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Abstract: Quasinormal modes are characteristic oscillatory modes that appear when a black hole
is perturbed. In this work we focus our attention on computing them with the WKB approximation
method. First, we start by revising some of the pioneering methods to calculate them using this
approach. We then present a recently developed technique that allows us to achieve very high-order
calculations of WKB series in perturbation theory and automates the computation of such modes.

I. INTRODUCTION

When a black hole is subject to external perturbations,
characteristic vibration modes appear. These modes de-
cay in time due to gravitational radiation emission. That
is the reason why they are called quasinormal modes.
They are characterized by complex frequencies. The real
part of these frequencies corresponds to the frequency of
vibration, and the imaginary part corresponds to the rate
at which each mode is damped as a result of the emission
of radiation. See [1] for a review.

Since the recent detection of gravitational waves by
LIGO [2], black hole quasinormal modes are no longer
merely theoretical objects: their measurement is crucial
to pin down the mass and angular momentum of the final
black hole after a binary merger.

In some exceptional cases they can be computed ex-
actly. Nevertheless, in most cases these calculations re-
quire approximations or numerical methods. We will fol-
low the first alternative and use the WKB approximation,
widely used in Quantum Mechanics, to compute them.

In the next section we present one of the pioneering
techniques in black hole quasinormal modes computation
developed by Schutz and Will [3] in the mid 80’s, that in-
volves a first order WKB approximation. Next we show
succinctly how one could push the computation to higher
orders following this path. In the following we will not
be interested in pursuing these ideas. We will present a
recent method based on the idea of Blome et al. [4] to
connect black hole quasinormal modes with bound state
energies of anharmonic oscillators. This relation will al-
low us to use a technique due to Bender and Wu [5] to
compute quasinormal modes, and will enable us to au-
tomate their calculation. Throughout this work we will
consider only the Schwarzschild black hole.
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II. WKB APPROXIMATION: FIRST-ORDER
CALCULATION

The main motivation to use the WKB approximation is
the similarity between the equations of black hole pertur-
bation theory and the one-dimensional time-independent
Schrödinger equation for a potential barrier. In both
cases the master equation is of the form [1, 3]

d2Ψ(x)

dx2
+Q(x)Ψ(x) = 0. (1)

In the black hole case, Ψ represents the radial part of the
perturbation variable, x is a tortoise coordinate r∗ which
ranges from −∞ at the event horizon to +∞ at spatial
infinity, and

−Q(x) := V (x)− ω2, (2)

where ω corresponds to the quasinormal mode frequency
and V is the radial potential, is a complex function that
takes constant values at x = ±∞ (not necessarily equal),
and has a maximum at x = 0.

In quantum mechanics this function is defined as
−Q(x) := 2m

~2 [V (x) − E], where E is the energy of the
particle of mass m, and V (x) is the potential barrier,
assumed to tend to constant values as x→ ±∞

FIG. 1: The function −Q(x). Figure taken from [3].

To determine the quasinormal modes we must impose
physically appropriate boundary conditions at the event
horizon (x → −∞) and at spatial infinity (x → +∞).
From now on, we will use the convention that outgoing
modes refers to the ones moving away from the poten-
tial barrier. With this convention outgoing as x → −∞



Quasinormal modes of black holes Andreu Camprub́ı Peiró

corresponds to waves crossing the horizon into the black
hole.

First, since −Q(x) tends to a constant both at the
horizon and at spatial infinity we obtain the behavior
Ψ ∼ e−iω±x . Now, we know that classically nothing
should leave the horizon, so at the horizon only outgo-
ing modes should be considered, therefore Ψ ∼ e−iωx.
On the other hand, keeping in mind that a normal mode
is a free oscillation of the black hole itself, with no in-
coming radiation driving it, we need to discard ingoing
modes at spatial infinity, hence Ψ ∼ eiωx. Now to apply
the WKB approximation we have to relate two WKB
solutions across a matching region (region II in Fig.1)
whose limits are the classical turning points, i.e. where
−Q(x) = 0. Outside the matching region the WKB func-
tions are given by (see [6])

ΨI(x) ≈ Q− 1
4 exp

{
± i
∫ x

x2

[Q(s)]
1
2 ds

}
ΨIII(x) ≈ Q− 1

4 exp

{
± i
∫ x1

x

[Q(s)]
1
2 ds

}
. (3)

In region II, we approximate Q(x) by a parabola. This is
justified provided the turning points are closely spaced,
i.e., provided [−Q(x)]max � |Q(±∞)|. Under this as-
sumption we can expand Q(x) in a Taylor series around
its extremum, obtaining

Q(x) ≈ Q0 +
1

2
Q′′0(x− x0)2 (4)

where Q0 := Q(x0) < 0, and Q′′0 :=
d2Q

dx2

∣∣∣
x0

> 0.

Performing the changes of variable k := 1
2Q
′′
0 , t :=

(4k)
1
4 ei

π
4 (x−x0) and ν+ 1

2
:= −i Q0

(2Q′′0 )
1
2

, we bring equa-

tion (1) into the form

d2Ψ(t)

dt2
+

(
ν +

1

2
− 1

4
t2
)

Ψ(t) = 0, (5)

whose solutions are parabolic cylinder functions. For
large |t| the asymptotic forms of these solutions yield
(see [6])

Ψ ≈Be
−3iπ(ν+1)

4 (4k)−
(ν+1)

4 (x− x0)−(ν+1)eik
1
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1
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ik
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where Γ(ν) is a gamma function. Now it is easily verified

that the e−
ik

1
2 (x−x0)2

2 parts of both solutions in equation
(6) match to the outgoing wave of the WKB solutions of
equation (3). To satisfy the quasinormal mode boundary

conditions, the coefficients of the e
ik

1
2 (x−x0)2

2 parts must
vanish. We achieve this only if B = 0 and Γ(−ν) = ∞.
The latter condition implies that ν must be an integer.
This leads us to the following quantization rule for quasi-
normal modes

Q0

(2Q′′0)
1
2

= i
(
n+

1

2

)
, ∀n ∈ N. (7)

Remembering the definition of Q given in (2) (which
shows us that it is frequency dependent), we see that
(7) allows us to find the quasinormal modes complex fre-
quencies.

Now we can apply the preceding to determine the
quasinormal modes for the Schwarzschild black hole. The
master equation for such a black hole is given by

d2Ψ

dr2∗
+

{
σ2 −

[
1− 2

r

][
λ

r2
+

2β

r3

]}
Ψ = 0, (8)

where λ = l(l+1), where l is the angular harmonic index;
β = 1, 0,−3 for the three types of perturbation, respec-
tively; and σ = Mω, where M is the mass of the black
hole. The radial coordinates have been expressed in units

of M , and r∗ is related to r by
dr

dr∗
= 1 − 2

r
. Note that

the Q function corresponds to the quantity in braces in
(8). Computing the pertinent derivatives of Q we find
that the −Q peak occurs at

r = r0 =
3

2
λ−1

{
λ− β +

[
λ2 +

14λβ

9
+ β2

] 1
2
}
. (9)

Then from equation (7) we obtain

σ2 =

[
1− 2

r0

][
λ

r20
+

2β

r30

]
+ i(2Q′′0)

1
2

(
n+

1

2

)
, (10)

which allows us to compute the quasinormal modes in
this case.

III. PUSHING THE WKB COMPUTATION TO
HIGHER ORDERS

Higher order corrections to equation (4) have been
computed. In [7], Iyer and Will computed the third order
correction, and Konoplya extended it to the sixth order
[8]. Recently, the computation up to the 13th order has
been done by Matyajasek and Opala [9]. Nevertheless,
this showed us that getting to higher orders using this
procedure involves harder and harder calculations. We
will not follow this path in the following. We just illus-
trate briefly how the third order WKB expansion could
be performed.
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First we would rewrite the master equation (1) in the
form

ε2
d2Ψ

dx2
+Q(x)Ψ(x) = 0, (11)

where the perturbation parameter ε allows us to keep
track of orders in the WKB approximation. Then we
would define the asymptotic approximation

Ψ ∼ exp
[
S(x)

ε

]
, (12)

where S is expanded in powers of ε:

S(x) =

∞∑
n=0

εnSn(x). (13)

Substituting (13) in (11), and equating equal powers of
ε we would then determine Sn(x) until the third order.
Now to determine Ψ in the matching region we would
have to expand Q(x) in a Taylor series around its ex-
tremum up to sixth order. Substituting this expansion
in (11) and performing the appropriate changes of vari-
able we would arrive to a new second order linear differ-
ential equation. Solving it involves heavier calculations
than in the previous section. We finally would arrive at
a quantization rule such as (7), namely

iQ0

(2Q′′0)
1
2

− Λ(n)− Ω(n) = n+
1

2
,

n =

{
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−1,−2, ... , if Reω < 0
, (14)

where

Λ(n) =
1

(2Q′′0)
1
2
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Q
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Q′′0
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1

4
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− 1
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}
,
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α

2Q′′0
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5
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Q′′0

]4
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Q′′′20 Q

(4)
0

Q′′30

]
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+
1

2304

[
Q

(4)
0
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+
1
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[
Q′′′0 Q

(5)
0

Q′′20

]
(19 + 28α2)

− 1

288

[
Q

(6)
0

Q′′0

]
(5 + 4α2)

}
, (15)

where α := n+ 1
2 .

IV. ANHARMONIC OSCILLATOR

We now apparently change the subject and turn our at-
tention to the problem of finding the ground state energy
of an anharmonic oscillator [5]. This will provide a very
powerful technique to compute the quasinormal modes,
once established the connection between black hole quasi-
normal modes and bound states energies of anharmonic
oscillators .

The system under consideration is described by a
Hamiltonian of the form

H =
1

2
p2 +

1

2
q2 +

g

4
q4, (16)

where W (q) = 1
2q

2 +Wint(q) is the potential energy and
where Wint(q) is an interaction term assumed to be quar-
tic. We assume that the ground energy has the following
perturbative expansion

E0(g) =
1

2
+

∞∑
k=1

ak

(
g

4

)k
, (17)

for some coefficients ak. Now we write down the
Schrödinger equation for our system(

− 1

2

d2

dx2
+
x2

2
+
gx4

4

)
Ψ(x) = E0(g)Ψ(x). (18)

For g = 0, we know that the solution to this equation is
the ground state of the harmonic oscillator, that is, the

Gaussian e−
x2

2 . This motivates an ansatz for the solution
of the form

Ψ(x) = e−
x2

2

∞∑
n=0

(
g

4

)n
Bn(x), B0(x) := 1. (19)

Plugging this ansatz in equation (18), an recalling that
the energy has the form (17), we find the following re-
cursive equation for the Bk(x) and the ak

xB′k(x)− 1

2
B′′k (x) + x4Bk−1(x) =

k∑
p=0

ak−pBp(x). (20)

In order to solve this recursion, we further assume

Bi(x) =

2i∑
j=1

x2j(−1)iBi,j . (21)

Looking at the term of degree zero in (20) and equating
coefficients, we find that

ak = (−1)k+1Bk,1. (22)

Now substituting (21) and (22) in (20) we obtain the
following recursion relation for Bi,j

2jBi,j = (j+1)(2j+1)Bi,j+1+Bi−1,j−2−
i−1∑
p=1

Bi−p,1Bp,j .

(23)
This recursion can be easily solved and allows us to find
the coefficients ak, and consequently the ground state
energy of the system.
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V. RECURSIVE APPROACH TO
QUASINORMAL MODES

In this section we present a method to compute the
quasinormal modes due to Y. Hatsuda [10].

We are now equipped with the tools developed in the
previous section. The focus will be put on the study of
spherically symmetric black holes. For this type of black
holes the radial master equation has the form(

ε2
d2

dr2∗
+ ω2 − V (r∗)

)
φ(r∗) = 0, (24)

where the notation is as in section (III). The potential
V (r∗) is assumed to have a global maximum. Now let
us examine the Schrödinger equation with the inverted
potential −V (r∗),(

− ~2
d2

dr2∗
− V (r∗)

)
Ψ(r∗) = EΨ(r∗). (25)

The inverted potential usually has bound states for E <
0. We denote this bound energy states by EBSn (~) for all
n ∈ N. Now we realize that we can identify equations
(24) and (25) by making an analytic continuation of ~.
If we set ~ = iε, equation (25) with E = −ω2 is formally
identical to (24). We then expect the quasinormal fre-
quency ωQNMn at ε = 1 to be related to the bound state
energy EBSn at ~ = i by

(ωQNMn )2 = −EBSn (~ = i). (26)

This equation will give us the connection between our
problem and the one described in section (IV). Note that
we do not provide a rigorous proof of relation (26). We
will check its validity by comparing the results obtained
by using it to the ones already present in the literature.

A. Steps of the method

First we compute the Taylor expansion of the potential
present in the master equation (24), namely

−V (r∗) = V0 +

∞∑
k=2

Vk(r∗ − r0∗)k, (27)

where r∗ = r0∗ corresponds to the minimum of the in-
verted potential. Now it is more convenient to define
r∗ − r0∗ :=

√
~x, which substituted in (25) gives(
− 1

2

d2

dx2
+
V2
2

+ Vint

)
Ψ(x) = εΨ(x) (28)

where

ε :=
E − V0

2~
, Vint(x) :=

1

2

∞∑
k=3

~
k
2−1Vkx

k. (29)

Now regarding equation (28) as the one of an anharmonic
oscillator we can relate our problem to the one presented
in section (IV). Nevertheless, note that now our problem
is harder since our anharmonic oscillator has an infinite
number of interaction terms. At this point, we proceed
by using a Mathematica package [11] that allows us to
compute the perturbative expansion of the energy for
a given potential employing the technique described in
section (IV). Looking at equation (29) it is important to
remark that the interaction term xk leads to the contri-
bution with order ~ k2−1, that is, if we want to know the
energy perturbative series up to the lth order, we need to
compute the Taylor expansion up to the 2(l+1)th order.

B. Schwarzschild black hole

Now we show how powerful this method is by applying
it to the Schwarzschild black hole. We know that for this
type of black hole the potential has the form

V (r∗) =

(
1− 1

r

)(
l(l + 1)

r2
+

1− s2

r3

)
, (30)

where r∗ = r + log(r − 1), the black hole mass has been
set to 2M = 1, and s = 0, 1, 2 corresponds respectively to
scalar, electromagnetic and gravitational perturbations.
We focus our attention now on the case s = 2 and l =
2. First, we need to find the minimum of the inverted
potential. It attains its minimum value at

r0 =
1

8
(9 +

√
17). (31)

We define r0∗ = r0+log(r0−1). Now we need to compute
the Taylor expansion of the inverted potential around
r∗ = r0∗. To do so we use Mathematica. We obtain

−V (r∗) = −0.60514679 + 0.0793552t2 − 0.0134244t3

− 0.0063813t4 + 0.0026341t5 + 0.0001602t6

− 0.0003001t7 + 0.0000425t8 +O(t9), (32)

where t := r∗ − r0∗ (we just show the calculation up
to eight order for space reasons). Now the Mathematica
package [11] automatically computes the perturbative se-
ries

εpertn =

∞∑
k=0

ε(k)n ~k. (33)

For the ground state energy to the tenth order we obtain

εpert0 = 0.14085− 0.0399931~ + 0.00768009~2

− 0.000617727~3 − 0.000324705~4 + 0.000181561~5

+ 0.000134855~6 − 0.000396636~7 + 0.000290997~8

+ 0.000510482~9 − 0.00165866~10 +O(~11) (34)
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FIG. 2: The large order behavior of |ε(k)0 | for (s, l) = (2, 2).

To get the quasinormal modes we use the relation (26),
that is, ω2

n = −(V0 + 2~εn), and set ~ = i. The pertur-
bative series of εn up to ~10 gives us the following value:

ω0(s = 2, l = 2) ≈ 0.748934− 0.179803i. (35)

Using Mathematica we have computed ε
(k)
0 up to k =

200. In Fig. 2 we show the large order behavior of the
absolute values of the ground state coefficients. The seri-
ously growing behavior we can appreciate makes us sus-
pect that (33) is an asymptotic series.

VI. CONCLUSIONS

We have verified that the method proposed by Y. Hat-
suda to compute the quasinormal modes works, since it
reproduces the values present in the literature. Using
this technique, the problem encountered when using the
prior methods, namely that to increase an order in the
WKB expansion has a very high computational cost, be-
comes obsolete. Now we can push the calculation to any
desired order just by running a simple code using the
BenderWu package [11]. In a certain way, the problem
has been trivialized.

An interesting question remains open. Is the WKB
series expansion of the energy asymptotic or not? And
if it is asymptotic, as we suspect, what new physics is
behind that fact?

We have limited our verification of the method by Y.
Hatsuda to the Schwarzschild black hole. An interest-
ing next step would be to extend this work to the more
realistic case of a rotating black hole.
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