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A B S T R A C T

I develop a rate-distortion analysis of signaling games with imperfect common interest. Sender and receiver should be seen as jointly managing a communication
channel with the objective of minimizing two independent distortion measures. I use this analysis to identify a problem with ‘functional’ theories of deception, and in
particular Brian Skyrms's: there are perfectly cooperative, non-exploitative instances of channel management that come out as manipulative and deceptive according
to those theories.

1. Introduction

How communication is modeled in a Lewis-Skyrms signaling game
(also simply signaling game henceforth, Lewis, 1969, chap. 4; Skyrms,
2010) is perfectly isomorphic to how information processing is modeled
in information theory (Cover & Thomas, 2006; Shannon & Weaver,
1998). See Figs. 1 and 2.

In this paper I take this isomorphism seriously: literally, senders and
receivers in a signaling game are jointly managing an information-
processing channel. This information-theoretic perspective on signaling
games has been neglected in the literature, and it should not have: as I
will argue here, the central behavioral unit in signaling games is neither
sender nor receiver strategies, but the encoding-decoding pair (also
code henceforth) that they jointly construct. This ‘channel-first’ per-
spective makes it possible to identify cooperative examples of joint
channel-management. It will turn out that what certain prominent
contemporary accounts of deception call ‘deceptive’ or even ‘manip-
ulative’ is compatible with exquisitely cooperative arrangements.

I have just suggested that information-theoretic analyses of sig-
naling games are virtually non-existent. If the reader is familiar with the
literature, this claim might have struck them as odd: information-the-
oretic notions are routinely used in the analysis of signaling games.
Unfortunately, only the subset of information theory that was in-
troduced to philosophers by Dretske's seminal (1981) book is typically
appealed to. This subset is relatively small, and can be introduced in full
in a few paragraphs. I will do so in section 2, after briefly presenting
signaling games. The Dretskean subset of information theory leaves
important informational structure out. In section 3 I summarize a few
key ideas in rate-distortion theory, the branch of information theory that
describes lossy communication and which, I propose, can be fruitfully
applied to the description of signaling games. In section 4 I discuss a

conservative extension to rate-distortion theory that deals with situa-
tions in which two independent distortion measures (in our case, those
of sender and receiver) are used to calculate the rate of a code. With the
help of these tools, in section 5 I show that a very prominent, so-called
functional approach to deception in simple organisms, and in particular
Skyrms's application of this idea, somewhat myopically regards in-
dividual signals as manipulative, even if they are part of a code which
equally respects the interests of sender and receiver. Section 6 re-
capitulates and offers some conclusions.

2. Information in Lewis-Skyrms signaling games

In the version of signaling games I will be concerning myself with
here, the world observed by the sender is represented as a random
variable, S.1 For my current purposes, this random variable can be
identified with a set of s possible states for the variable to be in,

… …S S S[ , , , , ]i s1 , together with a probability distribution over states
…S S[Pr( ), ,Pr( )]s1 , where ≥SPr( ) 0i and ∑ =SPr( ) 1i i (MacKay, 2003, p.

34) The sender observes the state the world is in and then sends a signal
to the receiver (see Fig. 1). Again, signals can be thought of as a random
variable M: there are, say, m possible signals in the putative re-
presentation system we are studying, … …M M M[ , , , , ]i m1 . Finally, the
receiver observes the signal sent by the sender and chooses an act, Ai,
out of a possible acts. A is our third and final random variable.

There is a payoff associated with every combination of state and
act.2 The combination of state Si and act Aj results in a sender payoff of
pij

σ and a receiver payoff of pij
ρ (Fig. 3). Signaling games are, as ori-

ginally described, game-theoretic models, and these payoff matrices are
used to calculate Nash equilibria and evolutionary trajectories (see
Godfrey-Smith & Martínez, 2013; Martínez & Godfrey-Smith, 2016 for
details). As we are about to see, that is the full extent of their
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use—again, it should not be.
The probabilities associated with the three random variables, S, M

and A, are interconnected through the sender strategy (a matrix of
probabilities of signals conditional on world states), and the receiver
strategy (a matrix of probabilities of acts conditional on signals). See
Fig. 4.

With the probabilities of world states together with sender and re-
ceiver strategies we can calculate all possible joint and conditional
probabilities involving the three random variables. Brian Skyrms, in a
very influential information-theoretic treatment of signaling games
(2010, ch. 3), uses these quantities to define the informational content of
a signal. First, he defines the “information in [Mj] in favor of [Si]” (op.
cit., p. 36—variables changed) as

−S M Slog Pr( | ) log Pr( )i j i2 2 (1)

This is simply a measure of the difference between the uncondi-
tional probability of world state Si and its probability conditional on the
signal.3 Skyrms then proposes that the informational content of a
signal, Mi, should be identified with the collection of the informations
that this signal carries about every world state:

〈 − … − 〉S M S S M Slog Pr( | ) log Pr( ), , log Pr( | ) log Pr( )i s i s2 1 2 1 2 2 (2)

The analogous construction gives us the informational content of
the signal about acts (Skyrms, 2010 p. 39).

In the information-theoretic constructions in his 2010 book and, as
far as I am aware, elsewhere, Skyrms uses all of but also only three
mathematical objects: the probability distribution of states, the sender
strategy, and the receiver strategy. Both the “all of” and the “only” are
regrettable. The “all of” means, among other things, that no informa-
tional analysis is possible until the sender and the receiver have made
up their mind as to what strategy to adopt. Postponing informational
analyses until a sender and a receiver strategy are available tacitly as-
sumes that information theory can offer no guidance as to what has led
sender and receiver to adopt those very strategies.4 Typically, indeed,
prominent sender-receiver configurations (e.g., Nash equilibria, or sinks
in evolutionary dynamics) are singled out for information-theoretic

investigation. The underlying idea seems to be that only (evolutionary)
game-theoretic properties of the signaling setup are relevant to sender
and receiver adopting the strategies they do adopt. Such features are, of
course, sufficient for those strategies to obtain—this is just the way
signaling games are designed, after all. On the other hand, sender and
receiver are solving an informational problem: that of what to commu-
nicate, and how much to communicate about it, given their interests.
This is also by design: signaling games are precisely a tool formulated to
study communication. It should therefore be possible to identify in-
formational constraints on available, and attractive, strategies for
sender and receiver to adopt. Yet the mainstream information-theore-
tical toolbox in philosophy, the one used by Skyrms and others fol-
lowing on Dretske's (1981) footsteps, has no resources for making in-
formation theory contribute to our understanding of the informational
structure of a signaling gane, independently from this or that sender-
receiver configuration. That is, it has no way to answer the question:
what are the informational properties of the game setup that help ex-
plain players having ended in this or that sender-receiver configura-
tion?

Regarding the “only”, it is surprising that payoff matrices should
play no role in the informational analysis of signaling games. As I
suggested above, sender and receiver have possibly different desiderata
as to what to communicate. Plausibly these sets of interests will influ-
ence the properties of the code that their strategies jointly con-
stitute—what it singles out for transmission, and what it discards. These
sets of interests are given by the payoff matrices, which should there-
fore be factored in our informational analysis.

These shortcomings are a result of the undue focus on the informa-
tion carried by particular vehicles in most philosophical treatments of
information (Kraemer, 2015; Scarantino, 2015; Shea, 2007; Skyrms,
2010; Stegmann, 2015, among many others). In the Lewis-Skyrms fra-
mework, this translates into a focus on the informational properties of
particular signals, and in particular of the information they carry about
states, on the one hand, and acts, on the other. This piecemeal, one-
sided evaluation of the informational properties of signals obscures the
role they play in the mediation between states and acts. It is this med-
iation that signals are for.

3. Back to Shannon

Information theory proper, beyond the fragment Dretske chose to
focus on and interpret, offers a better analysis of signaling games. The
main aim of information theory, the branch of applied mathematics
inaugurated by Claude E. Shannon's astonishing The Mathematical
Theory of Communication (1948; the standard textbook treatment is
Cover & Thomas, 2006) is to identify theoretical bounds for distortion in

Fig. 1. A signaling game.

Fig. 2. An information-processing pipeline.

Fig. 3. Sender payoff (left) and receiver payoff (right). Fig. 4. Sender strategy (left) and receiver strategy (right).

3 This quantity is sometimes called pointwise mutual information, and is widely
used in automatic text parsing (e.g., Bouma, 2009).

4 As an anonymous referee helpfully remarked, this is not to say that Skyrms's
overall theory does not offer such guidance. It does: it is the evolutionary game-
theoretic aspect of his theory that deals with the evolution of sender-receiver
strategies—including the evolution of the informational properties of these
strategies (see, e.g., Skyrms, 2010, p. 40, Fig. 3.3). The information-theoretic
ingredient of Skyrms's theory is silent about this, and only pertains to the de-
scription of static, instantaneous sender-receiver configurations.
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the transmission of information through a (typically noisy, typically narrow)
channel. Signaling games can be described with the tools of information
theory because they are just that: information-processing pipelines, in
which a channel and a distortion measure can be readily identified.

First, as regards the channel, sender and receiver strategies in a
signaling game are, quite literally, an encoder-decoder pair (again, see
Figs. 1 and 2): the sender transforms world states incoming from the
source into signals. The receiver decodes those signals to obtain acts.
The matrix that results from multiplying sender and receiver strategies
(Fig. 5), and that transforms states into acts, identifies a rate equal to
the mutual information between states and acts, =R I S A( ; ). By the
source-channel separation theorem with distortion (Cover & Thomas, 2006,
Theorem 10.4.1) the channel through which signals are sent must have
a capacity, C, such that >C R.

Second, signaling games come equipped with a measure of distor-
tion in the transmission of information: the payoff matrices provide
precisely an answer to the question, how good is decoding state Si as Aj,
compared to the best we could possibly do? This observation can be
turned into a formal distortion measure simply by normalizing and
rescaling the payoff matrices.5 Setting =p pmax ( )max ij ij ,

=p pmin ( )min ij ij , the distortion measure for the pair S A( , )i j is

=
−

−
d

p p
p pij

max ij

max min (3)

Once we have a channel and a distortion measure, one central result
in information theory is that it is possible to calculate a rate-distortion
function (Shannon, 1948, 1959; Cover & Thomas, 2006, ch. 10) that
gives the minimum rate, and hence channel capacity, sufficient to
achieve any expected level of distortion D.6 This function is given by:

=
∑ ≤

R D I S A( ) min ( ; )
p a s p s a d s a D( | ): ( , ) ( , )

s a( , ) (4)

That is, it's given by the minimum mutual information between
states and acts that still meets the distortion goal: “the minimization is
over all conditional distributions A SPr( | ) for which the joint distribu-
tion S APr( , ) satisfies the expected distortion constraint [D]” (Cover &
Thomas, 2006, p. 335—variables changed). This minimization, in sum,
gives the minimum rate at which a certain distortion, or less, is
achievable. The Blahut-Arimoto algorithm (Blahut, 1972; Arimoto,
1972; Cover & Thomas, 2006, sec. 10.8) provides an efficient way to
calculate the R D( ) function.

The rate-distortion function depends only, on the one hand, on the
probabilistic structure of the source, S, and, on the other hand, on the
distortion measure D. Both of these quantities are prior to, and do not
depend on, the actual strategies being implemented by sender and re-
ceiver. The rate-distortion function, thus, offers a way to characterize
the informational structure of a signaling game, independently of the
actual behavior of senders of receivers—indeed, I will be defending in
what follows that it is illuminating to see senders and receivers as re-
acting to this informational landscape.

For a first example of how these rate-distortion functions look like
consider one of the simplest signaling games: the 3×3 Lewis signaling

game.7 In this game there are three equiprobable states and three
possible receiver acts. The payoff for every combination of state and act
is given by Table 1. Table 2 shows the distortion measure that corre-
sponds to this payoff matrix (i.e, the payoff matrix rescaled and nor-
malized as per eq. (3)). The rate-distortion curve for this Lewis-Skyrms
model is given in Fig. 6.

This curve is a very simple object: looking at the point in which the
curve touches the y-axis, we can tell that if we wish to reach an ex-
pected distortion of 0 we need a rate that matches the entropy of states,
i.e., ≈log 3 1.582 bits. This is because the only way for the encoder-
decoder pair to get it always right is to have a signaling system
(Huttegger, 2007, proposition 3) in which the sender chooses a dif-
ferent signal for each state and the receiver chooses the right act in face
of each signal. The entropy of signals (thus, the rate of the code) in this
situation is the aforementioned 1.58 bits.

In fact one can directly argue for that rate value at distortion 0 on
purely information-theoretic grounds: Shannon's source coding theorem
(Cover & Thomas, 2006, Theorem 7.13.1) entails that there exists a
channel which has a rate equal to or larger than the entropy of the
source and an error probability arbitrarily close to zero, and that no
code with lower rate can achieve this. Signaling systems are a con-
sequence of the source coding theorem.

On the other hand, if the rate is zero (that is, if the channel is
completely closed, and sender and receiver do not communicate) the
best achievable expected distortion is ≈2/3 0.66. This is achieved, e.g.,
by the receiver always doing A1, no matter what. This act will achieve a
distortion of 0 one third of the time (whenever S1 is the case, remember
that all three states are equiprobable) and a distortion of 1 two thirds of
the time, which adds up to an expected distortion of 0.66. Distortions in
between 0 and 1 correspond to different rates, as the curve shows.

The rate-distortion function, as depicted in Fig. 6, fully characterizes
the informational structure of the 3×3 Lewis signaling game. Inter-
rogating it is useful. First, is there a problem that transmitting in-
formation can help solve? Yes, there is: there are levels of distortion
(indeed, distortion zero) which are achievable with information
transfer (i.e., with codes of nonzero rate, and therefore channels of
nonzero capacity) and not achievable otherwise. Second, is there a
distortion (equivalently, payoff) optimum for both sender and receiver?
Yes, there is as well: that would be the point at the upper left corner of
the plot, where distortion zero is achieved with a 1.58 bit code.

The rate-distortion curve is all there is to the informational problem
at hand. The informational facts represented in the curve, unsurpris-
ingly, explain a lot of the sender-receiver goings-on in the 3×3 Lewis
signaling game: for example, the only strict Nash equilibria and the only
evolutionarily stable strategies in ×n n Lewis signaling games are
distortion zero/ maximum rate points. This follows from all such
equilibria being signaling systems (Huttegger, 2007, propositions 4 and
5) and all signaling systems constituting zero-distortion codes.8

One natural (but, as far as I am aware, unexplored) way to think of
signaling games is as, first and foremost, rate-distortion problems faced by
sender and receiver, where Nash equilibria and dynamical sinks describe
ways to approximate optimal solutions to these problems without joint
deliberation. Game-theoretic discussion of signaling is often cast in

Fig. 5. A Lewis-Skyrms code.

5 One could carry out all of the analyses in this paper, mutatis mutandis, using
payoff values directly. I will transform them into normalized distortion mea-
sures, though, as is standard in rate-distortion analyses.

6 The expected distortion D is the average of distortion values for each pair of
a state Si and an act Aj, dij, weighted by the joint probability of those state and
act, S APr( , )i j .

7 This way of calling it comes from Bruner, O’Connor, Rubin, and Huttegger
(2018).

8 On the other hand, certainly not everything is explained by the rate-dis-
tortion curve: in the same remarkable paper, Simon Huttegger also proves that
not all random starting points subjected to an evolutionary regime governed by
the two-population replicator dynamical equations reach a zero-distortion/
maximum rate code—although only such codes correspond to aymptotically
stable points. In the 3×3 case, the proportion that don't reach distortion zero
amount to just below 5% in numerical trials (Huttegger, Skyrms, Smead, &
Zollman, 2010). See Hofbauer and Sigmund (1998) for a description of the
replicator dynamics, and Martínez and Godfrey-Smith (2016) for a gentler in-
troduction.
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confrontational terms. The rate-distortion perspective allows us to see
sender-receiver behavior as much more cooperative than it is typically
seen.

So far I have only dealt with a very simple case, in which sender and
receiver have perfect common interest. I will now substantiate the
foregoing remarks by showing how the rate-distortion perspective can
be extended to cases of imperfect common interest.

4. Imperfect common interest

It is possible to present the 3×3 Lewis signaling game as a curve, as
in Fig. 6, because there is only one distortion objective: that is, both
sender and receiver agree completely in the distortion measure. Still, if
one so wishes, the same information can be presented by making it
explicit that both sender and receiver have their own distortion mea-
sure—it's just that both coincide. One way to do it is with a two-di-
mensional heatmap, as in Fig. 7.

The way to read this plot is as follows: the x-axis codes distortion
goals for the sender, and the y-axis, for the receiver. The color at each
point in the plot codes the rate necessary to meet, or exceed, both
distortion goals. So, for example, the black area in the upper-right area
of the plot delimits all pairs of sender- and receiver-distortion goals that
can be met with zero rate—i.e., with no information at all passing from
sender to receiver. As we saw above, any point with Dsender and

≥D 2/3receiver can be reached with no information transfer whatsoever.
Below and to the left of the black area, the lower the distortion goals

are, the higher the rate necessary to achieve them. As we saw above, it
is possible to achieve zero expected distortion for both sender and re-
ceiver (that would be the lower left corner), and the rate necessary to
achieve that point is ≈log 3 1.582 bits—the pale-yellow end of the color-
coded rates.9 The fact that, in Fig. 6, the rate-distortion curves becomes
increasingly steeper as we approach distortion zero is mirrored in Fig. 7
by colors ‘heating up’ faster near the lower-left corner than near the
upper-right one.

Fig. 7 is representing, in a less economical way, the situation already
represented in Fig. 6. A two-dimensional heatmap is unnecessary when
sender and receiver payoff matrices (distortion measures) coincide.
Indeed, this is the scenario typically studied in information theory: one
in which encoder and decoder cooperate to achieve a common com-
munication goal. The rate-distortion approach could hardly be re-
commended as an addition to the signaling-game theorist's toolbox if it

only worked for cases of perfect common interest. Fortunately, the
extension of rate-distortion analyses to cases of imperfect common

Table 1
Payoff matrix for the 3×3 Lewis signaling game.

A1 A2 A3

S1 1 0 0
S2 0 1 0
S3 0 0 1

Table 2
Distortion measure for the 3× 3 Lewis signaling game.

A1 A2 A3

S1 0 1 1
S2 1 0 1
S3 1 1 0

Fig. 6. The rate-distortion curve for the 3×3 Lewis signaling game.

Fig. 7. Rate-Distortion surface for a 3× 3 Lewis signaling game.

9Why does it take 1.58 bits to reach the upper left and lower right corners?
Because the only way to achieve these goals is by achieving zero distortion for
both players. Remember that, as per eq. (4), distortion goals have to be at least
met, but can be exceeded.
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interest is entirely conservative and straightforward, if seldom ex-
plored. In his seminal paper on the numerical computation of rate-
distortion functions, Richard Blahut discusses the situation in which “it
may be desired that two (or more) separate definitions of distortion be
satisfied” (1972, p. 470). The use case he mentions is when “the re-
produced data is to be made available to two different users with dif-
ferent applications in mind.” (Blahut, 1972, p. 471). To the best of my
knowledge, exploration of this proposed extension of rate-distortion
theory to two distortion measures is virtually non-existent in the in-
formation-theoretic literature. In any case, I believe the present article
to be the first to explore it in the context of Lewis-Skyrms signaling
games.

The way to adapt Blahut's idea to signaling games is, quite simply,
to convert the two payoff matrices for sender and receiver into two
independent distortion measures, ds for the sender and dr for the re-
ceiver, and consider the case in which a distortion objective for the
sender, DS, and another for the receiver, DR, must be satisfied (or ex-
ceeded) jointly. When there is divergence of interest, then, the rate-
distortion curve becomes a rate-distortion surface: we define

∑=δ s a s a d s a( , ) Pr( , ) ( , )s
s a

s
( , ) (5)

and

∑=δ s a s a d s a( , ) Pr( , ) ( , )r
s a

r
( , ) (6)

The rate-distortion function for two independent distortion mea-
sures then becomes

=
≤ ≤

R D D I S A( , ) min ( ; )S R
a s δ s a D δ s a D{Pr( | ): ( , ) , ( , ) }s S r R (7)

The rate-distortion surface presents the informational problem that
sender and receiver must solve: minimizing distortion simultaneously
for two users with different needs. Take, for example, the main game
Brian Skyrms uses to illustrate his account of deception (Skyrms, 2010,
p. 81). The payoff matrices for sender and receiver are given in Table 3.
Each payoff matrix corresponds, in the manner described above, to a
distortion measure. The two distortion measures and the fact that the
source consists in three equiprobable states (Skyrms, 2010) leave us
with the rate-distortion surface in Fig. 8. The bottom-left white region is
unreachable: there is no code that can transmit information in a way
such that both DS and DR can be met, for points 〈 〉D D,S R in that region.
Every other point is reachable.10

It is easy to see that every point that is reachable tout court is
reachable by a sender and a receiver playing a signaling game—just not
necessarily reachable with the minimum achievable rate. Suppose that
〈 〉D D,S R is reachable. Then there is a Lewis-Skyrms code C that has
these, or lower, distortion values. We just need to find a sender strategy,
S, and a receiver strategy, R, such that ⋅ =S R C. There are two trivial
solutions to this equation: one is to set =S Is and =R C , where Is is the

×s s identity matrix; the other is to set =S C and =R Ia, where Ia is the
×a a identity matrix.
Again here, we can interrogate the rate-distortion surface to learn

about the underlying informational problem: is this a game in which
both sender and receiver stand to gain by opening the channel? Yes:
there are points to the left and below the zero-rate black region. That is,
points reachable by a code of nonzero rate, where both sender and
receiver have less expected distortion than anything they can achieve in

the zero-rate region.
The best reachable points for both sender and receiver lie in the

straight line connecting 〈 〉0,0.133 (the red dot in Fig. 8) with 〈 〉0.533, 0
(the blue dot in Fig. 8). That is, the frontier between reachable and
unreachable. Any point to the right of or above this line has a coun-
terpart on the line that has a distortion at least not worse for both
players and strictly better for at least one. A set of points meeting this
condition is sometimes called a Pareto frontier. I will follow this usage
here.

Now, which point precisely in the Pareto frontier is the fairest so-
lution to the problem of, paraphrasing Blahut, “minimizing losses to
two different users with different applications in mind”, is undefined. A
few plausible candidates are:

Center: The center of the Pareto frontier 〈 〉0.267, 0.067 .
Same Expected Distortion: The point in the Pareto frontier at

which the expected distortion for both players is the same 〈 〉0.107, 0.107 .
Closest to Origin: The point in the Pareto frontier that is closest to

the unreachable no-distortion point 〈 〉0,0 , i.e., 〈 〉0.017, 0.130 .
Any of these points, and probably a handful more, could plausibly

be chosen by a fully cooperative team in charge of designing a code that
accommodates the needs of sender and receiver.11

Skyrms (2010, chap. 6) offers an account of deception that falls in
the family of what Fallis and Lewis call functional deception: “the view
that deception only requires that a deceiver benefit from sending a
misleading signal” (Fallis & Lewis, 2017, p. 3). In Skyrms's own devel-
opment of this idea, first, a signal Mj is misleading iff there is a state Si
such that either the world is not in Si and the information Mj carries
about Si is positive, or the world is in Si and the information Mj carries
about Si is negative. For the notion of carrying information about a state
see formula (1) above. Second, the sender benefits from sending this
misleading signal if “they do better than they would have had the re-
ceiver known the true state with probability 1” (paraphrased from Fallis

Fig. 8. Rate-Distortion surface for Skyrms's deception game. The colored dots
are notable points in the Pareto frontier, characterized in the main text.

Table 3
Payoff matrices for sender and receiver in Skyrms's deception game.

A1 A2 A3

S1 2, 10 0, 0 10, 8
S2 0, 0 2, 10 10, 8
S3 0, 0 10, 10 0, 0

10 I state, without proof, a fact about rate-distortion surfaces that is useful in
constructing them. The proof, which is easy if somewhat involved, will be
provided in subsequent work. Let us say that a point 〈 〉D D,S R is strictly reachable
iff there is a code with exactly those expected distortions. I will also call codes

a sPr( | ) for which all a sPr( | )j i are either 0 or 1 deterministic. It can then be shown
that a point 〈 〉D D,S R is strictly reachable iff it corresponds to the expected distortions
of a convex combination of deterministic codes.

11 The rate at these points (that is, how wide the channel needs to be at the
best solution to the bargaining problem sender and receiver face) could plau-
sibly be regarded as a measure of common interest between them. Comparing it
to the measures of common interest described in (Godfrey-Smith & Martínez,
2013; Martínez & Godfrey-Smith, 2016) is matter for another paper.
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& Lewis, 2016, p. 8, p. 8)
In his discussion of deception Brian Skyrms focuses on a Nash

equilibrium in the signaling game in Table 3 that results in the code
marked with a red dot in Fig. 8:

Best for Sender: If sender send signal M1 in states S1 and S2 and
signal M2 in state S3; if receiver do act A3 on receipt of signal M1 and act
A2 on receipt of signal M2. (Skyrms, 2010, p. 81—variables changed).

In the game of Table 3 and this Best for Sender equilibrium above,
signal M1 is deceptive in Skyrms's sense. It misleads: when sent in S1 (S2)
it raises the probability of S2 (S1). As a consequence, it carries positive
information about a non-actual state. This is to the detriment of the
receiver, who is forced to do A3, the best cover-all act for the receiver
for S1 and S2, but not the best act for the receiver for either S1 or S2
individually.

I do not wish to contest Skyrms' definition of deception. The func-
tional-deception tradition is surely right that misleadingness plus ben-
efit captures an important part of what we mean by deception. But I do
wish to contest that a confrontational description of what happens in
this game, for example, one in terms of manipulation, is the most apt
one. One can perfectly see “deceptive” results as emerging from a co-
operative endeavor—hence the somewhat provocative title of this
piece. In particular, it turns out that the candidates for a fair compro-
mise in respecting sender and receiver interests identified above
(Center, Same Expected Distortion, and Closest to Origin) come out as
deceptive and manipulative, according to Skyrms's treatment. I draw
this out in the following section.

5. Deception as cooperation

To recap, the cooperative endeavor I was referring to above is that
of constructing a code that simultaneously minimizes sender and receiver
distortion measures. A sender strategy is just an encoder; a receiver
strategy, just a decoder. The most important behavioral unit is neither
of those strategies, but the resulting encoding-decoding pair—the code
that connects states to acts. By the same token, it is not a good idea to
base confrontational and manipulative descriptions upon the behavior
of individual signals, because all signals conspire to generate a code,
and it is full codes that senders and receivers care about. Individual
signals are just means to an end.

For example, it turns out that the Best for Sender equilibrium above
represents a very good solution, for both parties, to this cooperation
problem. It is in the Pareto frontier, and very close to the Closest to
Origin point—the receiver only does 2.5% worse at this point than at
Closest to Origin. Moreover, at this point, the rate of the code is

=H (1/3) 0.92. Rate, recall eq. (6), corresponds to the minimal mutual
information between states and acts, I S A( ; ), at which the two distor-
tion goals are jointly achievable.12 0.92 bits is the maximum informa-
tion transfer anywhere in the R-D surface. That is, no reachable point
needs a higher mutual information between states and acts; and, in
particular, no more information is needed for the receiver to achieve
zero distortion. The problem with Best for Sender, to the extent that
there is one, does not seem to be a lack of informativeness on the part of
the sender.

In any event, my case does not much hang on Best for Sender not
being particularly manipulative, because the center of the Pareto frontier
is also Skyrms-deceptive. Fig. 9 gives a code that sits at exactly the Center
point (the numbers in the matrix are conditional probabilities of acts on
states, as per Fig. 5):

As one can see by comparing this code to the payoff matrix in
Table 3, the usefulness of this code for sender and receiver is exquisitely

balanced, so that both get exactly the same payback out of setting it up.
Yet, there are straightforward ways of implementing this code with
Skyrms-deceptive signals. One such way is one of the two trivial en-
coding-decoding pairs for any given code, described above—the one in
which the receiver strategy is the identity matrix:

Here, signals M2 and M3 are Skyrms-deceptive. Take M3. The prob-
abilities of states conditional on M3 are [.7, .3,0]. Remember that we are
dealing with equiprobable states, so the unconditional probabilities of
states are [1/3, 1/3, 1/3]. M3 is therefore misleading when sent in S2,
according to Skyrms's understanding of misleadingness:

= < =S M P SPr( | ) 0.3 ( ) 0.332 3 2 . This misleadingness is also to the ben-
efit of the sender: the receiver performs A3, the best cover-all act for
states S1 and S2, instead of A2, the best act for the receiver in S2.13

It is somewhat awkward to claim that the sender is manipulating the
receiver in this situation, when the net result of their behavior has been
designed to be maximally fair—and if you are not convinced that Center
is maximally fair, the same argument could be repeated for other points
in the Pareto frontier. Whatever manipulation happens from sender to
receiver must be offset by the exact same amount of manipulation from
receiver to sender.

Deception, in the functional-deception literature, is entirely a
sender-to-receiver affair. Receivers cannot deceive senders. This is
reasonable: messages go from sender to receiver, and it's hard to see
how the receiver could deceive in retrospect. But manipulation is an-
other thing entirely. The receiver does have the resources to manipulate
the sender, by granting or withdrawing access to certain actions. For
example, the blue dot in Fig. 8, at which the receiver has zero distor-
tion, can also be reached with a Nash equilibrium:

Best for Receiver: If sender send signal M1 in state S1 and signal M2
in states S2 and S3; if receiver do act A1 on receipt of signal M1 and act A2
on receipt of signal M2.

This equilibrium is the mirror image of the Best for Sender

Fig. 9. The code corresponding to the Center point.

Fig. 10. Sender and receiver strategies that implement the code in Fig. 9.

12 In Godfrey-Smith and Martínez (2013, p. 3) we offer a justification, aimed
at convincing game-theorists, for using I S A( ; ) as the measure of meaningful
information transfer. This is anyway, as we have seen, the standard in in-
formation theory.

13 Fallis and Lewis (2016, 2017) have produced convincing counterexamples
to Skyrms's analysis of misleadingness, and suggest that other measures of
epistemic utility present in the literature, such as the Brier rule, the logarithmic
rule or the spherical rule, should be examined and might be preferable (see Fallis
& Lewis, 2016, p. 579 for details) Their idea is to deem a signal, Mi, misleading
iff the epistemic utility of the probability distribution over states conditional on
Mi is lower than the epistemic utility of the unconditional probability dis-
tribution over states (Fallis & Lewis, 2017). All three of these epistemic-utility
rules agree that, in the case I have been discussing, the vector of state prob-
abilities conditional on M3 has lower epistemic utility than the vector of un-
conditional probabilities. Using Δ to refer to the difference between the epis-
temic utility of state probabilities conditional on M3 and the utility of
unconditional probabilities, if S2 is the actual state (so that <Δ 0 corresponds to
a misleading message), = −Δ .313Brier , = −Δ .106logarithmic , = −Δ .183spherical . M3

comes out misleading also according to Fallis and Lewis's criterion. One final
point regarding the misleadingness of signals: in both Skyrms's and Fallis and
Lewis's analyses misleadingness depends only on the joint probability of states
and signals. Payoffs are ignored. Yet, it is reasonable to think that being pre-
sented with a distorted image of the payoff structure of the world is more im-
portant to the receiver than being presented with a distorted image of its
probabilistic structure—although the two are obviously related. An investigation
of how epistemic utility relates to, well, utility is also matter for another paper.
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equilibrium. The informational properties of the two equilibria are
entirely analogous. The only difference is that in the former it's the
sender that stands to gain; in the latter, the receiver. It is perhaps
awkward to claim that the receiver is deceiving the sender here, but,
regarding manipulation, there is no such awkwardness: either the re-
ceiver is manipulating the sender in the latter equilibrium, or no one is
manipulating anyone in neither equilibrium.

6. Conclusions

Both Best for … Nash equilibria are reasonable compromises for
both players. Both lie in the Pareto frontier, and no other point in the
frontier, a fortiori none of the fairer options discussed above, is reach-
able by a Nash equilibrium. In any event, functional-deception analyses
are unable to distinguish these points from exquisitely egalitarian, non
exploitative strategies of information transmission with two different
distortion measures, such as Center.

Some of the confrontational rethoric that typically goes with ana-
lyses of deception is perhaps a nod to the ‘manipulationist’ approach to
communication spearheaded by Dawkins and Krebs (1978; Krebs &
Dawkins, 1984; see also Adams & Caldwell, 1990; Byrne & Whiten,
1990; Endler, 1993; Owings & Morton, 1997, pp. 359–390), according
to which communication is just “a means by which one animal makes
use of another animal's muscle power” (Dawkins & Krebs, 1978, p.
283). Whatever the merits of this approach, manipulativeness cannot be
established solely on the basis of the behavior of individual signals.
Signals are just a means to the end of building a code that translates
information about states into acts. An individual signal only makes
sense in the context of its code. Furthermore, information is not a
neutral commodity. Getting some things right is more important than
getting others right, differently so for each of the interested parties.
Factoring these observations in is, I submit, central to understanding
the informational structure of signaling games. Here I have offered rate-
distortion analyses as an obvious way to do so.
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