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Abstract Following on from two recent papers, here we examine the relationship
between Newtonian gravitation and general relativity in more depth. This allows us
to define a scalar potential which is just the proper time of the vector potential when
the latter is interpreted as the geodesic velocity field. The results are closely related to
spacetimes that admit Painlevé–Gullstrand synchronization.

Keywords Generalized Newtonian theory · Flat synchronization · Rigid motion
symmetry

1 Introduction

The non-orthogonal coordinate system of Painlevé–Gullstrand [1–3] is nowadays used
to extend the Schwarzschild solution inside its event horizon. The Schwarzschild met-
ric written in this coordinate system is regular across the horizon and is only singular
for r = 0. Another property that is very interesting is that its spatial geometry, the t =
constant surfaces, are flat; i.e. what is known as Painlevé–Gullstrand synchronization.

This type of synchronization is interesting in the context of gravitational collapse
due to the fact that it allows us to go beyond the Schwarzschild radius. Such synchro-
nization also has an increasing presence in the literature; for instance, in the so-called
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analog gravity models [4] or in relativistic hydrodynamics [5], where an effective
Lorentzian metric is introduced.

Our interest in metrics of this kind stems from the fact that they appear in a natural
way when we generalize Newtonian mechanics to general relativity by means of a vec-
tor potential that includes gravity and inertial forces on the same footing [6]. In that
earlier work we constructed Newtonian gravitation in which the field is derived from a
vector potential �vg that can be interpreted as the velocity field of the trajectory solutions
of the equations of motion. Furthermore, the field equations are invariant under the
group of rigid motions. This generalization of Newtonian mechanics has a relativistic
version, so a significant set of spacetimes can be written in a system of coordinates such
that the metric is shape-invariant under the group of rigid motions. Among those space-
times is the Schwarzschild solution written in Painlevé–Gullstrand coordinates [1,2].
Another interesting property of these spacetimes is that their non-relativistic limit can
be obtained by making c → ∞ without any consideration regarding weak fields.

In this paper we extend the previous type of metrics introduced in [6] to a more
general one. Besides the vector potential, a scalar potential is introduced that is related
to the proper time for the trajectories of free particles. To achieve this generalization, it
is very helpful to consider Newtonian gravitation before studying the relativistic case.
So first, we analyse Newtonian gravity in relation to the vector potential and the fact that
it can be interpreted as a velocity field which is a solution of the equations of motion.

The paper is organized as we explain in what follows. In Sect. 2, we study the
change produced in the Newtonian Lagrangian under different choices for the potential
velocity field. In Sect. 3, we study the behavior of the relativistic Lagrangian when we
change the potential velocity field. In the same section we state the problem and study
Minkowski spacetime, introducing vector potentials, in order to express the metric,
which are solutions of the equations of motion. As a consequence, we see that we
must introduce a new scalar potential. In Sect. 4, we try to generalize the results of
the previous section to a spacetime which depends on four potentials. We see how the
properties of these spacetimes are inherited from Newtonian gravitation. In Sect. 5, we
see the close relationship between the metrics studied and the family of metrics that
support a Painlevé–Gullstrand synchronization [7,8]. In Sect. 6, we study the form of
the metrics under consideration when expressed in adapted coordinates. The results
are compared with those obtained by other authors. Finally, in Sect. 7, we incorporate
into this framework the FRWL spacetime previously considered in [9].

2 Newtonian frame

In [6] we prove that we can obtain the trajectories of particles in a Newtonian gravity
field given by the vector potential �vg , from the Lagrangian:

L = 1

2
m
(
�̇x − �vg (�x, t)

)2
(1)

These equations are covariant under rigid motion transformations, i.e. they are the
same for inertial and non-inertial frames. If an observer K has a system of orthonormal
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coordinates
{
t, �x = xi �ei

}
, and notices a gravitational field given by the Lagrangian

given in (1), then observer K ′ with a system of coordinates that are also orthonormal{
t ′, �x ′ = x ′i �e′

i

}
, related to {t, �x} through the rigid transformation:

t ′ = t; �x = �X(t) + �x ′ = Xi (t)�ei + x ′i �ei ′ = Xi (t)�ei + x ′k Ri
k(t)�ei , (2)

where Ri
k(t) is an orthogonal matrix, perceives the same gravitational field (except

for inertial forces), i.e. it is produced for the same mass distribution, given by the
Lagrangian in (1), where �x → �x ′ and �vg → �v′

g . The new vector potential �v′
g(�x ′, t) is

related to the old one through:

�vg ′ (�x ′, t
) = �vg (�x, t) − �v0 (�x, t) (3)

where �v0(�x, t) is the velocity vector field of the trajectories in (2), i.e.:

�v0 (�x, t) = �̇X(t) + ��(t) ×
(
�x − �X(t)

)
(4)

where:

��(t) ≡ 1

2

∑
j

Rk
j (t) Ṙ�

j (t) �ek × �e� (5)

It is a trivial and remarkable fact that from the Lagrangian in (1), given the vector
potential �vg(�x, t), the trajectories that are a solution of �̇x(t) = �vg(�x(t), t) are a solution
of the equations of motion, i.e. the vector potential which gives the gravitational field
is one of the set of velocity fields which are solutions of the equations of motion of the
gravitational field. This result strongly suggests that we can use as a vector potential
any other vector potentials �v∗

g(�x, t) that correspond to another set of trajectories that
are also solutions of the equations of motion for the same gravitational field. For
instance, for the exterior field of a spherical mass M we have the vector potential:

�vg(�x, t) =
√

2MG

r
r̂ (6)

which is the velocity field for the radial trajectories in the gravitational field of the
spherical mass M with v∞ = 0. But what is more interesting is that every velocity field
�v∗
g(�x, t) corresponding to another set of trajectories that are solutions of the equations

of motion with a potential (6) is a valid vector potential for the same gravitational
field. In the following expression, for each allowed election of the constants Ē, �̄, ᾱφ ,
we have a velocity field solution of the equations of motion

�v∗
g(�x, t) = ±

√
2MG

r
+ 2Ē − �̄2

r2 r̂ ± 1

r

√
�̄2 − ᾱ2

φ

sin2 θ
θ̂ + 1

r sin θ
ᾱφ φ̂ (7)

123



152 Page 4 of 16 X. Jaén, A. Molina

For instance, the vector potential (6) corresponds to the choice Ē = 0, �̄ = 0, ᾱφ = 0
in (7). Equation (7) is a complete family of the velocity fields when the particles move
under the potential given by (6). It is easy to prove that the acceleration field �g and
the rotation field �β (see [6]) are the same when we change the vector potential field �vg
(6) for another �v∗

g in the family given by (7). At the Newtonian level, these are a kind
of gauge transformation. Let us consider this, from L given in (1) the momentum is
defined as:

�p ≡ ∂L

∂ �̇x = m
(
�̇x − �vg

)
�̇x = �vg + �p

m
(8)

and the Hamiltonian is:

H ≡ �p · �̇x − L̄ = �p2

2m
+ �vg · �p (9)

The Hamilton–Jacobi equation for the action S is:

H(�x, �p = �∇S, t) + ∂S

∂t
= 0, (10)

or explicitly:

1

2m

( �∇S
)2 + �vg · �∇S + ∂S

∂t
= 0 (11)

If we have a solution S of Eq. (11), then �p = �∇S and from Eq. (8) or equivalently
from �̇x = ∂H

∂ �p , we can construct the trajectory:

�̇x = �vg + �∇S

m

This equation suggests that we can define a new vector potential (gauge transformation)

�v∗
g = �vg + �∇S

m which leads to the same gravitational and rotational fields, �g and �β.
The generator of this transformation is the action S.

We now show the relation between the Lagrangian L in (1) and the new one L∗:

L∗ = m

2

(
�̇x − �v∗

g

)2 = m

2

(
�̇x −

(
�vg + �∇S

m

))2

= L + 1

2m

( �∇S
)2 −

(
�̇x − �vg

)
· �∇S (12)

The second and third terms on the right-hand side of the last expression, taking into
account the Hamilton–Jacobi Eq. (11), can be written as:

1

2m

( �∇S
)2 −

(
�̇x − �vg

)
· �∇S = −dS

dt
(13)
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The difference between the two Lagrangians is the total derivative with respect to t of
a function, i.e. they are equivalent. The gauge transformations for the vector potential
we have studied produce a change in the non-relativistic Lagrangian which is a total
derivative with respect to t of the action; as is well known, this total time derivative
does not change the Lagrange equations. This is why in Newtonian mechanics, we
have the possibility of writing the field in terms of one vector potential or another;
it does not matter. What is interesting is that the set of all possible trajectories of
the particles is determined from knowledge of a single vector potential which is a
particular velocity field of the particle trajectories.

3 Relativistic frame

In [6] we consider the relativistic extension of the Lagrangian in (1), that is:

L = −mc2

√√√√
1 −

(
�̇x − �vg

)2

c2 , (14)

The particle trajectories are the geodesics of the spacetime metric:

ds2 = −
(
c2 − �v2

g

)
dt2 + d �x2 − 2�vg · d �x dt (15)

which has the following properties:

• it is shape-invariant under the group of rigid motions (2), provided that the local
velocity field transforms as in (3). [Equation (15) is a particular case of the so-called
Newtonian metrics [10].]

• in the limit c → ∞, it gives the Newtonian equations with no need for any weak-
field approximation.

• The integrals of the vector potential �vg , i.e. the solutions of �̇x = �vg , are geodesics.

One known example of this type of metric is the Schwarzschild metric written in
Painlevé–Gullstrand coordinates. But it is clear that to describe all the possibilities in
general relativity (where up to six potentials are needed) this type of metric based on
three potentials is not enough. In [9] we add a new potential, Hg(�x, t), to describe
cosmological metrics such as the FRWL metric. At the end of this paper, in Sect. 7
below, we incorporate FRWL spacetimes.

The problem with metrics of the form given in Eq. (15) is that they are not invariant
under the gauge transformations described at the Newtonian level, where the change
of �vg → �v∗

g only changes the Lagrangian by a total derivative of the action with respect
to t . In the metric given in (15), when we substitute �vg , given in Eq. (6) that gives
the Schwarzschild metric written in Painlevé–Gullstrand coordinates, by �v∗

g , which
should be the relativistic version of Eq. (7), the metric is not the Schwarzschild metric
anymore.

Now we will try to identify the problem which appears in the relativistic scheme
when we perform the relativistic version of Newtonian gauge transformations. To
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this end, we will begin by studying the easiest relativistic spacetime: the Minkowski
metric. We write the Minkowski metric for an observer with orthonormal coordinates
�x and the time is given by clocks that are at rest in the �x points.

ds2 = −c2dλ2 + d �x2 (16)

λ is the proper time for particles at rest. Let us now assume that the observer at the
point �x does not use the proper time at that point but would like to use the time of
clocks moving following another solution of the equations of motion, for instance a
set of clocks moving with constant velocity. As we will see, these solutions will give
us a velocity field �v∗

g(�x, λ) but also a proper time field τ ∗
g (�x, λ).

From the Lagrangian associated with Eq. (16)1, L =
√

1 − �̇x2

c2 where �̇x = d �x
dλ

, we

obtain the equation for the action S:

∂λS =
√

1 + c2( �∇S)2 (17)

Using the expression for the momentum and the inverse relation we have:

�p = − �̇x

c2

√
1 − �̇x2

c2

, �̇x = − c2
√

1 + c2 p2
�p (18)

The velocity equation above suggests that we can construct a vector potential field
�v∗
g = �̇x i.e.:

�v∗
g = − c2

√
1 + c2( �∇S)2

�∇S (19)

Now we are going to relate the proper time to the action S. If �x(λ) is a solution of the
equation �̇x(λ) = �v∗

g(�x(λ), λ), then we are going to see that the proper time τ ∗
g (�x, λ),

is the action S(�x, λ). Over the trajectories �̇x(λ) = �v∗
g(�x(λ), λ) we have:

dτ ∗
g =

√
1 − �v∗2

g

c2 dλ

and also:

dτ ∗
g =

(
∂λτ

∗
g + �v∗

g · �∇τ ∗
g

)
dλ

1 From now on for simplicity we are going to miss out the −mc2 factor in Eq. (14).
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and the equality on the trajectories of the right hand side of both equations:

∂λτ
∗
g + �v∗

g · �∇τ ∗
g =

√
1 − �v∗2

g

c2 (20)

We are looking for a field τ ∗
g that on the trajectories verifies Eq. (20). If we have a

field that verifies Eq. (20) at every point (�x, λ), then it would also verify Eq. (20) on
the trajectories. We are going to consider Eq. (20) as an equation for τ ∗

g (�x, λ) with
�v∗
g(�x, λ) known. Then, from Eq. (19), we can write Eq. (20) as:

∂λτ
∗
g = 1 + c2 �∇S · �∇τ ∗

g√
1 + c2

( �∇S
)2

(21)

and comparing with the Hamilton–Jacobi Eq. (17), Eq. (21) has the solution for τ ∗
g :

τ ∗
g (�x, λ) = S(�x, λ) . So the action S solution of the Hamilton–Jacobi which generates

the vector potential �v∗
g(�x, λ) through Eq. (19) can be identified with the proper time of

this velocity field. From now on, we identify τ ∗
g and the action S. This identification

has been proposed by other authors, related to a Gaussian coordinate system [11].
Now it is easy to prove that the metric in (16) can be written from �v∗

g(�x, λ) and
τ ∗
g (�x, λ) as:

ds2 = −c2dτ ∗2
g +

(
d �x − �v∗

gdλ
)2 + c2

( �∇τ ∗
g ·

(
d �x − �v∗

gdλ
))2

(22)

i.e. taking into account Eqs. (17) and (19), we can obtain ∂λτ
∗
g and �v∗

g :

∂λτ
∗
g =

√
1 + c2

( �∇τ ∗
g

)2
, �v∗

g = − c2

√
1 + c2

(
∇τ ∗

g

)2
�∇τ ∗

g (23)

and substituting them in Eq. (22), we obtain exactly the same expression (16).
It is important to note that the metric in (22) may have some ambiguity in the

time coordinate used. We can use one of two time coordinates τ ∗
g or λ. If we do

not state otherwise, we will use λ. This means that dτ ∗
g is a short way of writing

dτ ∗
g = ∂λτ

∗
g dλ + d �x · �∇τ ∗

g . It is also important to note that the change of gauge
gives exactly the same metric, and therefore the same relativistic Lagrangian. This
can be explained because the relativistic origin for the energy is fixed by the rest mass.

4 Special potentials for general relativity

We are going to construct a spacetime metric invariant for a class of observers in
general relativity from a vector potential �vg(�x, λ) and a proper time τg(�x, λ). The
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metric constructed from these fields, following the previous Minkowski example, can
be written as:

ds2 = −c2dτ 2
g + (

d �x − �vgdλ
)2 + c2

( �∇τg · (d �x − �vgdλ
))2

(24)

Some interesting properties of this kind of metrics are:

• the metric is shape invariant under transformations where λ remains fixed and
�x transforms as in (2), i.e. a rigid Newtonian transformation (λ represent a kind
of absolute Newtonian time) if τg transforms as a scalar function, τ ′

g(�x ′, λ) =
τg(�x, λ), and �vg(�x, λ) transforms as in (3) as a Newtonian velocity field.

• if we assume that τg = λ + f (�x,λ)

c2 , we obtain the Newtonian non-relativistic limit
simply by making c → ∞, with no need for any weak-field approximation.

• we can define the linear momentum as usual

�p ≡ ∂L

∂ �̇x = 1

L

((
∂λτg + �vg · �∇τg

) �∇τg + 1

c2

(
�vg − �̇x

))

then H ≡ �̇x · �p − L can be written as:

H = �vg · �p +
(
∂λτg + �vg · �∇τg

)

×
(
c2 �p · �∇τg −

√
(
1 + c2 �p2

) (
1 + c2

( �∇τg

)2
))

(25)

and the Hamilton–Jacobi equation is:

∂λS (�x, λ) + H
(
�x, �p = �∇S (�x, λ) , λ

)
= 0

If we have a particular solution S of this equation, we can obtain the equation of
the trajectory:

�̇x = ∂H
∂ �p

∣∣∣∣ �p=�∇S

= �vg+c2
(
∂λτg+�vg · �∇τg

)
⎛
⎜⎜⎜⎜⎝

�∇τg −

(
1 + c2

( �∇τg

)2
)

�∇S
√(

1 + c2
( �∇S

)2
)(

1 + c2
( �∇τg

)2
)

⎞
⎟⎟⎟⎟⎠

(26)

It is easy to see that a particular solution of the Hamilton–Jacobi equation is S = τg
and for this solution we have

�̇x = �vg
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Consequently, the trajectory solutions of �̇x(λ) = �vg(�x(λ), λ) are solutions of the
Lagrange equations i.e. they are geodesics of the metric in (24).

• It is invariant under the changes between members of the family of potentials
representing different velocity fields and proper times of the corresponding family
of geodesics for the metric in (24). That is, for each particular solution of the

Hamilton–Jacobi equation S, we can take τ ∗
g = S and �v∗

g = ∂H
∂ �p

∣∣∣ �p=�∇τ∗
g

. The

metric expressed in these new potentials, τ ∗
g and �v∗

g , is exactly the same as that in
(24) and also is written in the same coordinate system.

5 Rigid coordinates and Painlevé–Gullstrand synchronization

The metric (24) can be expressed in terms of the rigid Newtonian coordinates {λ, �x}
as:

ds2 = −c2

(
∂τg

∂λ

2

− ( �∇τg · �vg)2 − �v2
g

c2

)
dλ2

− 2c2
( �vg
c2 +

(
∂τg

∂λ
+ �vg · �∇τg

)
�∇τg

)
d �x dλ + d �x2 (27)

This belongs to a family of Newtonian metrics [10]:

ds2 = −�(�x, λ)dλ2 + 2 �K (�x, λ) · d �x dλ + d �x2 (28)

the interest in which stems from is based on the existence of the flat slicingλ = constant
[3]; that is, in our rigid Newtonian coordinate system, the spacetime exhibits Painlevé–
Gullstrand synchronization.

Conversely, given a spacetime metric of the type (28), we can always construct the
corresponding Hamilton–Jacobi equation:

∂λS = �K · �∇S +
√√√√(1 + c2( �∇S)2)

((
K

c

)2

+ �

c2

)
(29)

This equation coincides with the scalar equation that we can build considering the
equality between the metrics (27) and (28), by removing �vg and making τg → S.

For each particular solution for S, from (29) we obtain a scalar potential Sparticular =
τg . The vector potential �vg can be obtained from the vector equation linking (27) and
(28):

�vg = − �K − c2

√√√√√
( K
c

)2 + �
c2

1 + c2
( �∇τg

)2
�∇τg
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Thus, we have demonstrated that given any spacetime that admits a Painlevé–
Gullstrand synchronization, the Euclidean space coordinates are, in turn, rigid
coordinates.

We have also found an interpretation of all Newtonian metrics in terms of a geodesic
velocity field and its proper time.

6 Rigid versus Painlevé–Novikov adapted to geodesic coordinates

From expression (24), it is clear that the trajectory solutions of

d �x
dλ

= �vg (�x(λ), λ)

are geodesics of proper time τg . The general solution of this equation can be expressed
as �x = �ϕg(λ, �y), where �y is the initial position, i.e. for λ = λ0 we have �y = �ϕg(λ0, �y).
The adapted geodesic coordinates {λ, �y} can be defined through the relation �x =
�ϕg(λ, �y). We have:

d �x =
(
d �y · �∇y

)
�ϕg + dλ∂λ �ϕg

but ∂λ �ϕg = �vg
( �ϕg, λ

)
. Then we have:

d �x − �vg
( �ϕg, λ

)
dλ =

(
d �y · �∇y

)
�ϕg ≡ d̄ �ϕg

where d̄ f ≡
(
d �y · �∇y

)
f is the restriction of the differential form d f to each slice,

i.e. dλ = 0.
Defining τ̃g (λ, �y) ≡ τg

(�x = �ϕg (λ, �y) , λ
)

we can write:

�∇xτg (�x, λ) · (d �x − �vg (�x, λ) dλ
) |�x=�ϕg(λ,�y) = d̄ τ̃g (λ, �y)

By using the above relations, the metric in (24), in coordinates {λ, �y}, becomes:

ds2 = −c2d τ̃ 2
g + c2d̄ τ̃ 2

g + d̄ �ϕ2
g (30)

This metric is of the type:

ds2 = −c2d τ̃ 2
g + Ai j (�y, λ)dyidy j

which admit as geodesics �y = constant with proper time t = τ̃g .
Furthermore, we can use the time coordinate t adapted to the geodesic, i.e. the

proper time of the geodesic �y = constant, through the relation t = τ̃g(λ, �y)
Given the potentials, τ̃g and �ϕg , in terms of (�y, λ), we can make the change of time

t = τ̃g(�y, λ) ↔ λ = αg(�y, t) which allows us to write metric (30) in the form:
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ds2 = −c2dt2 + Ai j dy
i dy j (31)

meaning that the coordinates {t, �y} are Gaussian [11]. But it is important to note that
not all Gaussian coordinates are of the type {t, �y}, i.e. adapted to a geodesic and rigid.
Of course, not all spacetimes will admit a system of coordinates that are adapted to a
geodesic and rigid; but all spacetimes admit Gaussian coordinates.

Using the potentials αg(�y, t) and �̆ϕg(�y, t) ≡ �ϕg(λ = αg(�y, t), �y) we can write the
derivatives d̄ in (30), which are restricted to dλ = 0, as:

λ = αg (�y, t) ⇒ dλ = d �y · �∇αg + ∂tαgdt = 0 ⇒ d̄t = − 1

∂tαg
d �y · �∇αg

then:

d̄τg = d̄t = − 1

∂tαg
d �y · �∇αg

d̄ �ϕg =
(
d �y · �∇

) �̆ϕg + ∂t �̆ϕgd̄t =
(
d �y · �∇

) �̆ϕg − 1

∂tαg

(
d �y · �∇αg

)
∂t �̆ϕg

The explicit form of (30) in adapted coordinates {t, �y} is then:

ds2 = −c2dt2 + c2 1(
∂tαg

)2

(
d �y · �∇αg

)2

+
{(

d �y · �∇
) �̆ϕg − 1

∂tαg

(
d �y · �∇αg

)
∂t �̆ϕg

}2

(32)

Let us now study the special case of spherical symmetry. When we write the metric
given in (24) in the rigid coordinate system (r, λ), we have:

ds2 = −c2dτg(r, λ)2 + (dr − vg(r, λ)dλ)2

+ c2(∂rτg(r, λ)(dr − vg(r, λ)dλ))2 + r2 d�2

The adapted spherical geodesic coordinates {λ, r0} are related to the previous rigid
coordinates by:

r = ϕg(λ, r0), fulfilling ∂λϕg = vg(ϕg, λ)

From (30) in the new coordinates {λ, r0}, the metric is:

ds2 = −c2d τ̃ 2
g + c2d̄ τ̃ 2

g + d̄ϕ2
g + ϕ2

g d�2

or more explicitly:

ds2 = −c2(∂λτ̃g dλ + ∂r0 τ̃g dr0)
2

+
(
(∂r0ϕg)

2 + c2(∂r0 τ̃g)
2
)
dr2

0 + ϕ2
g d�2 (33)
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Following the same path that led us to (32), we can use the proper time t of the geodesic
r0 = constant as the time coordinate, through the relation t = τ̃g(λ, r = ϕg(λ, r0)) ↔
λ = αg(r0, t), together with ϕ̆g(r0, t) = ϕg(λ = αg(r0, t), r0). The explicit form of
(30) in adapted spherical geodesic coordinates {λ, r0} is then:

ds2 = −c2dt2 +
{
c2
(

∂r0αg

∂tαg

)2

+
(

∂r0αg

∂tαg
∂t ϕ̆g − ∂r0 ϕ̆g

)2
}
dr2

0

+ ϕ̆2
g d�2 (34)

6.1 Schwarzschild

If we substitute τg = λ and �vg =
√

2MG
r r̂ in (24), we obtain the Schwarzschild

metric written in Painlevé–Gullstrand coordinates [1,2,6]. We can write this metric
in adapted geodesic coordinates. We are going to use the geodesic radial trajectories
with radial velocity zero at r = ∞ as the new radial coordinate:

τ̃g(r, λ) = λ, r = ϕg(λ, r0) =
(
r3/2

0 + 3

2

√
2MG(λ − λ0)

)2/3

(35)

Note that in this case, the geodesic proper time t = τ̃g coincides with λ. The metric
written in these coordinates using the expressions (33) and (35) is:

ds2 = −c2dλ2 + r0

r
dr0

2 + r2d�2

where r is given in (35) as a function of r0 and λ. This expression, if we take λ0 = 0 and
r0 = (− 3

2

√
2MGχ)2/3, coincides with expression (11.12) of the Schwarzschild exte-

rior solution given by Lemaître [12], (in the expressions of Lemaître G = 1, c = 1).
The same coordinates are used by Novikov [13]. The relation with our coordinates

is λ0 = 0 and r0 = ( 3
2ξ
)2/3

. In expression (3.21), Novikov used F = 1. To obtain our
expression exactly, he would have needed to take F = √

2GM .

7 Homothetic motions and conformally flat synchronization

Finally, we can incorporate the FRWL-type spacetime [9] by considering the metric
depending on the potentials �vg(�x, λ), τg(�x, λ) and Hg(�x, λ):

ds2 = −c2dτ 2
g + c2

( �∇τg · (d �x − �vgdλ
))2 + 1

H2
g

(
d �x − �vgdλ

)2 (36)

Repeating the same reasoning as in Sect. 4 step by step, where Hg = 1, we conclude
that:
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• metric (36) is shape invariant under the group of homothetic motions
{
Xi (λ),

Ri
j (λ), H(λ)

}
, which generalize the group of rigid motions

{
Xi (λ), Ri

j (λ)
}

[9],

if the vector potential �vg(�x, λ) and Hg(�x, λ) transform as �v′
g(�x ′, λ) and H ′

g(�x ′, λ):

�v′
g(�x ′, λ) = �vg(�x, λ) − �v0(�x, λ); H ′

g(�x ′, λ) = H(λ)Hg(�x, λ), (37)

where �v0 is now defined, not as in (4), but according to:

�v0(�x, λ) = �V (λ) + ��(λ) × (�x − �X(λ)) + Ḣ(λ)

H(λ)
(�x − �X(λ)), (38)

where �� is defined in (5) and “×” is the ordinary vector product; and τg transforms
as a scalar.

• if τg = λ+ f (�x,λ)

c2 and Hg(�x, λ) = Hg(λ)+ F(�x,λ)

c2 , then we obtain the Newtonian
non-relativistic limit simply by making c → ∞, with no need for any weak-field
approximation.

• we can define the linear momentum as usual:

�p ≡ ∂L

∂ �̇x = 1

L

(
(∂λτg + �vg · �∇τg) �∇τg + 1

c2H2
g

(�vg − �̇x)
)

and then H ≡ �̇x · �p − L can be written as:

H = �vg · �p +
(
∂λτg + �vg · �∇τg

)

×
(
c2H2

g �p · �∇τg −
√(

1 + c2H2
g �p2

)(
1 + c2H2

g

( �∇τg

)2
))

(39)

and the Hamilton–Jacobi equation is:

∂λS(�x, λ) + H(�x, �p = �∇S(�x, λ), λ) = 0

If we have a particular solution of this equation, we can obtain the trajectory
equation:

�̇x = ∂H
∂ �p

∣∣∣∣ �p=�∇S
= �vg + c2H2

g

(
∂λτg + �vg · �∇τg

)

×

⎛
⎜⎜⎜⎜⎝

�∇τg −

(
1 + c2H2

g

( �∇τg

)2
)

�∇S
√(

1 + c2H2
g

( �∇S
)2
)(

1 + c2H2
g

( �∇τg

)2
)

⎞
⎟⎟⎟⎟⎠

(40)
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It is easy to see that a particular solution of the Hamilton–Jacobi equation is S = τg
and for this solution we have:

�̇x = �vg

Consequently, the trajectory solutions of �̇x(λ) = �vg(�x(λ), λ) are solutions of the
Lagrange equations i.e. are geodesics of the metric in (36).

• It is invariant under the changes between members of the family of potentials, �vg
and τg, which represent different velocity fields and proper times of the corre-
sponding family of geodesics for (36). That is, for each particular solution of the

Hamilton–Jacobi equation S we can take τ ∗
g = S and �v∗

g = ∂H
∂ �p

∣∣∣ �p=�∇S
. The metric

related to these new potentials, τ ∗
g and �v∗

g , now with Hg unchanged, is exactly the
same as in Eq. (36).

• The results of the slicing λ = constant are now conformally flat ds2 = 1
H2
g
d �x2.

Metric (36) belongs to a family of metrics that admit a conformally flat synchro-
nization

ds2 = −�(�x, λ)dλ2 + 2 �K (�x, λ) · d �x dλ + 1

H2
g
d �x2 (41)

Conversely, given a spacetime metric of type (41), we can always construct the
corresponding Hamilton–Jacobi equation:

∂λS = H2
g

�K · �∇S +
√√√√(1 + c2H2

g ( �∇S)2)

(
H2
g

(
K

c

)2

+ �

c2

)
(42)

This equation coincides with the scalar equation that we can construct consider-
ing the equality between the metrics (36) and (41), by removing �vg and making
τg → S.

For each particular solution S of Eq. (42), we obtain a scalar potential τg = S. The
vector potential �vg can be obtained from the vector equation linking (36) and (41) or
directly from the Hamiltonian.

�vg = −H2
g

⎛
⎜⎝ �K + c2

√√√√√
H2
g

( K
c

)2 + �
c2

1 + c2H2
g

( �∇τg

)2
�∇τg

⎞
⎟⎠

Thus, we have demonstrated that given any spacetime that supports a conformally
flat synchronization, its conformal Euclidean coordinates are, in turn, homothetic
coordinates.
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8 Conclusions

This work is a continuation of two previous papers. In that previous work, we analysed
some almost unknown properties of Newtonian gravity. We then tried to translate those
properties to relativistic gravity. This approach allowed us, in the first paper, to provide
a meaning for a family of metrics, which are nothing more than an extension of the
Painlevé–Gullstrand type of metrics. In the second paper we were able to incorporate
cosmological spacetimes, of the FRWL type, into a framework that can be considered
a cosmological extension of the Painlevé–Gullstrand type of metrics.

In this way, we were able to find up to four potentials, which have their own meaning,
from which to express a significant set of spacetime metrics.

It is clear that the set of spacetimes covered by the metrics we had found, with only
four potentials, was not enough to include the set covered by standard general relativity.
But the fact that the study of Newtonian gravity was so successful encouraged us to
extend our research even further in the same direction.

To this end, in the present paper, we develop a new unknown property of Newtonian
gravity; a property that already appeared as a curiosity in our previous work: the vector
potential can be interpreted as a velocity field whose integral trajectories are solutions
of the equations of motion.

This fact strongly suggests that the vector potential can be substituted by any other
vector potential that is also a solution of the equations of motion. And that is indeed
the case at the non-relativistic level. The field equations are invariant under this kind
of gauge transformation.

The main contribution of this paper is to extend this property to the maximum num-
ber of spacetimes within standard general relativity. We clearly laid out the problem
and we saw that we needed a new scalar potential whose meaning is the proper time
of the vector potential. Studying the Minkowski metric allowed us to construct a suf-
ficiently general family of metrics which inherit the properties of Newtonian gravity
mentioned above.

The family of metrics found, expressed in a rigid coordinate system, is the same
as the family of metrics with flat synchronization, i.e. those that exhibit Painlevé–
Gullstrand synchronization.

Finally, we incorporated the cosmological spacetime into the general framework,
without losing any of the properties inherited from Newtonian gravity. Now the family
of metrics, expressed in homothetic coordinates, is the same as the family of metrics
with conformally flat synchronization.

As a result, we obtain a family of spacetimes which support a conformally flat
synchronization; the metric can be written via five potentials:

• Three components of the vector potential �vg , plus one of the scalar potential τg ,
from which we can form a geodesic four-vector of the metric which in turn it
represents.

• A scalar potential Hg which has the meaning of a local homothety.

All these potentials have some physical meaning, and even in Newtonian theory they
leave a trace.
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As it is well known, the general theory of relativity is described by six potentials.
In our approach, in which we have been guided by Newtonian theory, we have given
a characterization for five of these six potentials. This does not mean, of course, that
these five potentials cover a large piece of general relativity, but it might be a relevant
one. An interesting question is the following: is it possible to introduce the sixth
potential without sacrificing the properties studied in this work? And, if not: what are
the properties that we should dispense with?

The spacetimes covered in this work are identified with those admitting a flat or
conformally flat synchronization, which excludes Kerr metric [14] and of course a
part of the Plebanski–Demiański family.

Our family of spacetimes do not support gravitational waves. Following these com-
ments, it seems clear that the introduction of the sixth potential cannot arise from any
previous study of Newtonian gravitation or of special relativity. The sixth potential
may be most genuinely linked to general relativity, without leaving any trace possible
of being included in Newtonian theory by some limiting process.
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