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Abstract 
The copper(II) acetate mediated oxidative homocoupling of terminal alkynes, namely 
the Eglinton coupling, has been studied with DFT methods. The mechanism of the 
whole reaction has been modeled using phenylacetylene as substrate. The obtained 
results indicate that, in contrast to some classical proposals, the reaction does not 
involve the formation of free alkynyl radicals and proceeds by the dimerization of 
copper(II) alkynyl complexes followed by a bimetallic reductive elimination. The 
calculations demonstrate that the rate limiting-step of the reaction is the alkyne 
deprotonation and that more acidic substrates provide faster reactions, in agreement 
with the experimental observations.  
 
 
Introduction 
Conjugated diynes are recurring building blocks in a great range of industrial 
intermediates and materials.[1-5] Besides their very well known antifungal 
properties,[6] they have been widely employed to prepare optical[7] and organic 
materials,[8-10] and molecular devices.[7,11] Acetylenic coupling has become a 
powerful tool to obtain 1,3-diynes and has experienced a great development in recent 
years. Nevertheless, the first acetylenic coupling dates from 1869 and was reported by 
Glaser, he observed that copper(I) phenylacetylide smoothly underwent 
homocoupling under aerobic conditions to deliver diphenyldiacetylene.[12,13] This 
process was further developed later, the so-called Hay modification, by including 
nitrogen donor ligands such as N,N,N’,N’-tetramethylethylenediamine (TMEDA) 
which facilitated the whole process and allowed to carry out the reaction under 
homogeneous conditions.[14,15] Some years later other similar catalytic procedures, 
leading to asymmetric diynes, were proposed e.g. the Sonogashira[16,17] and Cadiot-
Chodkiewicz[18] cross-coupling reactions. However, many of these protocols require 
expensive metal sources and external oxidants in order to recover the active catalyst, 
which clearly is a disadvantage. One way to circumvent this issue is using the copper-
mediated oxidative homocoupling of terminal alkynes was reported by Eglinton and 
Galbraith in the late 1950s.[19,20] This reaction, shown in a general form in Scheme 
1, employs the inexpensive copper(II) acetate as the metal source in a 
(super)stoichiometric amount. This coupling is usually fast, clean, completely 
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homogeneous and tolerates mild reaction conditions. The solvent of choice is usually 
a 1:1 methanolic pyridine mixture, but other solvents can be employed. In addition, 
unlike many other metal-mediated reactions the Eglinton coupling does not require 
the usage of any other external ligand.   
 

 
Scheme 1. General form of the Eglinton oxidative homocoupling of alkynes. 
 
In recent years the Eglinton reaction has been widely employed in the synthesis of 
cyclic bisacetylenes[21-23] and macrocycles[24,25] such as annulenes,[26,27] 
rotaxanes,[28] catenanes,[29,30] conjugated long structures,[31] polyn-diyls[32] and 
molecular wires.[11] Although this coupling method has been known for a long time 
and is still widely applied, the mechanism governing this reaction is not completely 
understood. The first mechanistic proposal was reported by Salkind et al.,[33] 
Scheme 2. In there, the terminal alkyne is deprotonated (step i) and then oxidized by 
copper(II) to form the alkynyl radical (step ii) than can afterwards dimerize to deliver 
the final 1,3-diyne (step iii). The authors propose that the first two stages probably 
involve copper derivatives rather than isolated anions and indicate that the rate-
limiting step is the first one, based on experimental observations that state that the 
most acidic acetylenes provide the fastest reactions.[34]  
 

 
Scheme 2. Cu(OAc)2-mediated oxidative homocoupling of terminal alkynes, as 
proposed by Salkind et al.. 
 
Nevertheless, it has never been demonstrated that the reaction follows a radical 
mechanism and the identity of the base remains to be determined since in some 
reports this role is attributed to the acetate ligands but other sources propose the 
pyridine solvent as the deprotonating agent. Some years later a more elaborated 
proposal was reported by Bohlmann and co-workers,[35] Scheme 3. Based on their 
scheme, the reaction starts with the π-coordination of the triple bond to a copper 
species, facilitating the activation of the terminal C–H bond by a base. The final diyne 
product is obtained by reductive elimination from a “dinuclear” copper(II) acetylide 
species. 
 



 
Scheme 3. Bohlmann proposal for the copper-mediated coupling of acetylenes (B = N 
ligand). 
 
In this report the mechanism of the Eglinton oxidative homocoupling of terminal 
alkynes is studied aiming to determine if the proposed mechanisms are plausible; the 
radical character of the reaction as well as the nature of the base and the substrate 
influence oin the reaction rate will be also studied. Other similar copper-catalyzed 
reactions have been studied computationally with very successful outcomes,[36-39] 
showing the value of computational approximations on mechanistic studies of this 
kind.  
 
Computational details 
All the structures have been fully optimized using the Gaussian09 package,[40] with 
the B97D density functional.[41,42] This functional has been successfully employed 
in other computational reports involving similar systems to the one studied in this 
communication.[43,44] All the calculations involving radical systems, such as those 
including copper(II) cations, have been performed using unrestricted wavefunctions. 
In the optimization process the standard 6-31G(d)[45-47] basis set was used for all H, 
C, N and O atoms while the Stuttgart triple zeta basis set (SDD),[48,49] along with 
the associated ECP to describe the core electrons, was employed for Cu. All the 
optimizations have been carried out in solvent employing the (IEF-PCM) continuum 
dielectric solvation model[50,51] including the radii and non-electrostatic SMD terms 
developed by Truhlar and coworkers.[52] Experimentally, a 1:1 mixture of pyridine 
and methanol was employed as solvent. In the calculations only the former was used 



because using a mixture of solvents in Gaussian09 is not allowed and, in addition, 
pyridine is used sometimes as an explicit ligand. Nevertheless, the impact of using 
pyridine alone on the calculated free energies is expected to be small. In all cases 
frequency calculations were carried out to ensure the nature of stationary points and 
transition states. 
Additional single point calculations on the previously optimized geometries were 
employed to obtain improved solvated free energy values with larger basis sets. The 
aug-cc-pVTZ-PP basis set including polarization and the associated electron core 
potential[53] was employed for Cu while the 6-311+G** all-electron basis 
set[47,54,55] was used for all the other atoms. The solvation model is maintained the 
same as in the optimization process. Unless otherwise stated all the free energy values 
in the text correspond to those obtained with the larger basis sets including solvation 
at 25ºC. 
 
 
Results and discussion 
In this section the most plausible mechanism for the Eglinton oxidative homocoupling 
of phenylacetylene, a representative sample of the terminal alkynes usually employed, 
is described (Scheme 4). Alternative pathways have been computed whenever 
possible in order to check that the best option is always selected. The detailed 
structures of all the computed copper intermediates can be found in Figure 1.  
 

Scheme 4. Proposed catalytic cycle for the Eglinton reaction (free energies in kcal 
mol-1, the copper oxidation state is given between parentheses).  
 
 



 
Figure 1. Detailed structures of V and TS_CC (distances in Å, Cu =brown, N = blue, 
O = red, C = gray, H =white; for clarity most H atoms have been omitted). 
 
 



The catalytic cycle starts with the coordination of the terminal alkyne to copper(II) 
acetate (I) to form intermediate II. In this complex two new interactions are 
established, one between one of the acetate groups and the proton of the incoming 
alkyne and another one between the proximal carbon atom of the alkyne and the 
copper center. The O–H and Cu–C distances are 2.45 and 2.17 Å, respectively. 
Additionally, the alkyne C–H distance elongates to 1.08 Å after the coordination, 
making that bond slightly longer than that found in free phenylacetylene (1.04 Å). 
This process is not thermodynamically favored and almost 10 kcal mol-1 are required 
to attach the triple bond to the copper; this could be probably attributed to the worse 
donating ability of the triple bond when compared to the bidentate acetate group. 
Since intermediate II is higher in energy than I, and a strong structural rearrangement 
is required to get to the former, this step should be expected to depend on a transition 
state. All the attempts to directly locate this transition state failed and thus a linear 
transit energy scan was carried out to elucidate this part of the mechanism. This 
procedure, consisting of a series of optimizations where the distance between the 
substrate and the copper atoms is fixed at values between 2.2 and 2.9 Å, shows a 
monotonic uphill energy profile when the distance between both moieties decreases. 
These results seem to point out that, in principle, the addition of phenylacetylene onto 
I is not governed by a transition state. The particular arrangement of ligands in 
complex II facilitates the proton transfer between the alkyne and the pending acetate; 
in fact the deprotonation transition state (TS_CH) is less than 9 kcal mol-1 higher than 
II indicating this process should be quite fast. In TS_CH the Cu–C distance is 
reduced to 2.01 Å while the C–H and O–H distances become similar: 1.33 and 1.27 
Å, respectively.  
After the deprotonation intermediate III is obtained; this complex is slightly less 
stable than the previous one but remains at a reasonable height. In contrast, the direct 
deprotonation using pyridine as the base, as proposed in some reports, requires more 
than 35 kcal mol-1. These results seem quite obvious since acetate is a stronger base 
than pyridine. In addition, the presence of the metal, once coordinated to the triple 
bond, contributes to enhance the acidity of the C–H bond and seems to be crucial in 
the proton transfer process. Once III is formed the reaction proceeds by the 
replacement of the newly formed acetic acid moiety by a pyridine molecule (IV). This 
process is thermodynamically favored and, since pyridine is the solvent and is present 
in great excess, it is expected to happen quite fast. The square planar intermediate IV 
is, in fact, the same species found in the left part of equation ii in Scheme 2. This 
complex, as all the other neutral mononuclear copper(II) species studied, has one 
unpaired electron and thus is in the doublet free energy surface. The spin distribution 
in IV indicates that the unpaired electron is mostly localized on the copper atom, 
although some spin polarization is found in the terminal carbon of the alkyne ligand. 
However, generating a free alkynyl radical and the corresponding [Cu(OAc)(py)] 
complex from IV is nearly impossible because that process requires more than 30 kcal 
mol-1, probably because the alkynyl radical formed is not stable enough. In contrast, 
the dimerization of IV to deliver the dinuclear alkynyl-bridged complex V is 
thermodynamically viable. The formation of this complex forces the unpaired 



electrons to couple, taking the reaction to the singlet free energy surface, which is, in 
turn, lower in energy than the triplet energy surface. Other dinuclear complexes e.g. 
acetate-bridged, produced higher energy intermediates. Both copper atoms in V have 
distorted square pyramidal structures, with one of the oxygen atoms of the acetate 
ligand occupying the axial position; the Cu–Oeq and Cu–Oax distances are 1.98 and 
3.00 Å, respectively. The Cu2C2 core in complex V is not completely planar but a 
wedge with alternated Cu–C distances of 1.98 and 2.00 Å, and a C–C distance of 2.59 
Å. Since V is a singlet the spin distribution cannot be obtained; the open-shell 
analogous complex cannot be correctly computed with the B97D functional and thus 
the only way to obtain an estimation of the spin distribution requires the calculation of 
V in the triplet state. This calculation states that the unpaired electrons remain mainly 
on the copper atoms while only some spin delocalization can be found in the bridging 
alkynyl carbon atoms, ruling out the formation of the organic radicals proposed by 
Salkind and coworkers. From V the bimetallic reductive elimination process 
(TS_CC) is quite straightforward and requires only 2.6 kcal mol-1 to deliver the final 
diphenyldiacetylene product and the complex [Cu(OAc)(py)] (VI). The geometry of 
this transition state is very similar to the one found for intermediate V, obviously the 
main differences are found in the Cu–C and C–C distances which shrink to 1.97 and 
1.96 Å, respectively. Although the bimetallic reductive elimination is not a very 
common process it has already been proposed in the literature[35,39] and in the 
mechanism of Bohlmann and coworkers, which seems to be the right one to describe 
the reactivity of the studied reaction.  
 
The calculations indicate that the reaction is exergonic by 25.9 kcal mol-1. The highest 
barrier is 18.1 kcal mol-1, computed as the free energy difference between I and 
TS_CH, and corresponding to the deprotonation process, which was proposed by 
Eglinton and Galbraith in their original paper as the rate-limiting step. This could 
explain why the more acidic acetylenes produce faster reactions. In order to check the 
validity of this statement the catalytic cycle was recomputed for two different 
substituted phenylacetylenes: p-NO2C6H4C≡CH and p-MeC6H4C≡CH. The computed 
results can be found in Figure 2. 
 



 
Figure 2. Computed free energy profiles for the different phenylacetylenes, color 
code: R = p-H (black), p-NO2 (red) and p-Me (blue).   
 
As may be observed the computed profiles for the three substrates follow a very 
similar trend. This should not be surprising because the geometries obtained for the 
catalytic cycle of the substituted phenylacetylenes are quite similar to those shown in 
Figure 1. In all cases the addition of the substrate on the copper(II) species I is 
endergonic and can be related to its donation ability i.e. the formation of complex II is 
more favorable for the most electron-rich substrate p-MeC6H4C≡CH. In contrast, the 
obtention of the same complex with p-NO2C6H4C≡CH requires an additional amount 
of 3.5 kcal mol-1. The activation of the terminal C–H bond follows the reverse order, 
in agreement with the inductive effect of the para-group on the phenylacetylene. The 
deprotonation process requires 4.9, 8.5 and 10.7 kcal mol-1 for p-NO2C6H4C≡CH, 
C6H5C≡CH and p-MeC6H4C≡CH, respectively; indicating that the most electron-
withdrawing substituents contribute to lower this transition state. In all cases a 
pyridine solvent molecule easily displaces the newly formed acetic acid, allowing the 
formation of complex IV. The dimerization of complex IV, as well as the reductive 
elimination transition state, has practically the same energy requirements for the three 
substituted phenylacetylenes. In all cases the highest barrier corresponds to the 
deprotonation step i.e. the free energy difference between I and TS_CH, which is 
18.1, 17.0 and 19.3 kcal mol-1 for phenylacetylene, p-nitrophenylacetylene and p-
metylphenylacetylene, respectively. The observed trend can be directly related to the 
acidity of the alkyne, as proposed by Eglinton and Galbraith, the acidic p-nitro 



substituted substrate provides the lowest reaction barrier while the more electron-rich 
p-methyl substrate produces slower reactions because its deprotonation step has a 
higher free energy barrier.  
 
 
Conclusions 
The Eglinton oxidative homocoupling of terminal alkynes has been successfully 
studied using phenylacetylene as a model substrate. The calculations demonstrate that 
the coordination of the triple bond to the metal center enhances the acidity of the 
terminal C–H bond and facilitates its activation by the acetate ligand. The alternative 
deprotonation pathway using pyridine, the solvent of the reaction, as the base 
provides a much higher free energy profile and can be consequently ruled out. 
The formation of the C–C bond is achieved from a dinuclear copper(II) complex with 
diradical character centered mainly on the metal atoms. This indicates that, in contrast 
to some of the classical proposals, the free organic alkynyl radicals are not formed. 
Consequently, the reaction proceeds following a mechanism that resembles the one 
proposed by Bohlmann and coworkers. 
The highest free energy barrier for phenylacetylene corresponds to the deprotonation 
process, in agreement with the experimental observations. Calculations using different 
para-substituted phenylacetylenes also confirm that the most acidic substrates provide 
faster reactions because the deprotonation barrier is lower. 
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