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Abstract

Given an electrical circuit, formed by wires, nodes, batteries and resistors, the
main goal of this work is to solve this electrical circuit. This means finding the
electric current in each wire. The graph theory and its use in computer science
through data structures, like trees, and hierarchical traversing algorithms, like
the Breadth-first search algorithm, will be used to solve the problem. The first
part of the project will intend to solve an electrical circuit using C++, the main
algorithms used have been described in this paper. The second part of the project
will simulate an electrical circuit using graphics and control libraries allowing to
interact with the electrical circuit.
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Chapter 1

Introduction

The main goal of this paper is implementing a simulator which will visualise
the representation of an electrical circuit as well as solve it efficiently. Graph
theory, linear algebra as well as computer science, more specifically programming
in C++, are the main subjects that will be used.

This paper is composed of seven chapters. The first chapter is this introduction,
which gives a historical approach of electrical circuits as well as introduces the
most important physicists who discovered the laws that allow its solving. Some
basic concepts of the elements of an electrical circuits as well as said laws are
also explained in it. Once some basic concepts of graph theory are explained, the
second chapter describes the Breadth-first search algorithm, which is a hierarchical
algorithm for graphs that allows to find a spanning tree. In the first part of the
third chapter the data structure needed to represent an electrical graph and a
meshed tree are explained. In the second part, two crutial functions of the program
are described. The first one is an expansion of the Breadth-first search algorithm
and it allows to find a meshed tree and its fundamental cycles. The second one is
the function that solves the electrical circuit. In the fourth chapter the visual part
of the simulator is described and some of the main functions of the graphics and
control libraries are explained. Then an overview of the implementation of the
program is given by means of a flowchart, that gives a visual description of the
program with its functions and the relation between them. In the fifth chapter a
detailed example of how to solve an electrical circuit is given. The results of the
program are shown and compared to the results found when the electrical circuit
is solved by hand. Finally, the conclusions are given in the sixth chapter.
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1.1 Historical introduction

An electrical circuit includes devices that give energy to the charged particles
constituting the current, such as a battery, devices that use current, such as resis-
tors, and the connecting wires. Two of the basic laws that mathematically describe
the performance of electric circuits are Ohm’s law and Kirchhoff’s laws.[1]

Georg Ohm was a German physicist who discovered the law, named after him,
which states that the current flow through a conductor is directly proportional to
the potential difference (voltage) and inversely proportional to the resistance (de-
scribed in 1.1). His work greatly influenced the theory and applications of current
electricity [2], twenty years later, in 1845, Gustav Kirchhoff, who also was a Ger-
man physicist, first announced Kirchhoff’s laws (described in 1.2 and 1.3), which
allow calculation of the currents from the voltages and resistances in electrical
circuits.[3].

1.2 Main idea

Graph theory will allow us to model an electrical circuit into a graph, where
the nodes of the electrical circuit correspond to the vertices of the graph and the
wires of the electrical circuit correspond to the edges of the graph. Therefore the
information regarding wires, i.e. voltage, resistance and electric current in each
wire, will be kept as information related to an edge.

To give a general idea on how to solve an electrical circuit, we will need to
apply the Kirchhoff laws. Kirchhoff’s first law (1.2) will give us nodal linear equa-
tions and Kirchhoff’s second law (1.3) will give us meshed linear equations. A
linear sistem can be written by joining these equations. Finally, solving the sys-
tem of linear equations will give the intensities which traverse each wire of the
electrical circuit.

To sum up, the data that will be given is the voltages and the resistances of
an electrical circuit, once we solve the electrical circuit, the intensities of each wire
will be found.

We need an efficient way of traversing graphs and an efficent way to keep
all the data. Having the structure of a graph is essencial because hierarchical
algorithms will be crucial to solve a general electrical circuit, mainly to write down
the meshed linear equations.



1.3 Electrical Circuits: basic concepts

This section aims to remind briefly the fundamental concepts regarding elec-
trical circuits so the reader is familiarized with them.

An electrical circuit is an interconnection of electrical elements which are in-
terconneting wires that contain direct current (current that remains constant with
time). There are two types of elements found in electric circuits: passive elements
and active elements. An active element is capable of generating energy while a
passive element is not. Resistors are an example of passive elements and genera-
tors and batteries are examples of active elements. The associated magnitudes to
these elements are:

• The electromotive force or voltage is the energy required to move a unit
charge through an element like generators or batteries. It is measured in
volts (V).

• The resistance of an element, like a resistor, denotes its ability to resist the
flow of electric current. It is measured in ohms (Ω).

• The electric current or current intensity is the time rate of change of charge
in a wire. It is measured in amperes (A).

A branch represents a single element such as a voltage source (which can be
positive or negative) or a resistor; a node is the point of connection between two
or more branches and a cycle or a mesh is any closed path in a circuit [5].

Circuit analysis is the process of determining the currents through the elements
of the electrical circuit. To determine these values the following laws will be used:

Ohm’s law. Ohm’s law states that the voltage V across a resistor is directly pro-
portional to the current I flowing through the resistor.

V = IR (1.1)

Notice that equation 1.1 gives the following equality:

Ω =
V
A

Kirchhoff’s current law. Kirchhoff’s current law (or Kirchhoff’s first law) states
that the algebraic sum of currents entering a node is zero. Specifically, the sum of
the currents entering a node is equal to the sum of the currents leaving the node.
Equivalently:

n

∑
k=1

Ik = 0 (1.2)

Where n is the number of branches which are connected to the node and Ik is the
k−th current which is entering or leaving the node.



Kirchhoff’s voltage law. Kirchhoff’s voltage law (or Kirchhoff’s second law) states
that the algebraic sum of all electromotive forces around any cycle is zero. Specif-
ically, the sum of voltage drops is equal to the sum of voltage rises. This means
that, for each mesh of the electrical circuit, the algebraic sum of the electromotive
forces given by the batteries has to be the same as the algebraic sum of the voltage
drops in the resistances R traversed by the current intensity I (this will be given
by 1.1). Equivalently:

n

∑
k=1

IkRk =
n

∑
k=1
Ek (1.3)

Where n is the number of branches forming the cycle and Ek is the k−th elec-
tromotive force on the k−th branch.

The following figure (1.1) is an example of how an electrical circuit with one
cycle is represented. The circles represent the nodes, the lines represent the wires,
the arrows represent the intensities, the couple of perpendicular lines represent
the batteries and the zig-zag line represents the resistors.

2 Ω

2 V 3 Ω

1 V

4 Ω

3 V
0

3

1

2

I01

I23

I03

I12

Figure 1.1: Example of an electrical circuit



Chapter 2

Graph traversal algorithms for
spanning trees

The modelization of an electrical circuit is done by means of graphs. How
this is exactly done will be explained in the next chapter. This chapter aims to
illustrate how we will implementate graph hierarchical traversal algorithms to
find a spanning tree. An extended version of this algorithm will allow us to
find a meshed tree, which will allow us to retrieve the information of the cycles
in an electrical circuit. The first section aims to remind briefly the fundamental
concepts regarding graphs so the reader is familiarized with them. The second
section describes the algorithm that will be used to traverse a graph and extract
the required information.

2.1 Basic concepts

A graph G(V, E) is a finite set of vertices V = {v1, ..., vvn} and a finite set of
edges E = {e1, ..., een} where each edge connects two vertices. If those two vertices
are the same then the edge will be named a loop. Two vertices are neighbours if
they are joined by an edge, i.e. the vertices are incident on the edge.

A graph is connected if there exists a path between every pair of vertices. The
largest connected subgraphs of a graph G(V, E) are called connected components.
A closed walk of length k is a sequence of edges e1, ..., ek starting and finishing at
the same vertex, a cycle is a closed walk where all edges and intermediate vertices
are different. A graph will be named tree if it is a connected graph without cycles.
Trees are some of the most frequent graphs used in mathematical modeling and
computation [6].

Given a graph G(V, E), a spanning tree is subgraph which is a tree with all
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vertices of G(V, E) covered with the minimum possible number of edges. It will
be explained in the next section how to find a spanning tree given a graph using
a graph algorithm.

Since we will use graph algorithms we need to know how a graph is repre-
sented. An adjacency list is a collection of unordered lists used to represent a
finite graph. Therefore an adjacency list is an array of vn lists, one for each vertex
v ∈ V, where each list contains the set of neighbours of v.

2.2 Breadth-first search

The Breadth-first search algorithm, BFS to abbreviate, is a graph search algo-
rithm. Applying BFS one is able to find the shortest path between two points.
This algorithm has many applications like GPS navigation systems or social net-
working websites among others. Breadth means width, this indicates how the
graph and its vertices will be visited when applying the BFS algorithm. Note that
we do not need to have a tree shaped graph to begin with, however, given any type
of graph the outcome will be a tree. We call spanning trees the trees generated
using the Breadth-first search algorithm.

As it will be explained in Section 3.3 we will need to apply a modified version
of the BFS algorithm to a given graph in order to have a meshed tree.

2.2.1 BFS function

This section aims to explain how the function BFS works. BFS will be called in
the BFS_Meshed_Trees function which will be explained in Section 3.3. The function
takes a graph G as a parameter and it returns a component Tn which is an integer
with the number of connected components of the graph G.

Firstly an array of vertices of size vn will be declared and an array of booleans
of size vn will be initialized to false. The first one will store the vertices by order of
visit. The second one, visited, will store whether a vertex has been visited or not,
i.e. if a vertex v has been visited then visited[v] = true if it has not been visited
then visited[v] = f alse. There will also be an index n = 0.

Secondly a loop that iterates all the vertices will take place. If the actual vertex
has not been visited then the following steps will be made:

• First step: Set a second index i = n. Update the number of components Tn.
Set the actual vertex v as the root. Mark the root as visited and add the root
to the array of visited vertices in the position n + 1. If the actual vertex has
adjacent vertices then we will do:



• Second step: The vertex in the position i + 1 will be chosen. A loop will
iterate every adjacent vertex of vi, if it has not been visited then it will be
marked as visited and added to the array of visited vertices in the position
vn+1. This will be done while i < n.

This means once one of the vertices of the graph has been picked as the root,
then all the adjacent vertices that are on the same level of depth will be visited.
Once all the adjacent vertices have been visited we will be able to visit the next
level of depth. The same steps will be followed recursively until all the vertices
which are reachable from the root are visited. If all vertices belong to the same
connected component then the loop will stop after the first vertex. This is be-
cause all the vertices are reachable from the root therefore there will be just one
connected component of the graph G.

2.2.2 BFS pseudocode

There are many ways of programming a BFS algorithm. The following pseu-
docode for the BFS algorithm gives a general idea of the steps needed to program
it:

Algorithm 1 BFS (G,r)
Input: graph G(V, E), root r ∈ V
Output: none

Let V be an array
Add root r in V
while V is not empty do

remove first vertex, u, of V
for all edges (u, v) ∈ E
if v not visited then

visit vertex v
u is v’s parent
add v in V

end if
end while

2.2.3 BFS Example

The next pages are an example of how to implement the basic BFS algorithm.
We will use orange to mark the vertex being processed, pink to mark the unvisited
vertices, blue to mark the visited vertices and yellow for the edges.
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Figure 2.1: Given a graph G
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Figure 2.2: First iteration: we set the vertex 0 as the root. Therefore it has no parent
and it will be added to the array. V = [0].
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Figure 2.3: Second iteration: we will visit the roots’ neighbours, i.e. the vertices
1,2 and 3. Therefore the parent of those vertices will be the root 0. We will add
those vertices to the array, V = [0, 1, 2, 3]. Since all the neighbours of 0 have been
visted the root is popped out of the array, V = [1, 2, 3].
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Figure 2.4: Third iteration: we will visit the neighbours of the vertex 1, i.e. the
vertices 5 and 6. Therefore the parent of those vertices will be the vertex 1. We
will add those vertices to the array, V = [1, 2, 3, 5, 6]. Since all the neighbours of 1
have been visted the vertex 1 is popped out of the array, V = [2, 3, 5, 6].
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Figure 2.5: Fourth iteration: we will visit the neighbours of the vertex 2, i.e. the
vertices 5 and 6. Since all the neighbours of 2 have already been visted the root is
popped out of the array, V = [3, 5, 6]. The next vertex to visit is the vertex 3 which
has the vertex 7 as a neighbour, since it has not been visited yet it will be added
to the array V = [3, 5, 6, 7]. Therefore the parent of the vertex 7 is the vertex 3 and
this vertex is popped out of the array, V = [5, 6, 7].
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Figure 2.6: Fifth iteration: we will visit the neighbour of the vertex 5, which is
the vertex 4. Therefore the parent of this vertex is the vertex 5. We will add this
vertex to the an array, V = [5, 6, 7, 4]. Sixth iteration: since the neighbours of the
vertices 5, 6, 7 and 4 have already been visited those vertices will pop out of the
an array. Implementing the BFS algorithm to our graph gives us the spanning tree
from above. Note that the edge from the vertex 2 to the vertex 5 and from the
vertex 2 to the vertex 6 have been removed since we are looking for a tree, i.e a
graph with no cycles.



In the next chapter meshed trees and their data structure will be explained.
In advance, the following figure illustrates how the meshed tree corresponding to
the graph G (figure 2.2.3) looks like:

0

1 2 3

4

56 7

2’ 2’

0 1 2

4 7 3

5 6 8

Figure 2.7: Meshed tree with 2’ as an alias node and 5 and 6 as closure branches.
This means 6-1-0-2 and 5-1-0-2 form two fundamental cycles.



Chapter 3

Data structures and relevant
functions

3.1 Kirchhoff graph

An electrical circuit can be seen as a connected graph where the nodes of the
electrical circuit are the vertices of the graph and the wires of the electrical cricuit
are the edges of the graph. This will be named Kirchhoff or electrical graph.

The aim of this chapter is to explain how the data is structured. An electrical
circuit will be given and we will need to be able to restructure it in order to
have a graph, more specifically, a tree with extra information called meshed tree.
Therefore we need to know how the data file will look like in order to know how
to read it with the data of the electrical circuit.

The aim of this chapter is to explain how an electrical circuit is transformed
into a meshed tree. In this section an example will be used to explain the steps
needed.
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Given the following electrical circuit in 3.1.

1 V

3 Ω

7 Ω 1 V

1 V

8 Ω

1 V 3 Ω

1 V

3 Ω

1 V 6 Ω

1 V

7 Ω

1 V 4 Ω

1 V

5 Ω

7 Ω 1 V

1 V

7 Ω

Figure 3.1: Electrical circuit



Firstly we will take all the data given in the file and read it. For example, the
file corresponding to the figure 3.1 will have the following information:

8 11
0 2 4
1 2 22
2 22 4
3 22 22
4 32 0
5 38 22
6 38 12
7 38 4
0 0 1 3 1
1 0 2 4 1
2 5 2 5 1
3 1 3 6 1
4 2 3 7 1
5 2 4 7 1
6 3 4 7 1
7 0 4 7 1
8 4 5 8 1
9 5 6 3 1
10 7 6 2 1

Let us analyse what the numbers in each line of the file mean:

1. 8 is the number of nodes, 11 is the number of edges.

2. Node 0 is in the position (2,4).

3. Node 1 is in the position (2,22).

4. Node 2 is in the position (22,4).

5. Node 3 is in the position (22,22).

6. Node 4 is in the position (32,0).

7. Node 5 is in the position (38,22).

8. Node 6 is in the position (38,12).

9. Node 7 is in the position (38,4).



10. Edge 0 connects Node 0 and Node 1, there is one resistor of 3 Ω and one
battery of 1V.

11. Edge 1 connects Node 0 and Node 2, there is one resistor of 4 Ω and one
battery of 1V.

12. Edge 2 connects Node 5 and Node 2, there is one resistor of 5 Ω and one
battery of 1V.

13. Edge 3 connects Node 1 and Node 3, there is one resistor of 6 Ω and one
battery of 1V.

14. Edge 4 connects Node 2 and Node 3, there is one resistor of 7 Ω and one
battery of 1V.

15. Edge 5 connects Node 2 and Node 4, there is one resistor of 7 Ω and one
battery of 1V.

16. Edge 6 connects Node 3 and Node 4, there is one resistor of 7 Ω and one
battery of 1V.

17. Edge 7 connects Node 0 and Node 4, there is one resistor of 7 Ω and one
battery of 1V.

18. Edge 8 connects Node 4 and Node 5, there is one resistor of 8 Ω and one
battery of 1V.

19. Edge 9 connects Node 5 and Node 6, there is one resistor of 3 Ω and one
battery of 1V.

20. Edge 10 connects Node 7 and Node 6, there is one resistor of 2 Ω and one
battery of 1V.

Every file will have vn (number of vertices) and en (number of edges), followed
by vn lines with the positions (x, y) of each vertex and, finally, en lines with the
vertices that are connected in pairs by edges and the resistance and voltage corre-
sponding to each edge.

Secondly, this information will be saved using matrices and arrays. For each
file of an electrical graph the following data will be available:

• The graph will be saved using a matrix, i.e. using adjacency lists: KG

• Positions will be saved using an array of points: Kp

• Resitances will be saved using an array of resistances: Kr



• Voltages will be saved using an array of voltages: Kv

• Currents will be saved using an array of currents: Kc

Let us call v the actual vertex, then KG[v] will be the adjacency list of size n
of the actual vertex, this means from i = 0 to i < n the vertices KG[v][i] are the
neighbours of v. Let vip(v, i) be a map which, given a vertex v and an index i,
gives an edge e = KE[vip(v, i)] that joins the vertex v with its neighbour KG[v][i].

In our previous example this data will look like:

v KG[v]
0 [1, 2, 4]
1 [0, 3]
2 [0, 5, 3, 4]
3 [1, 2, 4]
4 [2, 3, 0, 5]
5 [2, 4, 6]
6 [5, 7]
7 [6]

e=KE[vip(v,i)] v-KG[v][i] Kr[e] Kv[e]
0 0-1 3 1
1 0-2 4 1
2 5-2 5 1
3 1-3 6 1
4 2-3 7 1
5 2-4 7 1
6 3-4 7 1
7 0-4 7 1
8 4-5 8 1
9 5-6 3 1
10 7-6 2 1

3.2 Meshed tree

Once we have the information saved we will be able to apply the modification
of the Breadth-first search algorithm explained in the next section 3.3. Therefore a
Kirchhoff graph will be transformed into a meshed tree and we will have access



to the fundamental cycles information, which is crucial to solve the main problem
and find the intensities of the electrical circuit.

The modifications done to the standard BFS algorithm will allow us to intro-
duce three new concepts, alias nodes, closure branches and fundamental cycles.
These concepts will help us avoiding having a graph with cycles but instead a tree
shaped graph will be built but maintaining all the information of the cycles from
the initial electrical circuit.

When a graph is being traversed, if the current node being processed has a
neighbour that has already been visited it means they form a cycle. To avoid it, a
closure branch will be added to join the current node to an alias node (i.e. it will
be denoted with the same number but adding a ′). Therefore the meshed tree will
have the same amount of edges as the original electrical graph, en, and it will have
en + 1 nodes.

There can be many loops in an electrical graph, the key is to find the most
convenient in order to solve the lineal equations using the Kirchhoff laws. This
allow us to introduce the concept of fundamental cycle or fundamental mesh.
Given a meshed tree found using the BFS modified algorithm, there will be a
fundamental cycle for every closure branch that has been added to the meshed
tree, therefore there will be en − vn + 1 fundamental cycles in a graph.

Finally all the information of the Kirchhoff graph will be printed in a file
"example.out":

• Graph information:

– Number of nodes and branches

– Adjacency list for every node (its adjacent nodes with the number of the
branch connecting them and resistance and voltage of named branch)

– Information of every branch (the nodes it connects, the number of the
branch and the resistance and voltage of the branch)

• BFS information:

– Vertices of the meshed tree (its alias, its visited order whilst doing the
breadth-first search, its depth and its parent)

– Edges of the meshed tree (if the vertex does not correspond to its alias
then the edge will be printed as "out tree" otherwise it will be printed
as "in tree")

– Paths to the root for every vertex

– Fundamental cycles (i.e. the vertices forming every cycle)



3.3 BFS_Meshed_Trees function

As it has been explained in the previous section, the Breadth-first algorithm
will be slightly modified in order to find meshed trees. The aim of this section
is to explain how the BFS_Meshed_Trees function finds the fundamental cycles of
a meshed tree. Knowing which are the fundamental cycles will allow us to write
a part of the linear equations needed to solve an electrical circuit. The function
takes the following parameters:

• graph G

• edges GE

• vector<vertex> BFSv

• vector<index> BFSind

• vector<vertex> BFSa

• vector<vertex> BFSp

• vector<edge> BFSe

• vector<length> BFSd

and it returns a component Tn.
The function also modifies the parameters given. First of all we will explain

the data structures of the parameters that will be filled in during the execution of
the function:

• BFSv is an array of vertices which stores the vertices of the tree, the original
vertices will be stored in the positions 0, ..., vn−1 and the alias vertices in the
positions vn, ..., en.

• BFSind is an array of indexs which stores the index of each vertex.

• BFSa is an array of vertices. If the vertex in the given position belongs to an
original vertex then the array will store the same vertex. On the other hand,
if it belongs to an alias vertex then the array will store the original vertex.

• BFSp is an array of vertices which stores the upper vertex (i.e. the parent) of
each vertex.

• BFSe is an array of edges which stores the upper edge of each vertex (i.e. the
edge that connects the actual vertex to its parent).

• BFSd is an array of lengths which stores the depth of each vertex.

Firstly, the arrays will be declared, their size will be en + 1 and BFSp will be
initialised to en + 1. Then the program will roughly follow the same structure as
the BFS function ( 2.1.2) until the Second step.

Let us call v the actual vertex, then G[v] will be the adjacency list of size n
of the actual vertex, this means from i = 0 to i < n the vertices G[v][i] are the



neighbours of v. Let vip(v, i) be a map which, given a vertex v and an index i,
gives an edge e = GEvip(v, i) that joins the vertex v with its neighbour G[v][i].

If the adjacency list of v is not empty then two cases will be considered:

• The vertex being processed, G[v][i], is an original vertex. Then the following
arrays will be updated:

– BFSa[G[v][i]] = G[v][i], i.e. the alias array updates in the position of the
vertex the vertex itself.

– BFSv[n + 1] = G[v][i], i.e. the vertices array updates the vertex in the
n + 1 position, notice that n + 1 < vn because G[v][i] is an original
vertex.

– BFSd[G[v][i]] = BFSd[v] + 1, i.e. the depth array updates the vertex’s
depth as the parent’s depth+1.

– BFSp[G[v][i]] = v, i.e. the parents array updates the vertex’s parent as
v.

– BFSe[G[v][i]] = GE[vip(v, i)], i.e. the edges array updates the vertex’s
upper edge as the edges that joins v with i.

• The vertex being processed, av, is an alias vertex. Then the following arrays
will be updated:

– BFSa[av] = G[v][i], i.e. the alias array updates in the position of the
vertex the original vertex.

– BFSv[n + 1] = av, i.e. the vertices array updates the vertex in the n + 1
position, notice that n + 1 > vn − 1 because av is an alias vertex.

– BFSd[av] = BFSd[v] + 1, i.e. the depth array updates the vertex’s depth
as the parent’s depth+1.

– BFSe[av] = GE[vip(v, i)], i.e. the edges array updates the vertex’s upper
edge as the edges that joins v with i.

– BFSp[av + 1] = v, i.e. the parents array updates the next vertex of the
actual vertex parent as v.



The following example will show how the meshed tree corresponding to the
electrical circuit 3.1 is:
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Figure 3.2: Meshed tree with 8, 9, 10 and 11 as alias nodes and 4, 5, 6 and 8 as
closure branches.



Let us see how the data of this meshed tree is kept:

v BFSa[v] BFSind[v] BFSd[v] BFSp[v] BFSe[v]
0 0 0 0 - -
1 1 1 1 0 0
2 2 2 1 0 1
3 3 4 2 1 3
4 4 3 1 0 7
5 5 5 2 2 2
6 6 10 3 5 9
7 7 11 4 6 10
8 2 6 2 4 5
9 2 7 3 3 4
10 4 8 3 3 6
11 4 9 3 5 8

3.3.1 Fundamental cycles

With the knowledge of how the BFS_Meshed_Trees function works, this section
aims to illustrate how the fundamental cycles are found. Given the meshed tree
from 3.2 the corresponding fundamental cycles are 3.3, 3.4, 3.5 and 3.6.

Firstly, there will be a loop that iterates all alias nodes, i.e. the vertices from
vn to en, in this example 4 alias vertices will be iterated and each one of them
will produce a fundamental cycle. The actual alias vertex (painted in orange) will
ascend by substituting the actual vertex for its parent until the depth (depth is
pictured as a dotted horizontal line) of the actual vertex is the same as the depth
(this is pictured with a solid line arrow) of the original vertex (painted in blue).

Secondly, once the depth is equal, both sides will ascend by substituting the
actual vertex for its parent until a common vertex (painted in red) is found (this is
pictured with a dashed line arrow).

Notice that in the next example the common vertex is the root, the vertex 0,
however this is not a generalization as it can happen that the first common vertex
found differs from the root.

Finally, in each step the actual vertex is being saved in an array, this array will
represent the fundamental cycle. The arrays corresponding to the fundamental
cycles are: [2′, 4, 0, 2], [2′, 3, 1, 0, 2], [4′, 3, 1, 0, 4] and [4, 5, 2, 0, 4].
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3.4 KC_Compute function

This section aims to explain how the function KC_Compute, which computes
the intensities of a given electrical circuit, works. A linear system of equations can
be represented as an augmented matrix, the main goal of the KC_Compute function
is to fill in a matrix R and an array E that together will compose an augmented
matrix. As it has been discussed in the introduction (1.1), the linear system of
equations that solves an electrical circuit will be RI = E. The augmented matrix
will look like the following matrix:

R11 R12 . . . R1en

...
. . . . . .

...

Rvn1 Rvn2 . . . Rvnen

...
. . . . . .

...

Ren1 Ren2 . . . Renen

0

...

Evn

...

Een



Nodal equations


Meshed equations

︸ ︷︷ ︸
R

︸ ︷︷ ︸
E

Where E’s coefficients corresponding to the nodal equations are 0 (1.2) whereas
the coefficients corresponding to the meshed equations are the algebraic sums of
the electromotive force in the mesh (1.3).

The function KC_Compute takes the following parameters, those are the same
arrays used in BFS_Meshed_Trees, Section3.3, but with a changed notation to em-
phasise that the data structure is from a Meshed Tree:

• graph KG

• edges KE

• resistances Kr

• voltages Kv

• vector<vertex> MTv

• vector<vertex> MTa

• vector<vertex> MTuv

• vector<edge> MTue

• vector<length> MTd

First of all, we will describe the data structures of those parameters:

• Kr is an array of resistances which stores the resistance of each edge.

• Kv is an array of voltages which stores the voltage of each edge.



• MTv is an array of vertices which stores the vertices of the tree, the original
vertices will be stored in the positions 0, ..., vn−1 and the alias vertices in the
positions vn, ..., en.

• MTa is an array of vertices. If the vertex in the given position belongs to an
original vertex then the array will store the same vertex. On the other hand,
if it belongs to an alias vertex then the array will store the original vertex.

• MTuv is an array of vertices which stores the upper vertex (i.e. the parent)
of each vertex.

• MTue is an array of edges which stores the upper edge of each vertex (i.e.
the edge that connects the actual vertex to its parent).

• MTd is an array of lengths which stores the depth of each vertex.

The function returns a vector<double> E of length en. This array will have
the intensity related to the i-th edge in the i-th position, i.e:

E[0] = I0, ..., E[k] = Ik, ..., E[en − 1] = Ien−1

Given all this data, the aim of the KC_Compute function is to:

1. Fill a en × en matrix R and an array E of length en that correspond to the
system of linear equations of the electrical circuit.

2. Solve the system of linear equations, i.e. find the intensities traveling through
each wire of the electrical circuit.

Firstly, the first vn − 1 rows will be filled using the Kirchhoff first law(1.2).
This rows correspond to the nodal equations therefore the array E will be null
in the positions 0, ..., vn − 1. Notice that: even if we have vn nodes, i.e, vn nodal
equations, only vn − 1 nodal equations are used. This is because nodal equations
are not all linearly independent, therefore we will remove one of them to ensure
the linear independency.

Let v be the i-th vertex and e the j-th edge. Let u and w be the vertices joined
by e where u < w. Then the matrix R will be filled using the following process:

R[v][e] =


1 if v = w
−1 if v = u
0 v 6= u,v 6= w

Secondly, the rows vn-th till the en-th will be filled using the Kirchhoff second
law(1.3). Those rows correspond to the mesh equations, i.e. for each fundamental



mesh belonging to the electrical circuit there will be its corresponding mesh equa-
tion. As we have seen in the previous section 3.3, BFS_Meshed_Trees computes the
fundamental cycles of a spanning tree. A similar approach will be used in order
to find the linear equations linked to the fundamental cycles.

In the first instance there will be a loop which will start setting the actual
vertex, av, to the smaller alias vertex and will loop through all the alias vertices.
Each loop will fill the row corresponding to the alias vertex for the matrix R and
the position corresponding to the alias vertex for the array E. Then the following
steps will be made:

The first step is a loop which will keep running until the depth of the actual
vertex and the depth of the original vertex, v, are the same, i.e. MTd[v] = MTd[av].
In this step the matrix R will be filled with the resistance value corresponding to
the upper edge, ue, of the actual vertex, i.e. R[av][ue] = ±Kr[ue], and the array E
will be filled with the voltage value corresponding to the upper edge of the actual
vertex, i.e. E[av] = Kv[ue]. Finally, the actual vertex will be substituted by its
upper vertex, uv, which will make the depth diminish by one, i.e. av = uv.

We will imagine the next step as a mountain, at the end of one of the sides
there will be the original vertex and at the end of the other side there will be the
actual vertex, both of them will have the same depth since it has been equalized
in the first step. The aim is to go on top of the mountain which is the first vertex
in common.

The second step is a loop that will stop when the actual vertex is the same
as the original vertex. Analogously to the first step, the position in the matrix
R corresponding to the upper edge of the actual vertex will be updated with its
corresponding value of the resistance and the position in the array E correspond-
ing to the upper edge of the actual vertex will be updated with its corresponding
value of the voltage. Then the actual vertex will be substituted by its upper vertex.

The original vertex’s side will follow the same steps, update its postion in R
and E corresponding to the upper edge with the corresponding resistance and
voltage and finally the original vertex will be substituted by its upper vertex.

Finally, once the matrix R and the array E are filled, they will be given as
parameters of a function called Gauss.

The function Gauss takes a matrix A , an array b, a dimension n and a tolerance
tol as parameters. Then it applies the Gaussian elimination to the augmented
matrix composed by the matrix A and the array b. The solution of the linear
system of equations represented by the augmented matrix will be in b.

This means that once we apply Gauss the solution of the system of equations
will be in E, i.e. the array E will be the array of intensities I. This same array, E,
will be the one that KC_Compute returns.



Chapter 4

Implementation of the simulator

Now that the main functions of the program have been explained this chapter
aims to explain how the implementation has been done and how the simulator
works.

4.1 OpenGL, GLUT and FLTK

4.1.1 Definitions

Firstly we will introduce what OpenGl and FLTK are.
OpenGL stands for Open Graphics Library. It is a cross-language, cross-

platform API, which stands for application programming interface, for render-
ing 2D and 3D vector graphics. The API is typically used to interact with a
GPU, which stands for graphics processing unit, to achieve hardware-accelerated
rendering.[7]

It should not be considered a library, it is a specification that gives the infor-
mation of what is it achievable with the API but there is no implementation, hence
why it is not an actual source code.[8]

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
a GL context and associate it with the window. Once a GL context is allocated,the
programmer is free to issue OpenGL commands.[9]

GLUT is the OpenGL Utility Toolkit, a window system independent toolkit
for writing OpenGL programs. It implements a simple windowing application
programming interface (API) for OpenGL. GLUT makes it considerably easier to
learn about and explore OpenGL Programming. [10]

The Fast Light Tool Kit (FLTK) is a cross-platform C++ GUI Toolkit. FLTK
provides modern GUI functionality without the bloat and supports 3D graphics
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via OpenGL and its built-in GLUT emulation. [11]

4.1.2 Functions

We will give some examples so the reader can see how OpenGL, GLUT and
FLTK work:

• GL_Line( int x1, int y1, int x2, int y2, rgb colour ): the function creates a
line of colour colour which joins the vertex (x1, y1) to the vertex (x2, y2).

• GL_Box( int x1, int y1, int x2, int y2 ): the function creates a rectangle with
vertices (x1, y1), (x1, y2), (x2, y1) and (x2, y2).

• GL_String( int xp, int yp, char* text ): the function writes the characters
text of colour colour in the starting position given by the vertex (xp, yp). The
function CText( int xp, int yp, char* text, rgb colour ) uses GL_String to write
the text in a given colour.

For example, in the functions KC_vis and MT_vis, which are in charge of draw-
ing the Kirchhoff graph and the corresponding meshed tree respectively, GL_Line
will be used to draw the edges and the arrows, GL_Box will be used to draw the
boxes around the number that represents an edge and a node and CText will be
used to draw the number of the edge and the node.

• Fl_Window( int w, int h, char* title ) : the function creates a widget of width
w and hight h with the string title on the top left of the window.

• Fl_Output(int x, int y, int w, int h, char* text ) : the function creates a widget
of width w and hight h in the starting position (x, y) with the string text.

• Fl_Button(int x, int y, int w, int h, char* text ) : the function creates a widget
of width w and hight h in the starting position (x, y) with the string text.

• Fl_Counter(int x, int y, int w, int h, char* text ) : the function creates a
widget of width w and hight h in the starting position (x, y) with the string
text.

The function Control(), which is in charge of creating all the control buttons,
will use the previous functions to achieve it. Take into consideration that buttons
generate callbacks when they are clicked by the user[12], as it is illustrated in the
next example:



The KC_Compute function, explained in Section 3.4, will be called only if the
"Compute Intensities" (4.1.2) button is pressed.

Given the following instructions:

Fl_Button *Compute = new Fl_Button(80, 700, 170, 40, "Compute Intensities");

Compute->callback(Compute_cb);

The first instruction creates de "Compute Intensities" button in the starting posi-
tion (80, 700) with width 170 and hight 40. The second instruction connects the
button to the function Compute_cb, and this functions calls Compute. Compute will
update the Kc array by means of the following instruction:

Kc = KC_Compute(KG, Kp, KE, Kr, Kv, MTv, MTa, MTuv, MTue, MTd);



4.2 Kirchhoff Circuit Networks Simulator

It can be seen in the next screenshot how the functions described in the previ-
ous section are implemented. When the program is executed the following win-
dow will pop up:

As it can be seen on the left hand side the following features are available:

• Change between different examples of Kirchhoff Graph: press the arrows
underneath "Kirchhoff Graph".

• Move from one node to another: press the previous or next buttons above
"Node".

• Move from one edge to another: press the previous or next buttons above
"Branch".

• Compute the intensites of the electrical circuit: press the button "Compute
Intensities".

On the left side of the dark coloured window there is the spanning tree of the
graph being analysed and on the right side there is the Kirchhoff graph.



If we hover over a node the node of both the spanning tree (including the alias
nodes) and the Kirchhoff graph will change to white, the number of the node will
appear in the buttons zone on the left hand side of the screen:

Note that it is not needed to hover over a node to highlight it. If the previous
and next buttons over "Node" are pressed the original node and its alias will also
turn into white.



If we hover over an edge the edge of both the spanning tree and the Kirchhoff
graph will change to white, the number of the edge as well as its voltage and
resistance will appear in the buttons zone on the left hand side. The intensity of
each edge will always be null if we do not press the "Compute Intensities" button.
Once we push it each value will change and will appear as in the next screenshot.

Note that it is not needed to hover over an edge to highlight it. If the previous
and next buttons over "Branch" are pressed the edges will also turn into white.



4.3 Implementation

4.3.1 Flowchart

This section aims to provide an insight into the program execution by means of
a flowchart as well as give a direct access to the functions explained in this paper.

The program will start with the execution of the main() which will call the
following functions:

• Control, as it has been explained in Subsection 4.1.2 the Compute_cb function
will be called only when the "Compute Intensities" button is pressed, hence
why it is shown as a dotted arrow in the flowchart.

– KC_Compute which has been explained in Section 3.4 it uses the Gauss
function to calculate the intensities.

• Init will call the following functions:

– BFS_Meshed_Trees which has been explained in Section 3.3. It will call
the following function:

* BFS which has been explained in Subsection 2.1.2.

• Display will call the following functions:

– KC_vis and MT_vis both of them have been explained in Subsection
4.1.2.





Chapter 5

Results

The aim of this chapter is to prove that the program works properly.
For this purpose, an example on how to find the intensities of each wire of the

electrical circuit will be explained step by step. Given an electrical circuit this will
be modeled into an electrical graph, then its corresponding spanning tree will be
found. Lastly, the linear equations associated to the electrical cicuit will be solved
using an online linear equations solver. At the end of the chapter the program
will be run using the data of the same electrical circuit and both results will be
compared.

5.1 Example

Given the electrical circuit from the figure 3.1. The corresponding Kirchhoff
graph is the figure 5.1.

0

1

2

4

6

7

53

0

1

2

3

7

9

10

5

4

6

8

Figure 5.1: Kirchhoff graph
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Now the directions of the currents need to be set. The intensity of the branches
will be set as follows: the intensity will be moving from the node with the smallest
index to the other node. This means we will have an electrical circuit like in the
figure 5.2:
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Figure 5.2: Electrical circuit with nodes and intensities



5.1.1 Step 1

The first step will be applying the BFS_Meshed_Trees algorithm to the electrical
graph. This will give us the corresponding meshed tree as we can see in 5.3.
As it has been explained in Section 3.3, when we compute the meshed tree, the
fundamentals cycles of the initial Kirchhoff graph can be found.

0

1 2 4

6

7

53 2’

2’ 4’ 4’

0 1

23

7

9

10

4 6

5

8

Figure 5.3: Meshed tree with 2’ and 4’ as alias nodes and 4, 5, 6 and 8 as closure
branches.



The following figures 5.4, 5.5, 5.6 and 5.7 represent the fundamental cycles
found after computing the meshed tree pictured in the figure 5.3.
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5.1.2 Step 2

The second step will be writing the nodal equations. A nodal equation can
be written for each node using the Kirchhoff first law(1.2) but since the nodal
equations are not linearly independent we will write just vn − 1 nodal equations
to ensure the linear independency.

Since there are 8 nodes in the electrical graph given there will be 7 nodal
equations, which are the following:

N0 : −I01 − I02 − I04 = 0 (5.1)

N1 : I01 − I13 = 0 (5.2)

N2 : I02 − I23 − I24 − I25 = 0 (5.3)

N3 : I13 + I23 − I34 = 0 (5.4)

N4 : I04 + I24 + I34 − I45 = 0 (5.5)

N5 : I25 + I45 − I56 = 0 (5.6)

N6 : I56 − I67 = 0 (5.7)

5.1.3 Step 3

The third step will be writing the mesh equations. A mesh equation can be
written for each fundamental cycle using the Kirchhoff second law(1.3). Therefore
there will be en − vn + 1 mesh equations.

Since there are 4 fundamental cycles ( 5.4, 5.5, 5.6, 5.7 ) in the electrical graph
given there will be 4 mesh equations, which are the following:

C1 : R24 I24 − R04 I04 + R02 I02 = E24 − E04 + E02 (5.8)

C2 : R23 I23 − R13 I13 − R01 I01 + R02 I02 = E23 − E13 − E01 + E02 (5.9)

C3 : −R34 I34 − R13 I13 − R01 I01 + R04 I04 = −E34 − E13 − E01 + E04 (5.10)

C4 : R45 I45 − R25 I25 − R02 I02 + R04 I04 = E45 − E25 − E02 + E04 (5.11)

Specifically:

C1 : 7I24 − 7I04 + 4I02 = 1 (5.12)

C2 : 7I23 − 6I13 − 3I01 + 4I02 = 0 (5.13)

C3 : −7I34 − 6I13 − 3I01 + 7I04 = −2 (5.14)

C4 : 8I45 − 5I25 − 4I02 + 7I04 = 0 (5.15)



A system of linear equations can be represented in matrix form, joining the
nodal equations with the mesh equations. The corresponding matrix we want to
solve is:



−1 −1 0 0 0 0 0 −1 0 0 0
1 0 0 −1 0 0 0 0 0 0 0
0 1 −1 0 −1 −1 0 0 0 0 0
0 0 0 1 1 0 −1 0 0 0 0
0 0 0 0 0 1 1 1 −1 0 0
0 0 1 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 1 −1
0 4 0 0 0 7 0 −7 0 0 0
−3 4 0 −6 7 0 0 0 0 0 0
−3 0 0 −6 0 0 −7 7 0 0 0

0 −4 −5 0 0 0 0 7 8 0 0





I01

I02

I25

I13

I23

I24

I34

I04

I45

I56

I67



=



0
0
0
0
0
0
0
1
0
−2

0



5.1.4 Step 4

The fourth and final step will be applying the Gauss elimination method to the
following 11x12 augmented matrix:



−1 −1 0 0 0 0 0 −1 0 0 0 0
1 0 0 −1 0 0 0 0 0 0 0 0
0 1 −1 0 −1 −1 0 0 0 0 0 0
0 0 0 1 1 0 −1 0 0 0 0 0
0 0 0 0 0 1 1 1 −1 0 0 0
0 0 1 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 1 −1 0
0 4 0 0 0 7 0 −7 0 0 0 1
−3 4 0 −6 7 0 0 0 0 0 0 0
−3 0 0 −6 0 0 −7 7 0 0 0 −2

0 −4 −5 0 0 0 0 7 8 0 0 0





Once we have applied the Gauss elimination method to the matrix, the result-
ing intensities will be the following:

I01 =
229

3849
= 0.059496

I02 =
173

5399
= 0.032043

I25 = − 683
11547

= −0.0591496

I13 =
229

3849
= 0.059496

I23 =
541

9298
= 0.0581846

I24 =
257
7786

= 0.033008

I34 =
207
1759

= 0.117681

I04 = − 185
2021

= −0.0915389

I45 =
683

11547
= 0.0591496

I56 = 0

I67 = 0

Note that if an intensity has a negative value it means it travels oppositely, thus
if we have Iab < 0 this means the intensity travels from the node b to the node a.

The following picture 5.8 is a screenshot of the results given when the program
is executed:

Figure 5.8: Program output

Therefore the results given by the program match with the results found whilst
resolving the previous example by hand.



Chapter 6

Conclusions

The aim of this paper is to set out and solve problems in electrical circuits
and do a simulation where it can clearly be seen how an electrical graph and its
corresponding meshed tree look like.

The program works properly no matter the size of the graph, as it has been
tested for various type of graphs, and the intensities of each wire of an electrical
circuit given are computed in a very efficient way. However, the success of this
program clearly lays in the way the data is given. An electrical circuit is modeled
into a graph so basically this whole work depends on the way we model the
electrical circuit so we can apply the graph hierarchical algorithms to it.

As it has been seen in Chapter 3 the BFS_Meshed_Trees function is entirely
based on converting a graph into a meshed tree. The fundamental cycles found
via the meshed tree are crucial to find the meshed linear equations correspond-
ing to the electrical graph and without those it cannot be solved. This means a
graph is needed to find the intensities of an electrical circuit applying the program
described in this paper.

Finally, this program can be improved in many ways. For example, the posi-
tions for each node of the electrical circuit that are given in the lecture file "ex-
ample.dat" could be given in a 3-dimensional space, then the program could be
modified so the visualisation of its corresponding electrical graph and meshed
tree is in 3D. Another way to improve it could be that the information given in
the lecture file "example.dat" would only be the number of nodes and edges, the
position of the nodes and the information regarding edges and which vertices
they join. Then the resistance and the voltage of each edge could be filled using
the simulation, this would allow more interaction with the program. Lastly, there
could be a modification allowing to remove or add an edge, this would allow to
visualise how it would modify the intensities corresponding to other edges.
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