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Abstract: In this work, the ground state configurations of magnetic thin films and some finite
size magnetic elements are studied by means of Monte Carlo simulations. For this purpose, we
have set up a code to simulate Ising and Heisenberg spin classical models on squared and triangular
lattices including exchange (J), dipolar (g) interactions and magnetocrystalline anisotropy (K). We
show how the interplay between short and long-ranged interactions stabilizes stripe-like patterns
similar to those observed experimentally. Phase diagrams in the (J/g, T ) and (K/g, T ) planes are
presented and the corresponding reorientation transitions are characterized, stressing the differences
when comparing different lattices. Finally, the magnetic configurations obtained for thin films are
compared to those for systems of finite-size, demonstrating that our code can be used also to study
the properties of nanoscale elements.

I. INTRODUCTION

Magnetic thin films and quasi two dimensional mate-
rials have been extensively studied in the last decades
because of their use in technological applications such as
magnetic recording and sensing or spintronics1 that has
been driven by the need to decrease the typical size of
devices to the nanometric scale2. The ability to prepare
continuous films with well defined atomic structure de-
posited on non-magnetic substrates allows to tune the
stable magnetic state from parallel to perpendicular to
the film surface by changing the thickness and materials
composition. Different microscopy and structural char-
acterization techniques have helped to understand the
interplay between transport and magnetic properties, ev-
idencing the existence of non-uniform magnetic patterns
with striped or bubble-like shapes .

From a theoretical point of view, it has been acknowl-
edged that the formation of such domain structures re-
quires the competition between short and long-ranged
interactions3,4. The presence of perpendicular magnetic
anisotropy further enriches the possibilities as it com-
petes with the main demagnetizing character of the mag-
netostatic interactions. While this kind of systems have
been studied with some detail in the past, there are still
open and controversial points that need to be clarified for
certain regions of the main parameters (J , g, K)5. In this
work, we will perform simulations of a model of a thin
film with the aim to study the variety of ground state
configurations that can be attained, to establish phase
diagrams for their stability, and to investigate possible
reorientation transitions (RT) of the magnetization. The
work is an extension of preliminary results obtained in
Ref. 6 for small sizes and using a cut-off for the dipolar
interactions, which may introduce spurious effects. For
this purpose, we have set up a new code with improved
capabilities that will allow us to ascertain some of the
speculative results presented there and to explore cases
not previously considered.

II. MODEL AND SIMULATION DETAILS

In our model Hamiltonian for a thin film, we will treat
atomic magnetic moments as classical vector (Heisen-
berg) spins of unit magnitude represented by the vari-

ables ~Si at the nodes of a 2D regular lattice which can
be either squared or triangular with a total number of
spins N = L × L. Three individual contributions to the
energy will be considered: exchange and dipolar inter-
actions, and magnetocrystalline anisotropy. The relative
contribution of each term is characterized by three con-
stants g, J and K that include the dependence on the
lattice parameter and the magnetic moment of the spins.
They can be factored out from their respective expres-
sions, resulting in a total interaction energy:

E = JEex + gEdip +KEani . (1)

Indeed, we will fix g = 1 in what follows and study the
behaviour of our system in term of rescaled parameters
J/g and K/g.

The exchange interaction acts at an atomistic level and
it has short-range character. The corresponding energy
can be written as:

Eex = −
∑
<i,j>

~Si · ~Sj , (2)

where the sum extends to nearest neighbours (nn). We
will focus here in ferromagnetic (FM) materials for which
J ≥ 0, which favour parallel orientation of neigbouring
spins.

The dipolar interaction is long-ranged and acts be-
tween atomistic or macroscopic magnetic moments, and
is responsible for the formation of magnetic domains. It
can be written as:

Edip =

N∑
i 6=j

(
~Si · ~Sj
r3ij

− 3
(~Si · ~rij)(~rij · ~Sj)

r5ij

)
, (3)
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where ~rij is the vector connecting spins i and j. The first
term produces an antiferromagnetic (AF) order, while
the second term acts essentially as an effective in-plane
anisotropy. In order to decouple the spin and spacial
dependencies of Edip, it is convenient to introduce the
set of dipolar matrices Wαβ

nm

Wαβ
ij =

1

r3ij

(
δαβ −

3δαγδβηr
γ
ijr

η
ij

r2ij

)
. (4)

They have dimension N ×N and their elements depend
only on the positions of the spins in the lattice, not on
their orientations. They can be calculated once at the
beginning of the program and stored in memory for latter
use. Here i, j label each interacting spin couple, while
α, β = 1, 2, 3 refer to cartesian components. Having these

matrices, the dipolar field acting on spin ~Si can be defined
in components as

(hdip)
α
i =

∑
i 6=j

∑
β

Wαβ
ij S

β
j , (5)

and the energy can be simply computed as

Edip =

N∑
i

~Si · ~hdip,i . (6)

Finally, we include the on-site magnetic anisotropy,
which for a thin film favours alignment of the magne-
tization along the direction perpendicular to its surface,
here the z axis:

Eani = −
N∑
i

(~Si · n̂)2 = −
N∑
i

(Szi )2 . (7)

In what follows, we specify some of the details regard-
ing the simulation procedure. Preliminary simulations
were run for small system sizes (L = 16) in order to
determine the main parameter regions that stabilize the
different magnetic configurations. Refined calculations
have been performed on lattices of size L = 32 in order
to capture details at some regions of the phase diagrams.
A single code allows to choose between Heisenberg and
Ising spins, to choose squared or triangular lattices and
to decide if periodic boundary (PB) conditions have to
be implemented. After the geometry and spin configu-
ration is settled, a list of nn and the dipolar matrices
are computed and stored in memory. The code imple-
ments the well-known Monte Carlo (MC) method with
the Metropolis algorithm for continuous spins.

The MC simulations are started from a high temper-
ature with a disordered initial configuration and its en-
ergy, exchange and dipolar fields are computed. The en-
ergy changes can be easily calculated knowing the values
of the stored exchange and dipolar fields and, if a new
spin direction is accepted by the Metropolis algorithm,
all three quantities are updated based on the energy and
spin changes, achieving optimization of the code by an

FIG. 1: Ground state configurations found for J =
0, 2.4, 3.5, 6 in a 32 × 32 Ising SC lattice, showing AF order
and striped domains of widths 1, 2, 4. Different colours repre-
sent opposite orientations along the direction perpendicular
to the film plane.

order of magnitude in CPU time. To compute thermo-
dynamic averages, we decrease the temperature (T ) in
constant steps, while to study ground state configura-
tions we implement a simulated annealing protocol down
to T ≈ 0.01. At every T a minimum of 4000 MC steps
were used for thermalisation and 8000 more to calculate
averages of the relevant quantities such as energy, mag-
netization, specific heat and order parameters discussed
later on. To prevent finite size effects PB conditions are
implemented. These have to be carefully treated for the
dipolar interactions by introducing a sufficiently large
number of replicas (see Ref.6 for the details).

III. SQUARE LATTICE RESULTS

In this section, we consider the simple cubic geometry
in two dimensions (SC) in which every spin has 4 nn
and no frustration effects are expected. This case have
been thoroughly studied in the past by several groups5,7,8

although a complete understanding for all the range of
parameters is still lacking. Some of these results will be
used here as a benchmark for the software we developed.
Ising Model. We start by considering the case of

Ising spins pointing perpendicular to the film plane, that
can be considered as the K = +∞ limit of the model
1. We have scanned a range of J/g values tracking the
characteristic values for which different magnetic orders
occur at low temperatures and representative snapshots
of the configurations are presented in Fig. 1.

In the absence of exchange interactions, the ground
state is the AF Néel checkboard state that can be seen in
Fig. 1 (a), that minimizes the dipolar interaction alone.
This state persists when introducing the exchange inter-
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FIG. 2: Thermal dependence of (a) the specific heat and
(b) stripe order parameter in a L = 32 SC lattice for
J = 1, 3, 4, 5, 6. (c) The phase diagram for the Ising SC lat-
tice obtained from the maxima in the specific heat, showing
between the regions of stability of the AF, PM phases and
various stripe phases of width w.

action for J up to J ' 0.88 due to the dominance of
the dipolar AF term of Eq. 3. For increasing values of
J , though, the short-range effects of the exchange inter-
action start to compete with the AF state favoured by
g and, consequently, FM stripes of alternating orienta-
tion are formed. Their width w increases rapidly with
increasing5 J , as can be seen in the examples shown in
Fig. 1 (b-d). Notice that only stripes with w commen-
surable with the lattice size can be stabilized.

The critical temperatures Tc for the transition between
the AF or striped states found in Fig. 2 (c) and the dis-
ordered paramagnetic (PM) state, have be determined
from the maxima of the thermal dependence of the spe-
cific heat shown in Fig. 2 (a) for selected values of J . As
has been previously noted7, this transitions are of first
order for small J as signalled by the sharp peak in Ce(T )
and become smeared for the wider striped phases, in-
dicating a change to a continuous transition. This fact
is corroborated by the thermal dependence of the stripe
order parameter shown in Fig. 2 (b), defined as

Ohv =

〈
|nh − nv|
nh + nv

〉
, (8)

where nh,v count the number of horizontal/vertical nn
antiparallel pairs. Tracking the dependence of Tc on J ,
we were able to construct the phase diagram (J/g vs T )

shown in Fig. 2, where we have also delineated with ver-
tical dashed lines the transitions between striped phases
from exact calculations7. These transitions have been
corroborated by our simulations up to the phase with
w = 8 although the limits for wide stripes become dif-
fuse due to our limited lattice size. We notice that Tc
decreases linearly with J in the AF phase, while it in-
creases in a non-monotonous way for the striped phases.
Heisenberg Model. Now we introduce our results for

the Heisenberg model, for which spins can point in any
direction. The aim here is to examine the how the com-
petition between the dipolar interaction and anisotropy
can induce a RT from in-plane to out-of-plane configu-
rations as K increases, considering first the pure dipolar
case with J = 0 and considering later the effect of ex-
change.

FIG. 3: Upper panels show snapshots of configurations found
in a L = 32 Heisenberg SC lattice with J = 0 (dipolar only
case) showing the transition from an (a) in-plane ground state
for K = 2 to (b) an out-of-plane state for K = 2.5. Panel (c)
shows the phase diagram (K/g, T ) for L = 16, signalling the
stability regions for the states displayed in the panels above.

Simulations of the model with J = 0 have allowed us to
identify the occurrence of two kind of states shown in Fig.
3 (a,b). For small K the system orders forming in-plane
FM columns with AF order between them. This configu-
ration minimizes the dipolar interaction along both spa-
tial directions in SC lattice and is stable up to K ' 2.468.
For higher K, a transition to a check-board AF state with
out-of-plane order is stabilized similar to the one shown
in Fig. 1 (a) for the Ising model. Simulations sweep-
ing a range of K values have allowed us to establish the
approximate phase diagram shown in Fig. 3 (c).

Next, we introduce the exchange interaction into the
model, showing results for a system with J/g = 1, which
for the Ising case displayed w = 1 stripes in the ground
state. The resulting phase diagram is displayed in Fig.
4(a). Unlike the previous (J = 0) case, for small K,
the in-plane configuration is now a FM state [see Fig.
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FIG. 4: Snapshots of configurations found in a L = 32 Heisen-
berg SC lattice with J/g = 1 (w = 1 striped phase) show-
ing the transition from an (a) in-plane ground FM state for
K = 5 to (b) an out-of-plane state for K = 5.8. The colour-
ing scheme corresponds to the projections along the direction
perpendicular to the film plane. In (c), we show the corre-
sponding phase diagram in the (K/g, T ) plane, where dashed
red lines mark the separation between the different magnetic
orders.

4(b)] caused by the prevalence of the exchange interac-
tion over the magnetostatic contribution. On the other
hand, when increasing K, the system shows a RT to-
wards states with AF stripes perpendicular to the film
plane [see Fig. 4(c)] similar to those in Fig.1. The crit-
ical value for its occurrence is K? ' 5.8, higher than
the value for the pure dipolar case. Notice that the line
separating planar from perpendicular states has slightly
positive slope. Even so, we have found no evidence of any
re-entrance phenomenon with increasing T for K ' K?.
The transition from these states is rather abrupt and we
have not detected states with canted magnetization for
any value of K close to K?. These probably appear at
higher values of J since domain walls may form at the
interface between wider stripes8.

IV. TRIANGULAR LATTICE

Now we repeat the simulations of Sec. III, though
using a triangular lattice. One would think that sim-
ilar results should be obtained, yet in this case a new
phenomena needs to be taken into account: magnetic
frustration9. This phenomenon appears in triangular lat-
tices with AF interactions (whether they are exchange or
dipolar). When two neighbouring spins are anti-parallel
to each other, a third neighbour cannot satisfy anti-
parallel alignment to all the others, hence creating a de-
generated ground state.

Ising Model. For an AF Ising model (g = 0), the en-
ergy would be minimized for any state for which spins in

FIG. 5: (a) Phase diagram of the L = 32 Ising triangular
lattice where the vertical dotted lines mark approximatively
the transitions between striped phases of different width w.
Panels (b) to (e) show snapshots of the low T configurations
for J = 0, 2, 3.5, 6.

a triangular plaquette are in the 2-up-1 down state, which
give rise in particular to striped states that may orient
along any of the spatial directions10. However, as indi-
cated by the results of our simulations, the dipolar Ising
case (J = 0) seems to break this degeneracy by selecting
diagonal stripes as can be seen in Fig. 5(b), were we see
a domain with different orientation that has been formed
at T 6= 0. This phase is replaced by stripes along the x
axis for J ' 0.75 that, as for the SC lattice, increase in
width for increasing J as indicated in the phase diagram
and snapshots of Fig. 5(a,c-e). However, in this case, due
to frustration induced by the lattice, near the boundaries
of the striped phases complicated labyrinthine configura-
tions are obtained. For the same reason, the transitions
to the PM phase are more gradual than for the SC lattice
and stripes with a given w are stabilized at lower J in
the triangular case.

Heisenberg Model. We end this section highlight-
ing some distinctive results for the triangular Heisenberg
model. Phase diagrams will not be show due to space lim-
itations, but they resemble qualitatively those obtained
for the SC lattice. Now the in-plane ground state for
J = 0 [shown in Fig. 6 (a)] is FM instead of planar AF
and persists up to a value of the anisotropy K? ' 3.5,
higher than for the SC lattice. This is also true for the
case with J = 1, even though now the transition hap-
pens for a higher value K? ' 7.6 which is also higher
than for the SC lattice. The perpendicular states ob-
tained for K > K? are not uniform stripes but compli-
cated labyrinthine domains such as the ones in Fig.6 (d)
that are a consequence of frustration. Interestingly, for
both cases, we have found states close to the RT that
have both in and out-plane magnetization components
as can be seen in Figs. 6 (b,c). In the last case, the
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configuration seems to have some periodic modulation as
also observed in some experiments.

FIG. 6: Snapshots of the low T configurations of a L = 32
Heisenberg triangular lattice for K near the RT. Case J = 0
for (a) K = 3, (b) K = 3.5, and case J = 1 for (c) K = 7.5,
(d) K = 8.0.

V. FINITE SIZE EFFECTS

All the simulations presented so far have been carried
out with PB conditions in order to compare with ex-
tensive films. To conclude our study, we would like to
show just two examples of ground state calculations of
squared nanoelements with free boundary (FB) condi-
tions. We consider for simplicity dipolar lattices with no
exchange interaction. As mentioned before in Sec. III,
with PB the minimum energy configuration of a planar
dipolar assembly is an AF columnar state for the SC lat-
tice while for the triangular lattice it is a planar FM state.
However, with FB, these two configurations would create
stray fields emanating out of the nanoelement with the
consequent cost in dipolar energy. As we can see in Fig.
7, in both cases the dipolar energy is minimized by con-
figurations that close the magnetic flux lines generated by
the dipolar fields, with spins parallel to the boundaries
of the element and a circulation of the magnetization in
the form of vortices.

Interestingly, we observe that the nanoelement shape
does not uniquely determine the magnetic pattern, the
lattice also matters. Whereas for the SC case [Fig. 7

(a)], displays microvortices which close the dipolar field
flux locally, for the triangular lattice [Fig. 7 (b)] a unique
vortex extending to the whole element is obtained.

VI. CONCLUSIONS

Using a self-made code, we have performed MC simu-
lations of a thin film with perpendicular anisotropy and
competing exchange and dipolar interactions. We have
established the existence of different ground state con-
figurations, including striped phases of varying width as
well as AF ones for the Ising and Heisenberg models in
squared an triangular lattices. The reorientation tran-
sition between planar and perpendicular order has been
studied and the anisotropy value for its occurrence iden-
tified for both lattices. Comparison of configurations ob-
tained for extended films and elements of finite size have
also been made and their differences explained. These
results can help to understand the origin of the wide vari-
ety of magnetic textures observed experimentally in thin
films. In future work, we would like to extend the simula-
tions to other values of J/g, to study the role of vacancies
and other lattice arrangements in the magnetic order and
to study the order of the transitions between the different
phases.
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FIG. 7: Ground state configurations after an annealing down
to T = 0.005 K of L = 32 dipolar assemblies with (a) SC and
(b) triangular lattice, J,K = 0 and g = 1.
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