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Abstract: In this paper, two mechanisms for vacuum decay in field theory are compared. First,
using the Coleman-de Lucia method, the transition probability between two non-degenerate vacua
is computed. Then this calculation is repeated according to the newly proposed flyover method.
For this purpose, a numerical simulation is used which solves Einstein’s equation for a spherically
symmetric metric and with a scalar field as a source. The obtained result shows the flyover decay
is dominant for a certain parametric range and it has a larger probability of upward transitions
relative to CdL.

I. INTRODUCTION

Consider a field theory with a potential with two non-
degenerate minima (see Fig. 1). Classically, both of them
are stable as long as they are not overly perturbed. How-
ever, quantum effects allow for tunneling between them,
making the one with the highest energy unstable and al-
lowing for the process known as vacuum decay. Actually,
in the presence of gravity, where energy is not conserved,
both vacua are unstable and both downward and upward
transitions are allowed.

CdL

Flyover

`− `+

FIG. 1: Potential with two minima corresponding to (35). All
values are in natural units of G = c = ~ = 1. The CdL and
flyover mechanisms are indicated schematically for transitions
between the two vacua (with curvature length-scales `− and
`+).

The standard method for calculating vacuum decay
probabilities uses the WKB approximation, which is gen-
eralized from the usual theory of a particle tunneling
through a barrier in one dimension to the tunneling of
a quantum field. This is what Coleman did in [1, 2] de-
veloping a semiclassical theory of vacuum decay in the
absence of gravity. Coleman’s methods were extended in
[3] to account for a non-flat initial or final vacuum. This
extension forms the basis of our current understanding

of these processes. An interesting fact about the result
noticed by Lee and Weinberg [4] is that the probabilities
of upward and downward transitions are related through
the entropy of the respective de Sitter space-times. This
relation is sometimes referred to as detailed balance con-
dition and fits well with the idea of quantum de Sitter
space being a thermal state.

Recently, there have been indications of another mech-
anism of vacuum decay [5] giving different results than
the CdL approach. This new method appears to be dom-
inant for some range of parameters of the field theory
potential and it seems to put into question the validity
of detailed balance. It is based on considering an ini-
tial quantum fluctuation of the field that subsequently
evolves classically over the barrier and onto the true vac-
uum.

In this work, both methods are studied and compared
to more accurately establish which one dominates vac-
uum decay for a given potential and to determine with
more precision whether the suspected violation of de-
tailed balance holds true.

All formulas and numerical values are expressed in nat-
ural units of G = c = ~ = 1.

II. COLEMAN-DE LUCCIA VACUUM DECAY

In this section, the Coleman-de Luccia formalism is
presented and an expression for the detailed balance con-
dition is obtained. The first step is to consider a one-
dimensional particle in a metastable minimum that tun-
nels through the barrier to reach a lower energy state.
We will take the barrier to be given by the potential
V (x) being [σ+, σ−] the classically forbidden region at
zero energy. Then, the probability of the particle passing
through is given by

P = Ae−B , (1)

where

B = 2

∫ σ−

σ+

√
2mV (x)dx, (2)
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and the prefactor A can be determined from the poten-
tial. Here, we will ignore it as we are only interested in
the leading order in the WKB approximation.

On the other hand, consider a classical particle moving
under the same potential. Its Lagrangian will be

L =
1

2
mẋ2 − V (x). (3)

Taking time to be imaginary t = iτ , the kinetic term
changes sign and the Lagrangian becomes

LE =
1

2
mẋ2 + V (x). (4)

An overall sign has been dropped to make it positive.
This is the same as if the particle evolved in real time
and the potential changed sign. Now, the allowed region
where the particle can move is exactly that which was
classically forbidden in the quantum system. Moreover,
we can relate it to the transition probability of tunneling
through the barrier. For this reason, we calculate the
action associated with this particle moving from one end
of the classically forbidden region to the other and back.
This is called a bounce and we refer to this action in
imaginary time as the Euclidean action.

SE =

∫ ∞
−∞

1

2
mẋ2 + V (x)dτ

=

∫ ∞
−∞

2V (x)dτ

= 2

∫ σ−

σ+

√
2mV (x)dx = B (5)

where we have used that the energy is zero and the equa-
tions of motion obtained from (4). Hence, we can find
the probability of tunneling by calculating the Euclidean
action of the bounce. Generalizing this result to any type
of quantum tunneling is the standard tool for calculat-
ing the probability of a vacuum decay in the presence of
gravity.

In the case we are interested in, the potential corre-
sponds to a given self-interacting scalar field which we
will suppose is the only relevant matter component of
our universe. The value of its potential at the minimum
will correspond to a positive vacuum energy density and
thus we are initially in a de Sitter space-time. Tunneling
to another minimum will imply that the vacuum energy
will change and so will the Hubble scale `. Therefore
we have to consider the metric on a de Sitter space-time
which is given by

ds2 = −dt2 + `2 cosh2 t

`

(
dχ2 + sin2 χdS2

)
, (6)

where dSn is the volume element of the unit n-sphere.
By Euclideanizing with t = iτ̃ , we get

ds2 = dτ̃2 + `2 cos2 τ̃

`
dS3. (7)

Finally, taking τ − π
2 = τ̃

` we obtain

ds2 = `2
(
dτ2 + sin2 τdS3

)
= `2dS4, (8)

that corresponds with the metric of a 4-sphere. In an
exact calculation, we should solve Einstein’s equations in
this Euclideanized space-time under the condition that
both the field and the metric are in the initial vacuum at
infinity (in our case the bounce is compact meaning the
field never reaches the minima and we should start from
slightly different positions as indicated in Fig 1). The ob-
tained solution would be our bounce. Let us assume the
bounce has O(4) symmetry and the transition between
vacua happens in a thin wall. This means our bounce is
a spherical bubble of new vacuum surrounded by a thin
wall with surface tension σ separating it from the ini-
tial vacuum in the rest of space. In this approximation,
Einstein’s equations reduce to the conditions [6]

(i) The restrictions of the metrics of both vacuum so-
lutions coincide on the wall.

(ii) The extrinsic curvature of the wall fulfills

K+ab −K−ab = −8π

(
Sab −

1

2
habS

)
, (9)

being K±ab the extrinsic curvatures of the surface
from the interior and exterior respectively, Sab the
stress-energy tensor of the wall and hab the induced
metric.

In our case, the interior and exterior metrics will be
ds2
± = `2±dS4± respectively. We are taking `+ as the

length scale of the vacuum in the lower minimum and
`− as the one in the higher. The separating surface Σ
will be at τ± = τ0

± where τ0
± is the value of τ in the wall

according to the inside and outside metrics respectively.
Then, condition (i) implies that

`+ sin τ0
+ = `− sin τ0

−. (10)

For the second condition we need to calculate the extrin-
sic curvature, so we first need the normal vector to the
surface. This will be

n̂± =
1

`±

∂

∂τ±
. (11)

Then, according to its definition

K±ab = ∇an±b =
cot τ0

±
`±

hab, (12)

where we used Γτab = − cot τ
`2 hab and the normal vector be-

ing constant. Using the fact that Sab = −σhab, condition
(ii) reduces to

cot τ+
`+

hab −
cot τ−
`−

hab = −8π(−σhab +
3

2
σhab). (13)
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FIG. 2: Representation of the geometry of the Euclidean
bounce interpolating between the two vacua. Both spheres
must be understood to be four-dimensional and are joined at
the locus of the domain wall’s worldvolume.

That is

cot τ0
−

`−
−

cot τ0
+

`+
= 4πσ. (14)

Equations (10) and (14) completely determine τ0
+ and

τ0
−, thus they fix the metric on the whole space. This

bounce is represented in Fig. 2. We can observe both
equations stay the same when we exchange the two min-
ima, meaning there is only one way to patch the two
vacua and so, the bounce for upward or downward tran-
sitions is exactly the same. This is a general fact and
would hold even without the thin-wall approximation.

This allows us to calculate the Euclidean action. How-
ever, we still need to subtract the contribution corre-
sponding to the background. Then we would have

B = Sbounce − Sbackground. (15)

Using the Hilbert-Einstein action, these can be ex-
pressed in terms of easily computable integrals. How-
ever, we will not do that as we are only interested in the
detailed balance condition which only requires the Eu-
clidean action of the background. For this purpose we
calculate

∆S = ln
P↑
P↓

= B↓ −B↑ = Sbg↑ − Sbg↓, (16)

as the identical contributions of the upward and down-
ward bounces cancel out. In terms of the Hubble length
scales, the Euclidean action of the background becomes

Sbg =

∫ (
−R
16π

+ LE
)
√
gd4x = − 3

8π

∫
1

`2
√
gd4x

= −3π`2

4

∫ π

0

sin3 τdτ = −π`2, (17)

Where R = 12/`2 is the Ricci scalar in the convention
where the curvature of the sphere is positive and LE =
1
2 (∂φ)

2
+ V (φ) in analogy to equation (4). This gives

∆S = π
(
`2+ − `2−

)
. (18)

As indicated before, this corresponds to the entropy dif-
ference between the two spaces, as the quantity π`2 is
identified with the entropy of a de Sitter space-time.
Thus, we have established the detailed balance condition.

III. FLYOVER VACUUM DECAY

In this section, we consider a different channel, the
flyover vacuum decay. The basic idea is that the scalar
field momentum develops an exceptionally large quantum
fluctuation, that then evolves classically over the barrier
and on to the true vacuum. Therefore, the probability
of decay will be the probability of observing the minimal
fluctuation whose length scale and magnitude are large
enough to evolve over the barrier and not recollapse. The
first step is to calculate the probability for a given veloc-
ity fluctuation of magnitude φ̇0 and length scale ¯̀. The
form of the perturbation will be given by

φ̇(r, t = 0) = φ̇0 exp

(
− r2

2¯̀2

)
(19)

A calculation of this probability requires considering a
real scalar quantum field in a background space that is
not Minkowsky but de Sitter. This is beyond the scope
of this work and we will simply use the result detailed in
[5] where they find that

P ∝ e
− φ̇2

0
2〈φ̇2〉¯̀ , (20)

with the variance given by〈
φ̇2
〉

¯̀
=
H4η2

4π2

∫ ∞
0

k2

∣∣∣∣∣ d

dη

(−η)
3
2 eif(−kη)

(k2η2 + ν2)
1
4

∣∣∣∣∣
2

e−H
2η2k2 ¯̀2

dk,

(21)

being f(x) =
√
x2 + ν2 − ν ln

(
ν+
√
x2+ν2

x

)
and ν =

m/H.The variable η is the conformal time coordinate in
the flat chart which will cancel out in the final result and
thus can be set to any value when evaluating this integral
numerically. The expansion rate H and the mass m can
be calculated from the potential by

`−1 = H =

√
8πV (φmin)

3
, m =

√
V ′′(φmin). (22)

As we are only interested in the leading exponential term,
we just need to consider the values which give the max-
imum probability, as the rest will correspond to higher
order corrections. To find these maximum values we will
need to maximize the exponent of (20) so we will use a
simulation of Einstein’s equations coupled to a massive
scalar field to determine which values produce a decay.
The stress-energy tensor we must use is given by

Tµν = −2
∂L
∂gµν

+ gµνL

= ∂µφ∂νφ−
1

2
gµν (∂φ)

2 − gµνV (φ), (23)
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where we have used the Lagrangian L = − 1
2 (∂φ)

2−V (φ).
We will assume spherical symmetry for our space-time,
meaning the metric will be written as

ds2 = −dt2 +B2dr2 +R2dS2, (24)

where B and R are arbitrary functions of r and t. This is
the main difference with the CdL method, where we as-
sumed a more restrictive Euclidean O(4) symmetry. The
evolution for the coupled system of space-time and scalar
field gives rise to the following equations, which can be
easily obtained by calculating the Einstein tensor from
(24) and equating it to (23) (we have used a symbolic
calculation software [9]):

K̇ = −
(
K − 2U

R

)2

− 2
U2

R2
− 8π

(
φ̇2 − V (φ)

)
, (25)

U̇ = −1− Γ2 + U2

2R
− 4πR

(
φ̇2

2
+

φ′2

2B2
− V (φ)

)
, (26)

Γ̇ = −4πR

B
φ̇φ′, (27)

Ḃ = B

(
K − 2U

R

)
, (28)

φ̈ = −Kφ̇+
1

BR2

(
R2

B
φ′
)′
− ∂φV. (29)

We have defined, following [7],

U = Ṙ, Γ =
R′

B
, K =

Ḃ

B
+

2Ṙ

R
. (30)

The initial conditions for the field momentum are de-
tailed in (19) and we will keep the field fixed at the ini-
tial minimum. As for the variables related to the metric
tensor, they can be obtained taking into account that at
t = 0, B = 1 and R = r and using the Misner-Sharp
mass defined as [7]

M =
R

2

(
1− Γ2 + U2

)
. (31)

The choice of initial conditions for B and R implies we
are using a flat slicing for the background de Sitter space-
time. From both the 00 and the 01 components of the
Einstein tensor, M can be seen to fulfill at time t = 0

M ′(r, t = 0) = 4πT00r
2. (32)

Finally, integrating (32), gives M(r) and then, from (31)
and G01, we can find

U(r, t = 0) =

√
2M

r
, (33)

K(r, t = 0) = 2πT00r
3
2

√
2

M
+ 3r−

3
2

√
M

2
. (34)

To solve this system of coupled equations we use a
Fortran program that implements a simple finite dif-
ference algorithm [8]. Spatial derivatives are calcu-
lated using a three-point formula and the system is
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FIG. 3: Expansion of a bubble created by a perturbation with
¯̀= 520.5 and φ̇0 = −3.4 ·10−4 using the potential (35) which
gives `+ ≈ 498 and `− ≈ 489. All quantities are in Planck
units.

evolved in time using a fourth order Runge-Kutta
scheme. At each time step, the mesh is refined to
compensate the exponentially increasing separation be-
tween points due to the background de Sitter ex-
pansion. A code for the simulation is available at
https://github.com/guim278/Vacuum-decay. We will
use a potential given by

V (φ) = m4
0

((
φ

m0

)2

−
(
φ

m0

)3

+
1

5

(
φ

m0

)4
)

+ 50m4
0,

(35)
with m0 = 10−2 in Planck units. This is represented in
Fig. 1.

Starting from the lower minimum at φ ≈ 0.0288, we
can see the results of various perturbations in figures
3 and 4. In the first case, an expanding bubble with
φ = 0 forms with a clearly visible separation wall. On
the other hand, the second case gives place to a bubble
that recollapses after some time, not leading to a transi-
tion. The separation wall is also distinguishable and we
can see there is a strong perturbation in the field when
the bubble recollapses. This actually poses a problem for
the convergence of the simulation which diverges at the
origin shortly after the recollapse. For downward tran-
sitions, the result is qualitatively the same even though
the disturbances caused by a recollapse are much less
important.

IV. DETAILED BALANCE VIOLATION

In this final section, we will look at whether the quan-
tity in equation (18) is the same when calculating the
decay probability using the flyover method or whether
the detailed balance condition is violated, as suggested
in [5].

We fix the value of ¯̀and, using a bisection method, we
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FIG. 4: Recollapse of a bubble created by a perturbation with
¯̀= 520.5 and φ̇0 = −3.2 ·10−4 using the potential (35) which
gives `+ ≈ 498 and `− ≈ 489.

determine the value of φ̇0 at which the shift between the
bubble collapsing or expanding indefinitely takes place.
Repeating this process over different values of ¯̀we find a
critical curve where the velocity fluctuation is the small-
est possible such that it causes a transition. Then, we nu-
merically evaluate expression (20) over this critical curve
and find at which ¯̀ does this probability become maxi-
mal. For the upward transition the result is `max ≈ 285.8
and B↑ ≈ 10808. Moreover, for the downward transition
we obtain `max ≈ 102.5 and B↓ ≈ 400, giving

ln
P↓
P↑

= ∆B = B↑ −B↓ ≈ 1.041 · 104. (36)

On the other hand, in a CdL vacuum decay, we would
have

∆S =
3

8

(
1

V (φ+)
− 1

V (φ−)

)
≈ 2.856 · 104, (37)

meaning e∆B � e∆S and thus the detailed balance condi-
tion is strongly violated. Furthermore, a numerical calcu-
lation ignoring the gravitational effects of the transition
using the CdL method gives BCdL↓ ≈ 408. Thus, while

for downward transitions both methods give comparable
results, upward transitions are much more likely in the
flyover method. We must note this fact depends on the
potential we choose and we expect CdL to dominate for
other potentials. In fact, this potential was chosen with
this in mind based on estimates in [5].

V. CONCLUSIONS

To conclude, we have presented and compared two dif-
ferent mechanisms for vacuum decay in quantum field
theory in the presence of gravity. Starting from a mas-
sive scalar field with a potential in the form of figure
1, we have considered transitions between the two non-
degenerate minima.

We first use the Coleman-de Luccia method, which is
the most widely known and the standard approach to
vacuum decay. It assumes O(4) symmetry for the semi-
classical solution interpolating between the two minima.
This channel satisfies the detailed balance condition for
transitions between the two de Sitter vacua.

The second method is the recently proposed flyover
method, which assumes an initial quantum fluctuation
of the scalar field classically evolving over the barrier. In
this case, we have used a numerical simulation involv-
ing Einstein’s equations with a scalar field as a source
and assuming an O(3) symmetric space-time. For this
purpose, we have introduced the Misner-Sharp formal-
ism, commonly used in numerical simulations involving
spherical symmetry.

Using these results we have confirmed that, for the
potential we have studied, the latter dominates upward
transitions and it does not fulfill the detailed balance
condition.
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