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Abstract 

Background  

Genome-wide association studies (GWAS) identify associations of individual SNPs 

with cancer risk but usually only explain a fraction of the inherited variability. 

Pathway analysis of genetic variants is a powerful tool to identify networks of 

susceptibility genes.  

Methods  

We conducted a large agnostic pathway-based meta-analysis of GWAS data using 

the summary-based adaptive rank truncated product (sARTP) method to identify gene 

sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 

9,040 cases and 12,496 controls. We performed expression quantitative trait loci 

(eQTL) analysis and functional annotation of the top SNPs in genes contributing to the 

top associated pathways and gene sets. All statistical tests were two-sided.  

Results  

We identified 14 pathways and gene sets associated with PDAC at FDR < 0.05.  

After Bonferroni correction (P-value ≤ 1.3x10-5), the strongest associations were 

detected in five pathways and gene sets, including maturity onset diabetes of the 

young (MODY), regulation of beta cell development, role of epidermal growth factor 

(EGF) receptor transactivation by G-protein-coupled receptors in cardiac hypertrophy 

pathways, and the Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM 

Pearson correlation coefficient (PCC) network gene sets. We identified and validated 

rs876493 and three correlating SNPs (PGAP3) and rs3124737 (CASP7) from the 

Pujana ATM PCC gene set as eQTLs in two normal derived pancreas tissue 

datasets.  
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Conclusion 

Our agnostic pathway and gene set analysis integrated with functional annotation 

and eQTL analysis provides insight into genes and pathways that may be biologically 

relevant for risk of PDAC, including those not previously identified.  
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Introduction 

Although pancreatic ductal adenocarcinoma (PDAC) only accounts for approximately 

3% of all cancer, it’s the third leading cause of cancer-related death in the USA, and 

its incidence is increasing.1 PDAC is among the most fatal cancers worldwide for 

which there are few established preventable risk factors beyond cigarette smoking, 

diabetes, being overweight and obesity.2 There are no effective screening methods 

for the detection of PDAC; therefore, most people are diagnosed with advanced 

disease, which contributes to the dismal five-year survival of 8.2%.1 Understanding 

the biology underlying the development of PDAC could be useful in developing new 

treatments or to identify those at high risk for surveillance or targeted for an 

intervention.   

Over the past decade, genome-wide associations studies (GWAS) have 

identified 20 genomic loci associated with PDAC susceptibility in European 

populations.3–8 Although GWAS have provided valuable insights into the genetic 

basis of PDAC, the susceptibility loci identified do not fully account for the genetic 

heritability of this disease because of the relative small effect sizes associated with 

individual Single Nucleotide Polymorphisms (SNPs) and the multiple testing 

correction required for GWAS. Thus, it is likely that many important susceptibility 

genes may remain unidentified. Pathway-based analyses applied to GWAS have the 

potential to detect associations that may be overlooked by standard single-marker 

approaches and can be a complementary method to identify groups of genes or 

biological pathways enriched with disease-associated SNPs.9,10 Pathway analysis, 

which jointly considers multiple variants in interacting genes and multiple genes in a 

pathway, may also allow more meaningful biologic interpretation.  
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We previously conducted a pathway analysis of genes in 23 candidate 

biological pathways hypothesized a priori to be associated with PDAC.10 PDAC-

associated pathways identified included pancreatic development, Helicobacter pylori 

lactor/neolacto, hedgehog, Th1/Th2 immune response and apoptosis. This study 

was limited by the number of participants and pathways/genes examined, suggesting 

a larger study with a more comprehensive approach may detect associations not 

previously considered in PDAC. Consequently, in the present study, we included 

3,795 human canonical pathways and gene sets from the Broad Institute Molecular 

Signatures Database (MSigDB) using an agnostic data driven approach to identify 

genes and pathways associated with PDAC susceptibility within the Pancreatic 

Cancer Cohort Consortium (PanScan I, II, III) and the Pancreatic Cancer Case 

Control Consortium (PanC4) GWAS.  

 

 

Methods 

Study population and data 

Methods for GWAS studies have previously been described.3–6,8 The study sample 

included 9,040 primary pancreatic adenocarcinoma cases (ICD-O-3 code C250-

C259) and 12,496 control participants of European genetic ancestry from summary 

data from previous PanScan and PanC4 GWAS.3–8 All participants gave informed 

consent and all studies were approved by the Institutional Review Board of each 

participating institution and the National Cancer Institute.  

 

Pathway and gene set based analyses using GWAS summary data 
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A total of 3,795 human derived gene sets and canonical pathways from The Broad 

Institute MSigDB v5.0 database 

(http://software.broadinstitute.org/gsea/msigdb/collections.jsp) were used for the 

analysis. Canonical pathways (n=1,369) included BioCarta; Hallmark; Kyoto 

Encyclopedia of Genes and Genomes (KEGG); Pathway Interaction Database 

(National Cancer Institute and Nature Publishing Group); Reactome; Signaling 

Gateway (SIG); Signaling Transduction KE and Sigma Aldrich. Gene sets (n=2,426) 

included studies with expression signatures (or changes in expression levels) 

following genetic and chemical perturbations. Gene sets represented genes induced 

(upregulated) and repressed (downregulated) by the perturbation. The size of gene 

sets and pathways ranged from 2-1668 genes.  SNPs were mapped within a 

genomic region encompassing 20 kb upstream and downstream of each gene. 

We conducted a meta-analysis using summary statistics from the four GWAS 

using an inverse variance fixed effects model (λ=1.07). An initial analysis on all 

SNPs resulted in 112 pathways or genes sets associated with PDAC below the 

Bonferroni statistical significance threshold (P-value=1.3x10-5, 0.05/3,795) (data not 

shown). Most were driven by one or more previously identified GWAS variant, not a 

pathway association. Therefore, to identify pathway or gene set associations that 

were jointly driven by novel SNPs, we excluded previously published GWAS PDAC 

cancer risk signals at 1q32.1 (NR5A2), 2p13.3 (ETAA1), 3q29 (TP63), 5p15.33 

(CLPTM1L-TERT), 7p13 (SUGCT), chr8q24.21 (MYC), 7q32.2 (LINC-PINT), 9q34.2 

(ABO), 13q12.2 (PDX1), 13q22.1 (KLF5/KLF12), 16q23.1 (BCAR1), 17q25.1 

(LINC00673) and 22q12.1 (ZNRF3)3–7 and SNPs with meta-analysis at GWAS 

threshold P-value < 5x10-8  (signal at 7p12 (TNS3)) from our analysis plus 

corresponding genomic regions within +/- 500 kb to eliminate association signals that 

http://software.broadinstitute.org/gsea/msigdb/collections.jsp
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could be caused by linkage disequilibrium (LD)11. In total, 207 genes were excluded 

using these criteria. We excluded SNPs with minor allele frequency (MAF) < 1% and 

applied LD filtering to highly correlated SNP pairs (r2 > 0.81).  

We conducted gene- and pathway meta-analyses using the summary based 

adaptive rank truncated product (sARTP) method, which combines SNP-level 

associations across SNPs in a gene or a pathway.11 The signals from up to two of 

the most associated SNPs in a gene were accumulated. The sARTP method 

adjusted for the size of genes and pathways (i.e., number of SNPs in a gene and 

number of genes in a pathway) through a resampling procedure to control for false 

positives. The P-values of gene- and pathway-level associations were estimated 

from the resampled null distribution generated from one hundred million resampling 

steps. A panel of 503 European subjects (population codes: CEU, TSI, FIN, GBR, 

IBS) in the 1000 Genomes Project (phase 3, v5, 2013/05/024) was used in sARTP to 

estimate the LDs between SNPs. To eliminate the impact of population stratification, 

the genomic control inflation factor was adjusted by using √1.07 to rescale the 

standard error of the estimated log odds ratio at each SNP. We considered a false 

discovery rate (FDR) adjusted pathway-level P-value ≤ 0.05 statistically significant, 

however discuss pathways and gene sets below the Bonferroni adjusted α-level of P-

value=1.3x10-5 (0.05/3,795). All statistical tests are two-sided. 

 

Functional annotation and eQTL analysis 

Experimental data from ENCODE12 custom tracks on the UCSC Genome Browser 

and Roadmap,13 and information from Ensembl,14 RegulomeDB v1.1,15 LDlink16 and 

HaploReg v4.117 were used to evaluate the regulatory relevance of SNP (and SNPs 

in LD) of interest in pancreatic and other tissue types. Expression QTL was 



 
 

 

 
12 

 

performed to evaluate effects on expression and tissue specificity for the most 

statistically significant SNPs using publicly available data from the NIH Genotype-

Tissue Expression (GTEx) v718 in pancreas tissue samples (n = 220). Potential 

eQTLs from this analysis (P < 0.05) were then taken forward for further analysis. 

Expression QTL analysis of selected SNPs (n = 53 SNPs mapped to 69 genes) 

(identified by one or more features including SNP P-value, RegulomeDB score, and 

GTEx eQTL result) were validated using data from histologically normal pancreas 

tissue samples (n= 95) from the Laboratory of Translational Genetics (LTG) as 

previously described.19 P-values for SNP-gene tests were adjusted for multiple 

comparisons using Bonferroni correction (P-value=0.05/69 = 7.25x10-4). 

 

 

Results 

Pathway and gene set-based analyses  

Fourteen pathways and gene sets were associated with PDAC at FDR < 0.05, of 

which two gene sets and three pathways remaining statistically significant after the 

Bonferroni correction (Table 1); including Maturity Onset Diabetes of the Young 

(MODY) (P-value=5.10x10-7), regulation of beta cell development (P-value=1.92x10-

6), Nikolsky breast cancer 17q11-q21 amplicon (P-value=2.00x10-6), role of EGF 

receptor transactivation by GPCRs in cardiac hypertrophy (P-value=3.79x10-6) and 

Pujana ATM PCC network (P-value=1.25x10-5).  

The MODY pathway which contained 1,448 SNPs across 23 genes was the 

most statistically significant pathway. The genes with the strongest association in this 

pathway and the corresponding top SNP(s) were HNF1A (rs1169296, rs2244608), 
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HNF1B (rs12951345, rs7223387), HNF4A (rs1853150), HNF4G (rs1913641, 

rs2943547) and PAX4 (rs118117270, rs62483175) (Figure 1, Supplementary 

Table 1).  Four of 28 genes (2,057 SNPs) contributed to the regulation of beta cell 

development pathway, HNF1A, HNF1B, HNF4A and HNF4G, had the same 

corresponding SNPs selected by sARTP as in the MODY pathway (Figure 1, 

Supplementary Table 1). This suggests an overlap in signals between these two 

pathways, however the PAX4 gene was only present in MODY pathway.  

The role of EGF receptor transactivation by GPCRs in cardiac hypertrophy 

pathway included 2,133 SNPs across 17 genes. EDNRA (rs35232409, rs6537481) 

and AGT (rs1326889) were the top genes with P-values = 5.47x10-6 and 9.21x10-5, 

respectively (Figure 2, Supplementary Table 2).  

The Nikolsky breast cancer 17q11-q21 amplicon gene set included 131 genes 

(3,320 SNPs) and the association was driven by 36 genes (Figure 3, 

Supplementary Table 3). The top five genes were PGAP3, PNMT, TCAP, ERBB2, 

and STARD3 (gene P-values < 3.00x10-5), all corresponding to two SNPs rs876493 

(P-value=1.27x10-6) and rs3764351 (P-value=1.27x10-5). Additional genes 

contributing to this pathway included HNF1B (rs12951345, rs7223387), IGFBP4 

(rs7225411, rs76592685), TNS4 (rs7225411, rs113557550), MED24/THRA 

(rs8078692, rs113520394), and FBXL20 (rs62074998, rs12453796) (gene P-values 

< 0.001). The SNPs selected by the sARTP method in the top 36 genes (gene P-

value <0.04) were not all in high LD with each other (r2 range 0.002 to 0.6), 

suggesting multiple signals in this region may be associated with PDAC.  

In the Pujana ATM PCC network, 67 of 1,350 genes were selected by sARTP 

as contributing the most to the PDAC association (Figure 4, Supplementary Table 

4).  The three top genes (gene P-value < 7.55x10-5) were SMC2 (rs7859034), PNMT 
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(rs876493, rs3764351), and HNF1B (rs12951345, rs7223387). Other notable genes 

(gene P-value < 0.01) in this gene set included HNF1A (rs1169291, rs1169297), 

GRP (rs57791062), ACTR2 (rs2160263, rs7579797), THRA (rs8078692, 

rs113520394), HNF4G (rs1913641, rs2943547), HEXA (rs11636684, rs201611588), 

TAB1 (rs34825318), MED1 (rs113897737, rs7212868) and CASP7 (rs3124737). The 

full list of genes and sARTP selected SNPs which contributed to the Bonferroni 

statistically significant pathways/ and the overlap across pathways/gene sets are 

summarized in Supplementary Table 5.  

Some of our findings were supported by recent consortia effort in conducting 

GWAS meta-analysis on PDAC risk.8 By combing the four GWAS used in our study 

with an additional replication data of selected SNPs (2,737 cases; 4,752 controls), 

four new GWAS signals were identified.8 As our analysis was conducted prior to this, 

we further excluded these GWAS signal regions at 1p36.33 (NOC2L), 8q21.11 

(HNF4G), 17q12 (HNF1B), and 18q21.32 (GRP).8  Eight of the 14 FDR statistically 

significant pathways or gene sets included these regions and were attenuated after 

their exclusion (Supplementary Table 6, P-values < 0.01); however, the Nikolsky 

breast cancer chr17q11-q21 amplicon gene set remained statistically significant (P-

value = 5.71x10-6) after Bonferroni correction. The ATM PCC network, MODY and 

regulation of beta cell development had P-values of 3.59x10-4, 5.49x10-4, and 0.001, 

respectively. The other six pathways/gene sets did not include these regions and 

were unaffected.   

 

Expression QTL and functional annotation 

We present the functional annotations and eQTL results from GTEx tissues and 

replication in an independent eQTL histologically normal pancreas dataset (LTG)19 
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for the five Bonferroni statistically significant pathways and gene sets (Table 2 and 

Supplementary Tables 7 and 8). Top SNP rs876493-A was present in both the 

Nikolsky breast cancer chr17q11-q21 amplicon and Pujana ATM network gene sets, 

and was associated with lower PGAP3 expression in normal pancreatic tissue in 

GTEx (P-value =3.9x10-7, β=-0.24) and in the LTG (P-value =1.16x10-5, β=-0.43). In 

addition, we identified and validated three additional SNPs, rs3764351-A, 

rs4795393-T and rs12453507-G in LD with rs876493-A that also act as eQTLs for 

PGAP3 in both data sets (Table 2). These SNPs were also associated with lower 

PGAP3 expression in other tissues (Supplementary Table 7). The linkage 

disequilibrium (LD) between these four SNPs on chr17 may indicate the same signal 

is contributing to the associations. 

In the Pujana ATM PCC network, we observed that the risk allele rs3124737-

G (CASP7) was associated with higher expression of the CASP7 gene in normal 

pancreatic tissue using GTEx (P-value =2.5x10-8; β=0.48) and LTG (P-value =0.02; 

β=0.28) (Table 2). We also observed this eQTL effect in multiple tissues from GTEx 

including thyroid, subcutaneous adipose, and whole blood (Supplementary Table 

7). The two SNPs (rs876493-A (PGAP3) and rs3124737-G (CASP7) supported by 

eQTL were not identified or in LD with signals from the recent GWAS meta-analysis 

and remained statistically significant after exclusion of the new GWAS regions.8   

 

 

Discussion 

We identified fourteen pathways and gene sets associated with PDAC, five of which 

met the Bonferroni correction for multiple testing. The strongest pathways associated 

with PDAC included genes involved in susceptibility to MODY, pancreatic beta cell 
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development, cardiac hypertrophy, breast cancer chr17q11-q21 amplicon, and a 

network of genes correlated with ATM gene expression.   

Our PDAC associations for the MODY and pancreatic beta cell development 

pathways add evidence and reinforce previous epidemiologic findings based on 

candidate genes, pleiotropy, and GWAS approaches5,7,8,10,20–22. The genes in these 

pathways are important components for transcriptional networks governing 

embryonic pancreatic development, differentiation and pancreatic homeostasis23,24. 

MODY accounts for 2% of all diabetes and is caused by genetic mutations that affect 

islet beta-cell function.25 We found no evidence that the variants linked to the genes 

in these pathways act as eQTLs in normal adult pancreas tissues. However, 

functional annotation showed that rs2244608-G (HNF1A) maps to an active 

transcription start site (TSS) in normal pancreas and islet cell tissue. PAX4 identified 

in the MODY pathway has not previously been implicated in PDAC. PAX4 is 

essential for islet development and adult β-cells survival and expansion.24 

Mutations and germline polymorphisms in PAX4 are associated with Type 1 and 

Type 2 diabetes and MODY type 9.25  

The EDNRA (endothelin receptor type A) and AGT (angiotensinogen) genes 

were the top genes in the EGF cardiac pathway, a pathway which has not previously 

been implicated in PDAC susceptibility. This pathway describes cardiac hypertrophy 

(thickening of the heart muscle) through activation of the EGFR (epidermal growth 

factor receptor) by GPCRs (G protein-coupled receptors). GPCRs transactivate 

EGFR in numerous cell types and cancers, resulting in downstream activation of 

biological processes.26,27 EDNRA is a GPCR for endothelin (ET-1), a potent 

vasoconstrictor that may play a role in obesity and insulin resistance.28 

Overexpression of EDNRA has been associated with many cancers.29–32 Inhibition of 



 
 

 

 
17 

 

EDNRA demonstrated anti-angiogenic and anti-proliferative activity in pancreatic 

cancer cell lines.33 AGT encodes an angiotensin precursors, a potent vasoconstrictor 

involved in blood pressure regulation and a potential cell growth stimulator.34,35 

Variant rs1326889 in AGT (SNP P-value=4.21x10-7) is associated with renal cell 

carcinoma, with stronger associations observed for overweight/obese or 

hypertensive participants.34  

The Nikolsky breast cancer chr17q11-q21 amplicon gene set represents 

genes that exhibit copy number alterations in 191 breast carcinomas.36 The 

strongest associated SNP rs876493 (P-value= 1.27x10-6) and three additional 

correlated SNPs (r2 range 0.3-0.6) rs3764351, rs4795393 and rs12453507 were 

associated with decreased PGAP3 (post GPI attachment to proteins 3) expression in 

both the GTEx and LTG pancreas tissue datasets and all four variants may 

represent the same signal (Table 2). PGAP3, also known as PERLD1, is an 

oncogene in breast and gastric cancer, and is frequently co-amplified with ERBB2 

and CDK12.37 Co-silencing of STARD3, GRB7, PSMD3, PGAP3 together with 

ERBB2 led to an additive inhibition of cell viability and apoptosis in vitro.38  The 

SNPs rs876493 and rs3764351 were also present in the Pujana ATM PCC network 

gene set. Our observed PDAC association for this breast cancer derived gene set 

may suggest common genetic susceptibility for both cancers.  

The Pujana ATM PCC network gene set is based on gene expression 

integrated with functional genomic and proteomic data from human tissues and cell 

lines to classify networks associated with ATM.39 Numerous genes across multiple 

chromosomes contributed to the statistical significance of this gene set with PDAC, 

including but not limited to the MODY genes HNF1A, HNF1B, HNF4G, and PAX4. 

The ATM protein is a serine/threonine kinase involved in repair of DNA double-
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strand breaks.40 Mutations in ATM are responsible for ataxia-telangiectasia.40 

Germline mutations in ATM  are known to be associated with 2-3% of familial 

PDAC41–43 and have recently been found in a case series of sporadic PDAC 

patients.44 Our analysis identified rs7859034 (SMC2) (SNP P-value=3.07x10-7) as 

top signal in this gene set. SMC2 is a central component of the condensin complex 

required for converting interphase chromatin into mitotic-like condense 

chromosomes. SMC2 in cooperation with MYCN can transcriptionally regulate DNA 

damage response genes.45 In this gene set, we additionally identified eQTL and 

functional annotation evidence for variants in the CASP7 gene (rs3124737, SNP P-

value=3.329x10-5) in pancreas tissue. CASP7 is critical in apoptosis induction, acts 

as a candidate for susceptibility to insulin-dependent diabetes; inactivating mutations 

in CASP7 have been reported to contribute to the pathogenesis of some human solid 

cancers.46 This gene set represents a biologic network not previously considered for 

sporadic PDAC that should be further researched and could have clinical application 

for classifying those at high risk. 

Four of the 5 Bonferroni statistically  significant pathways or gene sets that we 

observed contained recently published GWAS signal regions.8 When we excluded 

these regions, the Nikolsky chr17q11-q21 gene set remained Bonferroni statistically  

significant and the others had P-values <0.001. Although we do not have a 

replication study for our analysis, the fact that the four SNPS in these regions 

replicated in the meta-analysis GWAS study,8 adds to the validity of our pathway 

findings. Klein et al.8 also identified four suggestive variants, rs6537481 (EDNRA), 

rs2417487 (SMC2), rs1182933 (HNF1A) and rs6073450 (HNF4A) that did not 

reach genome-wide statistical  significance however, were in LD with signals (or 
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the same SNP (EDNRA)) which contributed to the biologically relevant pathways 

and gene sets of multiple smaller association signals observed in our study.  

Strengths of our study are its large sample size for PDAC and agnostic 

pathway and gene set-based statistical approach using GWAS data. Combined with 

a sophisticated statistical method, sARTP maximized our ability for detecting genetic 

associations that would not be discovered by the single-marker analysis conducted 

in conventional GWAS. The sARTP method also uses GWAS summary data, which 

facilitates consortia collaboration in sharing data for large-scale pathway analyses. 

We excluded reported GWAS SNPs, signals with P-value threshold < 5x10-8 and 

regions within +/- 500 kb to identify genetic contributions to PDAC susceptibility 

beyond the traditional GWAS threshold. The strongest contributing genes and 

selected SNPs observed within the statistically significant pathways and gene sets in 

our study may be identified in future GWAS with larger sample sizes.  

 Limitations of our study include the LD filtering threshold of r2 > 0.81 used to exclude 

highly correlated SNPs, meaning potential variants in LD (r2 < 0.81), could be 

selected for a gene that represents one signal. However, the sARTP method 

identifies SNPs and genes contributing the most to the overall pathway associations 

in a data-driven manner which may help with biologically meaningful result 

interpretation and has proven to be a powerful and effective strategy to analyze 

pathways.11 An additional limitation may be the distance (kb) used to map SNPs to 

genes. Although, there is no agreed exact distance to assign SNPs to their relevant 

genes47, it is known that some genetic variants can affect RNA expression through 

cis or trans mechanisms.48 In our study, we mapped SNPs 20 kb upstream and 

downstream of each gene in order to identify candidate SNPs that may play a 

regulatory role in gene expression. We and others have  previously used this 
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distance in annotating SNPs-genes in pathway analysis,11 as studies have shown 

functional variants are located approximately 16-20 kb within transcription start 

sites.47–49 Ultimately, approaches using causal SNPs based on chromatin 

interactions, cis or trans-eQTL functional data for assigning SNPs to genes will 

increase the precision of the associations and understanding of the biology beyond 

the functional annotations we performed using publicly available data and eQTL 

analyses in two normal pancreas tissue independent datasets.   

In conclusion, translating GWAS data into biologically relevant pathways and 

gene sets expands our knowledge of the potential mechanisms underlying PDAC 

carcinogenesis, as well as providing evidence for the future development of 

clinically-relevant multi-genic predictors for identifying individuals at high risk. Further 

population, clinical and laboratory research is needed to confirm our findings. 

Strategies to accelerate functional biological follow-up may include replication, fine 

mapping, experimental studies such as whole transcriptomic sequencing, reporter 

assays and DNA methylation/epigenetic regulations on gene expression50 to fully 

understand the biology and functional nature of the loci contributing to the pathways 

and gene sets associated with PDAC. 
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Table 1: Pathways and gene sets associated with risk of pancreatic ductal adenocarcinoma (false discovery rate, FDR < 

0.05)* 

Gene set Pathway Description 
Pathway 
source 

No. of 
Genes 

No. of 
SNPs 

P-value† FDR 
Genes contributing to the association of 

pathway and PDAC development 

Maturity onset diabetes of the 
young‡ 

MODY, is a monogenic form of 
type II diabetes. Mutations of 
MODY genes lead to 
dysregulation of genes 
involved in pancreatic islet 
development and metabolism.  

KEGG 23 1448 5.10x10-7 0.002 HNF1A, HNF1B, HNF4G, HNF4A, PAX4 

Regulation of Beta cell 
development‡ 

Genes involved in Regulation 
of beta-cell development  

REACTOME 28 2057 1.92x10-6 0.003 HNF1A, HNF1B, HNF4G, HNF4A 

Breast Cancer chr17q11-q21 
amplicon‡, 

Genes within amplicon 
chr17q11-q21 identified in a 
copy number alterations study 
of 191 breast tumor samples. 

NIKOLSKY 131 3320 2.00x10-6 0.003 PGAP3, TCAP, ERBB2, PNMT, STARD3, 
HNF1B, IGFBP4, TNS4, MED24, THRA, 

FBXL20, STAC2, CSF3, CDK12, PPP1R1B, 
NEUROD2, PSMD3, RPL19, CRYBA1, 

CACNB1, CCR7, IKZF3, SGK494, TMEM98, 
GSDMB, C17orf63, ZPBP2, FOXN1, MIEN1, 

SEZ6, ERAL1, PIPOX, GRB7, ORMDL3, 
TIAF1, FLOT2, SPAG5, SLC13A2 

Role of EGF Receptor 
Transactivation by GPCRs in 
Cardiac Hypertrophy‡ 

Genes participating in cardiac 
hypertrophy through activation 
of the EGF by GPCRs  

BIOCARTA 17 2133 3.79x10-6 0.004 EDNRA, AGT 

ATM PCC NETWORK‡ Gene network transcripts 
whose expression positively 
correlated ATM in normal 
tissues 

PUJANA 1350 77404 1.25x10-5 0.01 SMC2, PNMT, HNF1B, HNF1A, ACTR2, 
GRP, THRA, HNF4G, TAB1, HEXA, MED1, 

HIPK3, GHRH, CASP7, MED6, TPP2, 
KHDRBS2, FCHSD2, OIP5, CSF3, 

PHOX2B, GRIA1, HNRNPL, HNRNPAB, 
PMS2P1, PFKFB4, GSR, AOC2, MAPK8, 
BCL2L11, E2F4, PFDN6, NPHP1, PCF11, 

LDHB, BTF3, SIKE1, PAX4, NMI, TMEM123, 
ANGEL1, RPL19, PIBF1, POP4, PSMD3, 

USP19, GPR3, SP2, CD47, RPL30, KIF20B, 
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BRCA1, NSL1, SNRNP27, BAZ1A, TAF5, 
ITGBL1, NR2C1, ATXN3, TACR3, TELO2, 

TRA2B, NAE1, FBL, USP4, CDC123, 
FAM53B, CR1, PDAP1, CD52, TNFAIP8, 

F2RL3, ATP5G2, CAMK4, RHOH, PPIP5K2, 
CHAF1B, XRCC2, KIAA0922, CDH8, 

GPR171, RAB30, SGPL1, PPM1A, ARID1A, 
PAICS, DRD1, MR1, SPI1, CYP2C18, 
TTYH2, ROBO1, POLE, ELF1, IFI44 

Developmental biology Genes involved in the process 
of developmental biology 
including processes of 
transcriptional regulation and 
differentiation. 

REACTOME 367 37631 1.40x10-5 0.01 ERRB2, HNF1A, HNF1B, MED24, HNF4G, 
MED1, MED6, HNF4A, SRGAP1, NCOR1, 

EZR, EVL, ROCK1P1, RHOC, HFE2, 
SMA3E, FES, FURIN, UNC5A, CACNB1, 
NR2F2, MYL8P, PLXND1, TCF4, MET, 
KIAA1598, MED21, SDCBP, MED13L, 

CACNA1I, DPYSL4, ROBO1, HSP90AB1 
Response to prostaglandin E2 
down 

Genes down-regulated in 
CD4+ T lymphocytes after 
stimulation with prostaglandin 
E2. 

CHEMNITZ 365 36942 1.93x10-5 0.01 ARL6IP6, PIK3C3, DEGS2, NUS1, ZFP3, 
WDR48, CNKSR3, PRR15L, BBS4, EZR, 

LMO7, ANXA11, PKHD1, GORASP1, 
CD200, FAM60A, OSBPL10, TXNIP, RND2, 

GALNT11, CHDH, RBMS2, TNFSF13, 
C19orf46, SENP3, IFT140, CNTN4, MET, 

FUT3, SLC35E2B, CDKN1A, MITF, PPM1A, 
CRAMP1L 

Breast Cancer ERBB2 UP  Genes up-regulated in the 
erbb2 subtype of breast cancer 
samples, characterized by 
higher expression of ERBB2 

SMID 139 9279 3.89x10-5 0.020 PNMT, PGAP3, ERBB2, STARD3, MED24, 
CDK12, MED1, GRB7, ELL2, PSMD3, 
CAMP, LBP, DUSP6, GSDMB, FUT3, 

SCGB2A2 
Breast cancer cluster8  Cluster 8: selected 

ERBB2 amplicon genes 
clustered together across 
breast cancer samples 

FARMER 7 159 4.40x10-5 0.02 PNMT, PGAP3, ERBB2, CDK12, MED1, 
GRB7, GSDMB 

Regulation of gene expression 
in beta cells 

Transcriptional network 
controlling pancreatic 
development and beta cell 
function. 

REACTOME 19 1244 4.80x10-5 0.02 HNF1A, HNF4G, HNF4A 
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*Pathway-based meta-analysis used the sARTP method which combines SNP-level association statistics across SNPs in a gene or 
a pathway. Each statistically significant contributing gene includes up to two SNPs. The sARTP method adjusts for the size of 
genes (i.e., number of SNPs in a gene) and the size of pathways (i.e., number of genes in a pathway) through a resampling 
procedure.  sARTP, summary based adaptive rank truncated product; SNP, single nucleotide polymorphism; FDR, false discovery 
rate; PDAC, pancreatic ductal adenocarcinoma; EGF, epithelial growth factor; GPCR, G protein-coupled receptor; PGR, 
Progesterone; HCP, high CpG-density promoters; 

† The pathway-level association P-values were estimated from the resampled null distribution through up to one hundred million 
resampling steps as described in methods section. All statistical tests were two-sided.  

‡ Statistical significant pathways/gene sets at Bonferroni adjusted α-level of P-value =1.3x10-5 (0.05/3795) 
 

Breast cancer basal down Genes down-regulated in basal 
subtype of breast cancer 
samples 

SMID 668 60051 6.14x10-5 0.02 PGAP3, IGFBP4, PNMT, STARD3, ERBB2, 
GRP, MED24, CAPN9, CDK12, CXXC4, 

BBS4, EVL, SLC19A2, KRT8, CANT1, BAI2, 
IFT140, CAMP, ITGA7, HPGD, SLC48A1, 

CSF3R, C9orf116, RAPGEF3, ITGBL1, 
TMEM143, UBA7, C5orf30, RARA, RHOH, 
MED13L, RAB27B, SCGB2A2, VAV3, SIX1, 

CNR1 
PGR positive meningioma down  Genes down-regulated in 

meningioma samples positive 
for PGR compared to those 
without the receptor 

CLAUS 12 1195 8.32x10-5 0.03 EDNRA, HEG1 

Prostate Cancer HCP with 
H3K27ME3  

Genes with high histone H3 
trimethylation mark at K27 
(H3K27me3) in PC3 cells 
(prostate cancer) by ChIP-chip 
assay on a 12K CpG array 
(high-CpG-density promoters, 
HCP) 

KONDO 93 10820 9.39x10-5 0.03 HNF1B, NKX2-3, SAMD11, LINC00273, 
LIMCH1, KIAA1109, TRIM16, ZNF438, 

RNASE11 

Breast Cancer copy no. up Genes from common regions 
of gains observed in more than 
15% of 148 primary breast 
cancer tumors 

CHIN 25 1778 1.71x10-4 0.05 ERBB2, THRA, MED1, CYP24A1 
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Table 2: Expression quantitative trait loci (eQTLs) for pathway SNPs in normal pancreatic tissue from GTEx and an 

independent replication set 

Pathway Gene Chr 
R2 with 

rs876493* 
SNP eQTL gene 

GTEx pancreas 
(n=220) 

Independent LTG pancreas 
(n=95) 

P-Value† Effect size ‡  P-Value† Effect size ‡ 

ERBB2, PGAP3 17 N/A rs876493 §, || PGAP3 3.9x10-7 -0.24 1.16x10-5 -0.43 

TCAP, STARD3, PNMT 17 0.636 rs3764351 §, || PGAP3 5.7x10-9 -0.30 9.70x10-5 -0.47 

GRB7, MIEN1 17 0.3508 rs4795393 § PGAP3 4.0x10-10 -0.30 3.83x10-5 -0.45 

GSDMB, ZPBP2 17 0.3046 rs12453507§ PGAP3 2.7x10-7 -0.22 2.80x10-5 -0.45 

CASP7 10 - rs3124737 || CASP7 2.5x10-8 0.42 0.02 0.28 

*Linkage Disequilibrium r2 values are derived from LDLink EUR population data. Chr, chromosome; SNP, single nucleotide 
polymorphism; eQTL, expression quantitative trait loci; LTG, Laboratory of Translational Genomics; FDR, false discovery rate; TSS, 
transcription start site.  

† eQTL in pancreas FDR (≤ 0.05) using +/- 1 Mb cis-window around TSS. Statistical test was two-sided.  

‡ eQTL directional effect for risk allele.  

§ SNP in the Nikolsky breast cancer chr17 amplicon gene set 

|| SNP in the Pujana ATM PCC network gene set 
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Figure legends 

Figure 1:  Genes associated with PDAC in the KEGG maturity onset diabetes of 

the young (small circles, P-value=5.10x10-7) and Reactome regulation of beta 

cell development (large circles, P-value=1.92x10-6). Red highlighted circles are 

genes selected by sARTP as contributing to the most to each pathway-PDAC 

association. HNF1A, HNF1B, HNF4G and HNF4A contributed to both pathways (gene 

P-value < 0.006) and PAX4 (gene P-value=0.02 contributed to the MODY pathway. 

All statistical tests were two-sided.  

PDAC, pancreatic ductal adenocarcinoma; sARTP, summary based adaptive rank 

truncated product. 

Figure 2:  Genes associated with PDAC in the Biocarta Role of EGF receptor 

transactivation by GPCRs in cardiac hypertrophy (P-value = 3.79x10-6). EDNRA 

and AGT genes (highlighted in red, P-value < 9.21x10-5) were selected by sARTP as 

contributing the most to the pathway-PDAC association. All statistical tests were two-

sided.  

PDAC, pancreatic ductal adenocarcinoma; EGF, epithelial growth factor; GPCRs, G 

protein-coupled receptors; sARTP, summary based adaptive rank truncated product.  

Figure 3:  Genes associated with PDAC in the Nikolsky breast cancer chr17q11-

q21 amplicon gene set (P-value=2.00x10-6). 36 genes (red circles, P-value < 0.04) 

were selected by sARTP as contributing the most to the gene set-PDAC association. 

All statistical tests were two-sided.  

PDAC, pancreatic ductal adenocarcinoma; sARTP, summary based adaptive rank 

truncated product.  
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Figure 4:  Genes associated with PDAC in the Pujana ATM Pearson correlation 

coefficient (PCC) network gene set (P-value=1.25x10-6). 67 genes (red circles, P-

value < 0.02) were selected by sARTP as contributing the most to the gene set-PDAC 

association. All statistical tests were two-sided.  

PDAC, pancreatic ductal adenocarcinoma; sARTP, summary based adaptive rank 

truncated product.  

 


