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Abstract

It is shown that, given an analytic Lorentzian metric on a 4-manifold, g,
which admits two Killing vector fields, there exists a local deformation law
Nap = a gap + b Hyp, where H,p, is a two-dimensional projector, such that 7,
is flat and admits the same Killing vectors. We also characterize the particular
case when the projector H,;, coincides with the quotient metric. We apply some
of our results to general stationary axisymmetric spacetimes.

PACS numbers: 04.20.Cv, 02.40.Hw, 02.40.Ky

1. Introduction

On the basis that the number of degrees of freedom of a semi-Riemannian metric on an
n-manifold is n(n — 1)/2, in [1] we proved that

Theorem 1 (deformation theorem). Let V, be an analytic manifold with a semi-Riemannian
analytic metric, g. Locally there always exists a 2-form F and a scalar function 8 such that

(a) they meet a previously chosen arbitrary scalar constraint W(B, F) =0
(b) and the (semi)Riemannian deformed metric

- 2 : 2 . d
8ab Zﬁgub_EFabv with Fab = gC Fachb’ |6| = 1,
has a constant curvature whose value can be arbitrarily prescribed.

This can be done in an infinite number of ways, that is, 8 and F are not uniquely determined

by g and .
A corollary is that, locally, any analytic spacetime metric can be obtained by deforming
a flat metric n according to

Sab = MF) + €0 Fue Fap, F e A’M,,

where A is a scalar function of F.
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In [2] we realized that for n = 4 theorem 1 could be stated in an equivalent way where
the arbitrary constraint ¥ was not necessary. It reads

Theorem 2. Let g, be a Lorentzian analytic metric on a spacetime M. Locally there
exist two scalars, a and b, and a two-dimensional projector Hy, i.e. Hypg" Hoy = H,q and
(Hyp g”” ) = 2, such that the deformed metric

Nab = A&ab t bH, (D
is flat.

We call this formula the deformation law associated with (a, b, H,;).

This has an immediate application to general relativity because from equation (1) we have
that

. 1 b
8ab = PMNab + P Hab, with 9= p=- 2)
and this suggests the possibility of representing the gravitational field by the two scalars ¢
and p and the four independent components of the 2-projector H,;, instead of the ten standard
gravitational potentials g,,. In this way we could avoid the huge gauge freedom associated
with the group of diffeomorphisms which permits to assign some prescribed values to four
among the ten quantities gg.>

Note that using (¢, p, H,p) as ‘gravitational potentials’ implies the choice of a preferred
flat metric, namely 7,,. This breaks the diffeomorphism invariance of the Lagrangian
(the transcription of Einstein—Hilbert’s in terms of these potentials) and the only remaining
invariance corresponds to the Lie group of motions of the flat metric n,,. By applying
Noether’s theorem, this would yield a canonical definition of the energy—momentum tensor
of the gravitational field. These potentials could also be considered as a basis for a canonical
quantization of the gravitational field.

The two-dimensional projector H,, defines an almost-product structure [4, 5] g.» =

H,;, + K 4p; then the above result implies that given g, an almost-product structure exists such
that differently scaling the plane H,,, by a factor ¢ = a + b, and the plane K, by a factor
a, the resulting metric 1,4, := (a + b)H,, + aK,;, is flat. In this sense it can be said that the
deformation law (1) is a biconformal transformation [3].
Let {0}, w?, w}, w}} be a g-orthonormal frame adapted to the above almost-product
structure, that is, H,, = a)}l ® “)11 + a)g ® w,% and K,, = a)g ® a)z + a)3 ® a)‘b‘, and let
Uy = w; A a)z e A’ M. As Uazb = US Uy = Hyp, it follows immediately that in four
dimensions the deformation theorem can be stated as

Theorem 3. Let V, be an analytic spacetime with metric g. Locally there always exists a
decomposable 2-form U and two scalar functions B and p such that the deformed metric

8ap = B&ab» + IOUazb

is flat or has constant curvature.

The gravitational field is thus written in terms of two scalars and a decomposable 2-form
(a 2-plane or a blade). This recalls the Rainich’s formalism for the electromagnetic field [6],
where the field is characterized by two invariants and a 2-plane. Then, Maxwell equations
yield a system of decoupled equations for the invariants and the 2-plane structure. One could
wonder whether a similar treatment is possible for the gravitational field.

3 Tt seems however that some gauge is left because the deformation parameters (a, b, H,) are by no means uniquely
determined by gap-

2



Class. Quantum Grav. 27 (2010) 245006 J Llosa and J Carot

As we have said, given g, the deformation law transforming it into a flat metric is not
unique. In the case that g,, has some symmetries, they could help to reduce this ambiguity,
namely by requiring that the deformation law (1) is compatible with those symmetries. In [2]
we proved that this is feasible, that is, if g,, admits a Killing field X“, then a deformation law
can be found such that 7, also admits X“ as a Killing field.

Assume now that g, admits a wider Lie algebra G of Killing fields, i.e. dimG > 1. Is it
possible to find a deformation law such that 7., admits any X € G as a Killing field? Note
that, as n,y is flat, the Lie algebra of its isometries is maximal, i.e. the Poincaré algebra P.
Therefore, in order that the answer to the question above is affirmative, it is necessary that
G C P. We thus advance the following conjecture:

if g,» admits a Killing algebra G and G C P, then there exist deformation laws such
as (1) such that n,, is flat and any X € G is a Killing field of n,p.

The problem we shall tackle in this paper is little bit simpler: we shall consider an analytic*
metric g, admitting two commuting Killing fields and we shall see that a deformation law (1)
exists such that 7, is flat and admits the same Killing fields. We shall confine ourselves to the
case in which the metric induced on the plane spanned by the Killing vectors is non-degenerate
and hyperbolic, that is, timelike orbits (whereas the elliptic case can be dealt in a similar way,
the degenerate case is quite different).

At this point, the relevance of the almost-product structure defined by the projector H;'
(and the very fact of this being a projector) should be emphasized. This feature is largely
responsible for the complexity of the proof of the main theorem in this paper (see theorem 4),
but at the same time it confers the result, a deep geometrical interest.

The paper is structured as follows: in section 2 we present the formalism and prove some
intermediate results concerning spacetimes admitting two commuting Killing fields’; we also
assume that the quotient space is a 2-manifold. These results are then applied in section 3 to
prove the flat deformation theorem. The formalism allows a reformulation of the proof in the
quotient 2-manifold, so that a dimensional reduction occurs. At this point it is worth stressing
the usefulness of the so-called reconstruction problem (see section 2.3), which consists in
reconstructing a flat metric in the spacetime from a given quotient metric. In section 4, we
study the especially simple case when the almost-product structure implicit in the deformation
law coincides with the almost-product structure induced by the Killing fields and we apply the
above results to the case of stationary axisymmetric spacetimes.

2. Spacetimes admitting two commuting Killing vectors

Let M be a spacetime with a metric 7,, admitting two commuting Killing vectors X4,
‘CXAnab:()v A=l,2

Note that, at this point, n,, does not designate necessarily a flat metric. Through any point
x € M, there is an integral submanifold V,, i.e. TV, = span{X$, A = 1,2}, which we call
the orbit trough x. Let {e,, a =1, ...,4} be a base in T, M and {wb, b=1,..., 4} its dual
base. We denote by A4 the metric products:

Aap = X9Epa and A Bapp =82, where Epa i= Nap X5, (3)

and define

4 As the Cauchy—Kovalewski theorem is invoked at some point in the proof, the validity of the results presented here
is restricted to the analytic category.
3> With a different notation, this formalism was developed in [8] and we present it here in a way suited to our purposes.
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g4 =24 Xg and  X4E8 =53,
thatis, 4, A = 1, 2, is the dual base for X4, A = 1,2, on T, V,.
The metric induced by 7., on the orbit V, is AapE2EF = &4,&7 which, as already

mentioned, will be assumed hyperbolic, that is,
2
det(hng) = —% <0 )

and that, in a terminology borrowed from principal bundle theory [10], we shall call the
vertical metric. Note that, from its definition and the fact that the Killing vectors commute, it
is immediate to see that A4 p is preserved by Xy, i.e. Lx,Aap = 0.

Let us assume that the set of all orbits of X4, A = 1,2, is a 2-manifold, i.e. the quotient
manifold S. The tensor

hy =85 — X4&;) (5)

projects then vectors in 7. M onto vectors that are orthogonal to the orbits. Again, in analogy
with the principal bundle terminology, vectors that are orthogonal to the orbits will be called
horizontal.

There is a one-to-one correspondence [7] between tensor fields Tb’“ on S and horizontal
tensor fields on M, i.e. those T, fulfilling
X418 =0, EATS =0 and Lx, T =0, A, B=1,2, (6)
that is, tensor fields that are horizontal and Lie-constant along X¢%. Following Geroch [7]
while it is useful conceptually to have the two-dimensional manifold S, it plays no further
logical role in the formalism. We shall hereafter drop the primes: we shall continue to speak
of tensor fields being on S, merely as a shorthand way of saying that the field (formally, on
M) satisfies (6).

From Lyx,n., = 0 and the fact that the Killing vectors commute, it follows that the
horizontal metric

hab = Nab — %_Aa%_i?v i.e. hab = nacth (7)
is preserved by X4, A = 1, 2. By the above-mentioned correspondence, it induces a metric

on S and, as the vertical metric is hyperbolic, A, is elliptic. We shall denote the inverse
horizontal metric as h®’; one then has h*? := n® — SA"XZ and h*’hye = he.

2.1. The Killing equation

From Lx,na.» = 0 it follows that V&4 is skewsymmetric, or

Vabap = 3 (dEn) g - (8)
As the Killing vectors commute, it follows easily that
Xz).BCla =0 and XZ'E“ = 0, (9)

where dt = 7,w? and a stroke | denotes differentiation. Hence, Agc and t are functions on S
and Apcjq, 75 are 1-forms on S.

A further consequence of (9) and the commutativity of the Killing vectors is that
Ly, &2 =0, whence it follows that
i(Xp)de? =0 and Lx,dgA =0; therefore, dg e A%S. (10)
As S has only two dimensions, dé4 = 64¢, where € is the volume tensor (see appendix A)
and we call the scalar 64, the twist of X, with respect to 1, or n-twist. Then, including (8),
we have that
Ve€aa = )»AB|[L-5ﬁ + %GAfcd and VeE) = —aAP) DB\(dfg + % 0%€cq (11)

with 9A = )\,ABGB.
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2.2. The Levi-Civita connection on the quotient manifold S and the Riemann tensor
Given a horizontal tensor 7, we define
D T}~ = h‘jhghgvdT]f:.
From (A.5), it follows that for a horizontal vector wj,
D,w” = V,w’ + w! [—1 X4rapa&®? + 104 (81", + £ €0a)]. (12)

It can be easily proved that D is a symmetric linear connection on the quotient manifold.
Moreover, since D, h,. = 0, it is the Levi-Civita connection for /. in S.
The Riemann tensor R4, for the connection D can be derived from the Ricci identities,
D,Dpw* — DyD,w® = w9R¢,,,, and one thus obtains
1 1 A
Rdcah = Rdmb ) QAG (eahedc - Ed[[leh]())v (13)

where R, = hihih"h Rypq-
Due to the symmetries of the Riemann tensor and the low dimensionality, we also have
that

R
Racab = R hajahpe = ~ €de€ab (14)
and a similar expression for Rdlm ,»- Hence, equation (13) implies that
R 1" Rycay = R — 30404 and R = (R — 2004 hajahpyc. (15)

To derive the remaining components of R4, namely those having some vertical indices,
we use that, since X’Z, is a Killing vector [9],

RDcab = X%Rdcab = chaEDh

and, after some algebra we obtain

Ri)_cab = %(DCQD + %QE)\DEV) €ab> (16)
Rpear = =% (Dorapic — 3 M Xagichrop — 5 040phoc). (17)
Rpcap = —3% Ochpiaacs, and Rpcap = — W Aeipicraipip- (18)

The Riemann tensor for 7,, can be reconstructed from these components according to
Racab = Ri€ac€ap + RoQucQup + 2Pappé€ac + 2ParcEj€ab
+20ApE Qe + 20 a1k Qap + 46D Pojapé )
+ 3 R3 (2€4c Qb — €40 Qe — €apRea + 2Rac€ab — Qua€oe — €ca) . (19)

where 2., and €, are respectively defined in (A.1) and (A.2) (see appendix A) and

R, = % Rycape?ce®’? = % (R - %9/‘@,) (20)
Ry = RyeapQ7Q = —% (M1jerazip — Azichizp) hbe (21)
R; = % RicapQ%e® = % "M E N gicharp (22)
Pap = % (RchbEdC)L = % (DbQA + %GT)\TAb) (23)
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C J‘ 1 C
Oap = (Rchde ) = = Or1A214)c€%, (24)

1 1 1
Ppeap = Ré(cwb) =3 (Db)»ADc —3 A EXAE (AT D) — 2 9A9Dhbc> . (25)

It is trivial to see that in expression (19) the first Bianchi identity is componentwise satisfied.
Equations (20)—(25) are relations between the quotient metric and the covariant kinematical
invariants of the Killing fields, on the one hand, and the ambient metric on the other. They
must also be taken as equations to solve in the so-called reconstruction problem (see the next
section).

2.3. The reconstruction problem

It consists in reconstructing an ambient metric 1,, from a given quotient metric 4, provided
that 1,, admits two Killing vectors X%, A = 1, 2. Itis particularly an interesting case in which
the final ambient metric is required to have some prescribed geometric properties, e.g. being
flat, which is the case we shall ultimately be interested in.

It is easy to prove that giving a metric 1., on M is equivalent to providing:

(a.i) two covectors &4, € A'M such that Lx,64. = 0 and that L4 := £4,X% is a non-
degenerate matrix, and

(a.ii) the quotient metric on S. (The signatures of both 4., and A 45 must be chosen so that
the signature of 1, is (+3, —1).)

On their turn these conditions are equivalent to giving

(b.i) two covectors £4 € A M such that Lx, &4, = 0 and that 2 X4 = §5,
(b.ii) a 2-squared symmetric non-degenerate matrix A4p € A®S and
(b.iii) the quotient metric on S.

2.4. Reconstructing a flat metric with two prescribed Killing vectors

Assume now that we want the ambient metric to be flat. Are there any further restrictions on
hap, :;?f and A 4 that are derived from the flatness of 1,;,?

As N Xy = &, and X4, A = 1,2, are Killing vectors, the results derived in
section 2.1 apply. Therefore, LIXBEaA = 0, Lx,Aap = 0 and equations similar to (11) do
hold. Thus, although A4p € AY(S), E4, and S(f are not covectors on S because they are not

. —A
orthogonal to X %. Let us assume however that we are given two covectors &, € AT (M) such
— —A .
that € ,, X% = 84, A, B = 1,2, and that Lx,&, = 0. Then £ can be written as

EA=El4kl,  with kA e ANS). (26)
We shall call k2 the shift covectors, differentiating and taking (11) into account, we arrive at
04 = dg" + dich, @7

Bearing this result in mind, expressions (20)—(25) imply a second-order partial differential
system on the variables A4, K;‘ i hg4p, namely

Ri = Ry = Rs, Pap = Qap =0, Ppear =0, (28)
which has to be solved on S and the solutions are to be used as the data (b.i) to (b.iii) necessary
to reconstruct 7,y.

In appendix B we prove that equations (28) imply that /5, £ and A, p are constrained
by the following conditions.

6
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o The horizontal metric k., must be either (i) flat or, if not, (ii) its Ricci scalar must satisfy
DRV 4+ LR e = 0. (29)

e In case (i), take 4 = 0 and
(i.a) either take (equation (B.18), g = 0)

)»ABZ%[)A\AB+F(’]\AB] with D, F =0, 30)
where A 45 and § 4 are constant matrices fulfilling §4zA%% = §asA®€4cp = 0, and
det(App) = —1.

(i.b) or take (equation (B.24),q = 1)
1 2~ 2a
)\AB = — (—<I>7mAmB+d>+nAnB), (31)

V2

with mi,it; — myii, = 1, where
Fif = Dp®s =0 with R, := h*D,®,D,®_ = 0. (32)

e In case (ii) choose two constants & % 0 and C # 0 and take
1/4

3002\ c C’R
T = —_ s 0 = — = —_ )
R T 3a

then choose k4 and A48 such that A48k kp = « and take

04 = k40, 94 = —Z_jABk,,
T

o 1 2
)‘-AB:kAkB)‘-"')\AB, A= —— <—+(SQ>.

In both cases we still have to determine £4 € A'M. To this aim, we first choose two
1-forms £' € A'M such that £y,E" = 0 and X4E. = §4; it is obvious that dE" € A2S.
The shift covector, k4 := £4 — §A € A'S, can be determined by solving

dic? = 0Ae — dg” (33)

which follows from (11) and is always integrable due to the fact that dim S = 2.

3. Flat deformation

The central result of this paper is the following theorem.

Theorem 4. Let g, be a Lorentzian metric admitting two commuting Killing vector fields,
X%, A =1,2. Then, there exist two functions a, b and an elliptic two-dimensional projector
Hy such that the deformed metric

Nab = A Zab T b Hab» where Hab = gacHLf» (34)

is flat and admits X9, A =1, 2, as Killing vector fields with vanishing n-twists.

The proof spreads all over the present section and the following lemma allows for a
dimensional reduction of the problem. (See [2] for a proof.)

Lemma 1. Letr X* be a Killing vector for g, and let 1., be defined by (34) with b #£ 0; then
Exf]ub =0 < Exa = Exb =0 and l:XHub =0. (35)

Therefore, a, b € A°S.
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Then, it is useful to consider that, with respect to the Killing vectors, both metrics g, and
Nap Split into their horizontal and vertical parts as follows:

- — <A-B
Qab = hap + AaBE, &, , Nab = hap + *apEREE, (36)

— . . . — —A-B
where h,, and hy, are the respective quotient metrics and A4p€,&, and A, BS(?EbB are the
respective metrics on the orbits. f;‘aA and A, p are defined as in (3) and similar relations hold

_A — .
for &, and A 4p, that is,
- — —A  —AB— —AB— A
Epg = gabXZ, Aap = gabX‘/;Xlé, E,=Ar &g, and A Ape =8¢
Slignce X4 are commuting Killing vectors for both g, and 7,,, we have that L, ";‘f =
Lx,&, = 0and, as a consequence, we can introduce the shift covectors
A A __FA 1
Kk, =& —§&,eANS. 37
The inverse (contravariant) metrics are, respectively,
—ab —AB
¢ =n"+1" x4 xb and n® = h + AAEX4 XY,

As commented above—conditions (b.i) to (b.iii) in subsection 2.3—determining 7, is
equivalent to finding an elliptic horizontal metric A, the hyperbolic matrix A45, A, B =1, 2,
and two covectors 2 such that £4 X% = 5.

Furthermore, we want both metrics n,, and g, to be related by the deformation law (34),

ie. % 8% (nep — agap) has to be a projector. This can be easily proved to be equivalent to

Nab — (2a + D) gap + aa + b)gacgpan™ = 0 (38)

which, using (37), can be separated in its horizontal, vertical and cross parts, respectively,

hap + AapkicE — (2a +b)hay, + a(a + b hachpgh™ =0 (39)
Aap — Qa+b)hap +ala+bhackpp (M€ +h“kPk’) =0 (40)
Aagkp —a(a+b)rapkfh . = 0. (41)

According to what has been said about the reconstruction problem, if the deformed metric
Nap has to be flat, i, K;‘ and A 4 p must fulfil the conditions detailed there. Particularly, as we
want the n-twists to vanish, the shift covectors must fulfil

dict = —o"e, (42)

where §A are the g-twists, € is the h-volume tensor and (37) has been included.

We can besides decide to be in the case (i.b)—see section 2.4—and take %, flat and A 4
given by (31). The equations to solve are then (32), (42) and R = 0.

In appendix C—equations (C.1), (C.2), (C.14) and (C.17)—we prove that, on the basis of
relations (39)—(41), hup, Aap and Kg‘ can be written in terms of five unknown functions &+, a,
b and . Then, substituting those expressions into (32), (42) and R = 0, the following partial
differential system is obtained for the new unknowns (i.e. equations (32), (C.22), (C.26) and
(C.29) in appendix C):

Ffi=Dp®y =0 R, := h*D,®,D,®_ =0 (43)
Eut = (W) + e’ + 7S, vy = 0 (44)
Wi = (V) — (WR)) + 7 Qe + 1R =0 45)

8
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T: = G(WR1) — 0(v) — 5 (W) + (V6]

— (6197 +02) + 5 QW) — 5 (v6) =0, (46)
where v and w are related to a given h-orthonormal frame {es, e;} by (C.18) and Q, &,
(b =1,2, ¢ = 1, 2) are given in terms of the unknowns by equations (C.24), (C.14), (C.9)
and (C.10).

The number of equations exceeding by far the number of unknowns are dealt much in
the same way as it is usually done with Einstein equations: considering a certain subset
of distinguished equations as the reduced PDS, and treating the remaining equations as
constraints; the existence of solutions will then be studied as a Cauchy problem.

We choose a hypersurface X in S which will act as a Cauchy hypersurface for the partial

differential system (X is actually a curve because dimS = 2), and take Gaussian A-normal
coordinates (y', y?) in a neighbourhood of ¥, so that y> = 0 on X and
E]z ZEIZZO, }_IQQZEZZZ 1, E]] =U and 7111 ZU_I. (47)

Thus, the given 4-orthonormal may be taken to be
e = —a0i, e =0 and al = \/Udyl, o’ = dyz.

We can now consider (43)—(46) as a system of differential equations in the five unknowns
®,, a, b and v, and separate:
the reduced system, namely

F35 =0, & =0, W =0 and T =0, and  (48)
the constraints
]:1:'; =0, R, =0 and £ =0, (49)

(a = 1, 2) to be satisfied by the Cauchy data on X.

Proposition 1.  Any solution of the reduced system (48) fulfilling constraints (49) on the
Cauchy hypersurface X also fulfils the constraints in an open neighbourhood of X.

Proof. By differentiating (43) and (44), we easily obtain
== R d _ 1 bc F —
DTy = =5 Da®x€yecas DuR» = h (Fiy D@ + Fpy D D) and
— W_
Dyu&p) = — €ab

and, particularly, since we are dealing with a solution of the reduced system (48), we obtain
for the constraints

DR, = U (F3,D1®_ + F5 D1 ®.) DyFy = D\ F5;8) and Dy& =0,

a = 1,2, which is a linear, homogeneous, partial differential system to be fulfilled by the
constraints, whence it follows that the vanishing of the constraints on ¥ propagates to an open
neighbourhood of ¥. ]

9
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3.1. The reduced system. Characteristic determinant

To decide whether ¥ is a non-characteristic hypersurface for the reduced system (48), we
must study its characteristic determinant [13]. To this end we must consider only the principal
part of its equations, i.e. the part containing the highest order derivatives of the unknowns,
particularly, 33, 32a, 37b and 9V, and we easily obtain that

Fy = 070y, &= hy

where = means ‘equal apart from non-principal terms’.
The principal parts of the remaining two equations are not so simple; they look like

W=W0, + W3- + WPy + WD83a + WP 33b
T=T"30,+T 50 +TPdhy +T93a+TPd7b.
It easily follows that the characteristic determinant of the reduced system is x = W@ 7T® —

WO T@ and we do not need to calculate explicitly all the coefficients in the principal part of
W and 7. A detailed, heavy-going calculation yields

bsin2y [ . (Z1 — Z»)?
= sin 2y ———
16x1x; ala+0b)

where x, and Z, are given in appendix C. Then, in order that ¥ is a non-characteristic
hypersurface, Cauchy data must be chosen so that x # 0.

—(x1+x2) (Z1+Zy+(Z, — Z) cos 21,0):| , (50)

3.2. The constraints

The Cauchy data, namely ®.., &, := 9,®, a, b, @, b and ¢ on X, must be chosen so that
x # 0 and constraints (49) are fulfilled. X is a curve and the coordinate u := y3 acts as a
curve parameter; the constraints can thus be written as

L db

Fi= d—: —T,5D.®1 =0
d*d,
+ c _
Fii _d du? F111Dc‘1’ﬂ: =0 D
51 = —I/I—F141 —+91 =0
du JU

(c =1, 2), and we must replace D; P by d—i, D@ by & and so on. I'¢, and de are
u

the Christoffel symbols for the connections D and D, respectively, and they depend on @, a,
b, their first-order derivatives and .

We can therefore prescribe arbitrary values for a, @, b and b on T, because there is no
constraint on them, and then substitute them into (51) which can be taken as an ordinary
differential system on the remaining Cauchy data: ®., ®. and ¥ on the curve X. This
system admits a solution for any given initial data @ (xg), D1 P+ (xo) and ¥ (xp), for a given
point xp € X.

As for the remaining constraint, Ry := % h*D,®,D.d_ = 0, itacts merely as a condition
on the initial data D.® . (xg).

3.3. Summary of the proof

We now show how to construct the deformed metric 7,, from a solution to the above Cauchy
problem.

10
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(1) Take an analytic curve ¥y C S and choose a point xy € X.

(2) Choose constant /714 and 714 such that 1,71, — fi;im, = 1.

(3) Givea, a, b and b, analytic functions on X, then

(4) give® ¥ (x0), @+(xo) and DD (xo) (¢ = 3, 4).

(5) Then solve the ordinary differential system (51) to obtain v, ®; and &1 on X, a
neighbourhood of xy in .

(6) With these a, b, a, b, 5, &, and Y as Cauchy data on X, the reduced system has an
analytic solution,

a, b, oL, Y, on a neighbourhood of .

(7) With these five functions obtain A, Kf and A 4, as indicated in appendix C.1 and equation
(31).
(8) Finally, taking & ;‘ = E: + Kf and using (36), the flat metric 7, is obtained.

4. A particularly simple case

We shall now consider a case when both almost-product structures, one defined by the elliptic
2-projector H,;, in the deformation law (34) and another one by the orbits of the Killing vectors,
are the same. The original and deformed metrics respectively are

8ab = Eab + Eub and Nab = (pzub + aEab (52)

with kgp 1= Ay BEQE,? and ¢ := a + b. In this case, which we shall refer to as a degenerate
deformation law, both metrics are related by a biconformal transformation.

This is indeed a non-generic case: a metric g,, with two commuting Killing vectors
does not, in general, admit a degenerate deformation law yielding a flat n,,. We shall here
characterize the metrics g,, admitting a degenerate deformation.

From (52) we have that

— — 1 —aB
Eaa = Ak pq, Alap = akag, AP = - A 53)
g = g? and hap = Qhap,
whence it follows that
T =ar, 7" = o4 and 04 =040/a (54)

where the fact that €,, = @€, has been included.
Since 7, is flat and has two commuting Killing vectors (see appendix B), only two
possibilities are left:

(a) 6, = 6, = 0 which, by (54), implies that 6; =6, =0and
(b) 64 = ka0, with k4 = constant, which implies that 4 = k6.

Note that iAB = ?_IXAB\/E = r*l,\AB«/E = Jap and, as this A, corresponds to the
metric 71,4, which is flat, the results derived in appendix B apply. Particularly from (B.8) we
have that

diAB =dhap = qap(f)df, (55)

where g4 (f) is derived from diA g as indicated in proposition 3

Case (a). From proposition 3 in appendix B and equations (22) and (55), we have that
R; =0, (56)

6 These data must be chosen so that the characteristic determinant does not vanish at xg.

11
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which is a necessary condition to be fulfilled by g, in order to admit a degenerate deformation
law. Thus, we must first check whether R3; = 0 and then take ¢ = 0 if det(g4p) = 0 or
q = sign (det(gap)) otherwise.

(al) If g = 0, we have that (equation (30)) iAB = dap = hap + gagF, with Jap and gdaB

constant, A*2§45 = 0 and det(A 45 = —1. Hence, from dhap = Gap dF itis immediate

to determine §4p and dF (apart form a constant factor).
Now, by (30) we also have that T = 1 constant and D F, = 0, which leads to

a=r1/T and DyF. — Yo Fo + 5 (WeFuh Yy =0, (57)

where i := log¢ and the relation between both connections, D and D, has been
included.
On the one hand, the second equation implies that

DyF, =0, (58)
which is a constraint on F and, on the other, it allows us to obtain
¥, = Dy log | F|?, where log | F||? := F,F,h", (59)

that is, ¥ = log | F||?+ constant. _
Combining now this equation with (20) and including that h,, = eV h,,, we arrive
at[11]

R+D Dylog|F|* =0, (60)

which is a further necessary condition connecting F and R.

(a2) If ¢ = —1 (see appendix B, right after (]§.16)), then A,p must be constant and this

implies thata € A%S must exist such that ai 45 = Aap = constant. In this case equation
(20) becomes a condition on the conformal factor ¢ = e¥, namely [11]

R+E Dy = 0.

(a3) If ¢ = +1, define

12

= dn
df = /det(dhag)  and  qupi= d;B : (61)

Then, using (B.21), (31) and the fact that iAB = Aap, we obtain
Aaptqap=eiaig  and  —dap+qas=e Taig, (62)

where 714, 14 are constant and 1,7 — 171, = 1. This is a necessary condition to be
fulfilled by 5 Which will ensure that equation (25) is satisfied and will allow to derive
f, m A and 71 A

The functions f and r = log v must fulfil (B.19) and R, = 0, which respectively amount
to

D+ 1t =0, (63)
_ 1

Dylt +log || 1> — ¥] — T D" f) fr=0 (64)
D'ty +t)> =0, (65)

1

AE (h“tafe) fr=0  and (66)

Dyl +logllt]> — v —
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el = 11 £117 where I21% i= B 1yt (67)

Furthermore, condition (20) implies that (see [11]) R + Ebcﬁcwb =0, or

2112
Since f is known, equations (63) and (67) allow us to determine
D'fy . JIfIF= D" f)?
- £ € fo (69)
L WE ’

On its turn, equation (66) is a combination of (63), (64) and (67); equation (64) yields
Y, and the remaining two equations, i.e. (65) and (68), imply conditions to be fulfilled
by f, respectively,

oy o (Rt £,
R+Dbtb+Dchlog||t||2+Db( . f,,) — 0. (68)

t =

—b (D" fa o JIFIF =D 2\
D’ <(||fﬁ;) fb) +D" — S fotlfIP=0 0)
and
R—IfIP+D D.log| fI> - D’ <(ffﬁ) fh> =0. (71)

Case (b). 1If the twists 84 do not vanish we are compelled to try with case (b) and equation
(54) imposes a first restriction, namely

a couple of constants (ki, ky) # (0, 0) must exist such that a4 = k40. (72)

Furthermore, from proposition 2 in appendix B we have that A € A°S and 4,5 constant must
exist such that Aqp = kqkpA + A 4p. Taking in consideration equation (53), this is equivalent
to

Ja € A°S suchthat ai,zl® = ps constant, with 14 = (ky, —ky) (73)
(as A4p is non-degenerated, (p;, p2) # (0, 0)), which in turn is equivalent to

3g% := (p2, —p1) suchthat g% =0. (74)
If this happens, the factor a € A%S is

2, .2
= % with  p* = (p1, p2).
Now, from (B.1) and (54) we have that
a’oT .
Q= c with C = constant. (75)

This factor must furthermore fulfil the additional conditions implied by (B.5) and (B.6) that,
after some algebra, yield [11]

_ 3aCHa —b _oeC@a

D'y + R+ =, D't - (76)
T T
_ C?
and = Dylog || +1, % (77)
T T

where ¥ :=log¢, T = aT and ||_'L’||2 = rbrﬁbc.
Summarizing, if the twists 8 4 do not vanish, we must first check whether (72) and (74)
are fulfilled; then compute a and ¢ defined by (75) and check if relations (76) and (77) hold.

13
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4.1. Example: stationary axisymmetric spacetimes
We now consider the case of a stationary axisymmetric spacetime [12] whose line element is
ds? = e 2V 2K (dp? + dz?) + e 2V p? dg? — e*U (dr + N do)°, (78)

where N, U and K are arbitrary functions of p and z. The Killing vectors are X; = 94 and
X, = 0, and the associated 1-forms are

E, =N& +e YUplde and &, = —e’U(dr + Ndg).
Therefore, we have that iy, = e 2U+2K §, _ and
dap =e Vp2slsl —eVuqup, with uy =N, uy =1, (79)
the determinant is T = /2 p and the inverse matrix is

—AB 2 A QB e?! A, B . 1 2
A =—e7856, +—vv, with v =1, v '=—N. (80)
0

It can be easily checked that
E_g =0 R=S XAB XmA A dX2B =0 < eizU,O = L(N),
where L(N) is an arbitrary fu~ncti0n of the variable N.
Then, by differentiating AAp 1= A B«/i /T we obtain
= . g, L 2
d)\.ABZQABdN with QAB:LSASB-'-EMAMB_ZS(AL‘B)' (81)
Now, let Q := det(Qap) = (L — 1)/L*. If Q # 0, we must take df := dN /[Q] and
qas ‘= Qap/+/|0]| and, by (B.20) we have that

dOap 1 dQ =
AN 2QdNQAB |Q1AaB
This has a solution only in case that L’ = 0, which contradicts the initial assumption that

Q#0.
If O = 0, by conveniently choosing the sign of ¢ we get L’ = 1 or L = N + C with
C =constant. Then, the case ¢ = 0 in appendix B applies and, from equation (B.18), we

have thatiAB = iAB + FC/\]AB with

R 2C -1 N c? —-C

Aap = (_1 O)’ dap = <—C | ) (82)
and F = —L~!. The results for case (a.1) in section 2.2 also apply and we have that
a=r1/T, V¥ = 6U — 2K +log H, 859U /p) =0 (83)

with H := p~*6*(2pU, — 8,) (2pU. — 8}).
Besides, we must take into consideration that hp, := eV hp, = e¥ "2U+2Ks, is flat, which
is equivalent to [11]

8¢9, (4U +1log H) = 0. (84)

Summarizing, a degenerated deformation law exists that transforms the stationary
axisymmetric metric (78) into a flat metric iff (i) R; = 0, (ii) a constant C exists such
that pe™2Y = N + C, (iii) A4/ p has the form (82) and (iv) U simultaneously fulfils (83) and
(84). In such a case, the biconformal factors are a = 79/ and ¢ = e” with ¢ given by (83).

14
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5. Concluding remarks

We have studied the structure of the Riemann tensor for a spacetime admitting two commuting
Killing vectors and its expression in terms of the horizontal (quotient) metric, the vertical
metric (on the orbits) and the kinematic invariants of the orbits as spacetime submanifolds.
We have applied these results to find a solution to the reconstruction problem, particularly to
obtain a flat Lorentzian metric given two commuting Killing fields and the quotient metric.

The central result of the paper is the proof of theorem 1, namely, given a spacetime
admitting two commuting Killing vectors, there exists a biconformal deformation law (34)
which transforms the spacetime metric g, into a flat metric 1,, admitting the same Killing
VecCtors as ggp.

The proof is based on an application of the Cauchy—Kovalewski theorem and, due to
the arbitrariness in the choice of the Cauchy hypersurface and Cauchy data, the solution is
not unique—as it happens for an analogous existence theorem in the general case [1], with
no Killing vectors. The present result actually intends to find a way to reduce this lack of
uniqueness.

The aforementioned biconformal deformation law is carried out following the 2+2 almost-
product structure associated with the 2-projector Hy'. In general, this structure does not
coincide with the almost-product structure associated with the Killing orbits. When both
structures coincide we refer to as degenerated deformation law. We have also studied what
conditions must the background spacetime fulfil in order that there exists a degenerated law
deforming the spacetime metric to a flat metric. We have finally particularized the obtained
conditions to a stationary axisymmetric spacetime.

We conjecture that this result may be extended to the more general case of g,;, admitting
a Killing algebra G which is a subalgebra of the Poincaré algebra P. Although at this
point we cannot provide a proof to this statement, some ongoing developments considering
dimensionality and subalgebra structure of G strongly suggest this to be the case.
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Appendix A. Some bivectors and derivatives

The following bivectors and bivector equalities will be useful:

T T 1 1
Qup = Eéal NEE = EUABSQAE;? = o Pecabpy = — &1a N &ap, (A.1)

where 045 is skewsymmetric and o1, = 1. It is obvious that
1 72
QaCQab = _EE(BEZ and O'AB = )\.AC)LBDO'CDE, UABUBC = 3?,

where !> = —1, and that Lx,2qp =0.
The volume tensor on S:

- yd CD > yd
€ab ‘= T eabchiXZ - = o EabchvCCAXD (A2)

1
rfz
and €%¢,, = h¢. It is obvious that €, is horizontal and Lie-constant; hence €., € A%S.
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The dual bivectors respectively are

Gy =V2. Q=L (A3)
Furthermore, if w, is a vector on S, then
E* Aw)y, = _2Tﬁ o8 Eppee prow”. (A.4)
If w? is a vector field on S, from [X 4, w] = 0, it follows that
Vaw” =w! (3 AapaE®" + 104 €,") (A5)
and, also,
VaT" = T(3 hapa€®" + 304 €,”) + T" (3 hapaE® + 5 04 €,°), (A.6)

where V4 stands for X4 V,. Now, using the identity: d(log |detAp]) = dAspA?B, from (4)
we have
ta = 5 2% XaBla, t:=log 1. (A.7)

Appendix B.

Our goal here is to see how equations (28), namely
R =R, =Rs, Pap = Qap =0, Ppear =0

constrain the possible values of X 45, /c;‘ and hy,.

Proposition 2. If Pay, = Qap =0, then

(a) either 6, = 6, =0 or
(b) two constants, k , exist such that 0, = kx0 and dhsp = kakg dX, where 0, A € A%(S).
In this case one also has

2
6r=C  and —%:ak+8 (B.1)
with C, o and 8 constant.

Proof. Indeed, by equation (23), P4, = 0 implies 2d64 + Oc AT dir, = 0. Multiplying it
by 64, A’ # A, and using that Q7, = 0 amounts to 6; dA7, = 6, dAr;, one readily obtains
that 6, d9, = 6, df,, which implies

(a) either 8; = 6, = 0 or

(b) two constants k4 exist such that 04 = k46, with 6 € A%(S).
Furthermore, substituting this into 6; dA4» = 6, dA4; and taking the symmetry of Asp
into account, we obtain that dA 45 = kskp dA, with A € A®S, and therefore

AAB ZkAkBAf+5\AB with iAB Zj\\BA = constant. (B2)
The inverse matrix A4% is
-2 N
ME = = (AP h+ 0P, (B.3)
T
where
& dn =k
lA = (k27 _kl)a )"AB = ( 'S & )
=iz Al

16
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and we also have that

2
—% = det(hng) = ah +3. with o = ABkakg, 5 := det(inp) . (B.4)

Substituting these into P4, = 0, we obtain 2d0 + OkcATky dr = 0, which implies that
d (9 |det(hap)|" 2) =0 or 6t = C,constant, where equation (4) has been included.
a

Let us now study the implications of the remaining curvature equations, Ry = R, = R3 =
0 and Pp.4p = 0. Consider first the case (b): 64 = k40 and dAap = kskp dA. Equations
R, = 0 and R; = 0 are identically satisfied and do not imply any further condition on 6, T or
ka. Then, taking (B.3) and (B.1) into account, equation R; = 0 implies that

3aC?
R=-"— (B.5)
T
and equation Pp.4, = 0 amounts to
CZ
Dpet + 2= e = 0. (B.6)
2T

This is a partial differential system that is integrable provided that the Ricci scalar is (B.5).
Combining now equations (B.5) and (B.6) we arrive at

DR+ LRy, = 0, (B.7)

which is a condition to be fulfilled by R, the Ricci scalar of the given metric 4, on S, in order
that the ambient flat metric 7, exists.

Consider now the case (a): 6 = 0, B = 1,2, i.e. orthogonal transitivity, with no
restriction on A 4. To start with, by (20), equation R; = 0 amounts to R = 0, which implies
that A, is flat.

Proposition 3.  The scalar R; vanishes if. and only if, a function f € A°S and functions
qap(f) exist such that

d(V2 17 ap) = qar(f) df, where  ABg.p =0, (B.8)
and q := det(gap) € {0, £1}.

Proof. Define %5 := v/27 'Aap. It is obvious from (4) that det(A45) = —1. From (22)
we have that Ry = 273/2 €?ATE}, g Jor)p, Wwhere A4B % e = 82, and therefore,

R; =0 & FET Ay Adior = 0.

A short calculation then proves that this is equivalent to the existence of F € A'S such that
disp x F. Now, since dimS = 2, F is integrable, i.e. proportional to du for some u € A°S,
whence it follows that di 45 = Q45 du for some Q45 € A°S and the integrability conditions
imply that Q45 = Qap(u).

Then (B.8) follows taking f = u and gap = Qap, if Q) := det(Q4p) = 0, or taking
df = /[0]du and g4 = Qap/~/10], if Q(u) # 0. Furthermore, det(%,5) = —1 implies
thatXABdiAB=00r5\ABqAB =0. O

Note that neither f nor g4 vanishes except in the trivial case Jap = constant.
qap 1s a symmetric, traceless, 2-square matrix of functions on §. Since the number of
dimensions is 2, using the characteristic polynomial we have that

g2 qcp = ghap, q = det(gap) € {0, £1}. (B.9)

17
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Consider now the following quadratic form on the space of symmetric 2-square matrices:

JACRBD — XY 4 det(mep). (B.10)

map —> mapmcp (mcp

It can be easily seen that it is non-degenerate and has signature(++ —). We can then complete
abase {Asp, gap, wap} in this space of symmetric matrices such that

qaprt8 =0, qapht€iBPqcp = —wapACiBPwcp = 2g,

YAB YACYBD (B.1D)
wapr™® =0, wapr®“A""gcep =2(g| = 1)

and, besides, det(q43) = — det(w4 ) = ¢ and det(A,p) = —1.

{Aaz, qap, wWap} is thus a rigid base for the quadratic form (B.10): an orthogonal base
in the case ¢ # 0 and a base containing two conjugate null vectors in the case ¢ = 0. In
all instances, w4p is thoroughly determined by Aap and qgap- We thus have the following
differential equations (the first one comes from (B.8)):

dx d -
d}B = qAB, Z}B =qAiap+qap (1 —|qgDu+qwapv
, (B.12)
dwap -
i = (gl = DAap+qgapv —wap (1 —|ghu

where ¢ = +1 or 0 and u(f) and v(f).

As the quadratic form (B.10) can be associated with a non-degenerate metric product in the
3-space of symmetric 2-square matrices, these equations can be seen as a sort of ‘Frénet—Serret
equations’.

In the case ¢ = 0, they yield

diag dgas dwap =
_ , — , = —AAp —UW B.13
dr qAB df Uqas AB —uwpp ( )

df
whose solution is

hap = hap + Fiap, gag = Fgap, (B.14)

where A4p and §4p are constant matrices satisfying (B.11), F = F(f) and F := dF/df;
whereas in the case ¢ = %1, (B.12) reads

diag dgas ~ dwag
= s = )\, + . = B15
df qAB df qAAB TV WA df quqas ( )
The condition Ry = 0. From (B.8) and (21) it easily follows that
Ry = 11" (ot — qfn f2) with 7 :=logt, (B.16)

where (B.9) and (B.11) have been used. Now, as 5y, is positive definite, the condition Ry = 0
allows two different cases:
ifg=0, then # =0andt = constant}

lfé] = l, then I’lbcl‘btc = hbcfbfc (B17)

The case ¢ = —1 is forbidden, because R, = 0 would imply f, = 0 and disp = 0, which
amounts to g4 = 0, in contradiction with det(gap) = —1.

The condition Pp.ap = 0.
For g = 0 on account of (B.14) and (B.17), Pp.a» = O implies that D, F, = 0. Hence, using
(B.14) and (B.17), we have that

70
Aap = NG

18
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For g = 1 substituting (B.15) into (25) and using (B.8), (B.9) and (B.11), we obtain that
Ppcap = 0 amounts to

Tpe == Dyltc+ 3 tyte + 5 fo fe =0, Fpe := Dy fo+tgfo =0 (B.19)

supplemented with v = 0.
Using this, equations (B.15) read

dx d - d
A8 — qas, 45 _ 3 ap, YaAE _ o (B.20)
df df df
whose solution is
*ap = Aapcosh f +§ap sinh f, (B.21)

where i g and g4 p are constant matrices satisfying (B.11).

Now, equation (B.19) is a partial differential system where all the derivatives of the
unknowns ¢ and f are specified. The subsequent integrability conditions do not imply any
new condition. Moreover, equation (B.16) implies a further restriction

SR (tpte — fofe) =0 (B.22)
which is compatible with (B.19); indeed, D, R, + t, R, = 0, and provided that R, vanishes at
Xo € S it vanishes in some open neighbourhood of x.

We now introduce the new variables ®. := e“*/)/2 and equations (B.19) and (B.22)
become

Dpc®y =0 and D&, D.d_ = 0. (B.23)
From (B.21) it then follows immediately that
Aap =27 (Pi[Aap +Gasl + P2 [Aap — §as)) t=0,0_. (B.24)

With a little algebra it can be seen that, as a consequence of (B.11), there exist 714 and 714
such that /71,71 — m17i, = 1 and that

Aap +Qap = 2Aip and hap — Qap = —2Manp. (B.25)
Therefore, (B.24) finally yields
)LAB = % (—d)z_rhA}ﬁB + CDEﬁAﬁB) (B26)

with @ fulfilling (B.23). As a consequence, it follows from (4) that t = &, P_.

B.1. Summary: How to proceed? Guidelines

We start from a given Riemannian metric /., on S.

(1) If h,yp is flat, then we take 84 = 0 and
(a) choose two matrices Aap, Gag fulfilling (B.11), with g := det(§ap);
(b) then, A4p is given by (B.26) if ¢ = 1 or by (B.18) if ¢ = 0.

(2) If hyy is not flat, we first check whether R fulfils (B.7). If so, we choose two constants
a # 0 and C # 0 and take (equation (B.5))

3aC?\'* C 2R\
T=\— s 0= — = —— s
R T 3
then choose k4 and 4 45 such that A48k kp = « (equation (B.4)) and take 6,4 = k0,
L 2C..s . , s
0% = ——A\ kB, AAB :kAkB)\"')"AB with A= —— —+80 .
73 a\2

In both cases the covectors €4 € A! M can be determined as indicated in subsection 2.4,
i.e. by solving equations (26) and (27).
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Appendix C.

As the horizontal metrics h,;, and &, are both elliptical, there exists an h orthonormal frame
{i, v}in A'S, with dual {v, w}, such that

hap = E1fkalts + E2VaVp and (C.D
the components of the shift covectors are
/cf =m* g +nv, (C.2)
and equations (39)—(41) yield
+b
6 — Qa+by+ 29D o, a=12 (C.3)
with x; := AagmAm? and x, := A pnn®
Aagmin® =0 (C4)
+b) — +b) —
)LABmB — a(a ) ABmB =0 and )\.ABnB — a(a ) )LAB”B =0 (CS)
1 2
and
AaB — (2(1 + b)XAB + a(a + b)XAcXBDACD + )\BDmDXACmC + ABDnDXACnC =0. (C6)

In the generic case, m'n*> —m?n! # 0, which we shall assume’, equation (C.6) is implied
by (C.4) and (C.5). Therefore, it follows that

Proposition 4.  The metrics 0, and gap, given by (36) in terms of hap, Aap, E2 = 5;“ + KA,

hap, Aag and E‘: are connected by the deformation law (34) if, and only if, (C.3), (C.4) and
(C.5) are fulfilled. (Provided that k! and k? are linearly independent.)

C.1. The unknowns

Relations (C.5) can be written as

= & - &
AagrBCme = d AapriBne = C.7
ABAT Mg 2@+ D) my an ABAT nC 2@+ D) ng (C7)

where m 4 1= Aspm?® and ny := Aapn®. Therefore, ¢, = a(a + b)Z,, where Z,, o = 1,2,
are the roots of the characteristic polynomial

det (Aapr®C — 28$) := 2% — (Aapr®?) Z+72 /72 =0 (C.8)

oré{y = Zya(a+b),a =1, 2, with

Zis=t(haprt® £ \/ (eaprAB)?2 — 477 72). (C.9)
Taking this into account and using (C.8), (C.3) yields
2 ZX )\,AB
Xy = Z, [f—z—a(a+b)}+2a+b—% (C.10)
T T

As, by (31), Asp (and also T and A4p) depends on the unknowns &, equations (C.9) and
(C.10) are expressions of ¢, and x4, @ = 1, 2, in terms of @, a and b.

7 We are entitled to restrict to this case whenever we can find a solution to (34).
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On its turn (C.4) implies that

1 1
AaB = — Mamp+ — NNp (C.11)
X1 X2

with ms = Aspm®? and n, := Aupn®. (As the generic case has been assumed, the

hyperbolicity of A4p implies that x;x, < 0, and a suitable choice of wu, and v, permits
to take x; < 0 and x, > 0, in all generality.)
Now, comparing (C.11) and (31), it results that there exists ¢ € A°S such that

mp = /x7/2 (®_coshgriy + P, sinhgiiy)

(C.12)
nay=/x3/2 (®_sinhgiis + O, coshpiiy)
The inverse matrix A45 is
D «A4B 7 «A4B
B _ Y2 e _£;‘2;§, (C.13)
®2 P2
w A wA w A wA
where m = (i, —m,) and n = (—iip, —7i;). (Note that m my = n iy = 0 and
A
m ofia=n fa=1).
Hence, the components of the shift covectors /cg‘ in the frame {u,, v,} are
mA — 42x12 <_co;hgo ;;A +silh<p ;;lA>
- " (C.14)

A = 42x§ <_si(rll)h(p ;;A +cosh¢ ’;ﬁlA) ,

+

which, taking (C.9) and (C.10) into account, give m* and n* in terms of the unknowns &, a,
b and ¢. Note that

m'n? —m*n' = /=x1x2/(P,D_). (C.15)
Furthermore, combining (C.5) and (C.14), we obtain after some algebra that
23/2 _ s AsB
sinh2<p=m)mgm n o, (C.16)

which determines ¢ in terms of ®., a, b and the datum Aag.

Let us turn now our attention to the unknown frame {u, v}. Since it is ~A-orthonormal, if
we choose an arbitrary i-orthonormal frame {0, «?}, with dual {e,, e,}, there exists € A’S
such that

w=cosya —sinya v =siny a' +cos ¢ o? (C.17)
and
v=cosye —sinye,, W = siny e + cos { e;. (C.18)

We have proved so far that, if 1., and g, are given by (36) and relations (C.3) to (C.6)
are fulfilled, then five functions, ®., a, b and i in A0S, exist such that

(A) hg, and /c;‘ are given by (C.1) and (C.2), with mA,_nA, Uq and v, given by (C.14) and
(C.17) in terms of these five functions and a chosen %-orthonormal frame {«!, «?} and
(B) Aap is given by (31).
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The converse also holds, that is, if (A) and (B) are fulfilled, then 7,; and g, defined by
(36) fulfil conditions (C.3) to (C.6), and are therefore connected by the deformation law (34),
for any @4, a, band ¢.

We shall now write equations (32), (42) and R = 0 in terms of these new unknowns. As
for the first one, it is already written in terms of &, that is,

FE = Dyp®y =0, R, := h*’D,®,D,®_ = 0. (C.19)

C.2. Equation (42)

As the frame {u, v} is h-orthonormal, we have that

Ea/,Lb = Qa Vp and Ba Vp = —Qa Vp, (CZO)
where D is the Levi-Civita connection for i1, and €2 € A'S is the rotation of the #-orthonormal
frame. We have therefore that

du=QAv and dv=—w A u. (C.21)
Using now (C.17), equations (C.20) yield
£i=dy +Q+vguS,h et =0, (C.22)

where 7, are the D-connection coefficients in the given frame {o!, &?}.
Now, writing 2 = Qu + ;v and using (C.2) and (C.21), equations (42) lead to

QumA + Qn? = pA, with oA = —g" + (wm?) — (va), (C.23)
where {w, v} is the dual frame for {;£, v}, and it can be solved to obtain
P, P 1.2 2.1 Q.0 21 1,2
Q=———(pn —pn), Q) =~ pm —pm), (C.249)
= ) = )

where (C.15) has been included.
Once 2 is known, it can be substituted into (C.22) which becomes an equation which
determines dys. The subsequent integrability condition then reads

1 —
dQ + > Re =0, (C.25)
which is integrable because dim S = 2 and amounts to

e 1 —
W= (V) — (W) + Q" + SR=0. (C.26)

C.3. The flatness of hy,
Consider the frame {#! = u, 62 = v} and its dual frame {v; = v, v, = w}. If we define
Yab := h“‘y;, where y; are the connection forms for D, we have

Yaa = %dga and

Yo =—vu = (—0Q + 3 W) 1 — (L +13 (V) 1, (C.27)
where (C.21), (C.1) and the fact that y, + ¥»; = 0 have been included.

As dimS = 2, only one of the curvature forms, ®j := dy; + y& A vy, is independent.
The flatness of A, therefore amounts to /.05 — ho @] = 0 which, after some algebra, yields

1
d| —— =0, C.28
(m m) (€.28)

which can be expanded as
T: = (W) — (V) — 2 (W2e1) + (V2E)]
— 02— LB+ QW) — 3 D). (C.29)
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