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We use the extension problem proposed by Caffarelli and Silvestre to study the quantization of a scalar
nonlocal quantum field theory built out of the fractional Laplacian. We show that the quantum behavior of
such a nonlocal field theory in d dimensions can be described in terms of a local action in d 4+ 1 dimensions
which can be quantized using the canonical operator formalism though giving up local commutativity. In
particular, we discuss how to obtain the two-point correlation functions and the vacuum energy density of
the nonlocal fractional theory as a brane limit of the bulk correlators. We show explicitly how the quantized
extension problem reproduces exactly the same particle content of other approaches based on the spectral
representation of the fractional propagator. We also briefly discuss the inverse fractional Laplacian and
possible applications of this approach in general relativity and cosmology.
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I. INTRODUCTION

During the past years, there has been an increasing
interest in the study of nonlinear and quasilinear equations
that involve fractional powers of the Laplacian (see e.g.,
[1-4]). In particular, fractional powers of the Laplacian are
considered in the case of nonlocal diffusion processes
described by nonlinear partial differential equations.
In such processes, differently from what happens in the
standard case for the heat equation, the interactions
between particles could be nonlocal, which requires the
use of more general operators than the standard Laplacian.
The study of nonlinear partial differential equations is
complicated also by the fact that there is not a specific
approach to investigate the properties of the solutions (e.g.,
existence, uniqueness, regularity, asymptotic behavior,
velocity of propagation, or feasible numerical methods).

In contrast with the usual Laplacian operator, the frac-
tional Laplacian is a nonlocal operator whose value on a
function f(x) depends not only on f(x) but also on the
value of the function f(x’) on any other point x" # x.

For a € (0,2) the fractional Laplacian (—A)? of a
function f: R" — R can be defined through the Fourier
transform as
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which, for sufficiently smooth functions, can be rewritten
as a singular integral operator as

(x) = f(+)

—A)3 =C,,P.V.
( )Zf(x) n.a R |x _ x/|n+a

dﬂ x/ (2)
where the real parameter C, , = 2°T'("1%)/ [7"2|T(=a/2)|]
is a normalization constant and P.V. denotes the Cauchy
principal value as shown in Refs. [5,6]. However, other
authors [7,8] do not explicitly use the principal value
notation but they simply imply it. This definition shows
that the fractional Laplacian is a nonlocal operator.
However, there are also other equivalent possible defini-
tions of the fractional Laplacian [5] that will turn out to be
useful in the following discussion. Interestingly, given a
function f: R" — R, the following extension problem

u(x,0) = f(x)
V- (y'*Vu) =0

xeR” (3a)
xeR" y>0, (3b)
can be solved to obtain a smooth bounded function

u: R" x [0,00) — R, where the nonlocal operator (—A)?
satisfies [7]

(-A)f(x) = +Cylir(§1+y1‘“uy(x,y)- (4)

This is a Dirichlet-to-Neumann operator for an appropriate
harmonic extension problem and C is a constant that allows
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us to accurately define the limit on the rhs of (4). The
constant C is defined as [8]

2T /2

SLLEN 5

al'[—a/2)

The extension problem described above is the mathematical
tool that we are going to use in the following sections in
order to develop a description of a nonlocal d-dimensional
scalar field theory, based on the fractional Laplacian, in
terms of a local (d+ 1)-dimensional field theory. In
particular, this will allows us to establish how the particle
content of the fractional nonlocal theory consists of a
continuous distribution of massive scalars.

The notable property presented by Eq. (4) is that the
nonlocal operator (—A)? acting on f(x) in the domain of A
is localized through u. It has been shown in [8] that the
problem can also be extended to the wider range a € [0, n]
(and in [6] that the same extension problem is also valid for
negative values of the constant «). Furthermore, the
characterization given in Eq. (4) has also been used to
show that the fractional Laplacian (—A)? coincides with a
certain conformally covariant operator Ps, on the hyper-

bolic space R from which R”" is to be seen as its
boundary [8].

In general, the fractional Laplacian has been used in
different fields in physics, for example, in solid mechanics
to model the elastic behavior of nonlocal continua [9,10], in
quantum mechanics and optics [11], or in the context of
holography, in models with nonlocality due to charge
screening [12—15]. Here, we will also discuss connections
to the field of cosmology, and, in particular, to some
modified theories of gravity introduced in the past years
that either make use of extra dimensions or of the presence
of nonlocal terms in the Lagrangian so to model the current
phase of cosmological acceleration without resorting to a
cosmological constant [16-21]. Interestingly, an analysis of
the connection between nonlocal field theories in d
dimensions and local field theories in (d + 1) dimensions
has been explored from the Hamiltonian point of view in
[22]. Finally, we would like to mention a nonlocal scalar-
tensor model of gravity [23-26] inspired by the effective
action of the p-adic string and string field theory on flat
spacetime. This model, while addressing a different form of
nonlocal operator (exponential of the d’ Alambertian e’-"),
bears similarities with our approach based on the extension
problem of [7]. Indeed in [23-26] it has been shown that a
wide class of nonlocal theories, including bosonic cubic
string field theory, can be identified with local systems
living in a higher-dimensional space. This is realized by
promoting the parameter r, to a dynamical variable
(r, — r) and imposing an appropriate diffusion equation
on the new field ¢(r, x) living in d + 1 dimensions.

In this work, by using the extension problem, it will be
shown that quantizing a local field theory in a bounded

spacetime (bulk) with an extra spacelike transverse dimen-
sion (y € [0, +o0]) via the operator formalism, but waiving
local commutativity, reproduces, through a limiting pro-
cedure (y — 0), the correlation functions of the nonlocal
theory showing a complete equivalence with the fractional
propagator obtained independently via analyticity consid-
erations in terms of the spectral representation.

The structure of the paper is the following: In Sec. II we
analyze the connection between the bulk local action and
the nonlocal action on the brane. In Sec. III we present the
quantization of the local action in (4 + 1) dimensions via
the operator formalism. We will see that the two-point bulk
correlation functions induce, on the brane, the expected
nonlocal correlations functions. In Sec. IV we apply our
results to the discussion of the vacuum energy density. As
mentioned before, the extension problem has also been
shown to be useful in the case of nonlocal terms in the form
of the inverse Laplacian. We will study this point in Sec. V.
A discussion about other fields is reported in Sec. VI.
Finally in Sec. VII we present our conclusions.

II. NONLOCAL ACTION PROPERTIES

Although we have in mind physical applications of the
Caffarelli-Silvestre extension problem to a fractional scalar
field theory in Minkowski spacetime, we stick for the time
being to the mathematicians notation and use the A
operator. Ordinary results applicable to Minkowski space-
time can be recovered after a Wick rotation of the x
component.

Let us, therefore, consider a nonlocal scalar theory in d
Euclidean dimensions. Using the extension problem (3b),
the following equality holds:

1

§=-3¢ d?xp(x)(=A)3(x)

—%/ddx/oo dyy'=?9,®(x,y)0"®(x,y)  (6)
0

where C is the constant (5), ®(x, y) denotes the scalar field
in (d + 1) dimensions, and 8;4 denotes the derivatives with
respect to the d+ 1 variables ({x},y). To prove the
equivalence (6) let us start with the following action in
(d + 1) Euclidean dimensions:

+00
S— % / dx / dyy' [0, 00,® + ,0,®] (7)
- y>0

then, integration by parts gives
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1 [ ©
S = 5/ dyy'~* [(DGXCD o / dxCI)Axd)}
0 —00

1 ©
+§/ dx® [yl_"é?y(bw“’
—c0

- A (1 - a)y0,d + yl‘“Ayd)]} .®

Now, supposing that the field ®(x,y) at x' = +oo and
y = +o0 is zero, we are left only with

ot " [

X [A® + (1 — @)y 0, ® + y' A, ®]+

—%/_w dx lim [y'~*®0, @] 9)

o y—0*

and using Eq. (3a) and Eq. (3b)

div(y'=*Vu) = y"%u,, + y'""u,, + (1 — a)y™"u, = 0,
(10)

in the first line of Eq. (9) and then, substituting Eq. (4) in
the second line, the action (9) reduces to

1
S=——

o M. (1)

dxcb( )=

Hence, using the extension problem, a nonlocal theory
can be described in terms of a local action in a (d + 1)
spacetime as expressed in Eq. (6). The equivalence (6)
relates, therefore, a local quantum field theory in the bulk
(hyperbolic) space [Ri+1 to a nonlocal quantum field theory
on the nontrivial boundary R" [27].

It should be noted indeed that the coefficient present in
the (d + 1)-dimensional part of Eq. (6) can be associated to
the half space (y > 0) representation of an anti—de Sitter
spacetime (or hyperbolic space if Wick rotated):

1 d
ds* = — <—dt2 +dy? + Z dx?)
y

i=2
1
= (—217W> dxtdx* = g,,dx"dx". (12)
y
Therefore, starting from the rhs of Eq. (6) follows

YT 0,00,® = y! =2y 0,00,®

— /det gg0,®0,® (13)

where the last equality is valid only if a = d.

A. Variation of the nonlocal action

Here let us consider the nonlocal action by itself and
derive the corresponding equation of motion (EOM). by
computing the variation of the action:

s= 1 [ a0 (-a)i) (14)

2C
under an arbitrary variation of the field J¢(x):
$(x)

The variation of the action to linear order in &¢(x) is
given by

= $(x) + 69(x). (15)

68 = Slg + 6¢] — S|

d*x(¢(x) + 6¢(x))(=A)3(¢p(x) + 5¢p(x))

dixep(x)(=A)ip(x)

- 2C

dixep(x)(—A)6(x)

~2c

1
+ —

o | @) (-

Aiplx) + O6).  (16)

Now we use the distributional definition of the fractional
Laplacian stated in (b) of Theorem 1.1 of [5]:

/ e f (x) (~AYeg(x) = / dxg(x) (=AY (x).  (17)

in order to show that the first term on the rhs of Eq. (16) is
the same as the second [with the Laplacian acting on the
field ¢(x)]. So Eq. (16) becomes

35 = ¢ [ axl(-2)p) + 06p)  (18)

and the EOM are obtained requiring that the first order
(in O¢p) variation of the action vanishes. Since the variation
is arbitrary we obtain the EOM as

a

(=A)2¢(x) =0, (19)

i.e., the fractional Laplace equation (19) sets an important
condition: it corresponds to the particular case in which the
rhs of Eq. (4) is equal to zero. The EOM, therefore, sets the
following boundary condition for the quantum field ®(x, y)
propagating in the bulk space with the extra dimension y:

lim y'=*® (x,y) = 0. (20)
¥0

This boundary condition will play a crucial role in the
quantization of the theory. Some aspects of boundary
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conditions in the bulk and their effect on the field dynamics
on the brane have been analyzed in [28,29]. In particular in
[29] it is shown how a large family of bulk fields quantized
giving up local commutativity induces brane fields (in the
limit y — 0) which do verify it.

III. QUANTIZATION OF THE EXTENDED
PROBLEM IN (d +1) DIMENSIONS

In this section we perform a quantization of the local
action in (4 + 1) dimensions via the operator formalism and
show that its two-point bulk correlation functions induce,
on the brane, the expected nonlocal correlation functions as
in Eq. (63).

A. Eigenfunctions

We now switch to Minkowski spacetime performing a
Wick rotation x, = ict in Eq. (6) and obtain

_ 1
- 2C

—%/ddx /oo dyy'=99,®(x,y)0"®(x,y).  (21)
0

S dxep(x)ih(x)

Let us therefore start with the following action for a
massless scalar field ®(x,y) in the bulk:

1 00
0

the variation of the action gives the equation of motion
#(y'=79,®(x,y)) = 0, which explicitly reads

0,0(x,y) - (1 - a) %@&D(x, V) - RD(xy) =0,  (23)

where [0, = 93 — V2. Equation (23) can be solved by the
separation of variables, writing @ (x,y) = ¢(x)y(y), from
which follows

1

1 1

v(y)
= const = —4?, (24)

where 1 has dimension of mass. Therefore, from the EOM,
one gets the following equations:

(O, + o) =0, (250
B+ (=010 ve) = —Pu). (s

The first one, Eq. (25a), gives the usual expansion of the
field @(x) in plane waves of mass A, whereas the
second, Eq. (25b), can be solved imposing the appropriate
boundary condition:

lim y'=¢d,y(v) = 0. (26)
y—

This boundary condition on the y-dependent part of the
wave function comes from the condition in Eq. (4) on the
field ®(x,y). The equation for the wave function y(y)
can be reduced to a Schrodinger problem with a potential of
the type 1/y* (see [30]). Therefore, in order to find the

eigenfunctions y(y), one can proceed in the following way.
The first step is to change the variable t = Ay in Eq. (25b)

A
[/128% +(1-a) ;/18,} w = —y. (27)
Then, writing w(t) = £2y(t), one gets the Bessel equation

POy(t) + 10y (t) + [tz - (g) T;((t) =0, (28)

whose general solution is the linear combination of J,,(t)
and Y, /(1):

w(4,y) = B[ATo2(1) + BY opa(1)],_,,- (29)

The two constants A and B in Eq. (29) can be fixed
imposing the boundary conditions
limy(4,y) =1, lim y'"~*9,y(,y) = 0. (30)
y—=0 y—0

Using the asymptotic expansion for t — 0 (i.e., y = 0)

a
12

Jop(t) 2 ——ro, 31
a/2( ) 271—\(%4_ 1) ( )
2L(9r?  cot($n)
Vonlt) == PV SOGIE (3
the solution (29) reads
[A+ Bcot(z%)]t* BI'($)2:
A y) = . 33
Wlor) = 223y
Then, the first boundary condition in (30) gives
BI'(%)2:
lim y(2,y) = — -, (34)
y—)
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and the second boundary condition in Eq. (30) gives
1in3y"“(9yl//(ﬂ,y) =0& A+ Beot (n%) =0. (33
y—)

Thus, the eigenfunctions (29) read

n(Ay)?

v.9) = F ot (5 ) 2l = Vo] )

Now, using the definition

1

Y, (z) = J,cot(nv) — pe

Ju(2) (37)

follows the identity

Joy2(Ay) cot (”%) —Yop(dy) = @J—a/z(@) (38)

that, used in (36), gives the final form

YY) = e (W ap(Ay). (39)

22T(§) sin (7 %)

This result can be compared with the final result of Sec. 3.2
of [6], where the authors study the existence and unique-
ness results for the extension problem. Note that the
eigenfunctions (39) satisfy the boundary conditions

p(1.0) =1, ¥ y)l,—o=0  (40)

as required in (30). These eigenfunctions form an ortho-
normal system and satisfy the completeness relation

/ () 3w (2. )

(27%2)%1y3 / o
= T o dAA*u(2)J 5 (Ay1)J 5(Ay2).  (41)
T sin@) Jo (1)
For the Bessel functions, the following identity [31] holds
[32] for v > —1:

/0 A, 0y, (Ay,) = )}1_15()’1 -y).  (42)

We now consider a function u(4) in Eq. (41) such that

4 2
Foweg et @
so that

- 2_7”)} Cpe (44)

Then the eigenfunctions satisfy the completeness relation:

|7 @yt ywn - %5@1 y,)

=y 18(y1 = ya). (45)

This particular choice of the function u(4) is due to our
interest in describing conformal (scale) invariance on the
brane. As it will be clear in the following section, the
function u(4) plays a central role in the quantization of
the theory. It will ensure the canonical equal-time commu-
tation relation between the bulk field and its conjugate
momentum. As discussed in [29], in general, other pos-
sibilities could be considered for the function y(1) beyond
the one in Eq. (44) but requiring scale invariance fixes it to
the specific form u(4) o A!=%. This will be discussed again
in connection with massive models of gravity in Sec. VI.

B. Quantization rules and field expansion

The field decomposition over its normal modes is

. oilPE-02 )]
o= [ s [ 0.1 )

w*(y,m} (46)

e—iLzrx—wAz(p)t]
V2w (p)
where w;:(p) = \/p* + 4%, and a(p,1),a’ (p, 1) are crea-

tion and annihilation operators for the modes of momentum
p and mass A with quantization rules [29]:

+a'(p,A)

(alp. A).a'(p. )] = 228 (p - p)—8(i—¥)  (47a)
p(4)

la(p.4),a(p.2)] =0 (47b)

[a'(p,4),a’ (p,2)] = 0. (47¢c)

To find the equal-time commutation relations, we start from
Eq. (46) and take the derivative of the field:

43 +oo0 eik"X—%z (p)1]
oot = [ S5 | dzuu){a(pw)—

(27)* Jo V2w, (p)
e—i@x—wlz(p)z]
X [—iw, A +dt(p, ) ——e——
liop )0 (48)

The conjugate momentum of @, derived from the
Lagrangian density of the local action in Eq. (22), is

(t,r,y) = y'7%0,®(t,r,y). (49)

We then compute
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3 3.,/ S +oo
u(ry. 0.0y 0 =5 [ (;’ﬂ’; [ ok [ am [ anu)

(27)* Jo

- {Q(P,ﬂ)v/(y,ﬂ)ei[”"‘“’AZ(")‘](—i)\/W +a' (p, Ay (v, A)e P20y /wse (p),

eihﬂr’—wl/z (P

Varp)

% a(pl’/'{/)l//(yl’ﬁl)

—ip"r~w,n (p')1]

+at (A () e |. (50)

w2 (p')

Applying the quantization rules (47a)-(47c), only two of the four terms are nonvanishing, those corresponding,
respectively, to the commutators [a(p, 1), a’(p’, 2')] and [a'(p, 1), a(p’,1)], and one gets

—i 3 3p) [+ +00
ooy 0.00' 0] =50 [ 285 [ S8 [ any [ anu)

27)3

1
X ﬂ.33 _
r)5p =p) 50

(= 2) [y Dy () 2 )P ) 0 i A

(3, )y (y, ) e 1) g i p Dt i “’/’W} : (51)

Finally, eliminating the integrals [ d°p’ and [dZ’, thanks to the Dirac delta functions, one is left with

—1 3 +o0 . , . ,
00(r.y.0.00% ] =5 [ 87 ) [y i (7 Db - 0 A e (52)

2 (27)* Jo

Upon use of the completeness relations (45), this becomes

(=0)

[0p®@(r,y, 1), (.Y, 1)] = 753 (r=r ) sy =)+ () 16(y = y)]. (53)

This can be rewritten as
' 0@ (r, y,1), @,y 1)] = =i (r—r)6(y =)  (54)

which is, on account of Eq. (49), the standard canonical
equal-time commutation relation between the field’s con-
jugate momentum I1(r, y, t) and the field ®(r,y, t) itself:

M.y, 0). @@y 0)] = =is*(r—r)s(y =y'). ~ (55)

This warrants that our (4 + 1)-dimensional theory with one
extra space dimension is a standard local quantum field
theory with canonical quantization. We emphasize how the
possibility of carrying out the canonical quantization rests
upon the completeness relation, Eq. (45), satisfied by the
eigenfunctions of the equation of motion along the extra
dimension with the appropriate function u(4). Note that we
cannot take the limit of Egs. (55) and (54) on the brane as
we know that in the nonlocal (3 4 1)-dimensional theory,
the very concept of the conjugate momentum field is ill
defined.

C. Causal structure

Let us consider now the commutator, at different space-
time points, of the bulk fields, [®(x;, y;), ®(x,, y,)]. This
quantity can be computed using the field expansion in

I
Eq. (46) and the quantization rules in Eqgs. (47a)—(47c¢).
Then, making use of the identity,

1 2 _ 92
m:/dp()@(l’o)5(l7 - 1) (56)

we find
[@(x1,y1), P(x2,¥2)]

= [ @m0 [ (;"37”>3dpoe<po>a<p2—ﬂ>

% [e+iur~<x1—xz>—po<n—rm _e—iwl—xz)—po(n—zzn} (57)

where x; = (#;,x,) and x, = (1,,x,). Recalling the defi-
nition of the Pauli-Jordan function

D, (x) = i/ (6217:;4 e—ip.xzﬂé([ﬂ — ,12)[9(190) — 9(—p0)]

(58)

we finally obtain
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[‘D(xl s y1>, q)(x27 h)]
— (~0) / " (D (1. Ay (2. D (x1 — x2).

(59)

Local commutativity implies that the above field commu-
tator for bulk spacelike intervals between the points (x;, y;)
and (x5, y,) would vanish identically. As also discussed in
[29], for general functions u(4) this is not the case in
Eq. (59). Therefore, in spite of the fact that the bulk field is
built out of a classical local action at the quantum level the
field is nonlocal (local commutativity is lost). The origin of
this very peculiar property is ultimately due to the defect
introduced in the bulk by the presence of the brane. The fact
that the function u(4) appears in the quantization rules in
Eq. (47) shows that this is a genuine quantum phenomenon.
Taking the brane limit of Eq. (59) on account of the
boundary condition w(y,4) — 1 as y — 0 we find

). )] = —i /0 D (v - x2). (60)

For spacelike separations, (x; —x,), the Pauli-Jordan
function Dj:(x; — x,) vanishes identically for any A (for
it is the Pauli-Jordan function of a scalar field of mass A)
and therefore the field commutator will vanish. Thus, the
brane field satisfies local commutativity. On the other end,
the brane field is a noncanonical quantum field in the sense
that it is associated to a nonlocal classical action and it
cannot be quantized canonically. Indeed, we have seen that
the brane limit of the (canonical) equal-time commutation
relation in the bulk, Eq. (54), is ill defined.

D. Two-point correlation functions—the Wightman
function and the Feynman propagator—from the
extension problem

The nonlocal action in Eq. (14) as well as the EOM in
Eq. (19) seems to be directly related to the unparticle
propagator introduced in [33] in the context of the study of
a massive scale invariant theory. This can be easily seen by
considering the Green’s function of Eq. (19) defined in the
usual way:

(=A):G(x,x') = §*(x = x). (61)

The above equation is straightforwardly solved in Fourier
space using (1),

4
-ayat-x) = [ SERamert. ()

Then from Eq. (61) we obtain

o)== (V)" @)

This is exactly the unparticle propagator discussed, for
instance, in Georgi’s paper [34] with a/2 = 2 — d; (up to
an irrelevant numerical constant), where d;, is the scaling
dimension of the unparticle operator in the low-energy
theory. Indeed, the unparticle propagator is obtained
requiring scale invariance in the low-energy effective field
theory of a theory with a nontrivial scale invariant IR fixed
point [33]. Therefore, the unparticle propagator seems to be
a feature of a nonlocal action of the type in Eq. (14).

The particle content of the theory described by the
fractional propagator in Eq. (63) can be derived by
computing a spectral density representation in terms of
the discontinuities across the branch cut. For any analytic
function f(z) = [7 dip(r)-L; the discontinuity across
the branch cut is as follows: disc[f(z)] = {f(z + ie)—
f(z—ie)}._o = —27ip(z). We define the argument of
the complex z variable, 6, to vary in the interval —z < 6 <
7 so that the function /z has a branch cut along the negative
(real) z axis. We therefore let z = —p? in Eq. (63) and the
fractional propagator (/—z)~* will have a discontinuity for
positive z. Explicitly we find

{21’ sin(%)(y/z)™* z>0

disc[(v=2)™] = 0 2<0

(64)
We therefore can extract the density p(z) and finally obtain
the spectral representation:

(\/—“;z)“: A o dz%sin<”7“>(\/i)-“_zl+t. (65)

Going back to the p? variable, the fractional propagator can

then be written as t — m?:

1 +oo 2. (ma\ |, 1
(p2>(1/2 = /; dm ; Sin (7) m m s (66)

and we obtain that the fractional propagator is a continuous
distribution of scalar massive propagators with mass para-
meter m weighed by a spectral density o m!~% It is
easily shown that in the limit @ — 2~ (or d;; — 17) the
right-hand side of Eq. (66) reduces to the massless scalar
propagator 1/p? as upon putting @ = 2 — € one obtains

2sin(%)m' =] — em~'7¢ - 25(m) on account of the

a=2—¢€
Dirac 5-function representation 5(x) = lim,_o$ [x|~'*¢ (the
factor 2 is canceled by the fact that the integral in dm ranges
only over half the real axis).

We will show explicitly in the following that it is possible
to obtain the same result for the propagator starting from
the (d + 1) local theory.

Using the field decomposition in (46) we now compute
the bulk Wightman function for the field ®(x, y)
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oot 0 = [ 22 [ i [ 2 [ arun

<o|[ o.4) eilPx=0,2(p)1] d) + o) e~ ipx—0,(p)] ( z)]
X ap, ) ———w(y.4) +ta'(p, i) ———y"(y
vV a)/12(I’) V 0),12(17)
l o) ol =00 (01 ) + (' ) o—ilp =, (p)1] " 1/)] ) ()
x |ap' V) —F——vw(A) +a' p V) —F—y" (Y, .
Vaorp') Vorp')

Expanding the product of the two factors in square parenthesis, when taking the vacuum expectation value, we get a nonzero
contribution only from the cross term of the type a(p,A)a’ (p’,2):

3 3./
oot 0wl =3 [ 5E [ SEs [ [ arue)

etilpx—wa(p)i] ,=ilp" I_‘”z’Z(p)t/]
x (Ola(p. A)a' (p', 2)[0) €

Vo) Vo

and the vacuum expectation value (0|a(p,1)a’(p’,1')|0) can be computed from the identity:

(Ola(p. 2)a*(p'. 2)|0) = (0l[a(p. 2).a" (p'. )] + @' (p'. X)a(p. 2)|0) =(0|[a(p. ). a’ (p'. 1)]|0). (69)

Using the quantization rules given in Egs. (47a)-(47¢c) we find

¥, Aw (Y, 4) (68)

(Ola(p. A)a*(p'. )|0) = (27)°8*(p —p') ——<6(4 = X) (70)

e
p(4)

and, using the result in Eq. (70), we find

. 1 d3p d3p/ +l[px (1)7(p 1] —ik)’-x’—mi,z(p’)t’] )
ool =3 [ 555 [ 5Es [ [ aruz) v (. (. 7)

27)* ] (27) Vorlp)  orp)
1
x (21)*8(p —p') —— o) 54— ). (71)
Then, performing the integrations in p’ and A’ by making use of the delta functions we obtain
020010 = [P [ aguy DT iy ™)
x,y)@(x,y')|0) = U vy, Aw(y',4).
(271,')3 0 2(1)/12 (p)

The integral over p gives, on account of Eq. (56), the Wightman function [35] of a scalar field of mass 4,

: —ip-(x=x') 4 . ,
Weled) = [ S2Gos = [ S Ec0m)ans(y = e (73)

where Wy (p) = ©(p®)225(p? — A?) is the Fourier-space Wightman function of mass A. The bulk two-point function can
therefore be written as

(010 (x. )@ (. y')[0) = / ® AW (e 2 Y (3. Dy (5 2). (74)

The brane induced Wightman function of the nonlocal field ¢(x), on account of the boundary conditions imposed on the
wave functions, y(y,4)|,_o = 1, is

(Olpp(x)g(x')|0) = 1it?0<0|®(x’y)<1>(X’,y’)|0> =/oo diu()W 2 (x, x7). (75)
y.y 0

Therefore, we can see that the two-point Wightman function for the brane field can be expressed as an integral over the mass
of a Wightman function of an ordinary massive scalar field.

116008-8



QUANTIZATION OF NONLOCAL FRACTIONAL FIELD ...

PHYS. REV. D 100, 116008 (2019)

We now make contact between our approach and that of
Refs. [33,34] which fixes the normalization of a scalar field
Oy (x) of scaling dimension d;; by comparison with the
phase space of n massless particles. Indeed, the correlation
function for the field Oy (x) can be written in terms of a
spectral density p(P?):

d*p

(27)*

e™"1(010y(0)|p) Pp(P?)

(76)

(010,(x)0}(0)[0) = /

and on dimensional grounds, given that O, has scaling
dimension d;;, one can write

{0104(0)|p) Pp(P?) = Ay, 0(P°)O(P?)(P?) %2 (T77)
with

1677 T(dy +1/2)
™ (2m)2 T(dy — 1T (2dy)

(78)

a numerical constant that has been related in [33,34] to the
phase space factor of a fractional number (d;;) of massless
particles.

The field Oy (x) must coincide, up to a numerical
constant, with the field defined within our approach, a la
Caffarelli-Silvestre, by ¢(x) = lim,_ o+ @ (x,y), with a =
4 — 2d,; so that we can put:

$(x) = C'Oy(x). (79)

By using Eq. (73) into Eq. (75) we can write the two-point
Wightman function of the (neutral) field ¢(x) as

OO10) = [ T cramapo 1O
(50)

Then, making use of the explicit expression of the function
u(4) given in Eq. (44) and comparing with Egs. (76) and
(77) allows us to extract the relation between the constant
C' and the quantity A, :

2—(1/271. 1
[ —(CPla,. @D

-2
[(a/2) sin(ﬂa/Z)]

a=4-2dy
Numerically it is easily found that
(€)= Q2r)(2-a) (82)

We note that the same reasoning leading to Eq. (75)
would allow us to establish the same identity for the time-
ordered propagator.

Indeed, the time-ordered product of the local fields is
OIT[®(x, y)®(x', y')]|0)

_ / " (v, (', 2)

d3p e—ip-(x—x’) )
—iw z(p)re t— l/
* / 27) 202 (p) [0~ )

+ et (e 1)) (83)

and using the integral representation of the Heaviside 0
function

O[T (x. y)®(x'.')][0)
- / ® ARy (. Dy (Y. )

3 i Hilw(t—=1")—p-(x—x")]
o lim d’p dwie

0 ) (2n)*21 @ -k +ie

(84)
or, using the momentum four-vector k = (w,p)
(O|T[@(x, y)@(x",y")]0)

= lim Omdﬁu(ﬂ)w*<y,/1)w(y’,ﬂ) / (Z:; kzie_lk;:)ie-
(85)

Therefore, we get
OIT[@(x, y)@(x', y")]|0)

= [) " (g (v, Ay (', )Dp(x =, 22)  (86)

where we have introduced the Feynman propagator of a
scalar field of mass m

Ak ek (x—=x")
— v )2y — 1
Dele =225 =iy | oy e =P ie

(87)

Now, from Eq. (86) we can extract the propagator for the
nonlocal theory by taking the brane limit that defines the
field ¢(x) = lim,_, ®(x,y), therefore

(0IT[p(x)p(x)]|0) = y})@gl0<0|T[<D(x, y)@(x',y)][0). (88)

Since we have that the wave functions in (86) satisfy the
boundary conditions (30), we finally have

(0IT[gp(x)p(x")]|0) = /)w dip(A)Dp(x = x':2%). (89)

Now, using (44) and taking the Fourier transform of
Eq. (89), we can find the momentum space propagator
D(p) of the brane nonlocal field, ¢(x), as
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a

2% 172 e 1
- d/12 /12 —a/2 )
2 [r@) sin(ngJ / B e

(90)

D(p) =

We remark, first of all, that if the result of Eq. (90) is Wick
rotated it coincides, up to an immaterial normalization
constant, with the result obtained in Sec. III D [see Eq. (66)]
for the fractional propagator, then the two propagators are
characterized by the same particle content. Equation (90) is
then to be compared with the propagator of the unparticle
field of dimension d;, [34] given as [36]

1

Ad ©
D =i am*(M?) =2 — | 91
o) =52 [T anrryis o)

T Jo

By comparing Eq. (90) to Eq. (91) in order for the two
propagators to satisfy D(p) = (C")2Dy/(p), which follows
from Eq. (79), we must have, for the constant (C’)?, again
Eq. (81). The constant (C’)? can be computed on account of
the relation a = 4 — 2d;; and we find again, as expected,
the same result of Eq. (82). Computing explicitly the
integrations in Eq. (90) and Eq. (91) we find

201 sin(22)[(2)2

D(p) = ~i (P —ie ™t (92a)
Ag
D _ . U 12 ia\dy—2 2
Z/{(p) +l 2sln<7fdu) ( p l€) u ’ (9 b)

which indeed differ exactly by the constant (C')? as in
Eq. (82). Note that while Eq. (92b) in the limit d;; — 1
reproduces exactly the massless scalar field propagator
Dy(p) = +i/(p? + i€), Eq. (92a) when a — 2 reproduces
the same massless scalar propagator only up to the
numerical constant (C')*: D(p) — +i(2 — a)/(p?* + ie).
It is thus clear the advantage of working with the normali-
zation introduced by Georgi [33,34] for the nonlocal
unparticle field.

We conclude this section by showing explicitly how the
extension problem straightforwardly provides the standard
unparticle effective action routinely used in the phenom-
enology of this model. We start then from the central result
of the extension problem, namely Eq. (21), which relates
the local action in (4 + 1) dimensions to a nonlocal action
in four dimensions:

S_l
- 2C

d*xp(x)D2¢p(x). (93)
Here we redefine the field using Eq. (79) and use the field
Oy/(x) normalized “a la Georgi,” i.e., to have the same
propagator computed in [34]. We then obtain

(€)1

5= / x0T 20,(x).  (94)

Then by using the explicit results derived above,
cf. Eq. (81), together with Eq. (5) and upon the replacement
a =4 -2d, we find

5 = 2sin(rdi) 1 / d*x0,(x) %0, (x).  (95)

Ay, 2
This classical action being quadratic in the field is equiv-
alent to the effective action and thus Eq. (95) is the effective
action for unparticles. Indeed, its second order functional
derivative with respect to the fields gives the inverse two-
point function according to

oS 2 sin(zd,
= iDZ;I(x,x’) — M
80y(x)50y(x') Ay

u

[-d  (96)

which is consistent with the explicit computation of the
propagator offered above, cf. Eq. (92b).

IV. VACUUM ENERGY DENSITY

Here we discuss the brane vacuum energy of the non-
local theory as obtained from the local Hamiltonian of
the extended theory in (d+ 1) dimensions. The bulk
Hamiltonian operator 7 can be obtained as the component
Ty of the energy-momentum tensor T, of the (d+ 1)
local theory:

1 +o0
H = 5/ d3x/ dyy'=@ {80<D(x,y)80<l>(x,y)
0
= (x, ) (x.y)] (97)
with x = (x, 7). We start again from the field expansion in

Eq. (46) and calculate the bulk energy as E2U = (0|H|0)
that gives

1 d3p +o0
pb =5 [ [ S5 [ diuoro)

x / " dyy ey (5, (3. 4). (98)

It can easily be verified, by taking into account the
dimensions of the function u(4), that the above quantity
is correctly dimensioned as an energy. From this bulk
energy we ought to extract the vacuum brane energy E0™ame,
One possibility is to think to slice up the extra space
dimension y € [0, +oo] and assign the first slice y €
[0, yeui] to the brane. Note that in Eq. (98) the integration
over the three-space entails an infinite factor. To avoid
such an infinite factor as it is standard in quantum field
theory, we imagine enclosing our brane on a large but finite
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volume V. This allows us to define a brane vacuum energy
density:

N 1 d%p +oo
Eyac = 2/(2”)3/0 diu(A)oy (p)

Yeut
x / Ay~ (v (. 2).  (99)

The cutoff length y., corresponds (in natural units) to an
energy scale

2”AZ/{ = 1/ycul~ (IOO)
This physical cutoff defines, on the brane, an effective field
theory which corresponds to integrating out, in Eq. (98), all
the degrees of freedom (d.o.f.) at energies E higher than
27y (E > 2n/\y). Indeed the y integral in Eq. (99) can be
computed approximating the wave functions by means of
the imposed boundary conditions y(y,4) = 1 as y - 0

and converting it into an energy integral (over the variable
E=1/y):

+oo d—” 0
Eyac = / dip(2) / 48 —wﬁ;(p) / dEE*™
0 2

(27[)3 Ay

which shows clearly how the d.o.f. E > 2z/A;, are being
integrated out. This defines an effective field theory valid
up to energies ~ 2z, The vacuum energy density on the
brane is finally given by

. 1 too d3p 0] 2(p)
Evac = (z_a)(zﬂAu)Z—aA dﬂ'ﬂ(i)/w 22 .
(102)

(101)

Note that if dj, is the scaling dimension of the field then
a=4-2dy and 2—a=2dy;—2>0 for d;, > 1. We
note that in Eq. (102) the fractional power of A;, exactly
compensates the fractional dimensions of the function
u(4) o A'=* thus leaving a genuine energy density. As a
final remark we note that Eq. (102) expresses the vacuum
energy density of the nonlocal effective theory as an
integral over the mass parameter A of the vacuum energy
density of a scalar field of mass 4, since w2 (p)/2 is the zero
point energy of a mode of momentum p and mass A,
weighted by the function x(1). Equation (102) coincides up
to a numerical constant with the central result of Ref. [37]
for the vacuum energy of unparticles: it is still a divergent
quantity but it can, for instance, be used to compute the
unparticle Casimir energy by imposing appropriate geo-
metrical boundary conditions [37]. Note that Eq. (102) can
be cast in the standard normalization routinely used for
unparticles (cf. [33,34]) by using the result in Eq. (81).
Namely,

A
ud) = (€)== =
T

A
(27)2(2 — )~ 1~
T

(103)

and then by making use of Eq. (82) we find

Q2 —a=2dy,-2)

e = / " g / dp 0z(p)
ﬂAZdM_Z 0 (273 2

(104)
and this coincides with the central result derived in [37] for
the UnCasimir effect.

V. NEGATIVE POWERS OF THE
FRACTIONAL LAPLACIAN

In [6], it has been shown that the extension problem in
the original formulation of Eq. (4) can be directly applied to
the inverse powers of a generic second order differential
operator (i.e., A~%/? with @ > 0). Interestingly, it has also
been discussed in [38] that the same extension problem is
valid for negative powers of the fractional Laplacian but
mapping the Dirichlet boundary condition to a Neumann
boundary condition.

In particular, for @ € (0,2) and f: R" - R, a smooth
and bounded function, one can consider the extension
problem in the upper half-space with boundary conditions
of the Neumann-type as follows:

g;i (x.0) = —f(x) xeR" (105a)
V-(y""*Vw)=0 xeR"y>0. (105b)

Note that in order to have a well-posed problem, an extra
condition should be imposed to avoid the fact that if w is
a solution, then w + ¢ is also a solution for any ¢ € R.
Therefore, we need to assume the following boundary
condition for large y:

(106)

limw(x,y) — 0.

y—00

Then the solution w(x,y) of problems (105a) and (105b)
that satisfies the boundary condition (106) has an explicit
expression given by

S1a(=8) " f() = mw(x.y) (107
y—0*
where S, , is a constant defined as
C,oe
Sna = e (108)
' (}’l - a)Dn,a

with
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2{11‘*(@) ﬂ.a—n/Z n—s
Chogi=—r—2", D, = rf—-). (109
n-= gy Pre =) < 2 ) (109)

Thus, while the fractional Laplacian we used in the
previous sections can be considered as an operator con-
necting the Dirichlet boundary conditions for the original
problem to Neumann-type conditions for the “local”
extended problem, (3a) and (3b); the inverse fractional
Laplacian of this section is an operator that realizes the
opposite mapping: from Neumann-type boundary condi-
tions for the original problem to Dirichlet conditions,
(105a) and (105b), in the local extended problem, at least
for a € (0,2).

We show here how this can be explicitly done in terms
of the eigenfunctions of the problem given in Eq. (29).
The boundary conditions on the eigenfunctions (4, y)
now become

w(2,0)=0, Yy Owdy)o=1 (110)

which from Eq. (33) can easily be shown to be solved by

2T(2+1)
A=—2i_—-  B=0, 111
al® (1)
which lead, through Eq. (29), to the solutions:
2Ig+1)
vk y) =— 2 Wiaply).  (112)

It is important to note that we can apply here the same
procedure as before because the local bulk field theory
satisfies the same equation of motion (105b).

VI. DISCUSSION AND APPLICATIONS TO
GENERAL RELATIVITY

In the previous sections we have discussed particular
aspects of a scalar nonlocal quantum field theory. Some
properties of the theory can be obtained thinking about the
nonlocal fields as living on a brane and studying a local
bulk theory with an extra dimension. The features pre-
viously discussed can be applied to some extent to other
fields and, in particular, a possible natural application
would be to the so-called Dvali-Gabadadze-Porrati
(DGP) model [39]. The DGP model is a possible way of
describing the realization of a continuum of massive
gravitons using extra dimensions and a brane on which
the Standard Model is confined.

In particular the DGP model describes a (3 + 1)-dimen-
sional brane living in a (4 + 1)-dimensional bulk space-
time, and the total action has both 5D and 4D parts, which
reads schematically

3 2
55 / FXV=GR(G) + % / d*x/=GR(g)

4 / dxLyr(g.9) (113)

where the 5D bulk coordinates and the 5D metric are,
respectively, X4 and G,45(X) with A, B = 0, 1...,4; the 4D
brane coordinates and the 4D metric are, respectively, x*
and g, (x) with y,v = 0,1...,3; and the y(x) are the 4D
matter fields which are described by the Lagrangian L,
and are assumed to be confined to the 4D brane. The
constants M5 and M, are, respectively, the 5D and the 4D
Plank masses.

Taking the expansion around flat space g, = n,, + h,,
(with deth,, = h) and fixing the proper gauge, one can
write the effective 4D DGP action in the following
way [40]:

4 Mzzl 1 uv,of ! HY

S = d XT zhm,g ’ haﬂ - Em(hm,Ah - hAh)
1

+3 / d*xh,, T (114)

where €% is the massless graviton kinetic operator
defined by

1
Smassless graviton — / dPx E hﬂvg”y’aﬂhaﬂ (1 15)
and

gZI/J} = (’72477;) - '7””77,,/;)5 - 28(#!8(”7];)) + aﬂayﬂaﬁ + aaaﬂﬂw
(116)

and

3
— (117)
My
is the so-called DGP scale. Interestingly, the operator
A is the (formal) square root of the four-dimensional
Laplacian, i.e.,
A=vV-0. (118)
Therefore, the action (114) is of the Fierz-Pauli form with
an operator dependent mass m/\. The operator (118)
corresponds, in terms of our previous analysis, to the
particular case @ = 1 in (6) and is known as a resonance
mass, or soft mass [40]. The particle content of the theory
emerges clearly from a study of the propagator. By
analyticity considerations (similar to those given in
Sec. I D) the momentum part of the propagator can be
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reconstructed in terms of its poles and cuts and it is possible
to write the following spectral representation:

—1 00 —1
T as— (s 119a
e A R
- >0 (119b)

P8) = D)

which shows therefore how this theory contains a con-
tinuum of ordinary (nonghost, nontachyon) gravitons, with
masses (/s) ranging from 0 to co. This is in line with what
we would expect from the previous analysis using the
extension problem for a nonlocal theory. The different form
of the spectral function in Eq. (119b) relative to what we
found in Eq. (90) is due to the fact that, as opposed to our
nonlocal theory, Eq. (93), or equivalently the unparticle
model, Eq. (95), the DGP model is not scale invariant: it is
indeed defined by the scale m obtained as in Eq. (117). The
behavior in terms of a continuous spectrum of mass states is
also understood as the result of the dimensional reduction
of the noncompact fifth dimension, when the Kaluza-Klein
tower collapses into a Kaluza-Klein continuum. We con-
clude this paragraph with a remark about two limiting cases
of the representation in Eq. (119a). First, consider the
m — 0 limit: the left-hand side of Eq. (119a) evidently
reduces to the massless propagator —i/p? and the same is
obtained by noting that in the same limit p(s) — 25(s) and
the factor of 2 is accounted for by the integration over half of
the real axis. More interesting is perhaps the m — oo limit
(or m? > p?) which is obtained by exchanging the limit
with the integration in the right-hand side of Eq. (119a):

—i 1 / © J 1 —i (120)
—_—=— s —=—.
my/p?> mJo m/sp*+s
Canceling out the mass scale m in the above Eq. (120) one is
left precisely with Eq. (66) upon replacing m into /s
reproducing therefore the fractional propagator with a = 1.
Thus the m — oo limitin Eq. (119a) amounts to going from a
theory explicitly dependent on a scale m over to a scale
invariant theory (m independent). The specific spectral
density 1/(m/s) is thus clearly connected to the scale

invariance of the fractional propagator —i/ \/? This in
retrospect means therefore that, for generic «, the specific
form of the function (4) o A!=* givenin Eq. (44) in order to
obtain the completeness relation, Eq. (45), is ultimately
closely related to the request of scale invariance. Note that
the representation in Eq. (120) coincides identically (up to a
normalization constant) with Eq. (90) fora = 1 and 2> — s
and a Wick rotation.

Another interesting connection with general relativity
and cosmology can be obtained noting that the Proca
Lagrangian that describes the three d.o.f. of a massive
photon

1 1
L=——F,F" —Em}%AﬂA”

2 Fu (121)

has been shown to be equivalent to a gauge-invariant but
nonlocal Lagrangian given by (see [18])

1 m?
=——F,(1-ZL|F»
¢ (1-3)

and therefore can be an interesting test bed for the strategy
proposed in the previous section: rewrite a nonlocal action
as a local action in d + 1 dimensions using the extension
problem, perform the calculations in this local setting and
then read the result for the nonlocal action on the boundary.
Moreover, it is a way to understand a more difficult
nonlocal invariant like ((J)™". In the case of the Proca
action we know that the final result should be a massive
propagator. The presence of nonlocal terms like inverse
powers of the d’Alambertian can be interesting because
these operators become relevant in the IR and therefore can
have consequences in cosmology. Recent models are
discussed [16,41-43]. In particular, the model proposed
in [16] that considers nonlocal infrared corrections via the
inverse Laplacian is promising for the cosmological impli-
cations while passing all the important tests at solar system
scales [41].

(122)

VII. CONCLUSIONS

In this paper, we have analyzed in detail the quantum
aspects of a nonlocal fractional theory on the brane from the
point of view of a (local) scalar bulk quantum field theory
with a boundary using the well-known and well-defined
mathematical framework of the “extension problem” devel-
oped by Caffarelli and Silvestre. In particular, we have
focused on a nonlocal theory on the brane [for example a
(3 + 1)-dimensional spacetime] defined in terms of the
fractional Laplacian and studied it from the point of view of
the local theory in the bulk—(4 + 1)-dimensional—with
one additional transverse spacelike dimension (y). The
problem is how to characterize the bulk fields that can
describe the behavior of the nonlocal theory on the
boundary. This is achieved by solving the equation of
motion in the bulk separating out the transverse dimension
(), solving explicitly for the related eigenfunctions and
imposing appropriate boundary conditions. We have then
discussed the quantization of the local action in (4 + 1)
dimensions via the operator formalism. The bulk field
®(x,y) in (4 + 1) dimensions is first decomposed into
normal modes separating out the ordinary spacetime
coordinates (x) from the extra spacelike coordinate y.
Explicit expressions for the wave functions in the extra
coordinate y are given, which satisfy the appropriate
boundary conditions whose completeness relation allows
us to show that the bulk field obeys canonical equal-time
commutations relations. On the other end, the study of the
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causal structure shows that while local commutativity—
the vanishing of the commutator of fields for spacelike
separation—is lost on the bulk it is restored on the brane.
Indeed, the nonlocal field ¢(x) obtained by the brane limit,
y = 0, satisfies local commutativity. We finally computed
the two-point bulk correlation functions that induce, on the
brane (y — 0 limit), the expected nonlocal correlations
functions. The nonlocal propagators thus found are shown
to be equivalent to those obtained by other methods,
namely, the computation of the spectral density represen-
tation in terms of discontinuities across the branch cut of
the fractional propagator.

We find that what emerges naturally from the standard
quantization of the bulk theory via the canonical operator
formalism is that the two-point Wightman function (or
Feynman propagator) for the brane field can be expressed
as an integral over the mass of the corresponding Wightman
function (or Feynman propagator) of an ordinary massive
scalar field with a specific spectral density. This allows us
to make a connection with the scale invariant theory
proposed by Georgi (unparticle model), showing that the
two approaches are characterized by the same particle
content and are therefore equivalent.

We have also discussed the brane vacuum energy of the
nonlocal fractional theory as obtained from the local
Hamiltonian of the extended theory in (d + 1) dimensions.
The bulk Hamiltonian operator H can be obtained as the

component T, of the energy-momentum tensor 7', of the
(d + 1) local theory. Then, one can extract the vacuum
brane energy, EY, from its bulk counterpart. This has
been done, using an effective field theory approach, there-
fore integrating out the d.o.f. above a certain energy scale
(Ay) defined as the inverse of the extra-dimension cutoff
Yeut- This physical cutoff defines, on the brane, an effective
field theory up to the energy Ay.

We also extended the derivation of the eigenfunctions to
the case of negative powers of the fractional Laplacian. The
solution can be explicitly found in terms of the eigenfunctions
of the initial problem changing the boundary conditions.

It is the authors’ opinion that approaching the
quantization of nonlocal fractional field theories via the
extension problem should be further explored (for instance
with respect to vector and/or spinor fields) and exploited
to study possible applications in general relativity and
cosmology.
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