
Control of a UR5e robotic arm through a simulate 2D camera

Author: Mar Caballer Castells
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona

Advisor: Manel Puig i Vidal & Llorenç Servera Serapio
Departament d’Enginyeria Electrònica i Biomèdica

Abstract: Industry 5.0 –or fifth industrial revolution- will be focused on the co-operation between
the human intelligence and cognitive computing -using collaborative robots. In this paper the
UR5e collaborative robot from Universal Robots is the protagonist of an Offline Programming with
RoboDK software. To give UR5e the sense of sight a 2D simulated camera is used as a previous step
before using the Intel RealSense D-435i. Just 4 steps are needed to know the connection between the
2D image view and the scenario and 1 more to move the robotic arm to the user’s desired position.
In the present study it is described in detail how that has been achieved, including the description
of the roboDK Tree Station and the Python’s data flow diagrams.

I. INTRODUCTION

The word robot comes from the Czech word robota and
means ”forced labor” or ”slave”. Robotics, and specifi-
cally robotic arms -which have similar functions to a hu-
man arm-, are present almost in every field in our life,
especially in production lines. On one hand, the rise
of robotics in industry has increased productivity, re-
duced production time and improved production quality.
Robots perform a perfectly choreographed dance. On the
other hand, it is inevitable that people wonder if robots
will ”steal” their jobs in a few years. [1]

Humans use their senses to collect data from the envi-
ronment, being sight the most important of all of them.
Unlike humans, robots do not have biological senses and,
for this reason, engineers must create them. Sensors are
the senses of robots. In order to mimic human sight,
robots can incorporate cameras that, together with com-
puter algorithms, allow robots to process visual data from
the world. Without these sensors, robots are essentially
blind. This is not a problem for many robotic tasks, but
for some applications sight is useful or even essential.

Although we may think that robots deprive humans of
job opportunities, they make our lives easier in many
ways by doing repetitive or dangerous work. As the
name suggests, a cobot (collaborative robot) is a robot
designed to collaborate side by side with human workers
in a shared space. This is why robots are equipped with
sophisticated sensors that can make a robot stop when
an operator is too close and resume executing its tasks
once the operator leaves.

This paper provides the opportunity to be one step
closer to the ultimate goal, which is the control of the
UR5e robot with an Intel RealSense Depth Camera D-
435i attached to the UR5e’s arm using RoboDK and a
Off-Line Programming with Python.

The first step to reach the final goal and which is
shown in this article, has been a virtual simulation with
a 2D simulate camera and a UR5e library robot using
RoboDK.

II. HARDWARE

A. UR5e robot

UR5e [2] is a collaborative robot arm from the Uni-
versal Robot e-Series family which has 4 members- the
UR3e, UR5e, UR10 and UR16e. The ‘e’ in e-Series
stands for empowering, ease of use, everyone and evo-
lution. Each member of the family has a different reach
and payload but they are all composed of 6 axes (which
are: base, shoulder, elbow, wrist 1, wrist 2 and wrist 3
-also called ”six degrees of freedom”). All joins have a
360-degree rotation except the UR3e, which has infinite
rotation at the end joint.

UR5e is ideal for automating low-weight processing
tasks with its 5kg payload and 850 mm reach radius
designed to perform a wide range of applications such
as quality control, pick & place, packaging, welding or
painting. In Universal Robot + online showroom we can
find end effectors and accessories designed to complement
UR robots.

Universal Robots patented a Graphical User Interface
(GUI) called PolyScope that allows operators move the
robot’s arm whenever they want and program them us-
ing the teach pendant (which is a 12” easy-to-use touch-
screen with an intuitive 3D visualization). In Universal
Robots Online Academy we can find free modules that
help employees with no programming experience quickly
set up and operate with robots. This gives an opportu-
nity to gain first-hand knowledge about robots, therefore
preventing additional maintenance expenses.

Universal Robots + and Universal Robots Academy
are both in [2].

B. Intel RealSense Depth Camera D-435i

Intel Realsense D435i [3] is part of a Intel RealSense
D400 series of cameras that combines the depth sensing
capabilities of D435 with the addition of an inertial mea-
surement unit (IMU). Due to its global shutter image

Control of a UR5e robotic arm through a simulate 2D camera Mar Caballer Castells

capture method –which means that sensors scan the en-
tire area of an image at the same time-, the D435i is the
appropriate camera for capturing moving objects.

D435i uses an RGB sensor with color image signal pro-
cessing.

D435i uses stereo vision to calculate depth. Stereo vi-
sion implementation consists of a left imager and a right
imager –simulating human binocular vision- and an op-
tional infrared projector -to improve depth accuracy in
scenes with non-texture, uniformity or low light. Both
images are used to obtain a disparity map from which
depth values are calculated for each pixel.

D435i uses a 6-axis IMU which is composed of a 3-axis
accelerometer and a 3-axis gyroscope. The accelerom-
eter is used to measure linear acceleration –in X, Y, Z
direction- and it usually outputs in meters per seconds
squared (m/s2), or to measure gravity if the object is not
moving. From these acceleration values we can calculate
pitch, roll and yay values, which are defined as the rota-
tion around X, Y and Z axis, respectively. The gyroscope
is used to measure angular velocity about the pitch, roll
and yay axis and it usually output in radians per second
(rad/s).

All these features make the D-435i an ideal candidate
among a wide variety of applications such as drones,
robots and virtual reality [4].

For working with Intel Realsense D435i -and with the
other IntelRealsense D400 series- there is the open-source
Intel Realsense Software Development Kit 2.0 (SDK 2.0)
which includes Intel Realsense Viewer, Depth quality
Tool, Debug Tools, Code Examples and Wrappers.

III. SOFTWARE: ROBODK

RoboDK [5] is a simulator focused on industrial robot
applications which enables robot programs to be created,
simulated and generated outside the production environ-
ment and without the presence of the robot. That is
called Off-Line Programming and it has several advan-
tages such as the removal of production downtime and
the study of multiple scenarios with the aim of prevent-
ing collisions, singularities or reachability issues.

This program offers a Graphical User Interface (GUI)
to model the entire workspace and use a realistic model
of the robot. In particular, RoboDK has a library of
over 500 robots from 50 different manufacturers includ-
ing ABB, Fran, Kuka, Yaskawa/Motoman and Universal
Robots. All items in the RoboDK station –robots, tools,
reference frames, objects, targets and much more- are
shown in the station tree, which allows intuitive under-
standing and modifying item’s dependencies.

To build these robot programs there is a generic way,
without the need to write code, which enables basic robot
programming for less experienced users. Despite this,
simulations and programs can also be fully created using
the RoboDK’s Application Program Interface (API) and

a specific programming language, as for example Python,
C++, Visual Basic or Matlab. In particular, RoboDK
API for Python, the programming language that is used
in this article, includes the Robolink and Robodk mod-
ules. On the one hand, the Robolink module is the bridge
between Robodk and Python. On the other hand, the
Robodk module includes a robotics toolbox for Python.

In [5] it can be found how to download RoboDK –it is
recommended to install RoboDK using the default set-
tings in our case, since we use Python language-, doc-
umentation, tips and tricks, examples and the RoboDK
forum (an active forum with a quick replies), among oth-
ers.

IV. TREE STATION

FIG. 1: Tree station.

A. Virtual robot

The UR5e robot arm has been imported from the Ro-
boDK’s online library. To find our robot we have filtered
the characteristics shown in Table I. Whenever a robot

Characteristics UR5e

Brand Universal Robots

Type 6 DoF

Axes 6

Payload 0-5 kg

Reach 500-1000 mm

Repeatably 0.020-0.030 mm

Weight 10-20 kg

TABLE I: Filters used to find UR5e in the online library.

is loaded in RoboDK, a reference frame representing the

Treball de Fi de Grau 2 Barcelona, June 2020

Control of a UR5e robotic arm through a simulate 2D camera Mar Caballer Castells

robot base is added to the tree station. In the present
RoboDK program, due to some functions that we are go-
ing to use later return the pose (position and orientation)
with respect to the absolute reference frame, it is impor-
tant that the base reference position with respect to the
RoboDK station –the absolute reference- is zero in X, Y,
Z, roll, pich and yaw.

B. Tools

The first tool in our station is the Hand-E Adaptive
Gripper from RobotiQ [6]. However, in our work, this
tool does not perform the function of gripping, but moves
the Tool Center Point (TCP) into the desired position.

The second tool in our station is an Intel Realsense
D-435i 3D object connected to a module which allows
the fixing of the camera to the robotic arm. The camera
object and the support module were designed separately
by other people that have studied the physical character-
istics and dimensions of the D-435i and the UR5’s final
effector, using a 3D design software named Autodesk Fu-
sion 360 [7].

In this work, we use this program again to fusion these
two 3D designs in order to create a unique camera &
support object. To convert an object into a tool, it has
been done by dragging and dropping this object (in STL
format) into the robot item within the tree station.

Inside the Connect Menu section available in the Main
Menu -which is located at the top of the main RoboDK’s
interface- you can simulate a 2D camera. It is necessary
to select one item to attach the simulated camera, which
in our case is the camera & support tool. Many camera
parameters can be adjusted in a pop-up window, but in
our case, although this procedure was useful to test the
possibilities of the simulation, we configured all parame-
ters using Python commands.

The TCP position with respect to the robot flange of
each tool, can be modified with a double click at the
appropriate Robot Tool in the robot Tree. In our case,
the TCP positions are the middle of the end gripper’s
position and in the middle of the camera, respectively.

The last important thing is knowing which one is active
in each moment, and we control this by using Python
commands.

C. Reference Frames and Objects

The next step in our tree station design has been the
definition of two Reference Frames: one for the object
table –named Frame Table- and another for the objects
on the table which are a box, a sphere and a cylinder
–named Frame Objects.

To add a new reference frame, we select the Add Refer-
ence Frame equivalent button in the toolbar. The objects
mentioned above have been imported from RoboDK’s li-
brary and then they have been scaled and colored at our

discretion.

D. Presets & Calibration python Program

First, the program adjusts the focal length (in mm),
the field of view (in degrees), the far length -maximum
working distance- (in mm) and the size of the sensor (in
pixels).

Second, the program uses the path of RoboDK station
to search the calibration.txt file. If the file exists, the
program reads the 5 first lines (which are the pose from
the previous run -calibration pose-) and, if it matches
with the current pose, it means that the calibration has
been done before and this first program finishes. If the
file does not exist or the calibration pose does not match
with the current pose, we have to calibrate. Calibration
is done in 4 steps:

1. Click on one point on the simulate 2D camera view.
Shown in Fig. 4.A.1.

2. Click on the corresponding point on the RoboDK
scenario. Shown in Fig 4.B.2.

3. Click on another point on the simulate 2D camera
view. Shown in Fig 4.A.3.

4. Click on the corresponding point on the RoboDK
scenario. Shown in Fig 4.B.4.

Once this process is finished, calibration data is saved
in the calibration.txt file -if the file does not exist, it
is created. The flow chart of this program is shown in
Figure 2.

The pair of steps 1&3 and 2&4 are defined in two dif-
ferent functions: Image Calibration and RoboDK Cali-
bration. Both functions use the win32api library in order
to detect the left button click. After that, Image Cali-
bration uses a function of the same library and RoboDK
Calibration uses a function of robolink library to obtain
the click coordinates in pixels with respect to the left-up
window corner (xcursor, ycursor) and in mm with respect
to the RoboDK station (xstation, ystation), respectively.

The xstation, ycursor station coordinates -with respect
to the absolute reference- are transformed into x, y co-
ordinates with respect to the D-435i camera (xcamera,
ycamera), which allows the performance of the program
in any camera orientation. To achieve this, we use the in-
verse camera pose matrix which corresponds to the trans-
formation matrix -and in which both translation and ro-
tation are taken into account- of the camera reference
system with respect to the absolute system. The flow
charts of both functions are in Fig. 5 and Fig. 6 in the
Appendix.

The program finishes with the writing of the pose,

x
(1)
cursor, y

(1)
cursor, ∆xcursor, ∆ycursor, x

(1)
camera, y

(1)
camera,

∆xcamera and ∆ycamera into the calibrate.txt file. The
super index 1 indicates that it is the first point of cali-
bration (steps 1 and 2) and the ∆ indicates the difference
between the first and the second points.

Treball de Fi de Grau 3 Barcelona, June 2020

Control of a UR5e robotic arm through a simulate 2D camera Mar Caballer Castells

FIG. 2: Flow chart of the Presets & Calibration program.

E. Movement Python Program

This program reads the calibration.txt file and when
we click on the image (shown in Fig 4.A.a, Fig 4.A.b,
Fig 4.A.c) -as all the calibration data are coordinates
with respect to the camera (in mm) and respect to what
the camera is viewing (in pixels)- once the position of the
current click (in pixels) is calculated, the program does
a lineal transformation to obtain the x, y current click
coordinates (in mm) with respect to the camera. This is
done by using the following equation:

x = x(1)
camera +

xcursor − x
(1)
cursor

∆xcursor
∆xcamera (1)

-and the equivalent for the Y coordinate.

FIG. 3: Flow chart of the Movement program.

Finally, we use the camera pose matrix to transform
the click coordinates in the camera reference system to
the absolute reference system. This is the final target
where the Hand-E RobotiQ moves (shown in Fig 4.C.a,
Fig 4.C.b, Fig 4.C.c).

The flow chart of this program is shown in Figure 3.

F. Loop Movement and Main Program

The Main RoboDK program consists of two calls:

1. The first call is to the Presets & Calibration pro-
gram.

2. The second call is to the Movement program and
it runs in a loop until the end of the program when the
user right clicks the window and then clicks Esc key.

Treball de Fi de Grau 4 Barcelona, June 2020

Control of a UR5e robotic arm through a simulate 2D camera Mar Caballer Castells

FIG. 4: A: Simulate 2D camera view. B: RoboDK scenario. C: Final movement in three different positions (a , b and c).
A complete execution of our program is shown in this figure. First, we must follow in order the black cursor numbered sequence
-1, 3 are in Fig. 4.A and 2, 4 are in Fig. 4.B- which represents the four calibration steps. Second, we must match withe cursors
a, b and c -which are in Fig. 4.A- with the final movement a, b and c -which are in Fig. 4.C- respectively.

V. RESULTS AND CONCLUSIONS

A virtual simulation program using a 2D simulate cam-
era and an UR5e library robot has been developed us-
ing RoboDK. With a simple-to-use calibration –only four
clicks- you can configure the sense of sight of the robot,
creating the possibility of knowing the environment –in
our case a virtual scenario- and of approaching to the
position decided by the user.

This offline program automatically saves data calibra-
tion, avoiding the waste of time when the program is run-
ning with the previous pose –position and orientation- of
the camera. An interesting improvement is the possibil-
ity to decide if each point of calibration interests us or
we want to repeat it.

2D simulated camera is limited by the absence of depth
distance in each point of the scenario. In this work the
depth coordinates are fixed as z = zcamera-100 (z is the
distance with respect to the camera view, zcamera is the
distance with respect to the absolute reference and 100 is
the size of the objects in the scenario -all in mm-). With

this configuration, if the camera is looking down in any
direction -such as in Fig. 4- when we convert the coordi-
nate with respect to the absolute reference, the gripper
moves above the objects. But, if we have another orien-
tation, only the x and y coordinates are right.

This study has been very helpful in guiding future
work. Depth limitations shall automatically terminate
with Intel RealSense D-435i and it would be only neces-
sary to adapt this program structure to the 3D camera
-with all the difficulties that come with it. The ultimate
goal will provide a better sense of sight and with this,
more opportunities.

Acknowledgments

I would like to express my gratitude to my advisor,
Dr. Manel Puig i Vidal for his guidance and support
during these months. A very special thanks to Carla for
her patience and encouragement: nobody has been more
important to me. Finally, I wish to thank all my family:
without them, nothing would have been possible.

[1] G. Graetz, G.Michaels, Robots at Work, The Review of
Economics and Statistics, 100: 753-768, 2018.

[2] Collaborative robotic automation | Cobots from Universal
Robots. (n.d.). [Online] Retrieved March 5, 2020, from
https://www.universal-robots.com/

[3] Intel Realsense - Depth and Tracking cameras
(n.d.). [Online] Retrieved March, 5, 2020, from
http://intelrealsense.com/

[4] Z. Li, S. Dian,C.Li Research on Virtual 3D Display and
Teleoperation Technologies for an Inspection Robot in a
Stream Generator, In Proceedings of the 2019 4th Inter-

national Conference on Automation, 57: 1-5, 2019.
[5] Simulator for industrial robots and offline programming-

RoboDK. (n.d.). [Online] Retrieved March, 5, 2020, from
http://robodk.com/

[6] Start Production Faster | RobotiQ. (n.d.). [Online] Re-
trieved April, 10, 2020, from https://www.robotiq.com/

[7] Autodesk | 3D Design, Engineering & Construction Soft-
ware. (n.d.). [Online] Retrieved April, 15, 2020, from
https://www.autodesk.com/

Treball de Fi de Grau 5 Barcelona, June 2020

Control of a UR5e robotic arm through a simulate 2D camera Mar Caballer Castells

VI. APPENDIX

FIG. 5: Flow chart of the Image Calibration program.
FIG. 6: Flow chart of the Image Calibration program.

Treball de Fi de Grau 6 Barcelona, June 2020

