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Abstract: The aim of this project is to analyze the distribution of traffic accidents in Barcelona, for 10 

years of data.  The principal motivation is to try to see if there are some patterns in human actions, as has 

been demonstrated in other studies for other actions like email and letter communications. We will focus 

our project to approximate this behavior by Poisson process and work with some sampling like the day and 

night. Also, we will try to observe some human habits. We realized that the approach was quite good, 

however it is described with two different dynamics, day and night. 

 

 

 

  

I. INTRODUCTION 

 

Social dynamics have been very important over time. 

There has always an interest in the behavior of groups when 

they interact individually. We assume that everyone is 

influenced by others behavior. 

Nowadays, social dynamics, is getting more relevant 

because we have a lot of information about it. There are many 

factors that determine the actions of every person, so it is 

impossible to do accurate prediction of the behavior. However, 

we can observe some patterns and periodicity. The timing of 

the human actions is highly important, and it is a good 

magnitude to quantify and has high scientific interest. Human 

dynamics are described by a function of time and there are 

many studies that provide an evidence of that. For example, 

web browsing, email– and letter–based communications, 

library and stock trading [1]. Individually human actions are 

well approximated by Poisson process [2]. 

We are going to study the traffic accidents in Barcelona, 

see their properties and try to determine the timing of human’s 

actions in accidents and look for other patterns. We will use 

Guàrdia Urbana open data from 2010 to 2019 [3]. As Guàrdia 

Urbana tell us, the hour of accidents is annotated when they 

arrive to the accidents and then people who have suffered the 

accidents tell them an approximation of it. Ten years of data 

with more than 10.000 accidents for year, it is enough data to 

apply some data aggregation like the days of week and we still 

having enough data. 

 

II. POISSON DISTRIBUTION 

 

We will assume that traffic accidents are well described by 

a Poisson process. Each human activity is independently form 

each other, with constant rate λ. Poisson distribution have all 

the moments with a finite value. 

The precision of our data is one hour, so we will count the 

time lapse between two events and check if it follows this 

exponential form: 

 

 

 P(t) = λe−𝜆𝑡 . (1)  

 

The time average will be 1/λ, where we supposed that follows 

an exponential distribution and we apply the maximum 

likelihood of our data: 

 

L(λ|𝑥1, 𝑥2, … , 𝑥𝑛) = L(λ|𝑥1)L(λ|𝑥2) … L(λ|𝑥𝑛), 
 

                = λ𝑛[𝑒−𝜆(𝑥1+𝑥2+⋯+𝑥𝑛)]. 
 

Solving the likelihood function when λ is maximum: 

 

 𝜆 =
n

∑ 𝑥𝑖
𝑛
𝑖=1

. (2) 

 

 
  

Poisson distribution mean that is hard to find some event with 

very long time. In this case of sending message with social 

network, maybe normally you answered every day but 

sometimes this time will be bigger.  

 

 
FIG. 1: Example of 1000 events. We can see that are uniformly 

distributed in time and apparently not periodic. Also, we can observe 

that there is no large delay time. 

 

If we apply a natural logarithm, we can obtain a linear 

approach and compare the slope in different situations. 

 

 
ln(P(t)) = ln(λe−𝜆𝑡) = −λt + lnλ.  

 
(3) 

 

As we can see in the formula (3), the slope and the intercept 

give the same information in the ideal case. Intercept equals to 

minus one over slope. We will use μ for the inverse of λ that 

will have units of hour. 
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III. RESULTS 

After read all of the data sets, clean the data, prepare the 

variables and eliminate the outliers we start to analyze. 

First of all, we need to check how the data of traffic 

accidents is distributed. We had assumed that it was 

exponential following the equation (1).  Then for 2010 we 

obtain figure 2. 

 

 
FIG. 2: Number of events in terms of the delay time in hours for the 

2010. As we can see, seems to follow an exponential distribution, as 

the other years.  

 

Another thing that we can observe in figure 2 is that the 

larger delay time is 15 hours. This value is only one magnitude 

order bigger than λ, a property of Poisson distribution. The 

units of λ will be one over hour. 

A. Lambda over the years 

 

The next step once we have observed that our data roughly 

follows an exponential distribution is to check if all the years 

are the statistical equivalent, then we can group all years as the 

same sample.  

 

 
FIG. 3: In blue the λ over the years, in green the variance of λ. 

 

As we can observe, the error in λ for every year cover the 

neighboring years. Data is not stationary, but their propriety 

oscillate smoothly. 

Next, we compare the λ values, obtained by the three 

methods described above. If our assumptions were correct, 

these estimations should agree. As we can see in Table I, this 

is not the case. This means that we must revise our hypothesis 

to find the origin of these discrepancies. 

 

 λ1 λ2 λ3 

2010 1.0948 0.5302 0.2559 
2011 1.0622 0.5367 0.2844 
2012 1.1244 0.5397 0.2695 
2013 1.1510 0.5559 0.2803 
2014 1.1683 0.5680 0.2835 
2015 1.2081 0.5593 0.2682 
2016 1.2262 0.5486 0.2494 
2017 1.2644 0.5506 0.2499 
2018 1.1406 0.5529 0.2631 
2019 1.1487 0.5599 0.2765 

TABLE I: In this table we can observe the different values of λ for 

every year. The first one is de Maximum Likelihood, the second one 

is the slope of the equation (3)., and the third λ is obtained with the 

intercept. 

 

After that, we use the hypothesis testing to compare two 

exponentials to compare all years and see how much even the 

distributions are. 

FIG. 4: Matrix of correlation of p-value between years. 

 

In figure 4 we observe the p-value for all years. When the 

value is one mean that is the same distribution. It is the reason 

because the diagonal is one. We can consider that if the p-value 

is greater than 0.05, the distribution is the almost the same or 

similar parameters. Normally all years have the neighboring 

years with high p-value, it is because the time is continuous 

and if there not exist a big change that can affect traffic 

accidents the data distribution will be similar. However, 2017 

is different, this behavior was also reflected in figure (3). There 

was a big change between 2017 and 2018. Also, we can see 

that years 2018 and 2019 are more similar to those of the 

period 2012-2014. 
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B. Biexponential adjust 

 

We started our analysis assuming that the data was 

distributed in equation (1). However, when we have applied 

this fit, we saw that our approximation seemed to be 

inaccurate. This result is observed in table I and in figure 5. 

When we calculate the regression for each year it looks like 

figure 5. This characteristic is not an isolated case.  

 
FIG. 5: In y-axis the natural logarithm of the probability (normalized) 

that one event occurs in function of delay time in 2016. In red the 

lineal regression of the fit. We added the slope and the R2. 

 

 In this example we can observe what seems a quite good 

approach to equation (1). However, we can think that it follows 

a different behavior. In the first part, the lineal regression is 

above the points, and in the second part, the regression is under 

the points with an R2 value of 0.954. One possible solution is 

to try to adjust a new function with two different dynamics, 

maybe there are some factor that produce that we had two 

different dynamics.  

Finally, we decide to adjust the following equation: 

 

P(t) = ae−𝑐𝑡 · 𝜒(𝑑 − 𝑡) + a · e−𝑐𝑑e−𝑏𝑡 · 𝜒(𝑡 − 𝑑).       (5) 

 

(The pre-factor of the second term of this equation is intended 

to make the equation continuous.) 

In equation (5), function 𝜒 is defined by: 

 

𝜒(𝑥) = {
1 𝑖𝑓 𝑥 ≥ 0,

0 𝑖𝑓 𝑥 < 0.
 

 

Parameter d gives us information about when occur the change 

of dynamic. Finally, the inverse of this parameters b and c give 

us an idea of how much frequent the traffic accidents are. The 

relation between these parameters can helps us to determine 

the origin of this behavior. Also, the relation with other 

dynamics of human if exist a characteristically time. 

To obtain these new parameters we will apply two different 

methods. 

For the first one method, we will use a python [4] library 

that find the best fit given a function, with the best parameters. 

With this method we got a really good fit for the data points as 

we can see in figure 6.  

 
FIG. 6: Probability (normalized) that traffic accident occurs in 

function of delay time in 2019. The y axis is in log scale. 

 

In this figure we have eliminated the point of one hour of 

delay time because it can be a introduce and error to the fit. 

We will give more details about it below. 

In this case, we obtain a value of 0.8984 for c, it means a 

μC=1.113 and 0.3172 for b, with μB=3.153. So, after the fourth 

hour of delay time, the rate change from one to three. In the 

first interval there is high concentration of accidents. 

 

If we do the same with all years and then the mean of the 

parameters, we get the following values: 

 

 

TABLE II: Table that shows the mean of the different parameters 

with the error for the period [2010-2019].  

 

 

Maybe there is some correlation between these parameters 

because the value of d is similar to sum of the two μ. 

The second method is to maximize the product of two 

coefficient of determination R2.  

The algorithm [5] starts with three points for the first 

regression and all the others points for the second one. This 

method consists to create one loop that is adding a new point 

to the first regression from the second one. For each iteration 

the algorithm calculates two lineal regressions with the 

correspondent R2. We did this process for all the years, to 

check if every year follow the same dynamics, like happened 

in the first method, where we want to adjust equation (5) and 

compare how much different the parameters are. 

After this, we calculate the derivate of the product of two 

R2 for every year, to determine the maximum value. We did 

the same process with standard error and we minimize this 

value. The result obtained with R2 and with the standard error 

is the same, both are equal to the fourth hour as we will see in 

figure 7. 

 

 

 

 

 

 

 μ𝑩̅̅ ̅ (𝒉𝒐𝒖𝒓) μ𝑪̅̅ ̅(𝒉𝒐𝒖𝒓) 𝒅 ̅(hour) 

[2010-

2019] 

1.083±0.00

4 

3.002±0.00

4 

3.90±0.0

2 
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FIG. 7: In plot (a), we can observe how variate de square root of the 

sum of the two variances at square. In plot (b), the derivate of the that. 

The X-axis is the last hour of data that the first regression use, is the 

same for the two plots. 

 

As we can see in this figure, the curve tends to minimize 

when we have more points, but after some point, it tends to 

grow up. In the figure 7 (b) we observe that the maximum is 

when the last hour is the fourth one. The best two fits occur 

when we create the first lineal regression until the fourth hour.  

This result is consistent with the first method, where we 

obtain that this value is 3.90 (table II). 

The value for μ𝑩̅̅ ̅ using this method is 1.042, is very close 

to the value obtained with the first one. 

With the new approximation (5) that the data follows two 

different dynamics, the R2 is 0.986 ± 0.002. This value is better 

than our first approximation that we obtained an R2 of 0.95 ± 

0.01. 

We expected a better coefficient of R2 because we adjust 

two lineal regressions.  

C. Different data aggregates 

 

Another interesting aspect to analysis is how traffic 

accidents is affected by the day of the week. The dynamic can 

be different depending of the day of the week. Maybe, the two 

dynamics found in the last section can be described because 

we have two types of day, working day and festive. 

When we classify the data and then calculate the same that 

we did in figure 5, the results obtained are the following 

As we expected, we can observe different behaviors. From 

Monday to Thursday, the results are almost the same, see in 

table III. However, for Friday we can see a significative 

increase of accidents. We expected that result because 

normally on Friday more people use the car. 

  𝛌 μ R2 

Mon. -0.7478 1.337 0.960 

Tue. -0.7785 1.285 0.916 

Wed. -0.7651 1.307 0.937 

Thu. -0.8189 1.221 0.952 

Fri. -0.8699 1.150 0.964 

Sat. -0.6545 1.528 0.958 

Sun. -0.6089 1.642 0.976 
 

TABLE III: Table that shows the slope and R2 value for all days of 

week, in the period of [2010,2019]. 

 

By the other hand, on weekend, the value of rate accidents 

is higher, people do not need to use the car to go to work. Also, 

normally people are not in a hurry when they use the car on 

weekend, so the driving is safer because you can pay more 

attention. 

Another thing to comment is that de R2 on Sundays is 

higher than others, possibly because there is no collapse in the 

circulation, then higher delay time between is more possible. 

This behavior is more accurate to equation (1). 

If we use the same function used in figure 4, which 

compare two exponential data and give a number of how much 

equal are, we obtain that Tuesday, Wednesday and Thursday 

are really similar, also Monday but less than others. For the 

other hand, Friday, Saturday and Sunday, are totally different. 

This result agrees what we see in figure 5 for this day, because 

they have a different slope and maximum range for delay time.  

 
FIG. 8: In Y-axis the ln of the probability (normalized) that one event 

occurs in function of delay time for all years. In red the lineal 

regression of the fit during the day hours, the slope is -1.083 with R2 

of 0.994. In blue, the regression during the night [22-05] with a slope 

of -0.575 and R2 of 0.989. 

 

After splitting our data with among of the different days of 

the week we have decided to do the same with day and night. 

Day hours are defined between 6 and 21 and the night hours 

are the remainder. As we can see in figure 8, we have obtained 

a really good results, two different dynamics are observed with 

a high value for R2 which is almost one for the day. Also, we 

can see that during the night, the slope is smaller than in the 

day, as we expect. The mean of delay time expected that 

accident occur is two hours during the night and one hour for 

the day. Also, we can see that the range is higher for the day 

because the higher possible value for the night is seven. 
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FIG. 9: In Y-axis the probability that one event occurs in function of 

the hour of the day. The blue line is for Sunday and the green line for 

Wednesday. 

 

Another interesting thing that data of traffic accidents 

reflects is that we can see the activity of human actions during 

the day, like we can see in the figure 9.  

On Wednesday, the accidents probability that one accident 

happens grows up in the period that goes from 6 AM until 10 

AM. During this period is when people start to work, and they 

have to use vehicle. Consecutively, at 10 AM we have a local 

minimum that may correspond when shops open and the 

activity of the city become more important. At 2 PM we have 

the maximum activity, before of going to dinner. Finally, after 

6 PM, that is when the activity starts to go down, the 

probability follows the trend. 

Sunday have a peculiarity distribution, different of all days. 

As we can see, it has a higher probability during the night than 

other days but also a local maximum at 6 PM, that is the hour 

when night clubs close. Also, the curve grows up at 8 AM, two 

hours later than in the other days.  

IV. CONCLUSIONS 

We analyze the data of traffic accidents over years trying 

to adjust the best equation. In our first approximation we saw 

that the distribution is the result of two different behavior. 

Then we decide to divide our data in working days and festive. 

With this we get a better approach but not enough good. 

Finally, when we divide the data in the day and night hours, 

the result reflected two different regressions with a good value 

of R2. 

With all of these results, we can say that the principal factor 

in the traffic accident is the day and night, more than the if the 

day is festive or not and the day of the week. 

When we divide the data in the days of the week, we get a 

different behavior, but the result was not good enough. 

One problem that we had is the uncertainty of the hour 

when the accident occurs and the poor precision. This was 

reflected in the delay time of one hour, because the uncertainty 

is more important for short delay time. 

After all, we can affirm that traffic accidents follow an 

exponential distribution with mean inter-event time about one 

hour during the daylight hours and about two hours at night. 
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