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Abstract: We study the dynamic behavior of the Ising model under an oscillating magnetic
field in the mean-field approximation. A dynamic phase transition causing a spontaneous symmetry
breaking of the hysteresis loop arises due to the competition between the timescales associated with
the spin relaxation and the oscillating field. A dynamic order parameter measuring the asymmetry
of the hysteresis loop is defined and its critical behavior is explored. The critical exponents are
found to match those of the equilibrium transition once the thermodynamic variables are replaced
with certain dynamic variables.

I. INTRODUCTION

Consider a magnet, which is a collective many-body
system, placed in an external oscillating magnetic field.
The thermodynamic response of the system, i.e. the
magnetization, will also oscillate, and it will lag behind
the applied field due to relaxational delay. This delay
in the dynamic response gives rise to a nonzero area of
the magnetization-field loop, a phenomenon known as
hysteresis. When the time period of the magnetic field
becomes much shorter than the typical relaxation time
of the thermodynamic system, the hysteresis loop be-
comes asymmetric around the origin. This signals the
appearance of a new thermodynamic phase, which arises
spontaneously from dynamically broken symmetries due
to the competing timescales within the system.

This dynamic phase transition (DPT) can be char-
acterized by a dynamic order parameter, which can be
shown to obey a universal power-law behavior in the
vicinity of the critical point. Remarkably, the critical
exponents are the same as those for the magnetization
in the equilibrium transition if the temperature and the
static external field are substituted by the period of the
oscillating field and a small bias field, respectively.

Beyond magnetic systems, many other physical sys-
tems exhibit dynamic hysteresis. For instance, very re-
cently Geng et al. [1] investigated a laser-driven cavity
with noninstantaneous photon-photon interactions aris-
ing from a nonlinear optical response within it. They
showed that the transmitted intensity of the light travers-
ing the cavity displays hysteresis when scanning its
length, depending on whether it is being opened or
closed. They also reported a power law with scaling ex-
ponent −1 for the hysteresis area as a function of the
scanning period in the limit of fast scans. Furthermore,
they were able to explain the experimental results with a
mean-field equation for the steady-state photon density.

This report is organized as follows. In Sec. II, a mean-
field Ising spin model displaying hysteresis is obtained
from simple physical considerations. In Sec. III we give
a brief overview of our numerical program. In Sec. IV
we qualitatively describe the hysteretic behavior and the
dynamic phase transition exhibited by the system under

consideration. In Sec. V we analyze, both analytically
and numerically, the critical behavior of the dynamic or-
der parameter. In Sec. VI we present simulated phase
diagrams for different choices of the relevant parameters.
To conclude, we summarize our work and give prospects
of possible future extensions.

II. A HEURISTIC MODEL

In this section we show how a dynamic equation for
the magnetization in a spin system exhibiting hysteresis
can be obtained by means of simple considerations [2].
Consider N Ising spins of moment µ in an external field
h, where n1 point in the direction of h and n2 = N − n1
in the opposite one. The time evolution can be described
by a master equation,{

ṅ1 = w21n2 − w12n1,

ṅ2 = w12n1 − w21n2,
(1)

where w12 and w21 are the transition rates from states
1 to 2 and vice-versa, that must obey the principle of
detailed balance, i.e. w12/w21 = exp(−2µh/kT ). The
magnetization is M = µ(n1 − n2), so that eq. (1) gives

Ṁ = −(w12 + w21)M + (w21 − w12)µN. (2)

Defining a relaxation time τ ≡ (w12 + w21)
−1

yields

τṀ = −M + µN tanh

(
µh

kT

)
. (3)

Now we define m = M/N and introduce a mean field
by letting h → h′ = h + λm, since the field experienced
by individual spins is a linear superposition of both the
external field and the one due to the other dipoles. Then,

τṁ = −m+ µ tanh

(
µh+ µλm

kT

)
, (4)

which in the stationary case, ṁ = 0, reduces to the
mean-field Ising model equation for the magnetization.
However, interesting dynamics appear when the magnetic
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field is a function of time, h = h(t). Setting µ = 1 in anal-
ogy to the Ising model and introducing a reduced field
h/λ and a reduced temperature kT/λ, one obtains

τ
dm

dt
= −m+ tanh

[
h(t) +m

T

]
. (5)

Eq. (5) is the main equation we will solve in this ar-
ticle when a sinusoidal magnetic field h(t) = h0 sinωt is
applied. In these conditions, the model exhibits some in-
teresting physics depending on the specific values of the
variables h0, ω and T . In particular, hysteresis loops are
readily found to appear, in principle, for any set of values
of these parameters.

It is also possible to introduce a reduced time t/τ , in
which case it is seen that the hysteresis depends only
on three dimensionless parameters. These parameters
correspond to the temperature, the applied field strength,
and an effective frequency ωτ . Thus, without any loss of
generality, we will consider τ = 1 everywhere.

III. NUMERICAL METHOD

The model (5) has been solved with the 4th-order
Runge-Kutta method after an initialization of m = 1.
Time is measured in units of η = ωt and one period is
discretized into N = 2000 timesteps (not to be confused
with the number of spins). After each period of evolu-
tion i, the magnetization at each time site is compared
with the value in the previous iteration i − 1, and the
program stops if maxk∈[0,N ][mi(tk) −mi−1(tk)] < ε (we

have chosen the cutoff ε = 10−10).

IV. DYNAMIC HYSTERESIS AND SYMMETRY
BREAKING

When solving eq. (5) one observes that after an initial
transient period, the average magnetization becomes a
periodic function of time (although not necessarily sinu-
soidal) with the same period as the external field. Fur-
thermore, the magnetization lags behind the field as a
consequence of the relaxational delay associated with the
characteristic spin-flip time τ . These behaviors are re-
sponsible for the appearance of a loop with nonzero area
in the m−h plane, a phenomenon known as dynamic
hysteresis. The loop area is

A = −
∮
m dh

(
Anum = −2π

N
h0

N∑
i=1

m(ηi) cos ηi

)
,

(6)
and it is straightforward to see that it is equal to the
energy dissipated by the system during one period of the
oscillating field. The parenthesized expression is the nu-
merical equivalent of A employed in our program.

For very low values of ω the area should approach zero,
since the magnetization will be able to follow the ex-
ternal field for any value of τ . However, the hysteresis
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FIG. 1: Magnetization behavior during two cycles for h0 = 0.5
and T = 0.7 and two different frequencies, (a) ω = 0.005 and
(b) ω = 2. The blue lines show the external magnetic field.
In (a) the magnetization can follow the oscillation of the field
with a certain lag, and a symmetric hysteresis loop develops.
In (b) the frequency is too high for the magnetization to keep
up with the field, and the loop becomes asymmetric with two
possible outcomes.

arising from solutions to eq. (5) does not quite vanish
in this quasistatic limit, which is certainly an artifact of
the mean field approach [3]. For higher values of ω, the
area increases as the magnetization struggles to follow
the field oscillation due to the time it takes the spins to
invert their orientation. Eventually, ω exceeds a certain
threshold value (dependent on h0 and T ) and the loop
area starts decreasing. At the same time, the loop be-
comes asymmetric and is no longer centered at the origin
of the m−h plane, but can appear either in the upper
half-plane or in the lower half-plane (in our study, it al-
ways appeared in the upper half-plane, since we always
initialized the magnetization at m = 1). Therefore, there
exists a symmetry breaking of dynamic origin, signaling
a phase transition between a symmetric loop phase and
an asymmetric one. These are sometimes called the dy-
namic paramagnetic and ferromagnetic phases, respec-
tively. FIG. 1 illustrates the typical behavior of m below
and above the transition frequency.

In order to quantitatively study this transition, one
can define an associated order parameter Q as

Q =
1

P

∫ P

0

m(t) dt

(
Qnum =

1

N

N∑
i=1

m(ηi)

)
, (7)

where P = 2π/ω is the period of the applied field. When
m oscillates around zero this order parameter vanishes,
whereas it develops a nonzero value for high frequencies.
In the limit when ω is so high that the magnetization
remains constant at ±1 one finds |Q| = 1. The order pa-
rameter can be shown to exhibit a discontinuous jump for
low temperatures, whereas for higher temperatures the
transition becomes continuous, implying the existence of
a tricritical point along the phase boundary for fixed h0
or ω (see Sec. VI).

Treball de Fi de Grau 2 Barcelona, June 2020



Dynamic phase transition in the mean-field Ising model Lucas Maisel Licerán

V. CRITICAL BEHAVIOR

In this section we shall focus on the regime where the
transition is continuous, i.e. for high enough tempera-
tures. In this case, the order parameter Q of the DPT
can be shown to exhibit a critical behavior similar to the
one of the magnetization m in the case of the thermo-
dynamic phase transition (TPT). In particular, a critical
exponent β = 1/2 can be extracted from the evolution

equation, such that Q ∼ (Pc − P )
β

as P → Pc.
It is clear that for P < Pc the magnetization, despite

being periodic, will oscillate around a certain offset so
that Q 6= 0. This offset tends to zero as P → Pc, so that
m can be written as m(η) = ε(P ) + ξ(P, η), with ε(P )
a time-independent function satisfying ε(Pc) = 0 and
ξ(P, η) a periodic function with vanishing time average
providing the time dependence. Then, it follows from the
definition of the order parameter that ε must be Q itself,
so that we may write

m(η) = Q+ ξ(P, η). (8)

Using this form for m, the RHS of the dynamic equa-
tion (5) can be expanded to third order in powers of Q.
By defining the periodic function

Ξ(P, η) =
h(t) + ξ(P, η)

T
(9)

and integrating both sides of the resulting expression, one
arrives at

Q2 = 3T 2

[
I1(P )− 2πT

I2(P )

]
. (10)

To obtain this relationship, we have introduced the
following integrals:

I1(P ) =

∫ 2π

0

sech2 [Ξ(P, η)] dη , (11)

I2(P ) =

∫ 2π

0

{2− cosh [2Ξ(P, η)]}

× sech4 [Ξ(P, η)] dη , (12)

which are well behaved at P = Pc in the sense that they
do not show any singular behavior themselves. This can
be understood from the fact that they only depend on
the oscillating part of m, namely ξ(P, η), which is not
expected to exhibit abrupt changes at the critical point.
In other words, the order parameter Q, which could in-
troduce irregularities at P = Pc, has been effectively re-
moved from the integrals according to eq. (8).

Eq. (10) reveals an analytical condition for the posi-
tion of the critical point, namely

I1(Pc) = 2πT, (13)

since at P = Pc it holds that Q = 0 and the RHS of (10)
is expected to vanish.

It is worth mentioning that, even though I2(P ) can
change sign, I2(Pc) is positive. Furthermore, the first
derivative of I1(P ) is nonzero and negative [4], so that
an expansion around Pc readily yields

Q2 =
3T 2

I2(Pc)

∣∣∣∣∂I1(P )

∂P

∣∣∣∣
P=Pc

(Pc − P ) , (14)

and the exponent β = 1/2 is found. We have checked
this result numerically, obtaining remarkable agreement,
as shown in FIG. 2.

0

0.04

0.08

-2

-1.5

-3 -2 -1

0

0.06

0.12

-2

-1.5

-1

-3 -2 -1

0

0.08

0.16

0.985 0.99 0.995 1

-1.5

-1

-3 -2 -1

Q

Data
Fit

(a)

h0 = 0.225, T = 0.9

lo
g
Q

log(Pc − P )

(a)

h0 = 0.225, T = 0.9

Q

Data
Fit

(b)

h0 = 0.275, T = 0.8

lo
g
Q

log(Pc − P )

(b)

h0 = 0.275, T = 0.8
Q

P/Pc

Data
Fit

(c)

h0 = 0.325, T = 0.7

lo
g
Q

log(Pc − P )

(c)

h0 = 0.325, T = 0.7

FIG. 2: Order parameter as a function of the period (nor-
malized to Pc) for hb = 0. The data has been fitted to the
form a(Pc − P )β in order to extract Pc. The insets show
the linear behavior of logQ vs. log(Pc − P ) from which the
critical exponents β have been obtained. The results are
(a) β = 0.5006 ± 0.0012, (b) β = 0.5012 ± 0.0013, and (c)
β = 0.5042 ± 0.0024.

The analogy between the DPT and the TPT can be
extended further by considering a bias field hb accompa-
nying the oscillating part, i.e. letting h(t) = h0 sinωt+hb
[4]. In this case, an expansion to third order in Q and
first order in hb leads to an equation of state relating hb
and Q in the vicinity of the critical point, namely

hb =

[
2πT − I1(P )

I1(P )

]
Q+

[
I2(P )

3T 2I1(P )

]
Q3. (15)

At P = Pc, using the critical point condition given by
eq. (13) yields

Q = T

[
6π

I2(Pc)

]1/3
h
1/3
b . (16)

Thus, a critical exponent δ = 3 is found, such that

Q ∼ |hb|1/δ at P = Pc and hb → 0. We have checked
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this result numerically for the sets of values considered
in FIG. 2 after extracting Pc, obtaining very good agree-
ment (see FIG. 3). From this result, it can be interpreted
that Q and hb are conjugate variables in the same way
m and h are conjugated in equilibrium.

0

0.07

0.14

-2

-1.5

-1

-7 -6 -5 -4 -3

0

0.07

0.14

-2

-1.5

-1

-7 -6 -5 -4 -3

0

0.08

0.16

0 0.2 0.4 0.6 0.8 1

-2

-1.5

-1

-7 -6 -5 -4 -3

Q

Data
Fit

(a)

h0 = 0.225, T = 0.9
lo
g
Q

log hb

(a)

h0 = 0.225, T = 0.9

Q

Data
Fit

(b)

h0 = 0.275, T = 0.8

lo
g
Q

log hb

(b)

h0 = 0.275, T = 0.8

Q

hb
(
×10−3

)

Data
Fit

(c)

h0 = 0.325, T = 0.7

lo
g
Q

log hb

(c)

h0 = 0.325, T = 0.7

FIG. 3: Order parameter as a function of the bias field hb.

The data has been fitted to the form ah
1/δ
b . The insets show

the linear behavior of logQ vs. log hb from which the critical
exponents δ have been obtained. The results are (a) δ =
2.989±0.004, (b) δ = 2.967±0.008, and (c) δ = 2.891±0.032.

Furthermore, after introducing the bias field hb one
can define a dynamic susceptibility as χQ = ∂Q/∂hb.
Differentiating eq. (15) with respect to Q, setting Q = 0
as corresponds to P > Pc, and expanding the remaining
term around Pc yields

χQ(P >∼ Pc) =
1

(P − Pc)
2πT

|∂P I1(P )|P=Pc

. (17)

Similarly, using eq. (14) for P < Pc gives

χQ(P <∼ Pc) =
1

2

1

(Pc − P )

2πT

|∂P I1(P )|P=Pc

. (18)

Thus, we find that χQ should diverge at the transition
point just like the thermodynamic susceptibility ∂m/∂h
diverges in the TPT, i.e. with a power law of the form
|P − Pc|γ at both sides of Pc with γ = −1. Furthermore,
the slopes, r, of the lines resulting from plotting χ−1Q (P )

should satisfy |r(P <∼ Pc)/r(P >∼ Pc)| = 2.
Remarkably, it is only necessary to assume h(t+P/2) =

−h(t) to obtain eq. (15). Thus, since all critical expo-
nents follow from this expression, we may conclude that
the critical behavior we have found is not unique to a har-
monically oscillating field, but common to the whole set

of fields satisfying this property. It is worth noting that
this analogy with the TPT actually breaks down in sys-
tems with surfaces, but holds very well in bulk systems
such as the one considered in this work [5].

VI. PHASE DIAGRAMS

One can obtain the shape of the phase boundaries in
the ω−T and h0−T planes by analyzing the evolution
of the order parameter Q. It is found that for fixed h0
the transition is discontinuous at low temperatures and
becomes continuous at higher temperatures. Thus, the
phase diagram in the ω−T plane (corresponding to slices
of constant h0) exhibits a tricritical point (TCP) for each
h0. Similarly, the boundary on the h0−T plane is also
comprised by a region of continuous transitions and an-
other of discontinuous ones (for higher and lower tem-
peratures respectively) joined together by a TCP. The
global aspect of the phase diagram would thus be a 3-
dimensional space (h0−ω−T ) separated by a surface of
phase transitions, which in turn is split by a line of tri-
critical points. Even though it was initially believed that
the discontinuous transition could be an artifact of the
mean field approach itself, Monte Carlo studies of the
dynamic Ising model have shown that Q still exhibits a
discontinuous jump at low temperatures [3].
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FIG. 4: Phase diagram in the ω−T plane for two fixed values
of h0, with approximate positions of the TCPs on the curves.
The inset shows the shape of the boundary on a linear ω scale.

One can interpret that each value of h0 has an associ-
ated value of the energy change due to the inversion of
one spin simply given by ±µh0. Thus, the spins will tend
to follow the field more easily when h0 is higher, since the
corresponding energy minimization is more significant. It
can then be expected that given a certain temperature,
a higher value of h0 will in turn exhibit a higher value
for the threshold frequency or critical frequency ωc that
drives the system into the dynamic ferromagnetic phase.
This behavior can be seen qualitatively in FIG. 4.
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FIG. 5: Phase diagram in the h0 − T plane for three fixed
values of ω, with approximate positions of the TCPs on the
boundary curves. As ω decreases, the phase boundary be-
comes concave towards the origin and the diagram assumes
the aspect known from the equilibrium transition.

The same argument allows to interpret the phase dia-
gram in the h0−T plane, shown in FIG. 5. It is inter-
esting to notice how the phase boundary becomes convex
towards the origin when ω decreases. This matches the
result that one expects in the quasistatic limit, namely
the equilibrium phase diagram where the transition takes
place at h = 0 below the critical temperature Tc = 1.

The diagrams in the previous figures have been ob-
tained using the numerical program described above.
The discontinuous transition is easily found since Q just
exhibits a relatively large jump. The critical points, on
the other hand, have been computed with the transition
condition (13). Furthermore, they have also been found
through the position of the divergence of χQ, yielding the
same results within error limits.

VII. CONCLUSIONS

In summary, we have shown how hysteretic behavior
can be understood from a point of view of competing

timescales in the dynamic mean-field Ising model. We
have provided an overview of the dynamic transition that
takes place when the time period of the oscillating field
becomes much less than the typical spin relaxation time.
Furthermore, we have analytically derived universal ex-
ponents relating the order parameter of the DPT to the
relevant dynamic parameters of the system, and the pre-
dictions have been numerically verified.

The results for the mean-field critical exponents match
those of the thermodynamic phase transition. However,
this result is not restricted to a mean-field analysis. In
Ref. [6] it was established that the DPT and the Ising
model belong to the same universality class. Accordingly,
in Ref. [7], critical exponents equal to those of the 2D
Ising model were found by means of Monte Carlo simula-
tions. Furthermore, Ref. [8] gathered evidence that the
DPT exhibits universality with respect to the stochastic
dynamics, which is remarkable since the dependency on
the specific dynamics is still an open question in non-
equilibrium systems. Additionally, experimental results
for real systems exhibiting dynamic hysteresis are read-
ily available. For instance, Ref. [9] demonstrates consis-
tency with a mean-field Ising model.

Future extensions of this work could include the in-
vestigation of the tricritical exponents (in particular,
β = 1/4 would be expected according to the analogy with
mean-field equilibrium system). Furthermore, phase dia-
grams such as the ones above could be obtained through
Monte Carlo simulations of the Ising system in order to
compare them with the mean-field results. Finally, meth-
ods similar to those exposed in Ref. [9] could make it
possible to obtain experimental validation of the results
presented in this work.
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