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Abstract

In this thesis we study Beklemishev’s combinatorial principle Every Worm Dies, EWD which
although true, it is unprovable in Peano Arithmetic (PA). The principle talks about sequences
of modal formulas, the finiteness of all of them being equivalent to the one-consistency of PA.
We present the elements of proof theory at play here and perform two attempts at generalizing
this theorem. One is directed towards its relationship with some known fragments of PA while
the other aims to see its connection with fragments of second order arithmetic.
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Chapter 1

Introduction

In this thesis we study Beklemishev’s combinatorial principle Every Worm Dies (EWD), which
was presented in [2] as the Worm Principle. This statement is inspired by the Hercules-Hydra
game of Kirby and Paris [15] where here instead of hydras, Hercules is is fighting worms. Given
a worm, on every step of the game, Hercules chops its head which then regrows based on some
combinatorial rules. Every worm dies states that Hercules will eventually win, no matter the
given worm he started out with. Beklemishev has shown that Every Worm Dies is true but
unprovable in PA.

1.1 Combinatorics and provability logics
The elements of the game that we consider in this thesis are worms which are words with their
alphabet being that of natural numbers. The rules are such that these combinatoric worms
behave similarly to the provability worms –which correspond to formulas consisting of only
iterated modalities in the provability logic. The provability worms in turn can be interpreted as
various fragments of arithmetic, Turing progressions and ordinals –among other things.

One of the main interpretations of worms that we are interested in this thesis is that of
iterations of partial uniform reflection principles. For a given theory T , these are schemata of
the statement "if ϕ is provable by T , then ϕ is true" for formulas ϕ that belong to some class of
the arithmetical hierarchy. In essence these are generalizations of consistency statements. Kreisel
and Lévy have shown that the uniform reflection principle for Primitive Recursive Arithmetic is
deductively equivalent to the full induction axiom schema [16]. Leivant had later proven a similar
equivalence for partial uniform reflection principles and induction schemata for formulas in some
class of the arithmetical hierarchy [17]. We present these results in this thesis in Chapter 3
for a base theory that is weaker than the Primitive Recursive Arithmetic. With this slight
generalization of the theorem, we follow Beklemishev [2].

1.2 Overview of this thesis
In this thesis we start by presenting the partial uniform reflection principles and their connection
to provability logics and some of the fundamental fragments of Peano Arithmetic. We then
turn our attention onto the provability logics and give a presentation of the induced ordering
of worms with our goal being mostly to provide some intuition on an isomorphism between
provability worms and ordinals. The latter forms the basic idea behind Every Worm Dies and
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allows us to intuitively view it as a a kind of well-foundedness claim of ε0 –which is the proof
theoretic ordinal of PA. Our later generalization attempts follow this idea as a vague guideline
for choosing how much weaker or stronger we would expect the worm principle to have to be.
In the case of smaller theories we fail to prove equivalence, trying two different approaches, one
being the proof presented by Beklemishev for the case of PA while the other follows the ideas
of a remark of the same paper [2], where a connection of it with a rule of transfinite induction
is mentioned. In the final chapters we work on the first step of expanding the worm principle
towards theories stronger than PA.

1.3 Layout
In Chapter 2 we present the basic theories, that most of this thesis concerns itself with, and
give an introduction of the uniform reflection principle. In Chapter 3 we present the known
connections between reflection principles and those basic arithmetics. In Chapter 4 we give a
presentation of the provability worms and show various general known properties that we will
use in the proof of Every Worm Dies. The main focus is the presentation of a well-order of
worms (modulo provable equivalence) as well as a way to produce fundamental sequences of
"limit" worms under this order. Chapter 5 we start by presenting an equivalence between the
consistency of our theories and a transfinite induction rule that was studied in [1]. Then we
give a generalization of it for which we credit Pakhomov for the short proof sketch he provided
under email correspondence. Chapter 6 presents the equivalence of the worm principle with the
1-consistency of PA which was proven by Beklemishev in [2]. Then, in Chapter 7 we present the
case of a weaker version of Beklemishev’s Every Worm Dies and examine its relationship with
the basic known weaker arithmetics. However, we fail to prove an equivalence in that case. In
Chapter 8 we show some results from [5] which we need to expand the worm principle into larger
theories –though some of the details ought to be resolved in future work. Finally, Chapter 9 is
where we present the equivalence of an expansion of the worm principle and the 1-consistency
of ACA –a well known theory of second order arithmetic. Furthermore more we examine an
alternative natural expansion of the rule-set of Every Worm Dies which we find equivalent to
the one we chose here at first.

1.4 New results
While most of what is presented here is known, several results are new. These are:

In Chapter 9 where notable are the novelties in the weaker orderings Em which are used in
the proof, where we split it into many to accommodate for limit ordinals to the worm game.
Then in the same chapter there is the connection between the two different ways of expanding
the worm principle relating to the novel Definition 4.2.3 and Notation 4.2.4.

The results of Chapter 7 are generalizations of: the main theorem of Chapter 6 –whose proof
follows that in [2]– and of an alternative proof of the same theorem which was only implicitly
suggested in the same paper.

Remark 6.3.2, Remark 4.3.4 were only implicitly suggested.
For the second part of Corollary 4.2.5, I didn’t find it in the literature but it is not completely

unlikely of something similar being proven. Proposition 4.1.9 comes as a generalization of part
of a lemma used in the proof of the equivalence of EWD and 1-Con(PA) in [2].

Theorems 5.1.1 and 5.1.2 were also implicitly mentioned in a more general equivalence theorem
in [1] however only a proof for the case of PA was given there. The proofs of these theorems
follow the structure of that proof for the case of PA.
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Finally we received great help by Pakhomov who in private correspondence with Joosten
helped in further generalizing these results with Theorem 5.2.2. The proof of this theorem
should be attributed to Pakhomov the details presented have been worked out by Joosten who
has kindly allowed me to incorporate them in this thesis.
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Chapter 2

Preliminaries

In this chapter we will present some basic notions of proof theory that we will be using extensively
later on. We start with introducing the basic first order theories that we will be dealing with
in this paper and we later formally introduce the so-called uniform reflection principle. The
structure of this introduction follows that of [2].

2.1 Arithmetic
For the language of arithmetic we will consider the first order language {≤; +, ·, S, exp; 0} where
exp denotes the unary function x 7→ 2x. Its standard model has the universe N and its symbols
having the usual interpretation.

We will refer to formulas of this language as arithmetical. The expressions ∀x≤t ϕ(x) and
∃x≤t ϕ abbreviate the formulas ∀x (x ≤ t→ ϕ) and ∃x (x≤t∧ϕ) respectively. Such occurrences
of quantifiers we will refer to as bounded. The arithmetical formulas can be classified in what is
called the arithmetical hierarchy.

Definition 2.1.1. For every n ≥ 0, the classes of Σn and Πn- formulas are defined inductively as
follows: Σ0 and Π0-formulas are those all of whose quantifiers are bounded. The Σn+1-formulas
are those of the form ∃x1 . . . ∃xm ϕ(x1, . . . , xm), where ϕ is a Πn-formula. The Πn+1-formulas
are those of the form ∀x1 . . . ∀xm ϕ(x1, . . . , xm), where ϕ is a Σn-formula.

By the prenex normal form theorem, every arithmetical formula is logically equivalent to
some Σn and some Πn-formula for some n ≥ 0. We will extend the terminology so as to call a
formula Σn iff it is logically equivalent to a Σn-formula as per the above definition and similarly
for Πn. The ∆n are the formulas that are both Σn and Πn in this equivalence sense. The class
of ∆0-formulas, we will refer to as elementary.

From a computational point of view, a predicate is definable by a Σ1-formula iff it is com-
putably enumerable (c.e.)1. A sentence is elementary iff it is decidable via a decision procedure
of an upper bound of 2xn, where n is some constant and x is the size of the input. The function
2xn is defined as:

2x0 :=x; 2xn+1:=22xn .

We will refer to the binary function 2xy as the super-exponentiation function and those of the
form 2xn for a fixed n as multi-exponential.

1They are also called recursively enumerable (r.e.).
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The induction axiom Iϕ for a formula ϕ, as usual denotes the formula

Iϕ:=ϕ(0) ∧ ∀x
(
ϕ(x)→ ϕ(S(x))

)
→ ∀x ϕ(x),

and we will see restricted to various classes of formulas.
The theory EA denotes the Kalmar elementary arithmetic which involves the basic actions

describing the non logical symbols, the induction axiom schema with parameters for ∆0-formulas
and the axiom stating that the graph of exponentiation defines a total function2. The theory
EA+ is axiomatized over EA by adding the axiom stating that the graph of super-exponentiation
defines a total function. For every natural number n, the theories IΣn and IΠn are the extensions
of EA via the induction axiom schema with parameters for Σn and Πn-formulas respectively.
Hence, in this paper, we make no distinction between I∆0 and EA. PA naturally is the extension
of EA by induction on all formulas.

Unlike PA, the theories EA and EA+ can both be axiomatized by Π2-formulas in a language
without exp. We will later see that all IΣn theories are also finitely axiomatizable. For every n>0,
we have that EA+ ⊆ IΣn as the totality of super-exponentiation is provable via Σ1-induction.

Kalmar elementary functions are those obtained from Z(x) ≡ 0, S,+, ·, 2x, cut-off subtraction

x .− y:=

{
0, if x ≤ y
x− y, otherwise

,

projection functions Ini (x1, . . . , xn)=xi, composition operations and bounded minimization:

µ i≤z R(i, ~x):=

{
y, if y ≤ z and R(y, ~x) ∧ ∀ i<y ¬R(i, ~x)

0, if ∀ i≤z ¬R(i, ~x)
,

where R is a predicate of the form g(i, ~x)=0 for some previously defined function g. We denote
the class of elementary functions by E . It coincides with the class of functions computable in
multi-exponential time on a Turing machine [7].

Now just by the definitions and with cut-off subtraction, we can produce a basic lemma for
restricted induction schemata:

Lemma 2.1.2. IΣn ≡ IΠn, for every natural number n.

Proof. Let ϕ be a Πn-formula. We prove the induction instance for ϕ in IΣn. Consider the
formula ψ(a, x):=¬ϕ(a .− x) where a is a parameter. Then ∀x (ϕ(x) → ϕ(x + 1)) implies
∀x (ψ(a, x)→ ψ(a, x+ 1)), thus by Σn-induction, ψ(a, 0)→ ψ(a, a) and so ϕ(0)→ ϕ(a), which
by logic, gives us the induction instance for ϕ.

If we were to disallow the occurrence of parameters in the induction axioms, the proof wouldn’t
work.

2.2 Provability predicate
Given a set A, by words of A, we will refer to finite sequences of elements of A. The empty
word, we will denote by e and we will refer to A as their alphabet. Arithmetical formulas can
be naturally identified with words on a finite alphabet and in turn, they can be one-to-one

2In our setting, we get this totality for free since we have included a function symbol for exponentiation in our
language.
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encoded by numbers by transforming them first into binary words and subsequently using a
binary decoding, hence being able to express them within EA. Thus we fix a standard global
encoding or Gödel numbering of all expressions of the arithmetical language. Then the Gödel
number of an expression τ we will denote by ⌜τ⌝.

Properties concerned with classifying numbers with codes of formulas, axioms, rules and
determining if they belong to a specific class in the arithmetical hierarchy can all be naturally
expressed in EA with ∆0-formulas. Similarly, for finite sequences we can agree on a one-to-one
elementary coding. Let 〈x0, . . . , xn〉 denote the code of a sequence x0, . . . , xn, with (x)i denoting
the i-th element of the sequence and 〈 〉 denote the code of the empty sequence. Additionally, the
relation stating that "x is the code of a sequence" –denoted by Seq(x)– as well as the functions
returning the length of a sequence lh(x), the last element of it end(x), and the concatenation of
two sequences x ∗ y, are all elementary representable within EA.

We will not maintain that strict a notation of sequences as later in this paper we will be
dealing with words, represented as sequences growing towards the left and denoted as xn, . . . , x0.

Up to Chapter 7, we will make the convention that –unless stated otherwise– the theories
we will be dealing with, will be first order theories with equality extending EA. Second order
theories will be touched on in the final chapter. A theory T is elementary axiomatizable if there
is a ∆0-formula AxT (x) that is true iff x is the code of an axiom of T . Similarly, we will say that
a theory is finitely axiomatizable if it can be axiomatized by a single formula. By Craig’s trick,
all c.e. theories have an equivalent that is elementary axiomatizable. We will make the assump-
tion that all theories of this paper are computably enumerable. A theory T is sound if all of its
theorems are true in the standard model of arithmetic and Γ-sound, for some complexity class
Γ, if all its Γ-theorems are true in the standard model. Between theories, in the same language,
writing T ⊆ U will indicate that U proves the theorems of T . Given two theories T,U , by T +U
we denote the union of the two theories, axiomatized by AxT (x) ∨ AxU (x). Two theories T,U
will be called (deductively) equivalent T ≡ U on a third theory V if T + V and U + V prove
the same theorems. Given two theories of possibly different languages T,U we will say that U
is a (proof theoretic) conservative extension of T if the theorems of T are also theorems of U
and every theorem of U in the language of T is a theorem of T . For a class of formulas Γ and
theories in a common language, we will say that U is a Γ-conservative extension of T if all the
Γ-theorems of U are also theorems of T . Specifically for Πn+1, we will write T ≡n U to denote
that U is a Πn+1-conservative extension of T .

Given a c.e. theory T , possibly by using Craig’s trick, there is an elementary formula
PrfT (x, y) expressing "y codes a proof of a formula x". From this, Gödel’s provability formula
�T (x) is defined as ∃ y PrfT (y, x).

Terms of the form
n:=S(S(. . . S(0) . . .))︸ ︷︷ ︸

n times

are called numerals. For ϕ(x1, . . . , xn) a formula, ⌜ϕ(ẋ1, . . . , ẋk)⌝ denotes the natural definable
term for the function mapping n1, . . . , nk to the Gödel number ⌜ϕ(n1, . . . , nk)⌝. The bar on
numerals shall be omitted in the cases where n cannot be confused with a variable. So in a
simplification of notation, for a sentence σ, we write �Tσ instead of �T (⌜σ⌝) and for a formula
ϕ as above, we write �Tϕ(ẋ1, . . . , ẋk) instead of �T (⌜ϕ(ẋ1, . . . , ẋk)⌝), though we may also not
explicitly write out all of its variables.

We denote by ⊥ the logical falsity and Con(T ):=¬�T⊥. The reading convention of this paper
later will be to assume that EA is the operational theory on the provability formula whenever
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we write � without any theory in the subscript. At this point we will state, without a proof, a
few theorems involving Gödel’s provability formula.

Proposition 2.2.1 (Löb’s derivability conditions). For formulas ϕ,ψ and T c.e.,

L1. T ` ϕ⇒ EA ` �Tϕ;

L2. EA ` �T (ϕ→ ψ)→
(
�Tϕ→ �Tψ

)
;

L3. EA ` �Tϕ→ �T�Tϕ;

L4. EA ` �T∀x ϕ(x)→ ∀x �Tϕ(ẋ).

Notice that L4 is derivable from L1, L2 and the axiom ∀x ϕ(x) → ϕ(x). Moreover, L3 is a
corollary of the more general provable Σ1-completeness [10]:

Proposition 2.2.2 (Provable Σ1-completeness). For any Σ1-formula ϕ(x1, . . . , xn),

EA ` ϕ(x1, . . . xn)→ �Tϕ(⌜ẋ1, . . . , ẋn⌝).
The following fixed point lemma, plays a key role, at first in Gödel’s incompleteness proofs

and many other results.

Lemma 2.2.3 (Fixed point Lemma). For any formula ϕ(x, x1, . . . , xn), there is a ψ(x1, . . . , xn)
whose free variables can only be among those of ϕ, except for x, such that

EA ` ψ(x1, . . . , xn)↔ ϕ(⌜ψ(ẋ1 . . . ẋn)⌝).
What follows, is a generalization of Gödel’s second incompleteness theorem, known as Löb’s

theorem. It will see much use in this paper and for that reason we will present a proof.

Theorem 2.2.4 (Löb’s Theorem). For any c.e. T ⊇ EA and formula ϕ,

T ` �Tϕ→ ϕ⇔ T ` ϕ.

Proof. Assume that T ` �Tϕ → ϕ. By the fixed point lemma, there is a formula ψ such that
EA ` ψ ↔ (�Tψ → ϕ). Then using Löb’s derivability conditions and the fact that T contains
EA, we derive:

1. T ` �T (ψ → (�Tψ → ϕ))

2. T ` �Tψ → �T (�Tψ → ϕ)

3. T ` �Tψ → (�T�Tψ → �Tϕ)

4. T ` �Tψ → �Tϕ

5. T ` �Tψ → ϕ, by the assumption

6. T ` ψ

7. T ` �Tψ

8. T ` ϕ.

The other direction is immediate.

9



Löb’s Theorem can be expressed in a more formalized way. The following statement can be
inferred from Löb’s Theorem and the derivability conditions:

Corollary 2.2.5. For any formula ϕ,

EA ` �T (�Tϕ→ ϕ)→ �Tϕ.

Substituting ϕ for ⊥ in Löb’s Theorem, we get:

Theorem 2.2.6 (Gödel’s Second Incompleteness Theorem). For any c.e. T ⊇ EA,

(i) If T is consistent, then T 0 Con(T ).

(ii) If in addition, T is Σ1-sound, then T 0 ¬Con(T ).

Notice that this clearly implies that any consistent, Σ1-sound, axiomatizable theory T ⊇
EA can be extended to T + Con(T ) which is clearly consistent, is axiomatized by AxT (x) ∨
x=⌜Con(T )⌝ and is Σ1-sound. This way, we can expand such a theory by repeating this procedure
forming increasing chains of consistent Σ1-sound theories. This conceptual idea goes by the name
of Turing progressions and marks the beginning of this paper.

2.3 Provability logic
Löb’s derivability conditions, along with Löb’s Theorem, all come to connect in the basic Gödel-
Löb provability logic GL. It is the modal logic formulated in the language L� of propositional
logic along with the unary � modality. As before, ♦ϕ and �nϕ, abbreviate ¬�¬ϕ and � . . .�ϕ
(n times) respectively. GL can be axiomatized by the propositional axioms on L�, together with
the axioms:

A1. �(ϕ→ ψ)→
(
�ϕ→ �ψ

)
, known as the distribution axiom;

A2. �ϕ→ ��ϕ, known as the 4 axiom;

A3. �(�ϕ→ ϕ)→ �ϕ, known as the Gödel-Löb axiom;

and the inference rules of modus ponens and necessitation:
ϕ

�ϕ
.

If we were to replace the axiom A3 –known as Löb’s axiom– with Löb’s (inference) rule

�ϕ→ ϕ

ϕ
,

we would end up with the same logic.

By an arithmetical interpretation of the language of GL, we mean any function (·)∗ that
maps propositional variables to arithmetical formulas. This can be extended to a function (·)∗T ,
mapping modal formulas to arithmetical ones by translating � into �T and preserving the other
logical operations:

(ϕ→ ψ)∗T := (ϕ)∗T → (ψ)∗T

(⊥)∗T := ⊥
(�ϕ)∗T := �T (ϕ)∗T .
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So interpreting �ϕ as "ϕ is provable in the theory T", we have an arithmetical soundness theorem
as for any formula ϕ∈L�, if GL ` ϕ, then EA ` (ϕ)∗T for any arithmetical realization (·)∗T of the
variables of ϕ. The opposite implication, proven by Solovay, gives a very important theorem of
arithmetical completeness and is stated as follows [6]:

Theorem 2.3.1 (Solovay). Let T ⊇ EA be an axiomatizable Σ1-sound theory. Then for every
formula ϕ,

GL ` ϕ⇔ T ` (ϕ)∗T , for every realization (·)∗T of the variables of ϕ.

For our purposes in this paper, we will only be using soundness results for GL with respect
to various classes of interpretations, so we do not use the difficult part of Solovay’s theorem.

2.4 Reflection, n-provability and n-consistency
Formulas of the form �Tϕ → ϕ we call reflection. They express that if ϕ is provable in T then
it is true. Reflection principles are schemata of formulas bearing this structure that, in essence,
expresses the soundness of T . They aren’t expressible by a single formula, as we know by Tarski
that there is no single arithmetical formula able to express the truth of any arithmetical formula.
Thus we need a schema to formulate the statement "every provable sentence is true". Of course
by Löb’s Theorem, we do not expect reflection principles to be provable.

Definition 2.4.1. Let T be an axiomatizable theory. The Uniform reflection principle RFN(T )
is the schema:

∀x1, . . . , xn
(
�Tϕ(ẋ1, . . . ẋn)→ ϕ(x1, . . . xn)

)
for every arithmetical formula ϕ(x1, . . . xn).
For some class of arithmetical formulas Γ, we denote RFNΓ(T ) or Γ-RFN(T ) the reflection
schema over formulas in Γ. Usually, Γ will be one of the classes Σn or Πn of the arithmetical
hierarchy.

The following lemma relates different partial reflection principles to each other and to the
notion of consistency.

Lemma 2.4.2. For a c.e. theory T , the following equivalences hold over EA:

(i) Σn-RFN(T ) ≡ Πn+1-RFN(T ) for every n ≥ 0;

(ii) Π1-RFN(T ) ≡ Con(T ).

Proof. (i) Let ∀x ϕ(x, y) ∈ Πn+1 with ϕ(x, y) ∈ Σn. Using the derivability condition L4:

EA +Σn-RFN(T ) ` �T∀x ϕ(x, ẏ)→ ∀x �Tϕ(ẋ, ẏ)

→ ∀x ϕ(x, y).

So EA +Σn-RFN(T ) ` ∀y
(
�T∀x ϕ(x, ẏ)→ ∀x ϕ(x, y)

)
.

(ii) Let ϕ(x) ∈ Π1. Then by Σ1 completeness, EA ` ¬ϕ(x)→ �T¬ϕ(ẋ). Thus, we have

EA ` �Tϕ(ẋ) ∧ ¬ϕ(x)→ �T (ϕ(ẋ) ∧ ¬ϕ(ẋ))

→ �T⊥.

Therefore, Con(T ) := ¬�T⊥ gives �Tϕ(ẋ)→ ϕ(x).
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Unlike the full uniform reflection principle, its partial versions are finitely axiomatizable. This
is because for the classes of Σn and Πn-formulas, there are truth definitions within EA:

Proposition 2.4.3. For every natural number n ≥ 0, there is an arithmetical Πn-formula
TrueΠn(x) –called the truth definition of Πn-formulas in EA– such that, for every
ϕ(x1, . . . , xk) ∈ Πn:

EA ` ϕ(x1, . . . , xk)↔ TrueΠn(⌜ϕ(ẋ1, . . . , ẋk)⌝).
Similarly for Σn classes between the two, it provably holds:

∀ z (TrueΣn(z)↔ ¬TrueΠn(⌜¬⌝∗z)).
Moreover, the partial truth predicates provably reflect the expected structural properties of truth,
so that, for example for ϕ,ψ ∈ Πn we have

EA ` TrueΠn(⌜ϕ ∧ ψ⌝)↔ TrueΠn(⌜ϕ⌝) ∧ TrueΠn(⌜ψ⌝)
and likewise for the other connectives.

A proof of this fact can be found in [10], [11] and the appendix of [5]. Now we can formulate
the partial uniform reflection principles as single sentences:

Lemma 2.4.4. Over EA, the schema Πn-RFN(T ) is equivalent to the universal instance of:

∀ z
(
�T TrueΠn(ż)→ TrueΠn(z)

)
. (2.1)

A similar statement holds for Σn-RFN(T ).

Proof. Clearly the latter is an instance of the uniform reflection schema. Notice that Proposition
2.4.3 implies that for every ϕ(x1, . . . , xn) ∈ Πn,

EA ` ∀x1, . . . xn �T
(
ϕ(ẋ1, . . . , ẋk)↔ TrueΠn(⌜ϕ(ẋ1, . . . , ẋk)⌝)).

So we infer in EA,

�Tϕ(ẋ1, . . . , ẋk)→ �T TrueΠn(⌜ϕ(ẋ1, . . . , ẋk)⌝)
→ TrueΠn(⌜ϕ(ẋ1, . . . , ẋk)⌝) (by (2.1) with z = ⌜ϕ(ẋ1, . . . , ẋk)⌝)
→ ϕ(x1, . . . , xn).

Another way to view partial reflection principles is as analogues of Gödel’s consistency asser-
tion. In this case, we will be strengthening the standard consistency statement.

Definition 2.4.5. For every n ≥ 1, let ThΠn(N) be the set of all true Πn-sentences. Then a
theory T is n-consistent, if T+ThΠn(N) is consistent. Formally, this is expressed by the formula:

n-Con(T ):=∀ z
(

TrueΠn(z)→ ¬�T¬TrueΠn(ż)
)
.

For true Πn-sentences, this informally expresses their compatibility with T . Its relationship
with reflection is clear as for T + ThΠn(N) to be inconsistent, there must be a true Πn-formula
that is incompatible with T and therefore, there must be a provable Σn-formula that is not true.
To produce the formal version of this result, we take the contrapositive of n-Con(T ) and apply
Proposition 2.4.3 and Lemma 2.4.4. Therefore we have:
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Remark 2.4.6. For every c.e. theory T ⊇ EA and every n≥1, Σn-RFN(T ) is equivalent to
n-Con(T ) over EA.

If we had taken the same definition for n=0, then over EA, we would have had that the
0-consistency of a theory T seems equivalent to Con(T ). However, there are subtle issues ([21])
related to collection causing minor differences between the two definitions. As such, we shall
work with Con(T ).

The dual of the new consistency notions give us the n-provability formula

[n]Tϕ := ¬n-Con(T + ¬ϕ),

expressing the provability of ϕ in T +ThΠn(N). The following notational step is to let 〈n〉Tϕ :=
n-Con(T + ϕ). Similarly to what we did with consistency, we will refrain from using the 0-
provability and instead work with �T . Finally, by the definitions it should be clear that 〈n〉ϕ
has arithmetical complexity of Πn+1 and therefore, [n]ϕ is of Σn+1.

Properties we had of the provability formula, we also have for its extensions. For example,
we have an analogue of provable completeness.

Proposition 2.4.7 (Σn-completeness). For any Σn+1-formula ϕ(x1, . . . , xk),

EA ` ϕ(x1, . . . xk)→ [n]Tϕ(⌜ẋ1, . . . , ẋk⌝).
Moreover, [n]T preserves Löb’s derivability conditions:

Proposition 2.4.8. For formulas ϕ,ψ, natural number n ≥ 1 and T c.e.

L1n. T ` ϕ⇒ EA ` [n]Tϕ;

L2n. EA ` [n]T (ϕ→ ψ)→
(
[n]Tϕ→ [n]Tψ

)
;

L3n. EA ` [n]Tϕ→ [n]T [n]Tϕ;

L4n. EA ` [n]T∀x ϕ(x)→ ∀x [n]Tϕ(ẋ).

Proof. The first two conditions and the fourth, can be checked by taking into account that

EA ` [n]Tϕ↔ ∃ z
(

TrueΠn(z) ∧ �T (TrueΠn(ż) → ϕ)
)
.

The third, is derived by the more general fact of Σn-completeness since [n]ϕ is a Σn+1-formula.

Proposition 2.4.9 (Σn-completeness). For any Σn+1-formula ϕ(x1, . . . , xk),

EA ` ϕ(x1, . . . xk)→ [n]Tϕ(⌜ẋ1, . . . , ẋk⌝).
A short proof of the above can be found in [2].
We also have the analogue of the formalized version of Löb’s Theorem.

Proposition 2.4.10. For any formula ϕ and natural number n,

EA ` [n]T ([n]Tϕ→ ϕ)→ [n]Tϕ.

Therefore, we can make use of GL-soundness for the n-provability predicates as well by, of
course, interpreting � as the n-provability for some n. To produce a notational distinction,
consider the following:
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Notation 2.4.11. We denote by GLn the variant of GL using the modality [n] instead of �.
Formally, we would have ([n]ϕ)∗T = [n]T (ϕ)∗.

We will close this chapter by proving a proposition showing us that the uniform reflection
formulas cannot be expressed by formulas of lower complexity than the ones we have given.

Proposition 2.4.12. For T ⊇ EA a c.e. theory, we have that Πn-RFN(T ) is not contained in
any consistent extension of T of complexity Σn.

Proof. Let U be a Σn extension of T and U ` Πn-RFN(T ). Since Πn-RFN(T ) can be expressed
by a single formula, there exists a finite subtheory U0 ⊆ U such that U0 + T ` Πn-RFN(T ).
Without loss of generality, we can express U0 via a Σn-formula θ. So we have

T + θ ` �T¬θ → ¬θ
T ` θ → (�T¬θ → ¬θ)
T ` �T¬θ → ¬θ.

Thus we can use Löb’s Theorem to produce T ` ¬θ which means that T + U0 and therefore
T + U are inconsistent.

Finally, this naturally gives us the following for the uniform reflection principle:

Corollary 2.4.13. For T ⊇ EA a c.e. theory, the axiom scheme RFN(T ) is not contained in
any consistent extension of T of bounded arithmetical complexity.
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Chapter 3

Fragments of Arithmetic

We will begin this chapter with a statement on functions whose graph can be expressed by an
elementary formula, which we will immediately use to create our first connection between EA
and EA+ via the use of reflection principles.

3.1 Function iteration
Let us first introduce some notation that we will extensively use throughout the thesis

Notation 3.1.1. For a function f with an elementary graph, we denote by f (y)(x) the function
iteratively defined as:

f (0)(x) = x, f (S(y))(x) = f(f (y)(x)).

Formally, the function’s graph can be given by the formula:

f (y)(x) = z ↔ ∃ s∈Seq
(
(s)0=x ∧ ∀ i<y (s)i+1=f((s)i) ∧ (s)y=z

)
,

where we point out that the existential quantification on s can be bounded by a function belonging
to the closure of E + f by composition, denoted by C(f). Thus, if f is expressible by a term, the
graph of f (y)(x), can be given by a ∆0-formula. This in turn, implies that the graph of 2xy can
be given by a ∆0-formula by substituting f with exp.

Now we can state this very important lemma produced by taking two views of Π2-sentences.
We refer to Lemma 3.7 in [2] for a proof.

Lemma 3.1.2. Let f be a function with elementary graph that is non-decreasing and f(x) ≥ 2x.
Then it holds that

EA ` λx.f (x)(x)↓ ↔ 〈1〉EA f↓.

If we substitute f with exp, we get:

Corollary 3.1.3. EA+ ≡ EA + Π2-RFN(EA).

3.2 Tait’s Calculus
The next natural step at this point is to ask about higher levels of reflection, for which we will
need Tait’s calculus. Formulas in Tait’s calculus are constructed from the atomic formulas and
their negations with the connectives ∧,∨ and quantifiers ∀,∃ as in first order logic. Thus negation
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here is recursively defined via de Morgan’s rules. Sequents are finite sets of formulas, denoted
by Γ,∆, . . . and are understood as disjunctions. The sequent Γ ∪ {ϕ} is written as Γ, ϕ.
The axioms of Tait’s calculus are sequents of the form Γ, ϕ,¬ϕ with ϕ being an atomic formula.
It consists of the following inference rules:

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ
(∧)

Γ, ϕ

Γ, ϕ ∨ ψ
(∨r)

Γ, ϕ

Γ, ψ ∨ ϕ
(∨l)

Γ, ϕ(a)

Γ,∀x ϕ(x)
(∀), where a does not occur free in Γ

Γ, ϕ(t)

Γ,∃x ϕ(x)
(∃)

Γ, ϕ Γ,¬ϕ
Γ

(Cut)

It can be shown that a sequent Γ is provable in Tait’s calculus iff the formula
∨

Γ is provable in
the predicate calculus PC. The cut-elimination theorem states that there is an effective procedure
transforming a derivation of a sequent Γ in Tait’s calculus to a derivation of Γ in which there are
no applications of the Cut rule. The advantage of cut-free proofs is that they have the so-called
subformula property stating that every formula occurring in the proof is a subformula of a for-
mula in the last sequent. Therefore a cut-free proof of a Πn-formula consists only of Πn-formulas.
The cut-elimination procedure produces a proof whose size can be roughly bounded by an upper
bound of order 2xcn, where x is the size of the original proof, n is its cut-rank and c is some
constant. This allows us to formalize in EA+ the usual inductive proof of the cut-elimination
theorem.

Before we continue, we leave this remark which will let us make use of Tait’s Calculus later
on:

Remark 3.2.1. If EA ⊆ T and ψ ∈ Σn is without free variables, where T ` ψ and U is a
subtheory of T , then

T ` Πn-RFN(U + ψ)↔ Πn-RFN(U)

Proof. Let ϕ ∈ Πn which without loss of generality has at most one free variable, then since
ψ → ϕ is a Πn formula,

T ` ∀x
(
�U+ψϕ(ẋ)→ ϕ(x)

)
↔
(
ψ → ∀x

(
�U (ψ → ϕ(ẋ))→ ϕ(x)

))
↔ ∀x

(
�U (ψ → ϕ(ẋ))→ (ψ → ϕ(x))

)
And therefore, T ` Πn-RFN(U) → Πn-RFN(U + ψ). The other direction comes from the fact
that if U1 ⊆ U2, then T ` �U1ϕ(ẋ)→ �U2ϕ(ẋ).

3.3 Induction schemata and reflection
Now we can safely state the following two main theorems giving us the relationship between EA
and the IΣn theories via partial reflection principles.

Theorem 3.3.1. Provably in EA we have that IΣn ⊆ EA + 〈n+ 1〉>.

Proof. Let ϕ(x, y1, . . . , yl) ∈ Σn be a formula of l parameters. By ψ(y1, . . . , yl) we will denote
the Πn+1 formula:

ϕ(0, y1, . . . , yl) ∧ ∀x
(
ϕ(x, y1, . . . , yl)→ ϕ(x+ 1, y1, . . . , yl)

)
.
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Then, through external induction, we have that for every k,m1, . . .ml ∈ N, there is a proof
bounded by an elementary formula; EA ` ψ(m1, . . . ,ml) → ϕ(k,m1, . . . ,ml). As such, the
upper bound allows us to formalize the proof in EA by making use of ∆0-induction as the
replacement of the external one. This results in:

EA ` ∀x y1, . . . , yl �
(
ψ(ẏ1, . . . , ẏl)→ ϕ(ẋ, ẏ1, . . . , ẏl)

)
,

whose proof is also bound by an elementary formula. Now, since ψ(ẏ1, . . . , ẏl)→ ϕ(ẋ, ẏ1, . . . , ẏl)
is a Σn+1 formula, we can make use of the reflection instance for it in 〈n+ 1〉>. Whence,
EA + 〈n+ 1〉> ` ∀x y1, . . . yl

(
ψ(y1, . . . , yl)→ ϕ(x, y1, . . . , yl)

)
which is equivalent to the induc-

tion instance for ϕ.
By parametrizing the formula ϕ through the use of a truth formula TrueΣn , we finally end
up with a proof bound by an elementary formula of EA + 〈n+ 1〉> ` IΣn which implies that
EA ` �

(
〈n+ 1〉> → IΣn

)
.

The reverse direction also holds true, however as the proof of this is done with the use of
cut-elimination, this means that it is provable in EA+.

Theorem 3.3.2. Provably in EA+, we have IΣn ≡ EA + 〈n+ 1〉>.

Proof. To prove Σn+1-RFN(EA) in IΣn, we have by Remark 3.2.1 and since EA has a finite
Π2-axiomatization (over PC), that it is sufficient to prove Σn+1-RFN(PC). The proof of this fact
can be found in [2] and we will omit it here.

As an immediate consequence we obtain:

Corollary 3.3.3. Provably in EA+, we have PA ≡ EA + RFN(EA).

And by using Proposition 2.4.12 and its Corollary,

Corollary 3.3.4. For every natural number n,

(i) IΣn is not contained in any consistent extension of EA of complexity Σn+2.

(ii) PA is not contained in any consistent extension of EA of bounded arithmetical complexity.

We will end this chapter with a theorem mentioning a connection between partial uniform
reflection and the partial metareflection rule.

Definition 3.3.5. Given a c.e. theory T , the metareflection rule over T is the rule

RRn(T ) :
ϕ(~x)

〈n〉Tϕ(~̇x)
.

By Γ-RRn(T ), where Γ is a complexity class of formulas, we denote the above rule with ϕ restricted
to Γ-formulas.

The following theorem will play a role in the next paragraph as we will begin with iterating
reflection principles. We will leave it here without proof though one can be found in [2].

Theorem 3.3.6. Let T ⊇ EA be a c.e. theory and U be any Πn+2 extension of EA. Then
U + Σn+1-RFN(T ) is Πn+1-conservative over U + Πn+1-RRn(T ).
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Chapter 4

Provability logics for ordinal
analysis

In previous paragraphs, we hinted at an extension of GL by considering a range of modalities
and deciding on axioms expressing the interplay between them. This is, of course, referring to
the polymodal provability logic GLP –introduced by Japaridze ([12]). GLP has proven itself very
versatile, finding interpretations in Turing progressions, reflection schemata, varying provability
interpretations. If we further restrict ourselves to specific elements of GLP –the so-called worms–
we will also find interpretations as words of an infinite alphabet, special fragments of arithmetic,
worlds in a special model for the closed fragment of GLP, and also ordinals. This versatility
makes it a very valuable tool to have at our disposal.

4.1 Worms in the Polymodal provability logic
Definition 4.1.1. For Λ an ordinal, the logic GLPΛ is the propositional modal logic with a
modality [α] for every α < Λ. Each [α] modality satisfies the GL identities given by all tautologies,
distribution axioms [α](ϕ → ψ) → ([α]ϕ → [α]ψ), Löb’s axiom scheme [α]([α]ϕ → ϕ) → [α]ϕ
and the rules modus ponens and necesitation:

ϕ

[α]ϕ
.

The interaction between modalities is governed by two schemes:

J1 Monotonicity: [β]ϕ→ [α]ϕ, for every β < α < Λ;

J2 Negative introspection: 〈β〉ϕ→ [α]〈β〉ϕ, for every β < α < Λ.

Apart from the customary convention in the literature that GLP denotes GLPω we shall
sometimes use a different convention where the context should make clear which is meant.

Notation 4.1.2. By GLP we will denote the class-sized logic that has a modality [α] for every
ordinal α, along with the corresponding axioms and rules.

Of course when expressing GLP in EA, the ordinals existing will be restricted by the ordinal
notation system that we use. A primary representation of GLPω goes as follows:
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As with the GLn, consider an arithmetical interpretation which we extend to a function
(·)∗T , mapping formulas of the language of GLPω to arithmetical ones by translating [n] to the
n-provability [n]T and preserving the other logical operators as before. Then arithmetical sound-
ness follows; with J2 being derived from Σn-completeness.

A weaker logic that is related to GLP is the modal logic of the so-called reflection calculus
RC. The logic RC only allows the logical connectives ∧ and 〈α〉 and the only other symbols in
the alphabet are propositional variables and >. The formulas formed as such are called strictly
positive. Theorems of RC take the form ϕ `RC ψ where ϕ and ψ are strictly positive. The logic
RC is related to GLP via the theorem [3], [8]

Theorem 4.1.3. For strictly positive ϕ and ψ we have:

ϕ `RC ψ if and only if GLP ` ϕ→ ψ.

The results of GLP that we will be using in later chapters can all be expressed in the reflection
calculus via the above theorem.

A closed formula for GLP is simply one without any propositional variables. Therefore,
closed formulas are characterized by > being their only atomic sub-formula. Within the closed
fragment of GLP there is a particular class of terms which are called worms and they are iterated
consistency statements.

Definition 4.1.4 (Worms). The class of worms of GLP is denoted by W and defined inductively
as follows:

• > ∈W;

• If A ∈W ⇒ 〈ξ〉A ∈W.

We will be later be putting two restrictions on the classes of worms, one expressing a minimum
that the ordinals of worms have to equal or exceed and the other expressing an upper bound on
the ordinals. Specifically we will denote by WΛ

α the class of worms defined inductively as:

• > ∈WΛ
α;

• If A ∈WΛ
α ⇒ 〈ξ〉A ∈WΛ

α, where α ≤ ξ < Λ.

Naturally, we will omit the subscript or superscript when not considering that restriction. So W0

will be the same as W. WΛ

α will denote the class of worms WΛ
α modulo GLP-provable equivalence.

Notation 4.1.5. We will be using the lower-case letters of the Greek alphabet α, β, γ, ... to denote
ordinals. Worms will be denoted by the upper-case Latin characters A,B,C, . . .. Finally, we will
be omitting the 〈·〉 at times, writing αϕ instead of 〈α〉ϕ –for instance.

We will be treating worms as finite words with the ordinals as their alphabet and will view
them as growing towards the left. Then the empty word e = > and the concatenation of worms
will be defined recursively as >A = eA = A and (ξB)A = ξ(BA). The length of a worm will
also indicate by this definition the number of modalities present and so by the classical inductive
definition we have |>| = 0, and |〈ξ〉A| = |A| + 1. The n-times concatenation of a worm A will
be denoted by An, defined as usual: A0 = > and An+1 = AAn.

Definition 4.1.6 (<,<α). We define the relation <α on W×W by

A <α B :⇔ GLP ` B → 〈α〉A.

Moreover, < will simply denote <0.
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The orderings <α will be referred to as the α-consistency orderings. We know (see [1], [4])
that in each class of worms Wα, the relation <α is a linear pre-order; so given A,B ∈Wα then
either A <0 B, A ≡GLP B or B <0 A. Which in turn implies that in Wα –since the relation is
well defined as A <α B ⇔ A <α B– the relation <α is a linear ordering. More specifically, we
have by [1] and [4]:

Theorem 4.1.7. Let α be an ordinal, then 〈Wα, <α〉 is isomorphic to the class of all ordinals
with the standard < ordering on them.

Under this ordering, > is the minimal element in every 〈Wα, <α〉 and every worm A ∈ Wα

has as its immediate <α-successor, the worm αA (see [9]).
Before moving further, we will present some well known results in GLP:

Lemma 4.1.8. The following formulas are derivable in GLP:

(i) If α ≤ β and A ∈W, then GLP ` βαA→ αA;

(ii) If α < β, then GLP ` βϕ ∧ αψ ↔ β(ϕ ∧ αψ);

(iii) If A ∈Wα+1, then GLP ` AC ∧ αB ↔ A(C ∧ αB);

(iv) If A ∈Wα+1, then GLP ` A ∧ αB ↔ AαB.

The proof of which follows successively from the axioms of GLP, details for which can be
found in [2] and [4]. With this lemma in our tool-belt, we can prove the following proposition
which will be of use to us later as we present worm battles.

Proposition 4.1.9. For every natural number n and every ordinal α, it holds that

GLP ` 〈α〉n+1> → AB,

where A ∈Wα, |B| ≤ n and B ∈Wα+1.

Proof. We will prove this fact through two external inductions, first we will show that for every
n and B satisfying the above conditions, GLP ` 〈α〉n> → B. If n = 0, then it is clear. Assume
now that it holds for n = k. Let B ∈Wα+1 with |B| ≤ k and let β ≤ α, then

GLP ` 〈α〉k+1> → 〈α〉|B|+1>, (by at most k applications of the 4 axiom)

→ 〈α〉〈α〉|B|>
→ 〈α〉B
→ 〈β〉B.

Now we will perform an external induction on |A|. If A=β for some β < α, then we fall in the
case of the previous induction. If A=〈β〉C, where β < α and GLP ` 〈α〉n+1> → CB, then

GLP ` 〈α〉n+1> → (CB ∧ 〈α〉>)

→ 〈α〉CB, by Lemma 4.1.8.
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4.2 Fundamental sequences of worms
Now we will present a way to decompose worms into smaller ones. In [9] this decomposition finds
most of its use in the various properties that displays on worms as well as through its ability to
present inductive arguments on them. For our purposes, we will make most use of it as a means
to produce fundamental sequences of a worm, –typically of Wω– on which we can then perform
induction with the worm ordering as a basis.

Definition 4.2.1 (head, remainder). The α-head hα of A is inductively defined on the length of
the worm:

• hα(>):=>;

• if A = 〈β〉B with β < α, then hα(〈β〉B):=>;

• if A = 〈β〉B with β ≥ α, then hα(〈β〉B):=〈β〉hα(B).

Likewise, the α-remainder rα of A is defined as:

• rα(>):=>;

• if A = 〈β〉B with β < α, then rα(〈β〉B):=〈β〉B;

• if A = 〈β〉B with β ≥ α, then rα(〈β〉B):=rα(B).

The head h and remainder r of a worm A are then defined as:

• h(>)=r(>):=>;

• if A = 〈α〉B, then h(〈α〉A):=hα(〈α〉A) and r(〈α〉A):=rα(〈α〉A).

Now the sequences that we mentioned, we will produce with the assistance of the functions
between formulas of the language of GLP, Qαk . Their notation follows that of [2] and they are
defined inductively as:

• Qα0 (ϕ):=〈α〉ϕ;

• Qαk+1(ϕ):=〈α〉
(
ϕ ∧Qαk (ϕ)

)
.

A first observation we can make is that

GLP ` 〈α+1〉ϕ→ Qαk (ϕ) (4.1)

for every formula ϕ and natural number k. This is done by induction on k with the base case
following from J1, while on the induction step, we have:

GLP ` 〈α+1〉ϕ→
(
Qαk (ϕ) ∧ 〈α+1〉ϕ

)
, by the induction hypothesis

→ 〈α+1〉(Qαk (ϕ) ∧ ϕ), by Lemma 4.1.8
→ Qαk+1(ϕ).

Next up, using the α-head and remainder functions, we can for every A ∈ W, translate the
produce of Qαk (A) into worms.

Lemma 4.2.2. If A,B ∈W and A = 〈α+1〉B then for every k ∈ N we have that,

GLP ` Qαk (B)↔ (αhα+1(B))k+1rα+1(B).
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Proof. We reason by induction on k. The base case is trivial as αhα+1(B)rα+1(B) = αB. For
the induction step we have by the definition of the α+1-head and remainder functions and by
the induction hypothesis that:

GLP ` Qαk+1(B)↔ α
(
hα+1(B)rα+1(B) ∧ (αhα+1(B))k+1rα+1(B)

)
↔ α

(
hα+1(B)(rα+1(B) ∧ (αhα+1(B))k+1rα+1(B))

)
, by Lemma 4.1.8(iii)

↔ (αhα+1(B))k+2rα+1(B), by Lemma 4.1.8(i).

From what we have so far, we can see that the Qαk function will only be directly useful as a
means to describe fundamental sequences of worms whose last modality is a successor ordinal,
so of the type A = 〈α+1〉B. However we can easily work around this issue once we fix some
fundamental sequences for our ordinals of countable cofinality.

Definition 4.2.3. For every A ∈W and k ∈ N, we define AJkK as follows:

• If A = >, then AJkK = >.

• If A = 0B, then AJkK = B.

• If A = 〈α+1〉B, then AJkK = (αhα+1(B))k+1rα+1(B), which is the expression of Qαk (B)
from the previous lemma.

• If A = 〈λ〉B where λ is a limit ordinal, then AJkK = 〈λ[k]〉B. Here λ[k] corresponds to the
k-th element of the fundamental sequence of λ.

For the last case, different choices could be made. Perhaps a more uniform option would be
following the structure of the successor stage.

Notation 4.2.4. For every A ∈W and k ∈ N, we define A�k� as follows:

• If A = 〈λ〉B where λ is a limit ordinal, then A�k� = (λ[k]hλ(B))k+1rλ(B). As before,
λ[k] corresponds to the k-th element of the fundamental sequence of λ.

• Otherwise, A�k� = AJkK.

Either choice does not face any further difficulties in its representation within arithmetical
theories T ⊇ EA for elementary ordinal notation systems.

Corollary 4.2.5. For any k ∈ N and A ∈W with A 6= >, we have AJkK <0 A.
Additionally, A�k� ≤0 AJk+1K ≤0 A�k+1�.

Proof. We already know from (4.1) that:

GLP ` 〈α+1〉B → Qαk (B).

So by Lemma 4.1.8, for A = 〈α+1〉B,

GLP ` A→ αAJkK
→ 0AJkK.

The limit case follows from J1, while the more complicated alternative is done by also using the
result for the successor stages.
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Now let A = λB where λ is a limit ordinal and we aim to prove that A�k� <0 AJk+1K.
Then, AJk+1K = 〈λ[k+1]〉B ≥ 〈λ[k] + 1〉B for which, by the first step of this corollary and by
the definition of A�k�,

〈λ[k] + 1〉B > (〈λ[k] + 1〉B)JkK = A�k�.

The proof of AJk+1K ≤0 A�k+1� is done by multiple applications of the axioms J1 and the 4
axiom.

We will return to this distinction in choices for the limit step much later and for now, we will
be using the AJkK notation for fundamental sequences of worms.

Let us now restrict ourselves to GLPω as we will translate worms into arithmetics in order
to present the famous reduction property. We remind that the arithmetical interpretation (·)∗T
we will omit. Additionally, we remind that by U ≡n V we mean that the theories are mutually
Πn+1-conservative. We will use the proof from [2] for the following:

Proposition 4.2.6 (Reduction Property). Let T be a Πn+2-extension of EA. Then, for all ϕ
of the language of GLPω, over T ,

{〈n+ 1〉Tϕ} ≡n {Qnk (ϕ) : k < ω}.

Proof. We will make use of Theorem 3.3.6 by taking U = T and T = T + ϕ. The rule
Πn+1-RRn(T + ϕ) is equivalent to

ψ

〈n〉T
(
ϕ ∧ ψ

), ψ∈Πn+1.

Then the theory T + {Qnk (ϕ) : k < ω} is the closure of T + 〈n〉ϕ under this rule as T +Qn2 (ϕ) `
〈n〉(ϕ ∧ ψ), for ψ ∈ Πn+1 with T + 〈n〉ϕ ` ψ. Now, if T +Qnk (ϕ) ` ψ, then

T +Qnk+1(ϕ) ` 〈n〉T
(
ϕ ∧Qnk (ϕ)

)
` 〈n〉T

(
ϕ ∧ ψ

)
.

Therefore, all Πn+1-consequences of an element 〈n+ 1〉ϕ of the language of GLPω of complexity
Πn+2, are generated by Πn+1-elements Qnk (ϕ).

Due to the application of Theorem 3.3.6, this proof can be expressed within EA+ and so the
same hold for this equivalence. A corollary of this, we will also refer to as the reduction property
whenever we make use of this later. Once again, the proof is taken from [2].

Corollary 4.2.7 (Reduction Property). If m ≤ n, then

EA+ ` 〈m〉〈n+1〉ϕ↔ ∀ k 〈m〉Qnk (ϕ)

Proof. EA+ is a Π2 extension of EA and therefore, a Πn+2 extension of EA for every natural
number n. In addition, the reduction property is established within EA+. Therefore,

EA+ ` “{〈n+ 1〉EA+ϕ} ≡m {Qnk (ϕ) : k < ω}”,

for every m < n. So over EA+, a Πm+1 sentence is provable from 〈n+ 1〉ϕ if and only if it is so
from Qnk (ϕ), for some k. This implies

EA+ ` 〈m〉EA+〈n+1〉EA+ϕ↔ ∀ k 〈m〉Qnk (ϕ),

which with the assistance of Remark 3.2.1, completes our proof.
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4.3 More on the ordering relation
Let us now provide a slightly more detailed description of the connection between worms and
ordinals. We will do so by following the ideas in [9] where the omitted proofs of the theorems
and lemmata that we will presenting can be found.

We start by introducing an operation on worms that shifts all the modalities in a worm by a
constant amount. We will define a shift to the right and one to the left. To define the shift to
the left, we will need this basic result of ordinal arithmetic.

Lemma 4.3.1. If α < β are ordinals, then there exists a unique γ such that α+ γ = β.

We will denote this unique γ by −α + β and this is the operation that we use to define the
shift to the left on worms.

Definition 4.3.2 (α↑A and α↓A). Let A ∈W and α an ordinal. The α-right shift of A, denoted
by α↑A is the worm that is obtained by simultaneously substituting each β that occurs in A by
α+ β.
For worms A ∈ Wα, we define the α-left shift of A, denoted as α↓A, by simultaneously substi-
tuting each β that occurs in A with −α+ β.

At first glance, these might seem as somewhat unnatural types of operations to be performing
on words. In the case of worms however, they have some really nice properties in relation to the
orderings of worms. The proof of the following can be found in [9]:

Lemma 4.3.3. The map α↑ is an isomorphism between 〈W, <〉 and 〈Wα, <α〉.

A natural expansion of the right shift is having it apply on all formulas of GLP. Let α be an
ordinal. We define the α-right shift inductively on the structure of the formulas of the language
of GLP:

• α↑> := >;

• α↑(ϕ→ ψ) := α↑ϕ → α↑ψ;

• α↑〈β〉ϕ := 〈α+β〉 (α↑ϕ).

Then GLP is stable under right shift. More specifically, we have the following:

Remark 4.3.4. Assume that GLPΛ ` ϕ and let D be the Hilbert proof witnessing this fact. Let
β be the greatest ordinal occurring in some modality in a formula of D. Then for every α such
that α+ β < Λ, GLPΛ ` α↑ϕ.

Therefore, given an ordinal Λ, and α such that ∀β<Λ (α+β < Λ), it holds that if GLPΛ ` ϕ,
then GLPΛ ` α↑ϕ.

Proof. We just need to notice that the axioms of GLPΛ remain axioms of it after any right shift
application where the modalities remain smaller than Λ. Same thing applies for the rules. The
rest of the proof follows by a simple induction on the proof length.

Having established these tools, we can direct our attention into defining the basic function for
ordering worms. We know by [9] that Theorem 4.1.7 implies that the orderings <α on Wα×Wα

are well founded. So we can consider the following mapping:
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Definition 4.3.5. For every ordinal α, we define oα : Wα → On as:

oα(x) = sup
y<αx

(oα(y) + 1),

where sup(∅) = 0. We will denote o0 as just o.

The various oα can be reduced to o0 in the following manner:

Lemma 4.3.6. For A ∈Wα we have oα(A) = o(α ↓ A).

Now we will present set of functions on ordinals, similar to the Veblen function and introduced
in [9]. It will help us into making the o mapping more tangible.

Definition 4.3.7 (Worm enumerators σα). We define σα : On → On as the function that
enumerates the <-order types of the worms in Wα in increasing order.

All the σα can then be determined as follows:

Theorem 4.3.8. For ordinals α and β, the values σα(β) are determined by the following recur-
sion.

1. σα(0) = 0, for all α ∈ On;

2. σ1(β) = −1 + ωβ;

3. σα+β = σασβ;

4. σα(λ) = supβ<λ σ
α(β) for limit ordinals λ;

5. σλ(β + 1) = supη<λ σ
η(σλ(β) + 1) for λ an additively indecomposable limit ordinal.

Finally, we can provide in turn a recursive definition for the o mapping, using the worm
enumerators:

Theorem 4.3.9. Given worms A,B and an ordinal α,

1. o(>) = 0;

2. o(A0B) = o(B) + 1 + o(A);

3. o(α ↑ A) = σαo(A).

Let us finish this chapter with an example:
Consider the worm 210ω. Then o(210ω) = o(ω) + 1 + o(21) = σω(o(0)) + 1 + σ1o(10). Starting
with the σ1o(10), we can determine it via the recursive definition from Theorems 4.3.8 and 4.3.9,
as follows:

σ1o(10) = σ1
(
o(>) + 1 + o(1)

)
= σ1

(
1 + σ1o(0)

)
= σ1

(
1 + σ1(1)

)
= −1 + ω1+(−1+ω) = ωω.

As for σω(o(0)) = σω(1), we know that σ1(1) = ω. Consequently σ2 = σ1σ1 = ωω, σ3 = σ1σ2 =
ωω

ω

and so on. Thus σω1 = supη<ω σ
η
(
σω(0) + 1

)
= supη<ω σ

η(1) = ε0.
So wrapping things up, we have that o(210ω) = σω(o(0)) + 1 + σ1o(10) = ε0 + ωω.
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Chapter 5

Transfinite induction versus
transfinite reflection

One connection between worms and arithmetics can be seen through rules of transfinite induction
over the ordering of worms.

Definition 5.0.1. By TIR(Π1, <0�WΛ) we denote the following inference rule expressing trans-
finite induction along the ordering of <0 for Π1-formulas ϕ:

∀A∈WΛ
(
∀B<0A ϕ(B)→ ϕ(A)

)
∀A∈WΛ ϕ(A)

.

5.1 Consistency and transfinite induction
We shall prove the consistency of IΣn for every n ∈ ω by one application of the transfinite
induction rule TIR(Π1, <0�Wn+1) over EA+. The first proof of the consistency of PA from
transfinite induction was obtained by G. Gentzen. Later there were fine tuned results. The proof
of the following is based on the proof of

[EA+,TIR(Π1, <0�Wω)] ` Con(PA),

that is found in [2].

Theorem 5.1.1. [EA+,TIR(Π1, <0�Wn+1)] ` Con(IΣn)

Proof. We will denote by A∗ the arithmetical interpretation (A)∗EA of A ∈Wn+1. The function
(·)∗, as a mapping between Gödel numbers of formulas, is elementary and hence definable by a
(pseudo)-term1 in EA. Additionally, we shall write ♦ instead of ♦EA.

We have by Theorem 3.3.1 that

IΣn ⊆ EA + 〈n+ 1〉>,

a proof of which is formalizable in EA and thus we have

EA ` ♦ 〈n+ 1〉> → Con(IΣn). (5.1)

1We shall not distinguish between actual terms of EA and what Boolos calls pseudo-terms in [6]. These pseudo
terms are functions with an elementary graph that behave exactly as terms were we to add a constant for the
function to our language.
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We will first prove that ∀A∈Wn+1 ♦A∗ using the transfinite induction rule along <0�Wn+1

over EA+ with the Π1 induction formula being ♦A∗ (A being the induction variable). We claim
that

EA+ ` ∀A∈Wn+1 (∀B<0A ♦B
∗ → ♦A∗).

Reasoning in EA+, assume that we have ∀B<0A ♦B∗ for arbitrary A ∈Wn+1. This leads us to
two cases:

• If A=0B then by our assumption ♦B, which then by use of RFNΣ1
(EA) in EA+ gives

♦♦B∗.

• If A= 〈m+ 1〉B (with m<n) then, since for any k we have AJkK<0A, we have ∀ k ♦AJkK∗
by the inductive hypotheses. By the reduction property we conclude

EA+ ` ♦A∗ ↔ ∀ k ♦AJkK∗.

Hence ∀ k ♦AJkK∗ implies ♦A∗.

Thus ∀A∈Wn+1 ♦A∗ which means that for all A<0〈n+ 1〉>∗ we have ♦A∗ and hence since
AJkK<0A, we have ∀ k ♦AJkK. Once again by use of the reduction property, we conclude with
♦(〈n+ 1〉>)∗. Therefore

[EA+,TIR(Π1, <0�Wn+1)] ` ♦(〈n+ 1〉>)∗

` Con(IΣn), by (5.1) .

The other inclusion however is of more interest to us. We will start by presenting this slightly
more generalized result. The proof is based on the corresponding one of

T + Con(PA) ⊇ [T,TIR(Π1, <0�Wω)],

found in [1]. This theorem is also mentioned there.

Theorem 5.1.2. If T ⊇ EA is axiomatized by a single Πn-sentence and T ⊆ IΣn, then we have
that T + n-Con(IΣn+k) contains [T,TIR(Πn+1, <0�Wk+1)].

Proof. Assume that ϕ ∈ Πn+1 and

T ` ∀A∈Wn+k+1
n

(
∀B<nA ϕ(B)→ ϕ(A)

)
We are going to show that T +n-Con(IΣn+k) ` ∀A∈Wn+k+1

n ϕ(A). Since the n-Con of a theory
is equivalent to Πn+1-reflection for the same theory, applying this to T +AT we obtain

EA ` 〈n〉TAT → ∀B (�T+ATϕ(B)→ ϕ(B)).

Thus, we infer

T ` ∀B<nA �T (〈n〉TBT → ϕ(B))→
(
〈n〉TAT → ∀B<nA �T (AT → ϕ(B))

)
→
(
〈n〉TAT → ∀B<nA ϕ(B)

)
→
(
〈n〉TAT → ϕ(A)

)
Then via reflexive induction on T , we obtain

T ` ∀A ∈Wn+k+1
n

(
〈n〉TAT → ϕ(A)

)
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And therefore T + ∀A ∈ Wn+k+1
n 〈n〉TAT ` ∀A ∈ Wn+k+1

n ϕ(A). Now notice that by Remark
3.2.1 it is clear that since IΣn+k ` 〈n+ k+ 1〉EA>, then IΣn+k ` 〈n+ k+ 1〉T> and henceforth,
by Proposition 4.1.9 we have that for every A∈Wn+k+1, IΣn+k ` AT . Thus T +n-Con(IΣn+k) `
∀A∈Wn+k+1

n ϕ(A).

The proof has still some room to generalize the result further however we will not explore
that since after private correspondence with Pakhomov, we have been provided with something
even more general. The remainder of this chapter is in large written by Joosten after said
correspondence with Pakhomov.

5.2 The main theorem
We shall fix a well-behaved ordinal notation system and tacitly assume that all quantification
over ordinals is restricted to ordinals from this fixed notation system. Further, we agree that
any iteration of reflection contains the base theory:

Definition 5.2.1. Given an c.e. base theory T , we define

Πn−Rα(T ) := T + {�⋃
β<α Πn−Rβ(T )π → π | π ∈ Πn}.

Here is the main theorem to be proven as stated and proof-sketched by Fedor Pakhomov in
private mail correspondence:

Theorem 5.2.2. Let T be a theory containing EA that is axiomatised by a single Πn+1 sentence
with n ∈ ω. For n > 0 and α from our notation system we have

Πn−Rα+1(T ) ≡ [T,TIR
(
Πn, ω·(1+α)

)
].

Moreover, this theorem is formalisable in EA+. In the next chapters we comment on the
details.

5.3 Reflection proves induction
We first focus on the inclusion Πn−Rα+1(T ) ⊇ [T,TIR

(
Πn, ω·(1+α)

)
] proving something slightly

stronger. First we shall run the proof in an informal setting. Then we see how the proof can be
formalised in EA.

5.4 The non-formal inclusion
To see that the statement we prove is slightly stronger we first observe an easy lemma.

Lemma 5.4.1. For T being any c.e. theory we have for any α > β from our notation system
that

Πn−Rα(T ) ` Πn−Rβ(T )

To prove our inclusion we shall observe that Kleene’s rule implies reflection also when the
rules and reflection are restricted to the same complexity class.

Lemma 5.4.2. Given any c.e. theory T containing EA, we have for n≥1 that restricted reflection

T + {∀x
(
�Tπ(ẋ)→ π(x)

)
| π ∈ Πn} is equivalent to adding the rule

∀x �Tπ(ẋ)

∀xπ(x)
for π ∈ Πn to

T .
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Proof. We consider the proof of Proposition 2.1 from [2] and see that this readily can be adapted
to our purposes.

We can also formalise the previous Lemma inside EA:

Lemma 5.4.3. Given any c.e. theory T containing EA, inside EA: we have for n≥1 that
restricted reflection T + {∀x

(
�Tπ(ẋ) → π(x)

)
| π ∈ Πn} is equivalent to adding the rule

∀x �Tπ(ẋ)

∀xπ(x)
for π ∈ Πn to T .

Proof. We consider the proof of Proposition 2.1 from [2] and see that this readily can be adapted
to our purposes.

We now state and prove the slight strengthening of first inclusion.

Lemma 5.4.4. For T being any c.e. theory containing EA, we have for any α from our notation
system that

Πn−Rα(T ) ` [T,TIR
(
Πn, ω·α

)
]

Proof. The proof goes by transfinite induction on α. Although not strictly necessary, we present
the base case with quite some detail so that the underlying mechanism of the proof becomes
clear. Since for α = 0 there is nothing to prove, the base case consists of α = 1.

We are to transform a proof π in [T,TIR
(
Πn, ω·α

)
] into a proof in Πn−Rα(T ). Since all steps

in π are from T and since Πn−Rα(T ) contains T we only have to see that the one application
of the transfinite induction rule can be mimicked inside Πn−Rα(T ). Thus, we assume that for
some ϕ ∈ Πn

T ` ∀n<ω
(
∀m<nϕ(m)→ ϕ(n)

)
(5.2)

and set out to prove that Πn−R1(T ) ` ∀n<ω ϕ(n). From (5.2) we obtain

T ` �T∀n<ω
(
∀m<nϕ(m)→ ϕ(n)

)
. (5.3)

Consequently, we get inside T that �Tϕ(0). This is tantamount to �T∀m<1ϕ(m) so that
combining that with (5.3) once more we obtain �Tϕ(1) and in particular �T∀m<2ϕ(m). We
can continue doing this and since the so obtained proof of �Tϕ(n) grows elementary in n and
since T contains EA we may conclude ∀n<ω�Tϕ(n). Now by Kleene’s rule we obtain ∀n<ωϕ(n)
as was to be shown for the base case.

We now proceed to the successor case α + 1. The proof is fairly similar to the base case.
Instead of using (5.3) to conclude �Tϕ(0) we now use it together with the inductive hypothesis
to conclude �Πn−Rα(T )ϕ(ω · α) after which we proceed as before. Let us see the details.

So, we assume that
T ` ∀β<ω·(α+1)

(
∀γ<β ϕ(γ)→ ϕ(β)

)
(5.4)

and need to prove that Πn−Rα+1(T ) ` ∀β<ω·(α+1) ϕ(β).
Our inductive hypothesis tells us

Πn−Rα(T ) ` ∀β<ω·α ϕ(β)

so that we may conclude
T ` �Πn−Rα(T )∀β<ω·α ϕ(β) (5.5)

From our assumption (5.4) we conclude T`�T∀β<ω·(α+1)
(
∀γ<β ϕ(γ)→ ϕ(β)

)
whence

T ` �Πn−Rα(T )∀β<ω·(α+1)
(
∀γ<β ϕ(γ)→ ϕ(β)

)
.
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This can be combined with (5.5) to conclude T ` �Πn−Rα(T )∀β<ω·α+1 ϕ(β). As before, we now
grow little by little in an elementary fashion our proof. Since it grows elementary we conclude

T ` ∀n�Πn−Rα(T )∀β<ω·α+ n ϕ(β)

whence by reflection (Kleene’s rule) we conclude the required

Πn−Rα+1(T ) ` ∀n∀β<ω·α+ n ϕ(β)

which concludes the successor case.
The limit case is easy but we include it for mere completeness. So, suppose for some limit

ordinal λ we have
T ` ∀β<ω·λ

(
∀γ<β ϕ(γ)→ ϕ(β)

)
and need to prove that Πn−Rλ(T ) ` ∀β<ω·λ ϕ(β). To this end, we fix some fundamental
sequence so that provably in T we have {λi}i∈ω < λ and ∪i∈ωλi = λ. Thus, we reason in
Πn−Rλ(T ) and fix β0 < ω·λ arbitrary. We pick i ∈ ω so that β0 < ω·λi. Even though β0 may
be non-standard, the λi is standard so that by the IH we conclude Πn−Rλi(T ) ` ∀β<ω·λi ϕ(β).
In particular Πn−Rλ(T ) ` ∀β<ω·λi ϕ(β) whence Πn−Rλ(T ) ` ϕ(β0) as was to be shown.

5.5 The inclusion formalised
In this section we shall see how our previous proof can be mimicked inside EA. It should come
as a surprise that the proof can be formalised in a theory as weak as EA since we used transfinite
induction in our previous argument. In our formalisation, we will replace transfinite induction
by a trick that was first employed by Schmerl in [20]. We call this trick reflexive induction. The
following lemma and proof is taken from [14]

Theorem 5.5.1 (Reflexive induction). Let T be any theory capable of coding syntax. If T `
∀α
(
�T
(
∀β < α̇ ϕ(β)

)
→ ϕ(α)

)
, then T ` ∀αϕ(α).

Proof. We shall see that from the assumption

T ` ∀α
(
�T
(
∀β<α̇ ϕ(β)

)
→ ϕ(α)

)
we get T ` �T∀αϕ(α)→ ∀αϕ(α) so that the conclusion T ` ∀αϕ(α) follows by Löb’s Theorem.

Thus, we reason in T , pick α arbitrary, we assume �T∀αϕ(α), or equivalently �T∀θϕ(θ),
and set out to prove ϕ(α). But using �T

(
∀β<α̇ ϕ(β)

)
→ ϕ(α) in the last step of the following

reasoning, we clearly have

�T∀θϕ(θ) → �T∀θ∀β<θ ϕ(β)

→ ∀θ�T∀β<θ̇ ϕ(β)
→ �T∀β<α̇ ϕ(β)
→ ϕ(α).

The name reflexive induction is really a misnomer since the trick also works for non-wellfounded
orderings and really boils down to an application of Löb’s rule.
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Notation 5.5.2. For formal theories T and U , by “T ` U” we denote the Π2-statement
∀θ
(
�Uθ → �T θ

)
.

Using this notation, we now state and prove the main theorem.

Theorem 5.5.3. EA ` ∀α“Πn−Rα(T ) ` [T,TIR
(
Πn, ω·α

)
]”.

Proof. By reflexive induction it suffices to show that

EA ` ∀α
(
�EA

(
∀β<α̇ “Πn−Rβ(T ) ` [T,TIR

(
Πn, ω·α

)
]”
)
−→

“Πn−Rα(T ) ` [T,TIR
(
Πn, ω·α

)
]”
)
.

To this end, we reason in EA, fix some arbitrary α, assume (this assumption is called the Reflexive
Inductive Hypothesis)

�EA

(
∀β<α̇ “Πn−Rβ(T ) ` [T,TIR

(
Πn, ω·β

)
]”
)

(5.6)

and set out to prove
“Πn−Rα(T ) ` [T,TIR

(
Πn, ω·α

)
]”. (5.7)

The first step in proving (5.7) consists of unfolding the notation defined in Notation 5.5.2. Thus,
our goal is to prove

∀θ
(
�[T,TIR(Πn,ω·α)]θ → �Πn−Rα(T )θ

)
.

Whence, while continuing our reasoning in EA, we fix θ arbitrary and assume

�[T,TIR(Πn,ω·α)]θ. (5.8)

Our goal is to show �Πn−Rα(T )θ. From (5.8) we find a Hilbert-style proof π that is all in T

except from a single application of the rule TIR
(
Πn, ω·α

)
. We see how we can replace this to get

a π′ to witness �Πn−Rα(T )θ. Since (5.7) is trivial in case α = 0 we consider successor and limit
cases.

In case α + 1 we reason as follows. We consider some element in π is of the form
∀β<ω·(α+ 1) ϕ(β) with ϕ ∈ Πn that arose from an earlier entry in π of the form

∀β<ω·(α+1)
(
∀γ<β ϕ(γ)→ ϕ(β)

)
(5.9)

via an application of TIR
(
Πn, ω·(α+1)

)
. Since (5.9) appears in π before any rule-application

not it T we know that �T∀β<ω·(α+1)
(
∀γ<β ϕ(γ) → ϕ(β)

)
. By provable Σ1-completeness we

obtain
�EA�T∀β<ω·(α+1)

(
∀γ<β ϕ(γ)→ ϕ(β)

)
(5.10)

(at this particular place in the not formalised proof we used necessitation instead) and in partic-
ular �EA�T∀β<ω·α

(
∀γ<β ϕ(γ)→ ϕ(β)

)
. Thus, we conclude �EA�[T,TIR(Πn,ω·α)]∀β<ω·α ϕ(β).

We can apply the Reflexive Inductive Hypothesis stated in (5.6) to obtain�EA�Πn−Rα(T )∀β<ω·α ϕ(β).
We combine this with (5.10) n many times to obtain �EA�Πn−Rα(T )∀β<(ω·α+n) ϕ(β). More-
over, we observe that these combinations can be uniformly elementary bounded so that

�EA∀n �Πn−Rα(T )∀β<(ω·α+n) ϕ(β).

We now apply Kleene’s rule in a formalised setting (see Lemma 5.4.3) to obtain

�Πn−Rα+1(T )∀n ∀β<(ω·α+n) ϕ(β),
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which implies the required proof witness π∗ of �Πn−Rα+1(T )∀β<ω·(α+1) ϕ(β). We can intertwine
this π∗ with the original proof π that as we stipulated witnessed �[T,TIR(Πn,ω·α)]θ to obtain the
required π′ that witnesses �Πn−Rα(T )θ. This concludes the successor case.

In case α = λ ∈ Lim we reason similarly. So we consider some element in π is of the form
form ∀β<ω·(λ) ϕ(β) with ϕ ∈ Πn that arose from an earlier entry in π of the form

∀β<ω·λ
(
∀γ<β ϕ(γ)→ ϕ(β)

)
(5.11)

via an application of TIR
(
Πn, ω·λ

)
. So as (5.11) appears in π before any rule applications not in

T we similarly have �T∀β<ω·λ
(
∀γ<β ϕ(γ) → ϕ(β)

)
. To move further, we fix a fundamental

sequence so that �T “{λi}i∈ω < λ” and �T “ ∪i∈ω λi = λ”. Since �T∀ i ∀β<ω·λi
(
∀γ<β ϕ(γ)→

ϕ(β)
)
, it should be clear that then �EA∀ i �T∀β<ω·λi

(
∀γ<β ϕ(γ)→ ϕ(β)

)
. Thus we conclude

�EA∀ i �[T,TIR(Πn,ω·λi)]∀β<ω·λi ϕ(β) which using the induction hypothesis (5.6) gives

�EA∀ i �Πn-Rλi∀β<ω·λi ϕ(β).

In the interest of using the fundamental sequence as before, we move over to T , where we
summarize our progress as

�T∀β0<ω·λ ∃ i
(
β0<λi ∧�Πn-Rλi (T )

∀β<ω·λi ϕ(β)
)
.

Next we simply involve β0 as in �T∀β0<ω·λ ∃ i
(
β0<λi ∧ �Πn-Rλi (T )

ϕ(β0)
)
and proceed by

applying Kleene’s rule in a formalized setting (see Lemma 5.4.3) to arrive at

�Πn-Rλ(T )∀β0<ω·λ ∃ i
(
β0<λi ∧ ϕ(β0)

)
,

which simplifies into �Πn-Rλ(T )∀β0<ω·λ ϕ(β0), with a proof witness π∗. As before, we intertwine
this π∗ with the original proof π to obtain the required π′, witnessing �Πn-Rα(T )θ.

The inclusion Πn−Rα+1(T ) ⊆ [T,TIR
(
Πn, ω·(1+α)

)
], we omit and we will present it on future

work. The lack of its presence doesn’t affect the rest of this thesis.
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Chapter 6

Worm battles

Here we shall present a simple statement of combinatorial nature that is true yet independent of
Peano Arithmetic and is motivated by the corresponding provability point of view. The name of
this statement stems from its similarities to the well known Hercules and Hydra game of Kirby
and Paris where here worms are the analogues to hydras [15].

6.1 Worm Battle in Action
The game deals with combinatoric worms of WΛ, which are finite words in the alphabet of Λ.
So, for instance, Wn includes the modalities 0, 1, . . . n − 1. For the time being, we will assume
that Λ ≤ ω, a restriction which we will later lift as we will expand the game to consider limit
ordinals in its rules.

In the original versions, as it can be seen in [2], combinatoric worms grew to the right, contrary
to the provability worms which grew towards the left. To avoid the confusion this would create,
we shall have the combinatoric worms to be expanding towards the left as well.

Definition 6.1.1. By the head of a worm w = xn . . . x1x0 we will refer to its leftmost element
xn.
We consider the function next(w,m), where w = xn . . . x1x0 is a worm of Wω and m ∈ N is a
step of the game.

• If w is empty, then next(w,m) := w.

• If xn=0 then next(w,m) := xn−1 . . . x0. So in this case, the head of the worm is being cut
away regardless of the value of m.

• If xn is a successor ordinal, let k := max{i < n : xi < xn} where for completeness we may
define max∅ = −1. Then the worm w, with its head decreased by 1, consists of two parts:
the good one r := xk . . . x0, which may be empty, and the bad one s := (xn−1)xn−1 . . . xk+1.
Set

next(w,m) := s ∗ . . . ∗ s ∗ s︸ ︷︷ ︸
m+1 times

∗r.

Finally, the sequence of worms starting from an arbitrary worm w ∈Wω is defined as follows:

w0 := w and wn+1 := next(wn, n+ 1).
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Let us take as an example the worm w = 2312. This means that we start with w0 = 2312.
For the first step, since the head is a successor, we have k = 1, the good part r = 12 and s = 13.
This then gives:

w0 = 2312

w1 = 131312

w2 = 031312031312031312

w3 = 31312031312031312

w4 = 222221312031312031312

w5 = (12222)61312031312031312

· · ·

Where (12222)6 denotes the 6-fold concatenation of 12222. Notice that wn is defined by
primitive recursion from w and n. In fact, wn is an elementary function of n and the code of w.
This can be seen by the estimate

|wn| ≤ (n+ 1)! |w0| ,

which follows from a simple induction: For n = 0, it holds; then assuming it holds for n, the
only increase in length for wn+1 when compared to wn can be performed if the leftmost element
of wn is a successor ordinal. Then, no matter what, wn+1 ≤ (n + 2)wn and by the induction
hypothesis, we prove the above estimate.

This shows that the length of each worm only grows at an elementary pace in the course
of the game. Also notice that the maximal element of each worm can only decrease, meaning
that next�(Wα×N) ranges over Wα for every α ≤ ω. Additionally we can write an elementary
formula in three variables expressing that wn = u.

Definition 6.1.2. By EWDΛ, we will express the statement that every worm of WΛ dies, for-
mally:

∀w∈WΛ ∃n wn= e .

Simply by EWD we will denote EWDω.

Where by e we denote the empty word. Clearly, from the definitions we have followed thus
far, there is a natural translation f between combinatoric and the arithmetical interpretation of
proof theoretic worms such that f(xn . . . x0) = (〈xn〉 . . . 〈x0〉>)∗. Then the functions next(w, n)
and AJnK can be used interchangeably as f(next(w, n)) = (f(w)JnK)∗. This function is clearly
definable in EA and as such, we shall notationally use the provability notation with the n-th
worm being denoted as An. We now ought to point out that we have worms as worms and worms
interpreted in arithmetic. For the latter, we will opt to omit the notation of the arithmetical
interpretation of worms (A∗) for the sake of clarity and we therefore expect that the context
alone should make it clear what reading is intended.
At this point, we are equipped to state the result that forms the starting point of this master
thesis.

Theorem 6.1.3 (Beklemishev, 2005). EWD is equivalent to 1-Con(PA) in EA.

We will opt for a direct proof of this fact as per [2] that will not make use of the transfinite
induction rules found in Chapter 5. As such, the next two sections will closely follow [2]. The
proof will be divided into two parts.
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6.2 Truth of the worm principle
We will start with the following direction:

Proposition 6.2.1. EA +1-Con(PA) ` EWD

The Lemmata that we will use to prove this statement can be seen as split into two categories.
The first is to translate the strength of the underlying theory (PA).

Lemma 6.2.2. For any A∈Wω, PA ` A.

Proof. For every A ∈Wω there is m such that A ∈Wm and thus, by Proposition 4.1.9,

GLP ` 〈m〉> → A.

Therefore by arithmetical soundness of GLP, it holds EA ` 〈m〉> → A and since PA ` 〈n〉>
for every natural number n, the lemma follows and it is formalizable in EA+ due to Corollary
3.3.3.

The remaining two Lemmata do not make use of PA and are more focused around the
structure of worms themselves. For what follows, we denote by A+ := 1↑A –the 1-right shift of
A.

Lemma 6.2.3. For any A∈Wω,

EA ` ∀ k
(
Ak 6= e→ �(A+

k → 〈1〉A
+
k+1)

)
.

Proof. It is sufficient to prove in EA

∀A 6= e ∀ k EA ` A+ → 〈1〉AJkK+.

For this, we will move over to GLP where we have the size of the following proof is bounded by
an elementary function and hence it is formalizable in EA,

GLP ` A→ ♦AJkK.

As theorems of GLP are stable under right shift,

GLP ` A+ → 〈1〉AJkK+,

which by the arithmetical soundness of GLP, we have for every A ∈ Wω and every k ∈ N, a
proof of:

EA ` A+ → 〈1〉AJkK+.

From here, we are of course unable to use Σ1-induction to prove

EA ` ∀ k
(
Ak 6= e→ �(A+

k → 〈1〉A
+
k+1)

)
,

which is how we would –in principle– expect to complete the proof. Instead we utilize the fact
that for a given k,1 the proof of the claim is bounded by an elementary function of k. The proof
itself can be formalized within EA and therefore the formula �(A+

k → 〈1〉A
+
k+1)

)
can be written

as a ∆0-formula by placing the existential quantifier inside this bound. So we complete the proof
with a ∆0-induction.

1Note that A is external while k is given inside EA.
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The Lemma we just proved, we use in turn to prove the Lemma that follows, which allows
us to move from combinatoric worms into their provability counterparts. This Lemma is the
backbone of the proof that we are providing and its presentation here follows closely the one in
[2].

Lemma 6.2.4. For any A ∈Wω,

EA ` 〈1〉A+
0 → ∃m Am= e .

Proof. In particular, this will yield the required EA ` ∀m Am 6= e → [1]¬A+
0 . The first part of

our reasoning will prepare for an application of Löb’s theorem.

EA ` ∀m Am 6= e ∧ [1]∀m [1]¬A+
m → [1]∀m [1]¬A+

m+1

→ ∀m [1][1]¬A+
m+1

→ ∀m [1]¬A+
m, by Lemma 6.2.3

EA ` ∀m Am 6= e→ ([1]∀m [1]¬A+
m → ∀m [1]¬A+

m).

Then, after necessitation on the [1]-modality and distribution we have,

EA ` [1]∀m Am 6= e→ [1]([1]∀m [1]¬A+
m → ∀m [1]¬A+

m)

→ [1]∀m[1]¬A+
m, by Löb’s Theorem.

Now observe that ∀m Am 6= e is Π1, so certainly Σ2 and hence,

EA ` ∀m Am 6= e→ [1]∀m Am 6= e, by Σ2-completeness

→ [1]∀m [1]¬A+
m

→ ∀m [1][1]¬A+
m

→ ∀m [1]¬A+
m

→ [1]¬A+
0 .

By contraposition this proves the lemma.

Now from Lemmata 6.2.2 and 6.2.4 we obtain that for each A∈Wω,

PA ` 〈1〉A+

EA ` 〈1〉A+ → ∃m Am= e

Hence, ∀A∈Wω PA ` ∃m Am= e. This is formalizable in EA+, therefore EA+ +1-Con(PA) ≡
EA +1-Con(PA) implies ∀A∈Wω ∃m Am= e, which is EWD.2

6.3 Independence of the worm principle
Now we turn our attention into proving the converse:

Proposition 6.3.1. EA + EWD ` 1-Con(PA).
2In [2] there is an error stating that this is formalizable in EA however that is not correct as EA+ is required

to formalize PA ` 〈n〉> for every n, that is found in Lemma 6.2.2. The correction is fairly immediate.

36



Here we will follow closely the exposition of [2] and start by introducing the following notions
found there. Remember we use AJmK as an alternative notation for next(A,m). Let

AJm. . .m+kK := AJmK . . . Jm+kK.

In the proof of Proposition 6.3.1, we will use an analogue of the so-called Hardy functions [19]:
Let hA(m) be3 the smallest k such that AJm. . .m+kK= e.

As we shall see, the function hv has some good properties in terms of monotonicity, which
we will establish via elementary reasoning in EA. Notice that since AJm. . .m+kK is defined by
bounded recursion in a way similar to An, it is elementary and hence there is a natural elementary
presentation of hA(m) = k in EA.

Given worms B,A ∈Wω, we define the ordering

B E A iff B = AJ0K . . . J0K for a finite number of iterations.

This is equivalent to the statement: "B is an initial segment of A apart from possibly the first
element which should then be smaller". Let us give an explicit proof of this fact:

Remark 6.3.2. Let A,B be arbitrary worms.
EA ` B E A ←→ “A = D〈n〉C ∧ B = 〈m〉C ∧ m ≤ n”.

Proof. Let ϕ(B,A) be the formula expressing “∃n ∃C ∃D (A = D〈n〉C ∧ B = 〈m〉C ∧m ≤ n)”.
All of these quantifications are bounded since the code of a substring is less than the code of
the entire string and so ϕ is a ∆0-formula. Additionally, for the purposes of this proof we will
denote by,

AJ0Kn := A J0K . . . J0K︸ ︷︷ ︸
n-times

,

with AJ0K0 := A. We will now divide the proof into two parts, proving each of the implications
separately.

To start, we prove that EA ` ∀A ∀n ϕ(AJ0Kn, A) in order to prove the (→) direction.
Reasoning informally within EA, fix some A and we prove this by induction on n.

If n = 0, then AJ0K0 = A and is thus a subsequence of A. Therefore we have ϕ(AJ0K, A).
Assume now that it holds for n, then from the rules of the game and by the definition of ϕ,

it should be clear that ϕ(AJ0KnJ0K, AJ0Kn). By the induction hypothesis, we additionally have
ϕ(AJ0Kn, A). We can then prove within EA that ϕ has a transitivity property, which leads us to
proving the induction step ϕ(AJ0Kn+1, A).

The other direction, we will divide further into three parts.
First we prove

EA ` ∀B ∀n
(
(〈n〉B)J0Kn+1 = B

)
, (6.1)

by a simple induction on n.
If n = 0 then by the definition of the next function, (〈0〉B)J0K = B.
Assume now that the statement holds for n, then (〈n+ 1〉B)J0Kn+2 = (〈n〉B)J0Kn+1 = B, by

the induction hypothesis.

3Confusion with the hα and h function from Definition 4.2.1 is not possible due to different types of arguments.
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Now we prove the similar, and in a sense, more generalized statement:

EA ` ∀B ∀n∀m≤n
(
(〈n〉B)J0Km = 〈n−m〉B

)
. (6.2)

By induction on n, we have:
If n = 0, then it clearly holds as (〈0〉B)J0K0 = 〈0〉B. So assume that it holds for n. Now

if m = 0, then the statement clearly holds. Otherwise, let m = k + 1 from where we have
(〈n + 1〉B)J0Kk+1 = (〈n〉B)J0Kk = 〈n − k〉B by induction hypothesis, since k ≤ n and by some
basic arithmetic, 〈n− k〉B = 〈n+1−m〉B.

Now for the second implication, we prove

EA ` ∀A ∀B
(
ϕ(B,A)→ ∃n B = AJ0Kn

)
.

Of course here both the quantifications on B and n are bounded. Fix some A and let us denote
A = α|A|−1 . . . α0 and B = β|B|−1 . . . β0. We will prove the statement by induction on |A| − |B|.
Notice that this induction is bounded as A is fixed and the B are such that ϕ(B,A).

If |A| − |B| = 0, then by (6.2), the claim holds.
Assume now that it holds for all B with ϕ(B,A) and |A| − |B| = k. Then let B be such

that |A| − |B| = k + 1. Let C be such that C = α|C|−1D, it is a subsequence of A as ϕ(C,A),
and |A| − |C| = k. By the way C is defined, we can derive that ϕ(B,C). Then by applying the
induction hypothesis on C, we have ∃n1 C = AJ0Kn1 . By (6.1), we then have that ∃n2 D =
AJ0Kn2 and finally, via (6.2), we conclude with ∃n3 B = AJ0Kn3 .

Therefore, either definition of said relation can be used to provide a natural representation of
it in EA. We shall use this relation to prove that much desired monotonicity for the hB function.
Notice that as the hA functions are defined by a formula, it isn’t necessary that they will halt
everywhere within EA. For what follows, when we say that hA(m) is defined, what we mean is,
that the entire statement is to be understood within EA.

For worms of Wω we have the following results within EA:

Lemma 6.3.3. If hA(m) is defined and B E A, then

∃ k AJm. . .m+kK = B.

Proof. The rules of the game are such that the element of index i in A can only change if all
letters to the left of it are deleted. To prove this claim, assume that for a given i < |A|, there
exists some k′ such that the element of index i in AJm. . .m+kiK, differs from the element of
index i in A. Then let ki be the least element with that property and call Bi = AJm. . .m+ki−1K,
where if ki = 0 then we instead just take Bi = A. By the definition of the next function, we have
that |Bi| = i + 1 as by the definition of Bi, it cannot be smaller than that. If it’s larger, then
element with index i of Bi will be unaffected and so again, by the definition of Bi, this cannot
be the case either.

In addition, Bi is an initial segment of A. To prove this, assume that this isn’t the case and
so there is some index j < i on which Bi differs from A. Then there is some kj < ki (strictly
smaller since only one element is altered per step) and Bj , defined as above for the index j. So
|Bj | = j+1 < i+1 which contradicts with the definition of ki as the least with its properties.

Now, given the assumption that AJm. . .m+sK = e for some given s, and some B E A,
we will show that there is some k < s such that AJm. . .m+kK = B. Clearly, this holds in
the trivial case of B = >. Assume now that B = 〈n .− l〉C and A = D〈n〉C for some n, l.
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We will perform ∆0-bounded-induction on l over the formula: "there is some k < s such that
AJm. . .m+kK = 〈n .− l〉C". From what we have proved so far, the case of l = 0 should be clear.
Assume now that it holds for l. By the induction hypothesis, there is some k < s such that
AJm. . .m+kK = 〈n .− l〉C and so AJm. . .m+k+1K = D′〈n .− (l+1)〉C for some D′, determined
by the next function. Then we can apply what we did at the start of this proof forD′〈n .−(l+1)〉C,
getting some k1 such that AJm. . .m+k+k1K = 〈n .− (l+1)〉C.

This lemma we can then easily expand into the following:

Corollary 6.3.4. If hA(n) is defined and B E A, then ∀m≤n ∃ k AJn . . . n+kK=BJmK.

Proof. By Lemma 6.3.3, there is k1 such that AJn . . . n+k1K = B. Then, BJmK is an initial
segment of AJn . . . n+k1+1K and so once again, the rules of the game dictate via Lemma 6.3.3
that since hA(n) halts, then there is some k2 such that AJn . . . n+k1+k2K = BJmK.

Using this result, we have the following monotonicity statement:

Lemma 6.3.5. If hA(y) is defined, B E A and x ≤ y, then hB(x) is defined and hB(x) ≤ hA(y).

Proof. By applying the Corollary 6.3.4 several times, we obtain s0, s1, . . . such that

AJy . . . y + s0K = BJxK, where y + s0 ≥ x
AJy . . . y + s0 + s1K = BJxKJx+ 1K, where y + s0 + s1 ≥ x+ 1

. . .

Hence all elements of the sequence starting with B occur in the sequence for A and since hA(y)
is defined, so is hB(x). We remark that at the end of this procedure, we will have s0, . . . sn with
n ≤ hA(y) and AJy . . . y+s0 + . . .+snK = BJx . . . x+nK = e. Therefore, n = hB(x) ≤ hA(y).

Next we have two monotonicity results on only the natural number ordering that follow from
Lemma 6.3.5:

Lemma 6.3.6. If hB0A(n) is defined, then hB0A(n) = hA(n + hB(n) + 2) + hB(n) + 1 >
hA(hB(n)), with all of those functions on their respective points, defined.

Proof. Since 0A E B0A, by lemma 6.3.3 we have that hB halts. As B0A first rewrites itself
to 0A in hB(n) steps and then begins to rewrite A into e at step n + hB(n) + 2, we have that
hA(n + hB(n) + 2) is then defined. Finally, by Lemma 6.3.5, hA(hB(n)) ≤ hA(n + hB(n) + 2)
and it is also defined.

Seeing how easy it is to achieve a lower bound based on the composition of functions, we can
proceed by trying to get in-series iterations of this. Since the hA functions are in-general strictly
monotonous, we will be getting faster and faster growing functions by following this method.

Corollary 6.3.7. If A ∈W1 and h1A(n) is defined, then h1A(n) > h
(n)
A (n).

Proof. Since (1A)JnK=0A0A . . . 0A, we can perform induction on the number of in-series con-
catenations of 0A by applying Lemma 6.3.6.

As an application of this, we can see how quickly we can reach a growth similar to that of
the super-exponentiation function.

Corollary 6.3.8. If h1111(n) is defined then, h1111(n) > 2nn and h111(n) > 2n.
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Proof. We will make use of Corollary 6.3.7 multiple times. Clearly we first have that h1111(n) >

h
(n)
111(n), then h111(n) > h

(n)
11 (n) and h11(n) > h

(n)
1 (n). We can easily prove by induction on EA

that h1(n) = n + 1. So by applying the compositions, h11(n) > 2n and so h111(n) > 2n and
finally h1111 > 2nn.

At this point we find ourselves equipped to tackle the main lemma on which the proof of
Proposition 6.3.1 rests. In its proof, we closely follow the steps taken in [2]:

Lemma 6.3.9. EA ` ∀A∈W1 (hA1111↓ → 〈1〉A).

Proof. By Löb’s Theorem, this is equivalent to proving

EA ` �
(
∀A∈W1 (hA1111↓ → 〈1〉A)

)
→ ∀A∈W1 (hA1111↓ → 〈1〉A).

We reason in EA. Let us take the antecedent as an additional assumption, which by the mono-
tonicity axiom of GLP interpreted in EA, implies [1]

(
∀A∈W1 (hA1111↓ → 〈1〉A)

)
. This in turn

implies:

∀A∈W1 [1](hA1111↓ → 〈1〉A). (6.3)

We make a case distinction whether A1111 starts with a 1 or with an element strictly larger
than 1.
If A1111 = 1B then by Corollary 6.3.7, we have h1B↓ → λx.h

(x)
B (x)↓. The function hB is

increasing, has an elementary graph and grows at least exponentially as by Corollary 6.3.8 we
know that h111 > 2x. So for A= e we have that h1111↓ implies the totality of 2xn and hence EA+

which by Corollary 3.1.3 implies 〈1〉>. If A is nonempty, we reason as follows:

λx.h
(x)
B ↓ → 〈1〉hB↓, by Lemma 3.1.2
→ 〈1〉 〈1〉B, by Assumption (6.3)
→ 〈1〉A.

If A1111 = C starts with m > 1, then

hC↓ → λx.hCJxK(x+ 1)↓
→ ∀n hCJnK↓.

The last implication is derived by application of Lemma 6.3.5 as for arbitrary n, if x ≤ n then
hCJnK(x) ≤ hCJnK(n + 1) and if n ≤ x then hCJnK(x) ≤ hCJxK(x + 1). In both cases, the larger
value is defined.
Continuing from here:

∀n hCJn+1K↓ → ∀n h1CJnK↓ (as 1CJnK E CJn+ 1K)

→ ∀n λx.h(x)
CJnK(x)↓

→ ∀n 〈1〉hCJnK↓ by Lemma 3.1.2.

Observe that since A starts with something bigger than 1, we have CJnK = AJnK1111, hence we
can apply our assumption. Hence the argument continues,

∀n 〈1〉hCJnK↓ → ∀n 〈1〉 (〈1〉AJnK) by Assumption (6.3)
→ ∀n(〈1〉AJnK)
→ 〈1〉A (by the reduction property – Corollary 4.2.7).

The last step is achieved because hC↓ implies h1111↓ which, as per our first step in this proof,
implies EA+, hence allowing the use of the reduction property.
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Now to prove Proposition 6.3.1, assume that EWD holds. We have:

EA ` ∀A∈Wω ∃m Am= e→ ∀A∈Wω
1 hA↓

→ ∀n 〈1〉 〈n〉>
→ 1-Con(PA).

The first implication holds since for every worm A and every number x, there is a worm A′ = 0xA
where A′J0 . . . x− 1K = A hence ∃m A′m= e iff hA(x) is defined.
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Chapter 7

Ramified worm battles

In the previous chapter we have exposed a combinatoric principle unprovable in PA. As it turned
out the unprovable principle was equivalent to the 1-consistency of Peano Arithmetic. In this
chapter we wish to see if we can obtain similar results for fragments of PA and we shall focus on
the theories IΣn. Some minor adjustment to the worm battle can be made to obtain candidate
principles. As we inspect the IΣn-subtheories of PA, we will maintain the same next function
and the only restriction will be done on the worms we will quantify over. One would expect us
to end up with:

EA + 1-Con(IΣn) ≡ EA + EWDn+1 .

That is, an equivalence with the worm principle for worms with their alphabet consisting of
numbers m < n+1. Due to this fact, we can easily use results obtained by previous Lemmata in
the proof of Theorem 6.1.3 that do not make use of PA. However, as we shall see, in converting
the existing proof, we shall end up with a weaker result.

7.1 1-Con(IΣn) proving a worm principle.
As we announced, we cannot prove the expected equivalence between 1-consistency and the
corresponding worm principle. In particular, the direction from consistency to the worm principle
is in its current form not in phase with what we would have expected. Specifically, following the
proof structure of the previous chapter, the result we can prove is:

Proposition 7.1.1. EA + 1-Con(IΣn) ` EWDn.

As before, we will denote by A+ := 1↑A.

Lemma 7.1.2. For any A∈Wn+1, IΣn ` A.

Proof. By Proposition 4.1.9 we have for every A ∈Wn+1,

GLP ` 〈n+ 1〉> → A.

Therefore, by arithmetical soundness of GLP, it holds EA ` 〈n + 1〉> → A and since IΣn `
〈n+ 1〉>, the lemma follows and its proof is formalizable in EA+.

Now from the Lemmata 7.1.2 and 6.2.4 we obtain that for each A ∈Wn,

IΣn ` 〈1〉A+

EA ` 〈1〉A+ → ∃m Am= e .
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Hence, ∀A∈Wn IΣn ` ∃m Am= e. This is formalizable in EA+, therefore EA + 1-Con(IΣn)
implies ∀A∈Wn ∃m Am= e, which is EWDn.

Of course, we cannot strengthen Lemma 7.1.2 further to obtain the desired result. This leads
us to question whether we can get rid of the 1-right shift on the worms of Lemma 6.2.4. On
examining the rest of the proof, we notice that Lemma 6.2.4 makes use of Σ2-completeness to
envelop the Π1-sentence ∀m Am 6= e within the 1-provability. In turn, since we make use of Löb’s
Theorem, this demands from us to use the same modalities and we cannot weaken the resulting
sentence into something like [1]∀m�¬Am. The reason being that then, if we are to follow the
proof, we would have:

EA ` ∀m Am 6= e ∧ [1]∀m �¬Am → [1]∀m �¬Am+1

→ ∀m [1]�¬Am+1

→ ∀m [1]¬Am.

The last step is done via an easy modification of Lemma 6.2.3 and an application of the mono-
tonicity axiom of GLP, (J1) at the end. However the problem becomes that we are left with
what is not an instance of Löb’s Theorem. Hence why the right shift is required in this proof
and we cannot easily strengthen it.

7.2 1-Con(IΣn) proving a worm principle via transfinite in-
duction

If we are to instead turn towards the results we got in Chapter 5, we shall notice that the
strength of the theorem will not be altered. By taking this direction, we opt to provide a more
indirect proof of the theorem which we can reach whether we choose to use the earlier results
of Chapter 5 or the later ones. If we are to utilize theorem 5.1.2, we have that for every n>0,
EA +1-Con(IΣn) contains [EA,TIR(Π2, <0�Wn)]. Similarly from Fedor’s more generalized sug-
gestion we shall reach a similar result.

Specifically, we will use the following Lemma found in [1] and [13] which states:

Lemma 7.2.1. Let T be a c.e. extension of EA+ whose axioms have logical complexity of Πn+1.
Then for every worm A ∈Wn, we have provably in EA+ that

T +AT ≡n Πn+1-Ro(n↓A)(T ).

Proof. We will prove this by a direct reflexive induction, as presented in Theorem 5.5.1, on A.
So we will prove,

EA+ ` ∀B<nA �EA+

(
“T +BT ≡n Πn+1-Ro(n↓B)(T )”

)
→ “T +AT ≡n Πn+1-Ro(n↓A)(T )”.

Reasoning within EA+, first we will prove the inclusion “⊇”. By the reflexive induction hypoth-
esis, we have that

�EA+

(
n-Con(T +BT )→ n-Con

(
Πn+1-Ro(n↓B)(T )

))
. (7.1)

So for all B <n A, unfolding the definition of <n, gives �T (AT → 〈n〉TBT ) and then, along with
(7.1) it is given that,

�T
(
AT → n-Con

(
Πn+1-Ro(n↓B)(T )

))
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for all B <n A. Therefore by the definition of Πn+1-Ro(n↓A)(T ),

�T+AΠn+1-Ro(n↓A)(T ).

For the other inclusion “⊆n”, let �T+Aϕ with ϕ ∈ Πn+1. If A = 〈n〉B, then by (7.1),
�T+〈n〉TBϕ implies �

T+Πn+1- RFN
(

Πn+1-Ro(n↓B)(T )
)ϕ and hence we are done.

If instead A = 〈m+ 1〉B, with m ≥ n, then by the reduction property, we have

{〈m+ 1〉TBT } ≡m {Qmk (BT ) : k<ω}.

Of course, for each Qmk (B), we can find some equivalent worm Ck ∈ Wn. Therefore, we have
�T+(Ck)Tϕ for some k and since Ck <n A, by the induction hypothesis (7.1) and Lemma 5.4.1,
we complete the proof.

Now to talk about IΣn for n≥1, we first have by Remark 3.2.1 the following:

EA +
(
〈1〉〈n+ 1〉>

)
EA
≡ EA+ +

(
〈1〉〈n+ 1〉>

)
EA
≡ EA+ +

(
〈1〉〈n+ 1〉>

)
EA+ .

Using this fact along with Lemma 7.2.1 and Theorem 5.5.3, we land onto the following:

EA +1-Con(IΣn) ≡1 Π2-Ro(0n)(EA+) ⊇ [EA+,TIR(Π2, ω·o(n))].

And so by noting first that o(n)=ωn, we finally conclude that1 for every n≥ 1

EA +1-Con(IΣn) ⊇1 [EA+,TIR(Π2, ω·ωn)]. (7.2)

Now to prove EWDn, we will use the formula ϕ(A) = ∀m ∃n AJm, . . . ,m+ nK= e and perform
transfinite induction on it. Let ∀B<0A ϕ(B) be our induction hypothesis –and assume that
A 6= e as otherwise ϕ(A) holds trivially. Since AJnK <n A for any natural number n, we there-
fore have by the transfinite induction hypothesis that ∃m AJmKJm+ 1, . . . ,m+ nK = e which in
turn results to ∃m AJm, . . . ,m+ nK = e.
Since ϕ is a Π2 formula, by (7.2) we can perform transfinite induction on it within EA +1-Con(IΣn).
As such, we conclude with

EA +1-Con(IΣn) ` ∀A∈Wnϕ(A),

which gives, EWDn.

7.3 Independence of EWD

In contrast to the previous direction, there is not that much that has to be done in proving the
direction that corresponds to Proposition 6.3.1. Therefore it will look like so:

Theorem 7.3.1. EA + EWDn+1 ` 1-Con(IΣn).

As before, we use the Hardy functions’ analogue hA(m) which we recall being defined as the
smallest k such that AJm. . .m+kK = e. We also make use of the ordering –B E A if and only
if, B = AJ0K . . . J0K for a finite number of iterations– defined as before.

As the next and hA functions have not been modified for this worm principle and the worm
domain doesn’t affect the Lemmata of this direction, we obtain the same monotonicity of the
hA function and hence Lemma 6.3.9. This will obviously not remain the same as we later tackle
worms that include limit ordinals.

Therefore, we can directly head onto the proof of Theorem 7.3.1.
1For natural numbers n, we define ωn as follows: ω0 = 1; ωn+1 = ωωn .
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Proof. Assume that EWDn+1 holds. We have:

EA ` ∀A∈Wn+1 ∃m Am= e→ ∀A∈Wn+1
1 hA↓

→ ∀ k 〈1〉
(
〈n+ 1〉>JkK

)
, by Lemma 6.3.9

→ 〈1〉 〈n+ 1〉> (by the reduction property)

→ 1-Con(IΣn).

The first implication holds since for every worm A and every number x, there is a worm A′=0xA
where A′J0 . . . x − 1K=A hence ∃m A′m= e iff hA(x) is defined. As for the use of the reduction
property, notice that here 〈1〉 〈n+ 1〉> → 〈1〉> which in turn implies EA+.
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Chapter 8

Truth predicates, reflection
principles and the hyperarithmetical
hierarchy

A different direction we could take to study worms would be turning towards theories beyond PA.
However as we take the first step towards that goal, we would want to preserve this vague sense
of connection we have established between the game and GLP. More precisely we would want to
maintain an arithmetical translation from GLPΛ, where Λ matches the alphabet of the worms
of the expanded game, into our base theory –which in the case of the previous two chapters, has
been PA.

8.1 Truth predicates
To this end, we will follow the direction taken in the paper Reflection algebras and conservation
results for theories of iterated truth by Beklemishev and Pakhomov [5] where we will start by
expanding the basic language of arithmetic with a unary predicate T. The expanded language
we will denote by L(T) and by ΠLn(T) we will denote the class of Πn-formulas in the language
of L(T), while the Πn-formulas in the language of L will be denoted by ΠLn . We similarly define
ΣLn(T) and ∆Ln(T). From here on, the predicate T we will call a truth predicate because its
purpose will be to express the truth of the formulas in the language L. To get there we will
consider two different basic theories whose purpose will be solely to enable the use of T as a truth
predicate. The reason we present them as such is to allow us greater freedom in attaching them
into any of the theories of arithmetic we have already presented, like EA,EA+,PA etc. The first
theory that we present is the theory that goes by the name of Uniform Tarski Biconditionals.

Definition 8.1.1 (UTB). UTBL, or simply UTB, is the L(T)-theory axiomatized by the follow-
ing axiom schema:

∀ ~x
(
ϕ(~x)↔ T(⌜ϕ(~̇x)⌝)),

For all L-formulas ϕ and with ⌜ϕ(~x)⌝ denoting the Gödel numbering of ϕ(~x).
Every such axiom is called a disquotation axiom.

The importance of UTB and the reason why it is axiomatized by an axiom schema is because
we have the following well known lemma about it:
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Lemma 8.1.2. Let S ⊇ EA be an L-theory. Then S + UTB is conservative over S for L-
formulas.

The idea of the proof is that every proof of S + UTB has only finitely many occurrences of
disquotation axioms ∀ ~x

(
ϕ(~x) ↔ T(⌜ϕ(~̇x)⌝)). Let {ϕi : i < n} be an enumeration of all the

formulas occurring in disquotation axioms in the proof. Let τ(y) be the formula∨
i<n

∃ ~x (y = ⌜ϕ(~̇x)⌝ ∧ ϕ(~x)).

Then each occurrence of T(⌜ϕ(~̇x)⌝) can be replaced with τ(⌜ϕ(~̇x)⌝).

Now the second theory is the theory of compositional truth.

Definition 8.1.3 (CT). CT is the L(T)-theory axiomatized by the following axioms:

C1. ∀ ~x
(
ϕ(~x)↔ T(⌜ϕ(~̇x)⌝)), for ϕ(~x) an atomic L-formula;

C2. ∀ ~x
(
T(⌜ϕ(~̇x) ∧ ψ(~̇x)⌝)↔ (T(⌜ϕ(~̇x)⌝) ∧ T(⌜ϕ(~̇x)⌝)));

C3. ∀ ~x
(
T(⌜¬ϕ(~̇x)⌝)↔ ¬T(⌜ϕ(~̇x)⌝));

C4. ∀ ~x
(
T(⌜∀ y ϕ(y, ~̇x)⌝)↔ ∀ y T(⌜ϕ(ẏ, ~̇x)⌝)),

Where ϕ and ψ are L-formulas.

An important property of CT over UTB is that it is finitely axiomatized over EA, which
grants it significant greater strength over UTB. Proving for instance that PA +CT is conserva-
tive over PA is by no means a trivial task [11]. If we additionally allow for full induction over all
L(T)-formulas, we lose this conservativity [11].

Therefore we will be focusing more on UTB. Following [5], we further expand L(T) by itera-
tively adding a truth predicate and a schema of disquotation axioms for the theory preceding it.
Formally, let Lα = L∪ {Tβ : β < α}. Here we understand that we fix some elementary ordering
of ordinals up to α. We use this ordering to determine the Gödel numbering of Lα. For each α,
we define the Lα+1-theory UTBα as UTBLα . Let UTB<α :=

⋃
β<αUTBβ .

Typically the language of EA +UTB<α+1 is infinite, however in [5] it is shown how this
can be avoided. For every ϕ ∈ Lα+1, let ϕ∗ denote the formula produced after simultaneously
substituting Tβ(t)/Tα(⌜Tβ(ṫ)⌝) for all β < α where Tβ(t) is a subformula of ϕ. Then if we denote
UTB∗<α+1 = {ϕ∗ : ϕ ∈ UTB<α+1}, we have that EA +UTB<α+1 is a definitional expansion of
EA +UTB∗<α+1.

8.2 Hyperarithmetical reflection
Now we can expand our standard arithmetical hierarchy into the so-called hyperarithmetical
hierarchy as it is done in [5]. For a given elementary well-ordering (Λ, <), we expand it into an
ordering of (ω(1+Λ), <) by encoding ωα+n as pairs 〈α, n〉 with the expected ordering on them.

Definition 8.2.1 (Hyperarithmetical hierarchy). For ordinals up to ω(1 + Λ), we define the
hyperarithmetical hierarchy as:
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• Πn := ΠLn , for every n < ω;

• Πω(1+α)+n := ΠLαn+1(Tα),

For λ a limit ordinal, we denote Π<λ :=
⋃
α<λ Πα.

Via the substitution that we mentioned above, the Πα can be, in general, formulated via only
one truth predicate added to our language.
Now the reflection principles can expand into the hyperarithmetical hierarchy. Following the
notation of [5], for any theory S and for every α, λ < ω(1 + Λ), where λ is a limit ordinal, we
define:

Rα(S) := Π1+α-RFN(S);

R<λ(S) := Π<λ-RFN(S).

We will present some first results about these expanded reflection principles which are similar to
the partial reflection principles that we have presented so far:

Proposition 8.2.2.

(i) If S ⊇ EA +UTBα, then over EA +UTBα

Rω(1+α)+n ≡ ΠLn+1(Tα)-RFN(S);

(ii) If S ⊇ EA +UTBα and β = ω(1 + α) + n, then Rβ(S) is finitely axiomatizable over
EA +UTBα;

(iii) If S ⊇ EA +UTB<α, then over EA +UTB<α

R<ω(1+α)(S) ≡ Lα-RFN(S) ≡ {Rβ(S) : β < ω(1 + α)}.

Proofs can be found in [5]. Of particular interest to us is Item (ii) which allows us to treat
them as formulas in the same vein as we have done with the partial reflection principles. Now to
expand the notation for conservativity between two theories let≡α and≡<λ denote conservativity
for Π1+α and Π<λ-sentences respectively. In [5] the following two conservation results are proven.
The first centers around the case for reflection on limit ordinals.

Theorem 8.2.3. Let λ = ω(1 + α) and S ⊇ EA +UTBα. Then over EA +UTB<Λ,

Rλ(S) ≡<λ R<λ(S).

The second centers around successors. It can be viewed as an extension of the reduction
property to cover all successor ordinals.

Theorem 8.2.4. Let V be a Π1+α+1-axiomatized extension of EA +UTB<Λ and let S ⊇ V .
Then, over V , Rα+1(S) ≡α {Rα(S), Rα(S +Rα(S)), . . .}.

Finally, we have a theorem stating that the structural behaviour of different reflection prin-
ciples is governed by a simple modal logic. By Σ1-collection, we refer to the formula

∀x<z ∃ y φ(x, y)→ ∃ y0 ∀x<z ∃ y<y0 φ(x, y).

The Σ1-collection rule corresponds to the following rule:

∀x<z ∃ y φ(x, y)

∃ y0 ∀x<z ∃ y<y0 φ(x, y)
.

We have the following theorem from [5]:
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Theorem 8.2.5. Let S ⊇ EA +UTB<Λ be such that it satisfies Σ1-collection rule. For all
formulas A,B or RCΛ, if A `RC B then

S ` ∀x (�B∗(x)→ �A∗(x)).

Here, the logic RC is the modal logic that we mentioned in the beginning of Chapter 4
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Chapter 9

Independent combinatorial
principles beyond Peano Arithmetic

In the interest of understanding the behaviour of the worm principle in relation to theories beyond
PA, we will make a modest comparison of it with a relatively small second order extension of
PA. This extension serves as a guide and motivation for the choices that we make as we further
expand the rules of the worm game.

9.1 On arithmetical comprehension
Second order arithmetics are characterized by them having predicates as variables, essentially
allowing quantification over them. Alternatively they can be seen as sets of natural numbers and
this is the expression we will follow.

Definition 9.1.1. The language of second order arithmetic is the extension of the language of
first order arithmetic L by the addition of second order variables and parameters and the predicate
symbol ∈. The expression t∈X is an atomic formula where t is a term and X a second order
variable. We add no symbol for the second order identity and instead we express it in the language
via extensionality X = Y :⇔ ∀x (x∈X ↔ x∈Y ).

We will choose the well known theory ACA, which unlike ACA0, it isn’t conservative over
PA and it will help us implement the first limit ordinal into the game as we will see.

Definition 9.1.2 (ACA). The theory ACA is a theory in the language of second order arithmetic
that extends PA by the induction schema for all second order formulas and the comprehension
schema:

∃Y ∀x (x∈Y ↔ ϕ(x)),

for every arithmetical formula with possibly both first and second order parameters (excluding
Y ).

Now, in the first order language L(T), consider the theory PA(T) := EA +CT + IL(T),
notated as in [5], where by IL(T), we denote the induction schema for all first order formulas of
the language of L(T). We have the following well known result from [11]:

Theorem 9.1.3. PA(T) and ACA are proof theoretically equivalent.
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This is proved by creating two interpretations, one of PA(T) in ACA where a truth predicate
is defined in ACA to interpret T. On the interpretation of ACA in PA(T), second order variables
are simultaneously translated into first order variables, that are different than the other first
order variables. Then x∈Y is written as Form(x) ∧ T(x), where Form(x) is the formula stating
that "x is the Gödel number of a formula with one free variable". The full proof can be found
in [11] where do note that in this book, CT denotes what we notate here as PA(T).

By [5], we know that:

PA(T) ≡ EA+ +UTBL(T) + R<ω2(EA+ +UTBL(T)),

the proof of which, is similar to the proof of the proof we follow to reach Corollary 3.3.3. Then
by an analogue of Remark 3.2.1, the latter part is in-turn equivalent to EA+ +UTBL(T) +
R<ω2(EA +UTBL(T)) which then by Corollary 3.1.3 gives us:

PA(T) ≡ EA +UTBL(T) + R<ω2(EA +UTBL(T)). (9.1)

9.2 A disclaimer
In the remainder of this chapter we will investigate how our previous results on the worm princi-
ples can be extended to ACA. We will make a methodological assumption in the remainder of this
chapter, the correctness of which requires some further checking. Let us make this assumption a
bit more precise.

The formulation of systems beyond PA depend on results from [5] where subsystems of second
order arithmetic are characterised in terms of hyperarithmetical reflection principles. These
reflection principles in turn are related to modal logic via the so-called reflection calculus RC
and not to the logic GLP.

In this chapter we will re-use our GLP reasoning from Chapter 4 to the setting of ACA. As
such, our methodological assumption is that all the reasoning in GLP that we use, can actually be
obtained from corresponding reasoning in RC and similarly for statements involving the reduction
property. In future work the details of this assumption will be further investigated. However,
it seems reasonable to expect few serious hurdles to arise since our GLP reasoning contains no
nested implications so that Theorem (4.1.3) will be applicable throughout.

9.3 The worm principle for ACA

Here, we will be using the theory PA(T) as a substitute for ACA to examine its relationship
with the worm principle. By (9.1), we are expecting to end up with an equivalence between
1-Con(PA(T)) and EWDω2, in the form that we will present below. We will expand the next
function of Definition 6.1.1, first by following the direction we took with the J·K operation from
Definition 4.2.3 so that it takes into consideration worms with limit ordinals as their heads.
As the worms that we are going to concern ourselves with are of Wω2, the only limit ordinal
consideration shall be the case of ω.

Definition 9.3.1. Let w = xn . . . x1x0 be a worm of Wω2 and m ∈ N a step of the game.

• If w is empty, then next(w,m) := w.

• If xn=0 then next(w,m) := xn−1 . . . x0. So in this case, the head of the worm is being cut
away regardless of the value of m.
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• If xn is a successor ordinal, let k := max{i < n : xi < xn}. As before we consider the good
part, r := xk . . . x0, which may be empty, and the bad one s := (xn − 1)xn−1 . . . xk+1. Set

next(w,m) := s ∗ . . . ∗ s ∗ s︸ ︷︷ ︸
m+1 times

∗r.

• If xn = ω then next(w,m) := m ∗ xn−1 . . . x0. So here the head simply steps down to the
mth element of the natural fundamental sequence of ω.

The sequence of worms starting from an arbitrary worm w ∈Wω2 is defined in the usual way:

w0 := w and wn+1 := next(wn, n+ 1).

As an example, we can consider the worm w = 1ω02. At the first step we obtain k = 1; r = 02;
s = 0ω and wJ1K = 0ω0ω02.
Similarly the game proceeds as:

w0 = 1ω02

w1 = 0ω0ω02

w2 = ω0ω02

w3 = 30ω02

w4 = 222220ω02

w5 = (12222)60ω02

w6 = (022221222212222122221222212222)70ω02

. . .

The same estimate of |wn| ≤ (n + 1)! |w0| applies to this sequence of worms and so wn is an
elementary function of n. Additionally, as before we will be using the notation of provability
worms instead, so writing An instead of wn. We will prove (under our disclaimer) that:

Theorem 9.3.2. EWDω2 is equivalent to 1-Con(PA(T)) in EA +UTB.

Of course a hidden additional assumption that we are making is the specific choice of the
next function, in which case, we consider EWDω2 to be using the one that we defined above.
Since the base theory here is EA +UTB, we will be changing the notational convention we had
in the previous chapters. In particular:

Notation 9.3.3. In this chapter, [α]ϕ in the context of the arithmetics will be a shorthand
for [α]EA +UTBϕ. Similarly, 〈α〉ϕ in the context of the arithmetics will be a shorthand for
〈α〉EA +UTBϕ.

Large part of this chapter has been announced and presented in [18]. Now we will follow the
style of the proof for the case of PA (from [2]) that we presented in Chapter 6. Thus we will
split the theorem into two parts, starting with:

Proposition 9.3.4. EA +UTB + 1-Con(PA(T)) ` EWDω2.

As is expected we first have a lemma expressing the consistency strength of PA(T), as is
derived from (9.1) that we mentioned above. From now on we will refrain from distinguishing
worms from their arithmetical interpretation.

Lemma 9.3.5. For any A∈Wω2, PA(T ) ` A.
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Proof. For every A ∈ Wω2, there is some m > 0 such that A ∈ Wω+m and so by Proposition
4.1.9,

GLP ` 〈ω +m〉> → A.

Therefore, by arithmetical soundness1 of GLP, it holds that EA +UTB ` 〈ω+m〉> → A and
since PA(T ) ` 〈ω+m〉>, the lemma follows and its proof is formalizable in EA+.

Then we have the two lemmata whose proofs are largely the same and we will be only
providing a shorthand of the proof of the first. Remember that we denote A+ := 1↑A.

Lemma 9.3.6. For any A ∈Wω2,

EA +UTB ` ∀ k
(
Ak 6= e→ �(A+

k → 〈1〉A
+
k+1)

)
.

Proof. As before, it is sufficient to prove in EA +UTB

∀A 6= e ∀ k EA +UTB ` A+ → 〈1〉AJkK+.

For this, we will move over to GLP where we have that the following proof is bounded by a
function elementary in A and k and hence it is formalizable in EA,

GLP ` A→ ♦AJkK,

and as theorems of GLP are stable under right shift,

GLP ` A+ → 〈1〉AJkK+,

which by the arithmetical soundness of GLP, proves that for every A ∈Wω2 with A 6= e and for
every k,

EA +UTB ` A+ → 〈1〉AJkK+.

The rest of the proof proceeds as before.

And now, having proven Lemma 9.3.6, the equivalent of Lemma 6.2.4 follows naturally.

Lemma 9.3.7. For any A∈Wω2,

EA +UTB ` 〈1〉A+
0 → ∃m Am= e .

Its proof is exactly the same with nothing of much interest added to it and so we opt to omit
it. So now, from Lemmata 9.3.5 and 9.3.7 we obtain that for each A∈Wω2,

PA(T ) ` 〈1〉A+

EA +UTB ` 〈1〉A+ → ∃m Am= e

Hence, ∀A∈Wω2 PA(T ) ` ∃m Am= e. This is formalizable in EA+, therefore EA+ +UTB + 1-
Con(PA(T )) ≡ EA +UTB + 1-Con(PA(T )) implies ∀A∈Wω2 ∃m Am= e, which is EWDω2.

1See our disclaimer.
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9.4 From the worm principle to ACA

Now we turn into the second direction of Theorem 9.3.2, proving independence of EWDω2.

Proposition 9.4.1. EA +UTB + EWDω2 ` 1-Con(PA(T)).

Once more, we use the Hardy functions’ analogue hA(m) on which we make no alter-
ations on their definition, that is defining them in the same way –as the smallest k such that
AJm. . .m+kK= e. Notice that in the interest of defining an ordering between worms as before,
we cannot use the definition of AJ0K . . . J0K = B since then this definition would cause ω to be
treated similarly to 1 and this is too restrictive. Therefore, the existence of limit ordinals in the
alphabet of our words will demand us to use an alternative ordering. For A,B ∈Wω2, we define
the partial ordering B E A iff B is an initial segment of A apart from possibly the first element
which should then be smaller. However the step that we have added for limit ordinals, has the
side effect of creating a disconnect between the E ordering and the hA function, hence rendering
this definition to be too strong. To remedy that, we will consider several restrictions of it.

Definition 9.4.2. For every natural number m, we define B Em A iff B E A and additionally,
if B = nC and A = DωC, then n ≤ m.

Of course, by the definition, we immediately have that if B Em A and m ≤ n then B En A.
Additionally, if B is an initial segment of A then B Em A for every m ≥ 0. Over EA, and for
worms in Wω2, we have the following:

Lemma 9.4.3. If hA(m) is defined and B Em A, then

∃ k AJm. . .m+ kK=B.

Proof. The rules of the game are such that the letter of index i in A can only change if all letters
to the left of it are deleted. This claim is proved as before by defining for each index i, a ki
to be the least such that the element of index i in AJm. . .m+kiK, differs from the element of
index i in A. We define as before Bi = AJm. . .m+ki−1K. We additionally have that Bi is an
initial segment of A as before. Assume now that the element with index |B| −1 of A is ≥ ω and
the corresponding in B is < ω and therefore, by our assumption of B Em A, it is also some n ≤ m.

Given the assumption of AJm. . .m+ sK= e, let the element with index i of A be ω+ l. Then
following the proof of Lemma 6.3.3, we can show that there is some k1 such that AJm. . .m+k1K =
〈ω〉C where B = 〈n〉C and A = D〈ω + l〉C. Then AJm. . .m + k1 + 1K = 〈m + k1 + 1〉C. The
rest of the proof proceeds as before to find some k < s such that AJm. . .m+ kK = B.

The expansion of this lemma then becomes a bit more complicated, considering the involve-
ment of the Em orderings. However it is similar in spirit.

Corollary 9.4.4. If hA(n) is defined and B En A, then ∀m≤n ∃ k AJn . . . n+ kK=BJmK.

Proof. By Lemma 9.4.3, there is k1 such that AJn . . . n+k1K=B. Then, BJmK is an initial segment
of AJn . . . n+k1+1K and so once again, the rules of the game dictate that since hA(n) halts, then
there is some k2 such that AJn . . . n+k1+k2K=BJmK.

This we then naturally use to prove the analogue of Lemma 6.3.5.

Lemma 9.4.5. If hA(y) is defined, B Ey A and x ≤ y, then hB(x) is defined and hB(x) ≤ hA(y).
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Proof. By applying the Corollary 9.4.4 several times, we obtain s0, s1, . . . such that

AJy . . . y + s0K=BJxK, where y + s0 ≥ x
AJy . . . y + s0 + s1K=BJxKJx+ 1K, where y + s0 + s1 ≥ x+ 1

. . .

Hence all elements of the sequence starting with B occur in the sequence for A and since hA(y)
is defined, so is hB(x).

Finally, we are able to harvest the fruit of this additional complication added to the definition
of this ordering.

Lemma 9.4.6. For every A,B ∈Wω2, if hB0A(n) is defined, then

hB0A(n)=hA(n+ hB(n) + 2) + hB(n) + 1 > hA(hB(n)).

Proof. The proof is exactly the same as before, only using Lemma 9.4.5 instead of Lemma
6.3.5.

Corollary 9.4.7. If A ∈Wω2
1 and h1A(n) is defined, then h1A(n) > h

(n)
A (n).

Proof. As with its predecessor, it simply suffices to note that 1AJnK=0A0A . . . 0A.

Due to the lack of changes in these, we will in fact, refer to their correspondents in Chapter
6. Now we move on to the main lemma of this proof to see how the restrictions of the ordering
E manifest to provide us the result we wanted.

Lemma 9.4.8. EA +UTB ` ∀A∈Wω2
1 (hA1111↓ → 〈1〉A).

Proof. By Löb’s Theorem, this is once more, equivalent to proving

EA +UTB ` �
(
∀A∈Wω2

1 (hA1111↓ → 〈1〉A)
)
→ ∀A∈Wω2

1 (hA1111↓ → 〈1〉A).

We reason in EA +UTB. Let us take the antecedent as an additional assumption, which by the
monotonicity axiom of GLP interpreted in EA, implies [1]

(
∀A∈Wω2

1 (hA1111↓ → 〈1〉A)
)
. This

in turn implies:

∀A∈Wω2
1 [1](hA1111↓ → 〈1〉A). (9.2)

As before, we make a case distinction whether A1111 starts with a 1 or with an ordinal
strictly larger than 1.
If A1111 = 1B then by Corollary 6.3.7, we have h1B↓ → λx.h

(x)
B (x)↓. The function hB is

increasing, has an elementary graph and grows at least exponentially as by Corollary 6.3.8,
h111 > 2x. So for A= e we have that h1111↓ implies the totality of 2xn and hence EA+ +UTB,
which by Corollary 3.1.3, implies 〈1〉>. If A is nonempty, we reason as follows:

λx.h
(x)
B ↓ → 〈1〉hB↓, by Lemma 3.1.2
→ 〈1〉 〈1〉B, by Assumption (9.2)
→ 〈1〉A.

If A1111=C ends with α > 1, then we notice that the interesting case is for α being a limit
ordinal, i.e., ω –since α < ω2. The adjustment we will make for the case of α = ω.

hC↓ → λx.hCJxK(x+ 1)↓
→ ∀n hCJnK↓.
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The last implication is derived by application of Lemma 9.4.5 as for arbitrary n, if x ≤ n then
hCJnK(x) ≤ hCJnK(n + 1) and if n ≤ x then hCJnK(x) ≤ hCJxK(x + 1). In both cases, the larger
value is defined.
We can perform this line a second time, obtaining:

∀n hCJnK↓ → ∀n λx.hCJnKJxK(x+ 1)↓
→ ∀n hCJnKJn+1K↓.

Now notice that no matter what the α is, we will always have that either 1CJnK E1 CJn+ 1K or
1CJnK E1 CJn+ 1KJn+ 2K. To prove this, let D be such that C = αD1111.
If α = ω, then 1CJnK = 1nD1111 and CJn+1K = 〈n + 1〉D1111 therefore CJn+1KJn+2K =
(nhn+1(D1111))n+3rn+1(D1111) = (nhn+1(D1111))n+2nD1111. So if n = 0 then since D ∈
Wω2

1 , we have that r1(D1111) = e and therefore, CJn + 1KJn + 2K = (0D1111)0+20D1111 =
0D11110D11110D1111 = 0D11110D1111CJnK. If n > 0 then clearly nhn+1(D1111) has as its
rightmost element something ≥ 1 and so 1CJnK E1 CJn+ 1KJn+ 2K.
If α 6= ω then,
1CJnK = 1(〈α− 1〉hα(D1111))n+1rα(D1111) and CJn+1K = (〈α− 1〉hα(D1111))n+2rα(D1111).
So 1CJnK E1 CJn+ 1K.
Therefore from all that, we have:

∀n hC↓ → ∀n h1CJnK↓ (by the above)

→ ∀n λx.h(x)
CJnK(x)↓

→ ∀n 〈1〉hCJnK↓ (by Lemma 3.1.2).

Again observe that since A starts with something bigger than 1, we have CJnK = AJnK1111,
hence we can apply our assumption. Hence the argument continues,

→ ∀n 〈1〉 (〈1〉AJnK) by Assumption (9.2)
→ 〈1〉A (by the reduction property).

The last step is achieved because hC↓ implies h1111↓ which, as per our first step in this proof,
implies EA+, hence allowing the use of the reduction property.

The proof of Proposition 9.4.1 proceeds as usual. Assume that EWDω2 holds. We have:

EA +UTB ` ∀A∈Wω2 ∃m Am= e→ ∀A∈Wω2
1 hA↓

→ ∀n 〈1〉 〈ω + n〉>
→ 1-Con(PA(T)).

The first implication holds since for every worm A and every number x, there is a worm A′ = 0xA
where A′J0 . . . x− 1K = A hence ∃m A′m= e iff hA(x) is defined.

9.5 Alternative worm rules
When we started giving the definitions of the additional rules to the worm game in order to
tackle ACA, we mentioned how the rule we chose for the limit step falls in line to the definition
of J·K that we presented. Here we will explore what would happen if we are to select� · � from
Notation 4.2.4 as the guide for our next function. So let next′(w,m) be such that:
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If xn = ω then let k := max{i < n : xi < xn}. Consider the good part, r := xk . . . x0, which may
be empty, and the bad one s := (m)xn−1 . . . xk+1. Let

next′(w,m) := s ∗ . . . ∗ s ∗ s︸ ︷︷ ︸
m+1 times

∗r.

Otherwise, next′(w,m) = next(w,m).

So the sequence of worms starting from an arbitrary worm w ∈Wω2 is:

w0 := w and wn+1 := next(wn, n+ 1).

We will not be using any notational distinction here between the sequence derived via the
next′ function and the one from the next function. As before we will be using the notation
of the provability worms with the difference being that we write A�n� interchangeably with
next′(A,n).

Notation 9.5.1. By EWDω2
�·� we will denote EWDω2 where the steps of the game use the next′

function.

We are going to prove that this function choice for the next step of the game, is just as good
to give us an equivalence with ACA.

Theorem 9.5.2. EWDω2
�·� is equivalent to 1-Con(PA(T)) in EA +UTB.

This can be done by following the usual proof of the theorem and making adjustments where
necessary or by giving a comparative argument between the two functions. We will aim for
the latter and on the way, this will lay the groundwork for the former. We define the Hardy
functions’ analogue for the � · � which we denote as gA(m) and they are the smallest k such
that A�m. . .m+k� = e. We have the following for worms of Wω2:

Lemma 9.5.3. Over EA, if hA(n) is defined and n > m where m is greater than any finite
element of A, then there is some k such that AJn . . . n+kK = A�m�.

Proof. If the leftmost element of A is a successor ordinal, then A�m� = AJmK and so we
are done by Corollary 9.4.4. So assume that the leftmost element of A is ω. So A = ωB
and A�m� = (mhω(B))m+1rω(B). But by the assumption we have made of m, we have that
hω(B) = hn1

(B) and rω(B) = rn1
(B) for every n1 ≥ m. Therefore, AJnKJn+1K = (nB)Jn+1K =

(〈n−1〉hn(B))n+2rn(B) = (〈n−1〉hω(B))n+2rω(B). So as the leftmost element of A�m� is
smaller or equal to the corresponding one from AJnKJn+1K and they are both successor ordinals,
we have that A�m� El AJnKJn + 1K for every l ≥ 0. So we can use Lemma 9.4.3 to complete
the proof.

Now we can shape the idea in the proof of Lemma 9.4.5 into the context that we are working
in to get:

Lemma 9.5.4. Over EA, if hA(n) is defined and n > m where m is greater than any finite
element of A, then gA(m) is defined and gA(m) ≤ hA(n).

Proof. By the assumption we have s such that AJn . . . n+sK = e. We will use ∆0-induction on
the formula ∃ k≤s (k≥x ∧ AJn . . . n+kK = A�m. . .m+x�).
The case of x = 0 is clear by Lemma 9.5.3. Notice that every finite element of A�m� is smaller
or equal to m.
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Assume now that the formula holds for x and that every finite element of A�m� is smaller or
equal to m + x. So there is some k1 such that AJn . . . n+k1K = A�m. . .m+x�. Then since
n+k1 +1 > m+x+1, we can once more make use of Lemma 9.5.3 on the worm A�m. . .m+x�.
This way we find some k2 ≥ 1 such thatAJn . . . n+k1+k2K = A�m. . .m+x+1� and n+k1+k2 >
m+x+1.
Therefore A�m. . .m+s� = e and gA(m) ≤ hA(n).

Now, without getting too much into detail we will mention the corresponding monotonicity
properties of the gA functions. The proof of this lemma is, in essence, the same as that of Lemma
9.4.3 and thus we will omit it.

Lemma 9.5.5. If gA(m) is defined and B Em A, then

∃ k A�m. . .m+ k�=B.

We can then naturally continue into the analogue of Corollary 9.4.4 using effectively the same
proof.

Corollary 9.5.6. If gA(n) is defined and B En A, then ∀m≤n ∃ k A�n . . . n+ k�=B�m�.

From here, all the other monotonicity lemmata follow. Among them is the one corresponding
to Lemma 9.4.5.

Lemma 9.5.7. If gA(y) is defined, B Ey A and x ≤ y, then gB(x) is defined and gB(x) ≤ gA(y).

With these lemmata on the monotonicity of the gA, we can easily produce the following, final
comparative Lemma between the hA and gA functions.

Lemma 9.5.8. Over EA, if gA(m) is defined then hA(m) is also defined and hA(m) ≤ gA(m).

Proof. The proof is similar to that of Lemma 9.5.4. By the assumption, we have s such that
A�m. . .m+s� = e. We will use ∆0-induction on the formula:
∃ k≤s (k≥x ∧ A�m. . .m+k� = AJm. . .m+xK).
For x = 0, we clearly have by each of the rules that AJmK El A�m� for every l ≥ 0. Then we
complete this induction step via Lemma 9.5.5.
Assume now that it holds for x. So there is some k1 ≥ x such that A�m. . .m+k1� =
AJm. . .m+xK. Then like in the previous step, AJm. . .m+x+1K El A�m. . .m+k1+1� and
we complete this step with an application of Lemma 9.5.5.

Now we have everything we need to prove that in either case, the two functions for the next
element are effectively equivalent over EA.

Proposition 9.5.9. EWDω2 is equivalent to EWDω2
�·� over EA +UTB.

Proof. Assume first that we have EWDω2. Then for every worm A, there is some m that is larger
than all the finite elements of A. By the assumption we know that hA↓. Therefore, by Lemma
9.5.4, we know that gA(m) is defined and therefore by Lemma 9.4.5, we know that A, with the
next′ function, eventually dies.
Assume now that EWDω2

�·�. Then by Lemma 9.5.8, we clearly have EWDω2.

But beyond this point, we could check for any differences in the proof of Theorem 9.5.2 when
compared to the standard one. Starting with the first direction:

Proposition 9.5.10. EA +UTB + 1-Con(PA(T)) ` EWDω2
�·�.
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Not much changes since the only requirement of � ·� in the lemmata is only on the step:
GLP ` A→ ♦A�m�, which we have from Corollary 4.2.5. Therefore we turn our attention to
the other direction, for which we have already done most of the work.

Proposition 9.5.11. EA +UTB + EWDω2
�·� ` 1-Con(PA(T)).

In fact, the rest of the proof proceeds as before. The only two exceptions and both are in
Lemma 9.4.8. For the first, we just note that hC↓ → ∀n hC�n�↓ suffices, without needing to
perform this step again, as we always have that 1CJnK E1 CJn+ 1K. The effect of that is just a
simplification of the proof, making it fit more in line to the one for the case of PA as proven by
Beklemishev [2]. The second lies with in the reduction property where it has to be adjusted to
fit the requirements of � ·�, which isn’t that hard to do.
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Chapter 10

Conclusion and future research

In this paper we presented the worm principle of [2] and made two separate first attempts at
generalizing it. For smaller theories than PA, we proved a weaker result than the expected
equivalence –EWDn+1 ≡ 1-Con(IΣn) over EA. Though the two approaches from the Sections
7.1 and 7.2 gave the same result, there might still be merit in trying something a bit more
involved with them. We have some ideas on strategies to explore here.
For larger theories, we ought to first clear up the details left in our disclaimer in our future work.
Provided they do not cause any significant problems, we can then look further into EWDλ for
λ > ω2 a limit ordinal. This is likely to complicate the demands of the "next" function and our
generalizations of the Em relations. Along with this, the range of the various equivalent "next"
functions could be explored; in the vein of generalizing the worm principle.
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