 0.025

BP86D3(BJ) 2.765 2.365 2.328 2.321 2.287 2.315 2.49 0.018

B3LYPD3(BJ) 2.768 2.362 2.322 2.311 2.296 2.322 2.502 0.019

PBE0D3(BJ) 2.741 2.344 2.306 2.295 2.273 2.3 2.478 0.009

PBE0D3(0) 2.745 2.346 2.309 2.298 2.283 2.31 2.483 0.01

a Obtained from: E. Pedrajas, I. Sorribes, K. Junge, M. Beller, R. Llusar, ChemCatChem 
2015, 7, 2675-2681; b Mo(-S) length trans to the MoN bond; c Mo(-S) length trans to 
the MoCl bond; d MoN length trans to the Mo(3-S) bond; e MoN length cis to the 
Mo(3-S) bond; f Optimizations including the effects of the solvent self-consistently via 
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PCM and SMD approaches led to MUE values of 0.009 and 0.010, respectively. g The 
average uncertainty on the selected XRD-determined distances is 0.008 Å.

Table S4. For [1-dmad]+,a summary of average selected bond lengths (Å) computed for 

each DFT functional in the gas phase using the BS1 basis set system, and its mean 

unsigned error (MUE) with respect to the X-ray structure. 

 Mo(1)
-
Mo(2)

Mo(3)-
Mo(1&2)

Mo(3)-
(-S)

S-C C=C Mo(3)-
(3-S)

Mo(3)-
Cl

MUE

X-Rayb 2.653 2.775 2.355 1.812 1.33 2.321 2.485 d

BP86 2.673 2.798 2.384 1.854 1.349 2.356 2.507 0.02
7

B3LYP 2.672 2.802 2.389 1.835 1.339 2.343 2.526 0.02
5

PBE0c 2.639 2.757 2.363 1.819 1.336 2.325 2.491 0.00
9

TPSS 2.659 2.777 2.389 1.852 1.346 2.358 2.498 0.02
1

TPSSh 2.648 2.764 2.382 1.838 1.341 2.346 2.494 0.01
7

M06HF 2.638 2.784 2.36 1.805 1.33 2.289 2.511 0.01
3

M06 2.662 2.788 2.385 1.823 1.335 2.34 2.503 0.01
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5

M062X 2.63 2.749 2.374 1.813 1.334 2.315 2.54 0.01
9

M06L 2.636 2.753 2.388 1.827 1.339 2.346 2.511 0.02
1

M11 2.651 2.791 2.379 1.81 1.336 2.307 2.534 0.01
6

wB97XD 2.642 2.763 2.366 1.82 1.332 2.324 2.518 0.01
1

B97D3 2.653 2.776 2.372 1.842 1.345 2.344 2.503 0.01
5

BP86D3(BJ) 2.65 2.769 2.379 1.826 1.337 2.339 2.507 0.01
3

B3LYPD3(BJ
)

2.65 2.769 2.379 1.825 1.337 2.339 2.507 0.01
3

PBE0D3(BJ) 2.628 2.742 2.358 1.815 1.335 2.323 2.482 0.01
1

PBE0D3(0) 2.632 2.747 2.361 1.818 1.336 2.324 2.486 0.01

a Note that the three Mo centres in this structure are not equivalent (see Scheme 1). 
Herein the one involved in the [3+2] cycloaddition process has been labelled as Mo(3); b 
Obtained from: A. G. Algarra, E. Guillamón, J. Andrés, M. J. Fernández-Trujillo, E. 
Pedrajas, J. Á. Pino-Chamorro, R. Llusar, M. G. Basallote, ACS Catal., 2018, 8, 7346-
7350; c Optimizations including the effects of the solvent self-consistently via PCM and 
SMD approaches led to a MUE value of 0.011 in both cases. d The average uncertainty on 
the selected XRD-determined distances is 0.003 Å.
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Table S5. Computed activation free energies (ΔG╪, kcal/mol) for the forward and reverse reactions of [1]+ with phenylacetylene (R1 

and R2, respectively) and the forward reaction of [1]+ with dmad (R3), and its mean unsigned error (MUE) with respect to the 

experimental values.

Solvent = PCM Solvent = SMD

Entry Level of theory R1 R2 R3 MUE R1 R2 R3 MUE

1 Experimental 20.8 23.3 17.7 20.8 23.3 17.7

2 BP86(BS2,Solvent)/BP86(BS1) 26.1 13.8 24.6 7.2 28.1 13.8 26.5 8.5

3 BP86D3(0)(BS2,Solvent)/BP86(BS1) 9.7 12.8 7.1 10.7 11.7 12.9 9.0 9.4

4 BP86D3(BJ)(BS2,Solvent)/BP86(BS1) 5.9 15.8 3.9 12.1 7.9 15.8 5.9 10.7

5 TPSS(BS2,Solvent)/TPSS(BS1) 26.8 13.8 24.4 7.4 28.8 13.8 26.2 8.7

6 TPSSD3(0)(BS2,Solvent)/TPSS(BS1) 14.1 13.2 10.7 7.9 16.1 13.2 12.5 6.7

7 TPSSD3(BJ)(BS2,Solvent)/TPSS(BS1) 11.4 15.1 8.4 9.0 13.4 15.1 10.2 7.7

8 TPSSh(BS2,Solvent)/TPSSh(BS1) 28.3 16.4 25.8 7.5 30.3 16.4 27.6 8.8

9 TPSShD3(0)(BS2,Solvent)/TPSSh(BS1) 15.7 15.9 12.1 6.0 17.6 15.9 13.9 4.8
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10 TPSShD3(BJ)(BS2,Solvent)/TPSSh(BS1) 12.9 17.7 9.5 7.2 14.8 17.7 11.4 6.0

11 B3LYP(BS2,Solvent)/B3LYP(BS1) 36.1 16.4 32.8 12.4 38.0 16.3 34.9 13.8

12 B3LYPD3(0)(BS2,Solvent)/B3LYP(BS1) 21.8 15.8 17.2 3.0 23.7 15.6 19.3 4.0

13 B3LYPD3(BJ)(BS2,Solvent)/B3LYP(BS1) 17.9 18.4 13.4 4.0 19.8 18.3 15.5 2.7

14 PBE0(BS2,Solvent)/PBE0(BS1) 27.7 22.1 24.7 5.1 29.7 22.0 26.5 6.3

15 PBE0D3(0)(BS2,Solvent)/PBE0(BS1) 17.5 21.7 13.6 3.0 19.4 21.6 15.3 1.8

16 PBE0D3(BJ)(BS2,Solvent)/PBE0(BS1) 15.7 23.1 12.0 3.7 17.6 23.0 13.8 2.5

17 M06L(BS2,Solvent)/M06L(BS1) 19.8 13.7 17.6 3.6 21.8 13.8 18.9 3.9

18 M06LD3(0)(BS2,Solvent)/M06L(BS1) 17.6 13.7 15.1 5.1 19.6 13.8 16.5 3.9

19 M06(BS2,Solvent)/M06(BS1) 24.4 18.0 a 4.4 26.4 18.1 a 5.4

20 M06D3(0)(BS2,Solvent)/M06(BS1) 20.2 18.1 a 2.9 22.3 18.1 a 3.3

21 M06-2X(BS2,Solvent)/M06-2X(BS1) 25.6 23.3 20.8 2.6 27.6 23.1 22.5 3.9

22 M06-2XD3(0)(BS2,Solvent)/M06-2X(BS1) 23.7 23.3 18.6 1.3 25.7 23.1 20.3 2.5

23 M06-HF(BS2,Solvent)/M06-HF(BS1) 20.9 36.4 16.7 4.7 22.9 36.2 18.6 5.3

Page 28 of 37

John Wiley & Sons, Inc.

International Journal of Quantum Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

24 M06-HFD3(0)(BS2,Solvent)/M06-HF(BS1) 17.9 36.5 13.3 6.9 19.9 36.3 15.2 5.4

25 B97D3(BS2,Solvent)/B97D3(BS1) 12.2 12.7 9.6 9.1 14.2 12.8 11.1 7.9

26 M11(BS2,Solvent)/M11(BS1) 26.5 29.1 20.9 4.9 28.5 28.9 22.5 6.0

27 wB97XD(BS2,Solvent)/wB97XD(BS1) 12.1 10.7 8.1 10.3 26.8 22.8 22.7 3.8

28
BP86D3(BJ)(BS2,Solvent)/BP86D3(BJ)(BS
1)

5.5 15.8 17.1 7.8 7.6 15.8 18.7 7.2

29
B3LYPD3(BJ)(BS2,Solvent)/B3LYPD3(BJ)(
BS1)

17.2 18.1 12.5 4.7 19.3 18.1 14.1 3.4

30 PBE0D3(BJ)(BS2,Solvent)/PBE0D3(BJ)(BS
1)

15.8 23.0 12.0 3.7 17.9 23.0 13.6 2.5

31 PBE0D3(0)(BS2,Solvent)/PBE0D3(0)(BS1) 17.8 21.8 13.6 2.9 19.9 21.8 15.3 1.6

a Despite multiple attempts, the transition state for the process at this level of theory could not be optimized.

Table S6. Computed activation volumes (ΔV╪, cm3mol-1) for the forward and reverse reactions of [1]+ with phenylacetylene (R1 and 

R2, respectively) and the forward reaction of [1]+ with dmad (R3), and its mean unsigned error (MUE) with respect to the 

experimental values.

Page 29 of 37

John Wiley & Sons, Inc.

International Journal of Quantum Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

radii = scaled UFF radii = unscaled SMD-Coulomb

Entry Level of theory R1 R2 R3 MUE R1 R2 R3 MUE

Experimental -14 4 -16 -14 4 -16

41 BP86(BS2,Solvent)/BP86(BS1) -18.6 4.8 -20.3 3.2 -12.3 3.8 -17.8 1.2

42 TPSS(BS2,Solvent)/TPSS(BS1) -18.8 4.6 -20.3 3.2 -11.9 4.4 -18.1 1.6

43 TPSSh(BS2,Solvent)/TPSSh(BS1) -19.7 4.0 -21.0 3.6 -12.3 4.1 -18.7 1.5

44 B3LYP(BS2,Solvent)/B3LYP(BS1) -17.5 4.7 -19.2 2.5 -11.9 3.7 -18.4 1.6

45 PBE0(BS2,Solvent)/PBE0(BS1) -18.6 4.1 -19.8 2.8 -12.4 3.5 -19.1 1.7

46 M06L(BS2,Solvent)/M06L(BS1) -20.4 3.6 -21.5 4.1 -13.4 3.4 -21.5 2.2

47 M06(BS2,Solvent)/M06(BS1) -21.3 3.0 b 4.1 -13.6 2.9 b 0.7

48 M06-2X(BS2,Solvent)/M06-2X(BS1) -18.6 3.4 -21.3 3.5 -13.3 3.0 -21.9 2.5

49 M06-HF(BS2,Solvent)/M06-HF(BS1) -18.7 2.4 -21.4 3.9 -13.7 1.1 -20.7 2.6

50 M11(BS2,Solvent)/M11(BS1) -19.6 2.3 -22.1 4.4 -13.3 1.9 -22.0 2.9

51 B97D3(BS2,Solvent)/B97D3(BS1) -19.2 4.4 -19.7 3.1 -12.2 4.5 -19.3 1.8
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52 wB97XD(BS2,Solvent)/wB97XD(BS1) -19.2 4.3 -20.6 3.3 -12.5 4.4 -20.9 2.3

53 BP86D3(BJ)(BS2,Solvent)/BP86D3(BJ)(BS1) -18.8 5.7 -22.1 4.2 -13.7 3.9 -21.3 1.9

54
B3LYPD3(BJ)(BS2,Solvent)/B3LYPD3(BJ)(BS
1)

-21.7 3.3 -22.3 4.9 -13.4 3.8 -20.7 1.8

55 PBE0D3(BJ)(BS2,Solvent)/PBE0D3(BJ)(BS1) -19.3 4.5 -20.3 3.4 -12.9 4.1 -19.8 1.7

56 PBE0D3(0)(BS2,Solvent)/PBE0D3(0)(BS1) -20.0 4.0 -20.9 3.6 -13.4 3.7 -20.1 1.7

b Despite multiple attempts, the transition state for the process at this level of theory could not be optimized.
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Figure S4.- Computed G# values at the Functional(BS2,Solvent)/Functional(BS1) (Functional = M06-L, M06, M06-2X, M06-HF; Solvent= 
PCM (); SMD ()) level of theory for the reverse reaction between [1]+ and PhA (labelled as R2) as a function of the % of Hartree-Fock 
exchange of the M06 functional (for M06L, %HF = 0%; for M06, %HF = 27%; for M06-2X, %HF = 54%; for M06HF, %HF = 100%).
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Table S7. Computed energies (Hartrees) and vdW volumes (cm3mol-1) for the optimized structures 

associated with the study of [1]+. 

BP86/BS1 optimized 
structures

[1]+ PhA TS
([1]+,PhA)

Prod
([1]+,PhA)

DMAD TS
([1]+,DMAD)

Prod
([1]+,DMAD)

E(BS1) -2434.44018 -308.38426 -2742.81108 -2742.83938 -533.08076 -2967.51742 -2967.54069

Thermal corr. to H (298 K) 0.55876 0.11377 0.67286 0.67532 0.12336 0.68255 0.68408

Thermal corr. to G (298 K) 0.45281 0.07549 0.54901 0.55427 0.07182 0.54702 0.55128

D3(0) corr. -0.15784 -0.00820 -0.19215 -0.19066 -0.01027 -0.19592 -0.19751

D3(BJ) corr. -0.25464 -0.02237 -0.30924 -0.31247 -0.01839 -0.30589 -0.31302

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00065 0.00000 0.00000 0.00065 0.00000 0.00000

E(BS2,PCM) -2434.82164 -308.47814 -2743.27417 -2743.30139 -533.26950 -2968.06968 -2968.09262

E(BS2,SMD) -2434.85140 -308.48425 -2743.30684 -2743.33407 -533.27241 -2968.09928 -2968.12192

Volume (PCM) 691.986 171.167 832.185 824.157 201.854 860.197 850.071

Volume (SMD) 610.423 120.845 710.87 704.527 189.981 770.873 755.482

TPSS/BS1 optimized 
structures

[1]+ PhA TS
([1]+,PhA)

Prod
([1]+,PhA)

DMAD TS
([1]+,DMAD)

Prod
([1]+,DMAD)

E(BS1) -2434.16293 -308.45476 -2742.60334 -2742.63122 -533.15862 -2967.31784 -2967.34048

Thermal corr. to H (298 K) 0.56755 0.11534 0.68320 0.68570 0.12516 0.69307 0.69463

Thermal corr. to G (298 K) 0.46275 0.07723 0.56096 0.56589 0.07385 0.55902 0.56300

D3(0) corr. -0.11349 -0.00599 -0.13980 -0.13893 -0.00728 -0.14261 -0.14378

D3(BJ) corr. -0.18639 -0.01785 -0.22880 -0.23096 -0.01502 -0.22691 -0.23152

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00065 0.00000 0.00000 0.00065 0.00000 0.00000

E(BS2,PCM) -2434.52908 -308.54310 -2743.04569 -2743.07256 -533.34083 -2967.84874 -2967.87081

E(BS2,SMD) -2434.55797 -308.54906 -2743.07737 -2743.10426 -533.34355 -2967.87745 -2967.89911

Volume (PCM) 687.166 170.607 826.517 818.94 201.309 854.778 844.74

Volume (SMD) 606.971 120.559 707.817 700.446 189.484 766.404 751.514

TPSSh/BS1 optimized 
structures

[1]+ PhA TS
([1]+,PhA)

Prod
([1]+,PhA)

DMAD TS
([1]+,DMAD)

Prod
([1]+,DMAD)

E(BS1) -2434.01234 -308.42203 -2742.41670 -2742.44963 -533.09353 -2967.09931 -2967.12668

Thermal corr. to H (298 K) 0.57399 0.11672 0.69096 0.69365 0.12685 0.70123 0.70292

Thermal corr. to G (298 K) 0.47047 0.07879 0.57019 0.57541 0.07589 0.56915 0.57306

D3(0) corr. -0.11374 -0.00581 -0.13973 -0.13894 -0.00714 -0.14272 -0.14370

D3(BJ) corr. -0.17930 -0.01648 -0.22045 -0.22249 -0.01380 -0.21903 -0.22315

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00065 0.00000 0.00000 0.00065 0.00000 0.00000

E(BS2,PCM) -2434.37233 -308.50813 -2742.85152 -2742.88289 -533.27189 -2967.62116 -2967.64773

E(BS2,SMD) -2434.40114 -308.51423 -2742.88329 -2742.91461 -533.27460 -2967.64980 -2967.67586

Volume (PCM) 683.536 170.084 820.831 814.226 200.633 849.375 839.735

Volume (SMD) 603.249 120.26 703.087 696.338 188.891 761.123 746.952

B3LYP/BS1 optimized 
structures

[1]+ PhA TS
([1]+,PhA)

Prod
([1]+,PhA)

DMAD TS
([1]+,DMAD)

Prod
([1]+,DMAD)

E(BS1) -2433.96572 -308.39660 -2742.33477 -2742.36763 -533.07364 -2967.02552 -2967.05169

Thermal corr. to H (298 K) 0.57462 0.11690 0.69182 0.69465 0.12705 0.70210 0.70388

Thermal corr. to G (298 K) 0.47011 0.07909 0.57058 0.57536 0.07635 0.56990 0.57281

D3(0) corr. -0.14139 -0.00709 -0.17128 -0.17028 -0.00896 -0.17527 -0.17633
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D3(BJ) corr. -0.24920 -0.02451 -0.30272 -0.30599 -0.02043 -0.30057 -0.30606

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00065 0.00000 0.00000 0.00065 0.00000 0.00000

E(BS2,PCM) -2434.34756 -308.49253 -2742.79922 -2742.83013 -533.26444 -2967.57843 -2967.60294

E(BS2,SMD) -2434.37789 -308.49861 -2742.83263 -2742.86331 -533.26731 -2967.60833 -2967.63275

Volume (PCM) 690.593 169.96 831.557 823.67 200.589 859.358 850.051

Volume (SMD) 610.014 120.183 710.378 704.224 189.11 768.506 756.234

M06L/BS1 optimized 
structures

[1]+ PhA TS
([1]+,PhA)

Prod
([1]+,PhA)

DMAD TS
([1]+,DMAD)

Prod
([1]+,DMAD)

E(BS1) -2433.92230 -308.35688 -2742.27443 -2742.30222 -533.02438 -2966.95081 -2966.97467

Thermal corr. to H (298 K) 0.57281 0.11692 0.68977 0.69262 0.12690 0.69991 0.70172

Thermal corr. to G (298 K) 0.47005 0.07908 0.57130 0.57565 0.07618 0.57046 0.57339

D3(0) corr. -0.00808 -0.00030 -0.01179 -0.01181 -0.00038 -0.01232 -0.01250

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00065 0.00000 0.00000 0.00065 0.00000 0.00000

E(BS2,PCM) -2434.27542 -308.43609 -2742.69745 -2742.72359 -533.18752 -2967.45446 -2967.47654

E(BS2,SMD) -2434.30332 -308.44158 -2742.72766 -2742.75403 -533.18980 -2967.48250 -2967.50364

Volume (PCM) 682.635 169.639 818.373 812.441 199.838 846.726 838.649

Volume (SMD) 603.379 119.969 701.085 695.458 188.083 755.692 746.768

M06/BS1 optimized 
structures

[1]+ PhA TS
([1]+,PhA)

Prod
([1]+,PhA)

E(BS1) -2433.10343 -308.14467 -2741.23843 -2741.27305

Thermal corr. to H (298 K) 0.57010 0.11663 0.68663 0.68929

Thermal corr. to G (298 K) 0.46719 0.07880 0.56814 0.57177

D3(0) corr. -0.01925 -0.00106 -0.02699 -0.02709

Standard State Corr. 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00065 0.00000 0.00000

E(BS2,PCM) -2433.46828 -308.23525 -2741.68209 -2741.71446

E(BS2,SMD) -2433.49761 -308.24122 -2741.71414 -2741.74655

Volume (PCM) 685.675 169.592 819.965 814.994

Volume (SMD) 604.057 119.913 701.411 696.531

M062X/BS1 optimized 
structures

[1]+ PhA TS
([1]+,PhA)

Prod
([1]+,PhA)

DMAD TS
([1]+,DMAD)

Prod
([1]+,DMAD)

E(BS1) -2432.93926 -308.25921 -2741.18618 -2741.22990 -532.85937 -2965.80087 -2965.84134

Thermal corr. to H (298 K) 0.57899 0.11817 0.69733 0.12905 0.70837 0.71039

Thermal corr. to G (298 K) 0.47755 0.08050 0.58080 0.07881 0.58117 0.58327

D3(0) corr. -0.00716 -0.00025 -0.01045 -0.01051 -0.00033 -0.01103 -0.01116

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00065 0.00000 0.00000 0.00065 0.00000 0.00000

E(BS2,PCM) -2433.35267 -308.35598 -2741.68584 -2741.72659 -533.04927 -2966.38894 -2966.42584

E(BS2,SMD) -2433.38225 -308.36254 -2741.71891 -2741.75939 -533.05218 -2966.41871 -2966.45534

Volume (PCM) 677.9 169.593 816.541 810.953 199.861 842.4 837.832

Volume (SMD) 600.507 119.95 698.325 693.373 188.266 752.426 745.726

M06HF/BS1 optimized 
structures

[1]+ PhA TS
([1]+,PhA)

Prod
([1]+,PhA)

DMAD TS
([1]+,DMAD)

Prod
([1]+,DMAD)

E(BS1) -2432.81097 -308.31344 -2741.11789 -2741.18254 -532.88123 -2965.70186 -2965.76681

Thermal corr. to H (298 K) 0.58802 0.11961 0.70788 0.71028 0.13144 0.72028 0.72177

Thermal corr. to G (298 K) 0.48788 0.08207 0.59330 0.59555 0.08054 0.59522 0.59730

D3(0) corr. -0.01297 -0.00056 -0.01831 -0.01847 -0.00063 -0.01902 -0.01931
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Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00065 0.00000 0.00000 0.00065 0.00000 0.00000

E(BS2,PCM) -2433.33401 -308.42543 -2741.74482 -2741.80508 -533.10482 -2966.43435 -2966.49529

E(BS2,SMD) -2433.36391 -308.43313 -2741.77916 -2741.83904 -533.10814 -2966.46452 -2966.52520

Volume (PCM) 669.633 169.432 808.006 804.065 199.609 833.689 829.706

Volume (SMD) 591.747 119.884 688.924 687.084 188.067 745.465 737.724

M11/BS1 optimized 
structures

[1]+ PhA TS
([1]+,PhA)

Prod
([1]+,PhA)

DMAD TS
([1]+,DMAD)

Prod
([1]+,DMAD)

E(BS1) -2432.82260 -308.18208 -2740.98946 -2741.04254 -532.81101 -2965.63573 -2965.68532

Thermal corr. to H (298 K) 0.57511 0.11745 0.69285 0.69559 0.12797 0.70363 0.70559

Thermal corr. to G (298 K) 0.47441 0.07980 0.57734 0.58050 0.07772 0.57737 0.58014

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00065 0.00000 0.00000 0.00065 0.00000 0.00000

E(BS2,PCM) -2433.26634 -308.28796 -2741.53046 -2741.58008 -533.01809 -2966.27173 -2966.31794

E(BS2,SMD) -2433.29573 -308.29485 -2741.56364 -2741.61290 -533.02104 -2966.30136 -2966.34678

Volume (PCM) 678.012 169.924 815.396 811.544 200.253 841.642 837.538

Volume (SMD) 599.327 120.087 697.331 694.245 188.38 751.204 744.486

B97D3/BS1 optimized 
structures

[1]+ PhA TS
([1]+,PhA)

Prod
([1]+,PhA)

DMAD TS
([1]+,DMAD)

Prod
([1]+,DMAD)

E(BS1) -2434.20215 -308.18620 -2742.39912 -2742.42559 -532.75484 -2966.97897 -2967.00183

Thermal corr. to H (298 K) 0.56593 0.11462 0.68138 0.68400 0.12437 0.69109 0.69300

Thermal corr. to G (298 K) 0.46153 0.07641 0.56103 0.56558 0.07273 0.55880 0.56332

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00065 0.00000 0.00000 0.00065 0.00000 0.00000

E(BS2,PCM) -2434.57569 -308.27650 -2742.85061 -2742.87542 -532.94081 -2967.52041 -2967.54272

E(BS2,SMD) -2434.60496 -308.28241 -2742.88251 -2742.90752 -532.94359 -2967.55011 -2967.57164

Volume (PCM) 684.229 170.656 822.899 815.555 201.466 852.989 842.417

Volume (SMD) 604.635 120.57 704.853 697.418 189.78 762.398 750.486

wB97XD/BS1 optimized 
structures

[1]+ PhA TS
([1]+,PhA)

Prod
([1]+,PhA)

DMAD TS
([1]+,DMAD)

Prod
([1]+,DMAD)

E(BS1) -2433.72104 -308.28300 -2741.99155 -2742.03637 -532.89790 -2966.62128 -2966.65992

Thermal corr. to H (298 K) 0.58131 0.11822 0.69958 0.70254 0.12860 0.71056 0.71230

Thermal corr. to G (298 K) 0.48033 0.08057 0.58227 0.58716 0.07817 0.58366 0.58591

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00065 0.00000 0.00000 0.00065 0.00000 0.00000

E(BS2,PCM) -2434.08377 -308.36963 -2742.45080 -2742.47269 -533.07463 -2967.16587 -2967.20173

E(BS2,SMD) -2434.13362 -308.37597 -2742.48358 -2742.52474 -533.07745 -2967.19538 -2967.23055

Volume (PCM) 680.304 169.593 818.076 810.991 199.982 846.076 836.835

Volume (SMD) 601.283 119.953 700.487 693.215 188.513 755.115 744.55

BP86-D3(BJ)/BS1 optimized 
structures

[1]+ PhA TS
([1]+,PhA)

Prod
([1]+,PhA)

DMAD TS
([1]+,DMAD)

Prod
([1]+,DMAD)

E(BS1) -2434.69740 -308.40663 -2743.12556 -2743.15623 -533.09916 -2967.33043 -2967.36176

Thermal corr. to H (298 K) 0.55996 0.11385 0.67446 0.67684 0.12342 0.70390 0.00378

Thermal corr. to G (298 K) 0.45619 0.07554 0.55454 0.55859 0.07173 0.57428 -0.25733

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00065 0.00000 0.00000 0.00065 0.00000 0.00000

E(BS2,PCM) -2435.07933 -308.50057 -2743.58926 -2743.61846 -533.28791 -2968.38161 -2968.40837

E(BS2,SMD) -2435.10856 -308.50667 -2743.62119 -2743.65046 -533.29081 -2968.41122 -2968.43733

Volume (PCM) 681.626 171.05 821.383 811.975 201.716 846.574 837.538
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Volume (SMD) 602.501 120.767 700.554 694.041 189.84 757.01 745.559

B3LYP-D3(BJ) /BS1 
optimized structures

[1]+ PhA TS
([1]+,PhA)

Prod
([1]+,PhA)

DMAD TS
([1]+,DMAD)

Prod
([1]+,DMAD)

E(BS1) -2434.21765 -308.42112 -2742.64218 -2742.67800 -533.09407 -2967.33040 -2967.36174

Thermal corr. to H (298 K) 0.57608 0.11699 0.69366 0.69647 0.12712 0.70385 0.00378

Thermal corr. to G (298 K) 0.47376 0.07917 0.57514 0.58000 0.07621 0.57421 -0.25733

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00065 0.00000 0.00000 0.00065 0.00000 0.00000

E(BS2,PCM) -2434.59949 -308.51711 -2743.10663 -2743.14030 -533.28488 -2967.88396 -2967.91349

E(BS2,SMD) -2434.62911 -308.52319 -2743.13911 -2743.17289 -533.28774 -2967.91385 -2967.94270

Volume (PCM) 683.172 169.851 816.944 811.422 200.468 846.607 837.602

Volume (SMD) 602.41 120.112 700.226 693.897 188.97 757.033 745.493

PBE0-D3(BJ) /BS1 optimized 
structures

[1]+ PhA TS
([1]+,PhA)

Prod
([1]+,PhA)

DMAD TS
([1]+,DMAD)

Prod
([1]+,DMAD)

E(BS1) -2432.60735 -308.03435 -2740.64568 -2740.68878 -532.49505 -2965.11856 -2965.15848

Thermal corr. to H (298 K) 0.57873 0.11782 0.69698 0.69979 0.12824 0.70755 0.70947

Thermal corr. to G (298 K) 0.47759 0.08006 0.58004 0.58454 0.07758 0.57886 0.58316

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00065 0.00000 0.00000 0.00065 0.00000 0.00000

E(BS2,PCM) -2432.96026 -308.11860 -2741.07137 -2741.11250 -532.66900 -2965.62909 -2965.66807

E(BS2,SMD) -2432.98936 -308.12507 -2741.10364 -2741.14480 -532.67190 -2965.65862 -2965.69678

Volume (PCM) 673.125 169.579 810.595 803.187 199.784 839.201 828.883

Volume (SMD) 594.863 119.93 693.298 686.483 188.09 750.017 736.44

PBE0D3(0)/BS1 optimized 
structures

[1]+ PhA TS
([1]+,PhA)

Prod
([1]+,PhA)

DMAD TS
([1]+,DMAD)

Prod
([1]+,DMAD)

E(BS1) -2432.55887 -308.02636 -2740.58616 -2740.62725 -532.49002 -2965.06263 -2965.10013

Thermal corr. to H (298 K) 0.57903 0.11779 0.69722 0.70004 0.12817 0.70776 0.70964

Thermal corr. to G (298 K) 0.47864 0.08002 0.58114 0.58556 0.07767 0.58023 0.58415

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00065 0.00000 0.00000 0.00065 0.00000 0.00000

E(BS2,PCM) -2432.91154 -308.11058 -2741.01161 -2741.05076 -532.66395 -2965.57307 -2965.60927

E(BS2,SMD) -2432.94100 -308.11706 -2741.04406 -2741.08316 -532.66652 -2965.60237 -2965.63757

E(BS1,PCM) -2432.62055 -308.03094 -2740.64720 -2740.68817 -532.49857 -2965.12678 -2965.16414

E(BS1,SMD) -2432.64957 -308.03742 -2740.67896 -2740.72007 -532.50064 -2965.15554 -2965.19206

E(BS4,PCM) -3983.59680 -308.04950 -4291.63812 -4291.68079 -532.53438 -4286.82539 -4286.72589

E(BS4,SMD) -3983.62483 -308.05561 -4291.66876 -4291.71145 -532.53629 -4516.16473 -4516.20407

E(BS5,PCM) -3984.50072 -308.13396 -4292.62328 -4292.66507 -532.71059 -4517.20761 -4517.24577

E(BS5,SMD) -3984.52978 -308.14039 -4292.65531 -4292.69708 -532.71305 -4517.23670 -4517.27394

Volume (PCM) 676.014 169.629 812.441 805.763 199.848 841.11 830.701

Volume (SMD) 596.953 119.961 694.664 688.556 188.151 751.718 739.144

PBE0D3(0)/BS1 optimized 
structures

ADC TS
([1]+,ADC)

Prod
([1]+,ADC)

PrA TS
([1]+,PrA)

Prod
([1]+,PrA)

E(BS1) -453.97942 -2886.55014 -2886.58680 -191.63077 -2624.19076 -2624.23440

Thermal corr. to H (298 K) 0.06877 0.64835 0.65008 0.06714 0.64669 0.64964

Thermal corr. to G (298 K) 0.02644 0.52873 0.53264 0.03468 0.53532 0.54064

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00065 0.00000 0.00000 0.00065 0.00000 0.00000

E(BS2,PCM) -454.14192 -2887.05096 -2887.08593 -191.70545 -2624.60250 -2624.64480

E(BS2,SMD) -454.14522 -2887.08116 -2887.11570 -191.70839 -2624.63164 -2624.67360
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E(BS5,PCM) -454.18209 -4438.67894 -4438.71604 -191.71883 -4176.20471 -4176.24940

E(BS5,SMD) -454.18529 -4438.70897 -4438.74565 -191.72171 -4176.23373 -4176.27784

Volume (PCM) 147.435 790.675 779.544 100.613 745.283 737.041

Volume (SMD) 161.211 725.791 713.058 82.659 651.937 647.603

Table S8. Computed energies (Hartrees) and vdW volumes (cm3mol-1) for the optimized structures 

associated with the study of [Mo3S4(acac)3(py)3]+. 

PBE0D3(0)/BS1  optimized 
structures

Cluster TS with dmad TS with 
ADC

BTD TS with 
BTD

TS with PrA Prod with 
PrA

E(BS1) -2024.33856 -2556.84307 -2478.33156 -306.03754 -2330.38153 -2215.96924 -2216.01326

Thermal corr. to H (298 K) 0.68266 0.81107 0.75165 0.10384 0.78683 0.75027 0.75340

Thermal corr. to G (298 K) 0.54193 0.64341 0.59096 0.06304 0.62799 0.59667 0.60443

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00104 0.00000 0.00000 0.00065 0.00000 0.00000 0.00000

E(BS5,PCM) -3576.53174 -4109.24032 -4030.71161 -306.17799 -3882.69759 -3768.23510 -3768.27834

E(BS5,SMD) -3576.56408 -4109.27153 -4030.74438 -306.18303 -3882.73065 -3768.26718 -3768.31019

Volume (PCM) 921.412 1090.019 1036.424 139.814 1031.521 997.456 988.043

Volume (SMD) 764.552 915.838 890.658 123.17 861.253 820.436 815.999

PBE0D3(0)/BS1  optimized 
structures

TS with PhA Prod with PhA FPhA TS with 
FPhA

CF3PhA TS with 
CF3PhA

E(BS1) -2332.36647 -2332.40460 -407.17112 -2431.51080 -981.47931 -3005.82816

Thermal corr. to H (298 K) 0.80086 0.80387 0.11043 0.79348 0.13508 0.81816

Thermal corr. to G (298 K) 0.64531 0.64970 0.07059 0.63592 0.07702 0.64608

Standard State Corr. 0.00302 0.00302 0.00302 0.00302 0.00302 0.00302

Symmetry Corr. 0.00000 0.00000 0.00065 0.00000 0.00065 0.00000

E(BS5,PCM) -3884.65503 -3884.69282 -407.32747 -3983.84868 -981.89460 -4558.41983

E(BS5,SMD) -3884.69060 -3884.72826 -407.33327 -3983.88326 -981.89902 -4558.45266

Volume (PCM) 1059.482 1053.765 175.943 1065.045 259.638 1139.597

Volume (SMD) 860.652 855.051 128.985 869.525 209.437 945.306
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