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Abstract: Artificial Spin Ice systems have been used to investigate exotic behaviours of frustrated
systems. In this project, I study geometric frustration through computer simulations of Artificial
Colloidal Ice which is made of an ensemble of magnetized colloids confined in bistable traps and
arranged to form a square lattice. By implementing an offset height between perpendicular traps,
it is possible to recover a degenerate ground state in the system.

I. INTRODUCTION

Geometric frustration in particle systems is the inabil-
ity to minimize all local energies simultaneously due to
certain topological constraints on the system [1]. This
behaviour is usually originated from atomic interactions
which compete on a regular structure. Geometrically
frustrated systems are often found to have degenerate
low energy states at very low temperatures, in addition
to having a non-zero entropy, also called residual entropy.
The residual entropy found in frustrated systems was first
investigated on water ice by Linus Pauling in 1935 [2].
Water ice is made up of oxygen atoms with two hydrogen
atoms in covalent bonds. At low temperatures, hydrogen
atoms can move between the fixed oxygen atoms due to
atomic interactions and form covalent bonds with one of
the four first neighbouring oxygen atoms. But water ice
has the topological restriction that each oxygen requires
two hydrogen atoms linked via covalent bonds, then the
hydrogen atoms are rearranged to comply with the con-
straint. The different distributions of hydrogen atoms
in ice at low temperatures produce the residual entropy
along with a degenerate ground state. This topological
constraint found in water ice is called ice rule, and it is an
important feature highly used in the creation of ice-like
artificial systems. [3]
Currently, several natural materials show geometric frus-
tration, such as spin glasses [4], or spin ice [5]. These ma-
terials are magnetic systems that behave similarly to ice
at low temperatures, presenting a residual entropy. Spin
ice also fulfills the same topological constraint called ice
rule. [5]
The recent discovery of numerous spin ice materials such
as rare earth pyrochlore oxides Dy2Ti2O7 and Ho2Ti2O7

[5], has motivated the creation of artificial systems, such
as Artificial Spin Ice (ASI) [6] and Artificial Colloidal Ice
(ACI) [7], with the objective of replicating the behaviors
found in these materials and studying their emergent ex-
otic properties.
These systems are created by making a two-dimensional
projection of real spin ice materials, so that the particles
are fixed on a two-dimensional (2D) lattice. To observe
geometric frustration the colloidal systems use magne-
tized particles, restraining its movement through traps
that act as topological constraints. The traps are ar-
ranged to form different lattices depending on the design

of the system, for example there is the triangular lattice,
square lattice and hexagonal lattice. The main advantage
of creating Artificial Colloidal Ice systems is the ability
to observe the individual particles via optical microscopy,
and control them via external fields in a much higher tem-
perature range than the real materials while still showing
frustrated behaviours. [8]
Artificial Spin Ice systems are created using magnetic
dipoles as particles and magnetic nano-islands as traps.
The direction in which the spin points would be analo-
gous to the position a hydrogen atom is between two oxy-
gen atoms in water ice. Differently, Artificial Colloidal
Ice systems are created using bistable traps that contain
magnetized colloids. Due to magnetic dipolar interac-
tions and thermal effects, colloids can move within the
trap jumping from one stable point to the other. The
position of the colloid in the trap would be analogous
to the position a hydrogen atom is between two oxygen
atoms on water ice. [8]
Colloidal systems have an experimental advantage over
spin systems due to less complexity in observing the ex-
periment, since the ASI has a nanometric scale while the
colloidal system is characterized by a micrometric scale.
The colloids are placed in lithographic traps within a fluid
of lower density using optical tweezers, once each colloid
is in a trap, a magnetic field is applied perpendicular to
the plane of the traps. The field induces dipole moments
within the particles, and as a result there is an isotropic
repulsive interaction between particles. This interacting
force can be modulated by tuning the amplitude of the
applied magnetic field. [9]

II. METHODOLOGY

In this project, simulations of 3D Brownian dynam-
ics of magnetized colloids trapped in bistable traps have
been performed using the open-source code of classi-
cal molecular dynamics LAMMPS [10]. The traps and
colloids are submerged in a low viscosity fluid and are
arranged forming a three-dimensional square lattice as
shown in Figure 1 a) and b), where the traps parallel to
the y axis are at an offset height relative to the traps
parallel to the x axis.
Each of the colloids movement has been calculated using
the equations of motion given by Newton’s second law
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FIG. 1: a) Three-dimensional representation of the system used in the simulations. The traps are separated by a height h. b) Graph
showing a zenith view of the system for a 3 µm colloid square lattice. The colors of the trap indicate the difference in height, in addition

to showing the direction of the colloid relative to the center of the trap. Colloids are displayed with black outlines. c) Qualitative
description of each vertex type in a square lattice. d) Graphical representation of the trap potential relative to the x and y axis.

miẍi = ~Fi. There is a drag force produced by the viscos-
ity of the fluid F γi = −γẋi, which is assumed to be much
larger than the inertial term miẍi. Then, by doing the
sum of forces, the overdamped equation of motion for a
colloid i is:

η
dri
dt

= F cci + FTi + FGi + F thi

where the damping constant is η = 1.0. The colloid-
colloid interaction F cci is a dipole interaction. The force
applied to one colloid is the sum of the interaction force
of this particle with the rest. This two-body interaction
is given by the force between two magnetic dipoles sepa-
rated by a distance r:

F (~r, ~m1, ~m2) =
3µ0

4πr5
[( ~m1 · ~r) ~m2 + ( ~m2 · ~r) ~m1+

+ ( ~m1 · ~m2)~r − 5( ~m1 · ~r)( ~m2 · ~r)
r2

~r]

(1)

In the previous equation, ~r represents the distance be-
tween two colloids, ~mi is the magnetic moment of a

colloid: ~m = 1
µ0
V χ0

~Bext, where ~Bext is the applied

magnetic field which is perpendicular to the XY plane,
V = 4π

3 r
3 is the colloid volume with r its radius, χ0

is the magnetic susceptibility and µ0 is the permeabil-
ity of vacuum. All colloids must have the same mag-
netic moment since the external magnetic field is con-
stant throughout the whole volume. If all colloids were
in the same plane, equation (1) would be shortened to:
F (~r, ~m1, ~m2) = 3µ0

4πr5 [( ~m1 · ~m2)~r].

The force applied by the traps FTi is calculated from the
potential shown in Figure 1 d), defined by:

F = −kr⊥ê⊥ + ê‖

{
k(r‖ − d/2)sgn(r‖) r‖ < d/2

hr‖ r‖ > d/2
(2)

where r‖ is the component parallel to the direction of
the trap with ê‖ its unit vector, r⊥ is the perpendicular
component with ê⊥ its unit vector, k is the trap stiffness,
d is the distance between the two stable points, and
h is the stiffness of the central hill. This represents a
parabolic potential with a barrier between the stability
points, with a maximum height that can be modulated.
The gravitational force FGi limits the colloid movement
on the z axis, and is given by the buoyancy equation:
FGi = V g(ρc − ρf ), where V and ρc are the colloids
volume and density, g is gravity and ρf is the fluid
density.
Thermal forces F thi , are given by a Gaussian
random process based on the Langevin equa-
tion with mean < F thi >= 0, and correlation
< F thi (t)F thj (t′) >= 2kBTηδijδ(t− t′).

The simulations have been performed using two sets of
parameters: one has a colloid radius of 5.15µm, and will
be referred as 10 µm colloids, with a susceptibility χ0 =
0.06 and a trap potential barrier of height U = 60pN/nm.
The lattice constant for these particles is 30 µm and a
trap separation of 10 µm. The second one has a colloid
radius of 1.4 µm, and will be referred as 3 µm colloids,
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FIG. 2: Graphs showing the fraction of vertices in the system as a function of the applied magnetic field a) & b) and offset height c) &
d), for 3 µm particles a) & c) and 10 µm particles b) & d).

with a susceptibility χ0 = 0.4 and a trap potential barrier
of height U = 4 pN/nm. The lattice constant for these
particles is 8.4 µm with a trap gap of 3 µm. The values
of the lattice constant and the separation between traps
are calculated by setting the minimum distance between
2 traps to be 1 micrometer.
The values used for particle density and temperature are:
ρ = 1000 kg/m3 and T = 300 K. Most parameters are
set to mimic the experiments (see [9]).
All simulations were carried out using a 20x20 vertex
square lattice, which translates into a sum of 800 traps
and 800 colloids where half of the particles can move
along the x axis and the other half along the y axis.
To eliminate boundary effects, vertices that are at the
system boundaries have not been taken into account in
the calculations. Furthermore, for each simulation the
initial position of each colloid in a trap is one of the
two stable points selected at random. All results are
calculated by a mean of 10 seed iterations.

III. RESULTS

A. Field and height dependence

In Figure 2 a) and b) I show the output of simulations
performed at zero offset height. By increasing the
external magnetic field we increase the interaction force
between particles. Since initially the particles are in

random positions, we can see from Figure 2 b) that the
initial vertex fraction remains unchanged from B = 0mT
to B = 5mT due to the high potential barrier. At higher
magnetic field values, we observe an increase in type
3 vertices while the rest of the vertices decrease until
the system reaches a state where only type 3 vertices
appear. Thus, for strong magnetic fields, the system
tends to stabilize to a ground state.
By having a large potential barrier, thermal effects are
negligible and we do not obtain spontaneous jumps
between stability points by particles, opposite to what
happens with low potential barriers.
In Figure 2 a) we see that when the magnetic field
Bgs = 5 mT , the system has already stabilized the
ground state. Analogously, in Figure 2 b) we find
Bgs = 20mT .

In Figure 2 c) and d) I show the output of simula-
tions performed at different offset heights, and constant
magnetic field Bgs. By increasing the height we are
modifying the interaction force between the colloids. At
small offset heights, the forces are dominated by the
dot product of magnetic moments in equation (1), as
we increase the offset height the magnitude of other
components also increase.
From both graphs we observe that as we increase the
height offset, the fraction of type 3 vertices decreases
while the other vertices increase, especially type 4.
We obtain a balance between type 3 and type 4
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FIG. 3: Both a) & b) graphs show the evolution in time of vertex fractions a) for 3 µm colloids and b) for 10 µm colloids, under a
constant field Bgs and a constant height hdeg . Both c) & d) graphs show a lattice at the degenerate height for 3 µm colloids c) and

10 µm colloids d). Type 4 vertices are displayed by an arrow and types 2 & 5 are displayed by red and blue circles respectively.

vertices at the height at which their lines intersect,
also called degenerate height. This degenerate height
is hdeg = 4.45 ± 0.05 µm for 10 µm colloids and
hdeg = 1.45 ± 0.05 µm for 3 µm colloids.

B. Behaviours at the degenerate height

In Figure 3 a) and c) there is an instability with a big
exchange of vertices each second, given mainly by ther-
mal effects and the interacting forces reacting to these
changes. In Figure 3 b) and d), the thermal force is
not relevant in the system, therefore, the vertex fraction
is constant over time. For values of offset height other
than the degenerate height, we obtain a behavior iden-
tical to Figure 3 b) in which the fraction of each vertex
is stabilized, this happens due to the dependence of the
interacting forces with height.
In Figure 3 d) we see that at the degenerate height for
10 µm colloids, most of the particles are in one of the
stable points of the traps, while at the degenerate height
shown in Figure 3 c), most of the colloids are in a posi-

tion between the stable points due to low barrier height.
Then, degeneracy is only recovered at a degenerate height
when thermal forces are relevant in the system.

C. Correlations

Lastly, we can obtain the system correlations by cal-
culating the radial correlation function:
g(r′ − r) =< Ci(r, t) · Cj(r′, t) >, where Ci is a colloids
position vector relative to the center of its trap, (r′ − r)
is the distance between the centers of each pair of traps.
This correlation function is similar to a two-dimensional
square Ising model, but instead of spin values, correla-
tions are calculated through position vectors. The main
difference with the calculations is that it involves a dot
product between two three-dimensional vectors. Since
colloids mainly move along one axis and half of the col-
loids motion axis is perpendicular to the other half, cor-
relations between them are almost null when they are
found at one of the stable points of their trap.
Since colloids are arranged in a square lattice, the dis-
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FIG. 4: Double logarithmic graph of the correlation function for 3 µm colloids at a degenerate height h = 1.45 µm a) and at a
non-degenerate height h = 0 µm b). Data points represent a mean of the correlations between discrete radial positions.

tance between colloids is discrete, therefore I make cal-
culations of g(r) by doing a mean of correlations for small
increments of r.
In Figure 4 a) we can see an almost constant correlation
decay until the distance reaches a half of the system size,
where the correlation decays rapidly with distance. In
Figure 4 b), the decay is not well defined since the sys-
tem is at the ground state and most vertices are type 3.
Since the ground state is a periodic distribution, almost
every colloid sees the rest of the colloids at the same po-
sition, resulting in non constant correlation distribution.

IV. DISCUSSION AND FUTURE WORK

Using the results obtained, although the particles
movement is restricted by traps, we can approximate a
free movement throughout the entire system of all ver-
tex types at the degenerate height. Then, these vertices
could be studied as differentiated particles with an in-
teraction energy between them, in addition to having a

probability to exchange energy and having a continuous
movement in the lattice. Observing the graphs of Figure
3 c), type 3 vertices could behave as points of stability
that determine a minimum of interacting forces between
vertices. This degenerate state could also be compared
with the one obtained at a null offset height, and the
differences between the systems properties could be re-
searched.

V. CONCLUSIONS

In summary, we have studied the behavior of an arti-
ficial colloidal ice system trapped by bistable traps in a
square lattice with an offset height. Initially, we found a
degenerate state for weak magnetic fields until we found
stability for strong fields. Then, modifying the height
we could recover a degenerate state for a small range of
heights, while at other heights there is equilibrium. Fi-
nally, we have verified the relevance of the thermal effects
in a system to recover frustration at degenerate heights.
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