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Abstract: Several studies have shown that binge drinking of alcoholic beverages leads to non-desirable
outcomes, which have become a serious threat to public health. However, the bioactive compounds
in some alcohol-containing beverages might mitigate the negative effects of alcohol. In beer, the
variety and concentration of bioactive compounds in the non-alcoholic fraction suggests that its
consumption at moderate levels may not only be harmless but could also positively contribute to an
improvement of certain physiological states and be also useful in the prevention of different chronic
diseases. The present review focuses on the effects of non-alcoholic components of beer on abdominal
fat, osteoporosis, and body hydration in women, conditions selected for their relevance to health
and aging. Although beer drinking is commonly believed to cause abdominal fat deposition, the
available literature indicates this outcome is inconsistent in women. Additionally, the non-alcoholic
beer fraction might improve bone health in postmenopausal women, and the effects of beer on body
hydration, although still unconfirmed seem promising. Most of the health benefits of beer are due to
its bioactive compounds, mainly polyphenols, which are the most studied. As alcohol-free beer also
contains these compounds, it may well offer a healthy alternative to beer consumers.

Keywords: hops; malt; health; menopause; polyphenol; phytoestrogen; prenylnarigenin; humulones;
ethanol; bioactives

1. Introduction

Beer, an alcoholic drink composed of four main ingredients (water, malt, hops, and yeast) [1],
is one of the most consumed beverages in the world [2]. From a nutritional point of view, its
main components are water (around 90%), followed by carbohydrates, ethanol, minerals, vitamins,
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and bioactive compounds such as polyphenols and organic acids (iso-α-humulones). Beer composition,
as well as its flavor, taste, and texture, differs considerably according to the ingredients and processing
techniques [3]. Besides their health benefits, the bioactive compounds are also linked to the sensory
characteristics of beer [4].

In view of the worldwide growth in beer consumption, studies investigating possible links
between beer and different health outcomes are of utmost importance. Among others (i.e., liver
disease), recently, one of the most important consequences of a high beer consumption is a greater risk
of developing different site-specific cancers (e.g., colorectal [5], lung [6,7], prostate [8], and oral cavity,
esophagus, and larynx cancer [9]). It is also known that high alcohol intake help to develop a dilated
cardiomyopathy and also may trigger certain cardiovascular events [10,11]. Nevertheless, a moderate
consumption of beer may also help to prevent these type of events [12,13].

Clinical evidence about beer consumption effects needs to be more specific on sex-related
differences and health outcomes. Postmenopausal women due to the estrogen depletion suffer body
changes [14] and there is an accumulation of abdominal fat [15], an increasing risk of osteoporosis [16]
and a loss of body hydration [14] among other health issues. Interestingly, some studies have pointed
out that bioactive compounds of beer may help to mitigate some of these adverse effects.

In a unit of beer the main bioactive compounds with health benefits described in several
studies [9,17,18] are depicted in Table 1. Particular attention has been given to the polyphenols found
in malt (75%) and hops (25%), due to their antioxidant and anti-inflammatory properties [19,20].
Polyphenols are also critical to the flavor, astringency, bitterness, haze, and body of beer [21,22],
and their concentration varies according to the ingredients and processing [23,24]. Regular beer, both
ale and lager beers, is richer in polyphenol content compared to alcohol-free beers [25].

Table 1. Mean content of selected bioactive compounds in a standard drink of regular beer.

Bioactive Compound Avarege Level (mg/330 mL)

Phytoestrogens
Xanthohumol

6-Prenylnaringenin
8-Prenylnaringenin

Isoxanthohumol

4.653 × 10−3

8.547 × 10−3

3.432 × 10−3

0.132
Bitter acids
α+β acids

Iso-α-humulones
Minerals

Silicon
Sodium

Potassium

0.891 a

9.207 a

6.336
14.883
116.589

a mean value from three beer samples. Content of phytoestrogens from Rothwell et al. (2013) [26], bitter acids from
Česlová et al. (2009) [27], silicon from Jugdaohsingh (2007) [28] and sodium and potassium derived from the Food
composition data of 16 European countries via www.EuroFIR.org.

Among polyphenols, a particular group has attracted special interest for their estrogen-like
properties [29]. Hops (Humulus lupulus L.) are a source of prenylflavonoids, a class of phytoestrogens,
predominantly xanthohumol (XN), that during the brewing process isomerizes into isoxanthohumol
(IX), 6-prenylnaringenine (6-PN), and 8-prenylnaringenine (8-PN) [30]. These compounds can mimic
and modulate the action of estrogenic hormones by epigenetic mechanisms, via binding with cell
surface receptors or by interacting with estrogen receptors (ERs). In particular, 8-PN has been described
as the most estrogenic phytoestrogen, surpassing those typically found in soya products [31].

The aim of the present review is to summarize the available literature on the health outcomes of
beer consumption in women, focusing on three specific health-related conditions: increased abdominal
fat, osteoporosis, and overall body hydration. In particular, findings related to the beer bioactive
compounds are discussed.

www.EuroFIR.org
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2. Beer Consumption Related to Health and Disease in Women

2.1. Beer, Abdominal Fat, and Weight Gain

A widely held belief is that beer consumption directly contributes to an increase in abdominal fat
and ultimately leads to overweight and obesity. This assumption might be due to the nutritional value
of beer, since it contains not only alcohol but also more carbohydrates than other alcoholic drinks [32].
In this section, we assess whether or not beer consumption can increase abdominal fat and site-specific
adiposity in women, central obesity being the most relevant sign of metabolic syndrome (MetS) [33].

The type of alcoholic drink, as well as dose, frequency and time of consumption play a role
in how alcohol drinking may change fat distribution [34,35]. Additional factors such as genetics,
gender, and age may also be important determinants of central body fat [34]. Thus, for instance,
drinking alcoholic beverages during meals was significantly more prevalent in females than in males
in one study population [35]. In addition, it has been suggested that enlarged waist circumference
(WC), known as “beer belly”, commonly observed in regular beer consumers might be more due to
unhealthy lifestyle factors and drinking patterns (e.g., physical inactivity and smoking) rather than to
beer consumption alone [36].

Women seem to be more prone to fat deposition than men upon the consumption of high doses of
alcohol [37]. In general, postmenopausal women have a higher total body fat mass and more abdominal
fat than premenopausal women. More specifically, despite exhibiting a similar mean body mass
index (BMI), postmenopausal women have a larger WC [15]. While both genders experience somatic
changes with aging, in women they particularly affect the WC and waist-to-hip ratio (WHR) [33,38].
Interestingly, both visceral and subcutaneous adipocytes express estrogen and androgen receptors such
as ER-α, a regulator of adipocyte activity and fat distribution responsible for these gender differences
and hyperandrogenism in postmenopausal women [15,39]. As increased visceral abdominal fat
deposition causes metabolic changes in fatty acid metabolism, it would be useful to know which foods
and ingredients may be more effective for counteracting this fat accumulation in postmenopausal
women [15].

Several studies have investigated the effects of gender in the relationship between beer consumption
and abdominal adiposity [32,40]. A systematic review of observational studies published before
November 2010 indicates that there is an inverse or no association between general obesity and
moderate beer consumption in women, while findings referring to abdominal obesity seem to be
inconsistent [40]. The authors pointed out that these conflicting observational data may be explained
by the small proportion of women beer drinkers and their relatively low beer intake in the studies
analyzed [40].

Alcohol or beer consumption and abdominal fat or weight gain have been described as having a
U-shaped relationship, with the lowest BMI values observed in women who consumed an average
of 6–24 g/day of alcohol [41]. In another study, women with a low beer consumption (maximum
1.32 L/week) also had the lowest WHR values, whereas non-consumers had the highest WC [33]. In the
Third National Health and Nutrition Examination Survey (NHANES III), the lowest MetS and WC
values were observed in the mild to moderate beer and wine drinkers [42]. Consequently, it can be
stated that excessive beer intake may contribute to a higher WC and WHR, and even a higher overall
BMI, yet the regular consumption of less than 0.5 L/day of beer (4% alcohol) seems unlikely to have
this effect, according to the data available in cross-sectional and prospective observational studies [40].
Women studies evaluating the relationship between beer consumption and abdominal fat increase has
been summarized in Table 2 [33,35–37,41,43–55].

In a study focused on the effects of a moderate beer intake on the body composition of healthy
adults undergoing a high-intensity interval training, the group consuming alcohol-free beer experienced
a significant decrease in visceral adipose tissue and WC, and a clear decreasing trend in the WHR.
The other groups (consuming beer or water supplemented with vodka ethanol) did not show any
changes in these variables [56].
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Now, we should look for the compounds of regular and non-alcoholic beer responsible of these
effects. The main bitter compounds of beer are iso-α-acids or iso-α-humulones, derived from the
isomerization of α-acids in hops during brewing [57,58]. A study of mice fed with a high-fat diet
(HFD) supplemented with iso-α-acids reported significantly reduced body weight, epididymal fat
weight, and plasma triglyceride levels after the intervention, whereas in the control group the values
increased [59]. As in other studies, it was concluded that iso-humulones might have a protective
effect on internal organs damaged by obesity, making this a promising line of future research [59,60].
Iso-α-acids bind and activate both peroxisome proliferator-activated receptors α (PPARα) and γ

(PPARγ), which exhibit anti-obesity and anti-inflammatory activities in vivo [59–61]. Regular beers
contain 20–40 mg/L of iso-α-acids [27,62,63], and some bitter beers up to 50–80 mg/L [62].

A clinical trial with prediabetes subjects found that 32–48 mg/day of iso-humulones lowered
the fasting blood glucose and hemoglobin A1c after 8 weeks, while the total fat and BMI in
participants receiving 48 mg/day decreased at 12 weeks [62]. However, some effective concentrations of
iso-humulones reported in the literature, such as 500 mg/kg body weight in mice, would be impossible
to ingest through moderate or even high beer consumption [60]. Additionally, it would be difficult
to formulate a food other than beer with 10–100 mg/L of iso-humulones and an effective dose of
iso-α-acids because of their strong bitterness [57].

Matured hop bitter acids (MHBA) are components derived from α-acid oxidation and bear
a β-tricarbonyl moiety in their structure such as α-, β-, and iso-α-acids. The bitterness of α-acid
oxidation products is described as being more acceptable for the consumer compared to iso-α-acids,
and some studies of the bioactive properties of MHBA have been carried out [57]. Weight gain in
six-week-old male C57BL/6J mice, a model of MetS, was significantly suppressed when their high fat
diet was supplemented with MHBA [64]. Additionally, MHBA administration induced cholecystokinin
secretion and signal transduction in the rat gastrointestinal tract, resulting in an increase in the brown
adipose tissue temperature. Moreover, MHBA may target TAS2 receptors (TAS2Rs) because they share
a similar structure with iso-α-acid [57]. Although 25 TAS2 bitter taste receptors have been determined
in humans, only TAS2R1, TAS2R14, and TAS2R40 have been reported to mediate psychophysical
responses to bitter hop-derived compounds [65]. Specifically, TAS2R1 and TAS2R40 are expressed
in enteroendocrine cells, responsible for incretin hormone secretion [66–68]. There is also interesting
evidence that the consumption of mature hop extract significantly reduces abdominal visceral fat of
healthy overweight subjects [58].

On the other hand, it has been found that a XN-rich hop extract (17.8% XN and 12.4% IX) prevents
fat gain due to overnutrition by modulating preadipocyte differentiation in a 3T3-L1 mouse fibroblast
cell line [69]. Furthermore, oral administration of 30 and 60 mg/kg/day of XN during 12-weeks
in a C57BL/6J mice model improved markers of inflammation and MetS and decreased BMI in a
dose-dependent manner. Nevertheless, the authors concluded that because XN concentrations found
in beer are only about 0.2 mg/L, XN taken in the form of beer would be unlikely to have a protective
effect against MetS [70]. Two other studies performed in the same C57BL/6J mice model demonstrated
that XN derivatives [71] and IX [72] significantly changed the gut microbiota profile, constituting a
potential mechanism against obesity and MetS [71,72].
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Table 2. Women studies evaluating the relationship between beer consumption and abdominal
fat increase.

Authors
Year [Ref] Type of Study Study Population Key Finding

Lapidus et al.,
1989 [43] Cross-sectional 1462 women

38–60 years-old
No correlation was found between WHR and

beer consumption.

Slattery et al.,
1992 [44] Cross-sectional

1447 black women
1284 white women

18–30 years-old

Higher beer consumption was associated with a
higher WHR among white and black women.

Kahn et al.,
1997 [45]

Prospective
observational

44080 women
40–54 years-old

OR of abdominal weight gain was positively
associated in women drinking >0 to <5 days per

week and no associated in women drinking
<5 days per week versus non-drinkers

Dallongeville et al.,
1998 [37] Cross-sectional 11730 women

35–64 years-old
Beer & cider consumption was associated with a

higher WHR.

Rosmond & Bjorntorp
1999 [46] Cross-sectional 1137 women

40 years-old
Beer consumption was negatively correlated

to WHR.

Machado & Sichieri
2002 Cross-sectional 1396 women

20–60 years-old
No trend association for OR for WHR >0.80 across

beer consumption categories was found.

Vadstrup et al.,
2003 [48]

Prospective
observational

3970 women
20–83 years-old

Positive trend association was found for WC at
follow-up across beer intake categories.

Bobak et al.,
2003 [49] Cross-sectional 1098 women

25–64 years-old
Beer intake was not associated with an increase

in WHR.

Dorn et al.,
2003 [35] Cross-sectional 1322 women

53.3 ± 9.4 years-old
No trend association was found between sagittal

abdominal diameter and beer consumption.

Halkjaer et al.,
2004 [50]

Prospective
observational

1131 women
30–60 years-old

Women consuming >4 drinks of beer per week
have higher WC, while no significance increase in
WC was found in the group drinking 1–3 drinks of

beer per week compared to non-drinkers.

Deschamps et al.,
2004 [52] Cross-sectional 284 women

42.4 ± 4.6 years-old

Women drinking >1 glass of beer per day have a
higher WRC than abstainers and those who drink
<1 glass of beer per day. No trend association was

found for WC.

Lukasiewicz et al.,
2005 [53] Cross-sectional 1268 women

47.7 ± 6.6 years-old
No trend association was found between beer

consumption and WHC.

Halkjaer et al.,
2006

Prospective
observational

22570 women
55 (50–64) years-old

No trend association was found between ∆WC and
beer consumption.

Krachler et al.,
2006 [54] Cross-sectional 3087 women

25–64 years-old
Increased beer consumption was not significantly

associated to WC.

Tolstrup et al.,
2008 [55]

Prospective
observational

1610 women
50–65 years-old

Negative association was found for OR of WC
across beer intake frequency categories among

women who preferred beer.

Schütze et al. [36]
2009 Cross-sectional 2749 women

35–65 years-old
Positive trend association for ∆WC and ∆WHR
was found across beer consumption categories.

Schütze et al.,
2009 [36]

Prospective
observational

12749 women
35–65 years-old

No trend association for WC was found across beer
consumption categories.

Bergmann et al.,
2011 [41] Cross-sectional 158796 women

52.9 ± 9 years-old

Positive association was found for OR of WC and
WHR for women drinking <6 versus ≤ 6 g per day

of alcohol from beer.

Zugravu et al.,
2019 [33] Cross-sectional 784 women

>18 years-old
No linear trend association was found between

beer consumption and WC or WHR.

WC: waist circumference; WHR: waist-hip ratio.

2.2. Beer and Osteoporosis

Known as one of the most important health-related conditions of aging, osteoporosis is attributed
to a decrease of bone mineral density (BMD), which ultimately leads to increased bone fragility [73].
Although common, the condition is underdiagnosed and undertreated, and clinical trials and public
health strategies are needed to improve screening and management [74]. Nutrition, exercise and
lifestyle are recognized as important aspects in osteoporosis prognosis [75], so modifiable environmental
factors such as diet should be considered in its management [76].
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Postmenopausal status has been described as a risk factor of BMD loss [16]. As a long-term
consequence of the lack of estrogenic stimulation, menopausal bone loss has been linked to an accelerated
bone turnover combined with an imbalance that favors bone resorption rather than formation [29,77].
The risk of osteoporosis is six times higher in postmenopausal versus premenopausal women [74].
One of the main mechanisms underlying the protective effect of estrogen against osteoporosis could
be an enhanced expression of the vitamin D receptor in the duodenal mucosa and responsiveness to
endogenous 1,25-dihydroxycolecalciferol [78].

Certain dietary factors, such as moderate alcohol consumption, have been positively associated
with BMD values in postmenopausal women and in the general population [16,79,80]. A study
found that women who consumed more than 1 drink of alcohol/day (i.e., 270 mL of beer, 100 mL
of wine, or 27 mL of liquor) had a significantly higher femoral neck and lumbar spine BMD than
non-alcohol consumers, in a lifestyle adjusted model [81]. Among alcoholic drink subtypes, only
beer and low-alcohol beer (but not wine or liquors) seemed to have a significantly positive effect
on lumbar spine BMD in older women [81,82]. Similarly, in a cohort of elderly men and women,
the lowest hazard ratios for hip fracture tended to be among beer consumers [83]. Also, quantitative
bone ultrasound values were higher in women who consumed beer compared to the non-beer or wine
drinkers, independently of their gonadal status. This result could be explained by the phytoestrogen
content and low grade of alcohol in beer [84]. In contrast, other studies have found positive associations
between wine or wine preference and spine BMD in a postmenopausal population group, but not for
beer or spirits [76,85]. Women studies evaluating the relationship between beer consumption and
osteoporosis has been summarized in Table 3 [76,81,82,84].

In 2008, a systematic review and meta-analysis concluded that subjects consuming 0.5–1 drink/day,
equivalent to 7–14 g alcohol/day, had a lower hip fracture risk than abstainers, whereas those consuming
more than 2 drinks/day had a greater risk [86]. Thus, abstainers and heavy drinkers have a higher risk of
hip fractures than light-moderate drinkers, with a U-shaped relationship between the variables [83,86].
Supporting these results, abnormal bone histology and decreasing bone formation and mineralization
have been described in alcoholics [87]. The tendency of a higher association between BMD and beer or
wine consumption compared to liquor suggests that other compounds besides ethanol may contribute
to bone health [4].

Most of the positive effects of beer on osteoporosis in postmenopausal women have been
attributed to the non-alcoholic fraction, specifically to polyphenols, silicon and α-acids. Among
phenolic compounds, flavonoids have been inversely linked to bone resorption biomarkers in Scottish
women aged 45–54 years. The flavonoids most consumed by the participants were catechins,
demonstrating the significant contribution of these compounds to improving BMD [88,89]. The bioactive
compounds in hops have been proposed as an alternative to conventional hormone replacement
therapy. In particular, the phenolic phytoestrogens from hop extract seem to exhibit estrogen-like effects
on bone metabolism [90]. A recent study in animals found that hop extract containing phytoestrogens
and iso-α-acids attenuated bone loss and reversed high bone turnover in ovariectomy mice [91].
Furthermore, in vitro experiments demonstrate that hop phytoestrogens (XN, IX, 6-PN, and 8-PN)
regulate both osteoblast and osteoclast activities, while α-acids exert a strong bone resorption inhibitory
activity, however, the recommended dosage is still unclear [90–92].

The phytoestrogen XN inhibits the receptor activator for the nuclear factor κ B ligand
(RANKL) signaling pathway, which has been identified as critical to osteoclast formation and bone
resorption [93,94]. XN has also been reported to promote osteoblast differentiation, up-regulate alkaline
phosphatase activity, and increase the expression of osteogenic marker genes in osteoblastic cell
lines [95]. Interestingly, Prouillet et al. (2004) had previously suggested that one of the consequences
of increased alkaline phosphatase activity could be an activation of the ER [94], and another study
described an inhibitory resorption effect of XN in a dose-dependent manner [92]. Regarding 8-PN,
a recent review of its therapeutic perspectives discusses plausible mechanisms for the anti-osteoporotic
properties of this intestinal metabolite. 8-PN has preferential binding to ER-α, which is the prevailing
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ER in bone tissue, and its prenyl group seems to be essential for the anti-osteoporotic mechanism [29].
In summary, the beneficial effects of 8-PN, promoting bone formation and inhibiting bone resorption,
are mediated by ER-α instead of ER-β, and it is more potent than the isoflavones genistein and
daidzein [96].

Silicon from malt has been reported to facilitate bone mineralization and regeneration [75,97],
which are essential for bone formation [97]. Some alcoholic beverages such as beer or wine contain
significant amounts of silicon [98], although due to the processing of barley and hops, beer is a
better source than wine or other alcoholic beverages, with an average content of 19.2 mg/L and
non-significant differences among different types of beer [28,75]. Moreover, silicon in beer has a high
bioavailability [98,99]. Tucker et al. (2009) showed that adjustment for silicon intake mitigates the
positive effect of beer consumption on BMD in older men and women [4].

To sum up, bone remodeling is a slow process and aging affects bone turnover [100]. The phenolic
fraction of beer, including phytoestrogens and iso-α-acids from hops, and the silicon from malt seem to
play a role in osteoporosis prevention. However, long-term clinical trials are needed to better predict
the impact of beer consumption on bone mass, a major concern for postmenopausal women suffering
from bone loss.

Table 3. Women studies evaluating the relationship between beer consumption and osteoporosis.

Authors
Year [Ref] Type of Study Study Population Key Finding

Pedrera-Zamorano et al.,
2009 [86] Cross-sectional

1697 women (710
premenopausal; 176
perimenopausal and
811 postmenopausal)
48.8 ± 12.59 years-old

Light or moderate consumption of
beer was associated to higher bone
mass in women independently on

their gonadal status.

Fairweather-Tait et al.,
2011 [76] Cross-sectional

2464 postmenopausal women
twins

56.3 ± 11.9 years-old

Beer consumption was not
associated with higher BMD.

Yin et al.,
2011 [82] Cross-sectional 428 women

62.6 ± 7.2 years-old

Low alcohol beer consumption
frequency was positively associated

with BMD at lumbar spine.

Yin et al.,
2011 [82]

Prospective
observational

428 women
62.6 ± 7.2 years-old

No association between beer
consumption frequency and BMD at

hip was found.

McLenon et al.,
2012 [81]

Prospective
observational

3173 women
50–62 years-old

Moderate beer consumption had a
positive significant effect on lumbar

spine BMD after adjustment
for lifestyle.

Kubo et al.,
2013 [85]

Prospective
observational

115,655 postmenopausal
women

50–79 years-old

No association was observed
between ≥ 1 servings of beer per

week and risk of hip fracture.

BMD: bone mineral density.

2.3. Beer and Body Hydration

Hydration has a crucial impact on a variety of factors related to the correct functioning of the body
and specific recommendations are needed for each population group. Female sex hormones affect the
body water balance, although it is still unclear how the regulation of hydration in women may enhance
wellness, safety, and mental and physical performance [101]. Estrogen and progesterone levels have
been correlated with body fluid regulation and thermoregulation changes [101]. As more water is
retained in the body when estrogen levels are high [102], hormonal depletion in menopause results in a
loss of hydration, which should be carefully monitored. Current literature reports that estrogen therapy
increases osmotic sensitivity and water retention, helping menopausal women to control diuresis and
prevent dehydration [14]. The effect of estrogen on fluid regulation in older women seems to be related
to sodium retention [102,103]. Not only the menopause but aging itself affects the fluid balance [14].
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An estimated intake of 2.5 L of water/day is considered necessary under normal conditions
or 3.5 L of water/day in hot weather or when exercising [104]. Perspiration while exercising may
cause an important depletion of water and electrolytes [105], as well as part of the body’s stored
glycogen. Most recommendations for sustaining the nutritional state and optimizing water absorption
during exercise include the intake of beverages containing carbohydrates and electrolytes, in particular
glucose–fructose and sodium [106]. Besides the main components of water and carbohydrates, beer
also contains electrolytes, which may play a role in maintaining water and electrolyte balance, although
the ethanol content may counteract these positive effects.

The effect of beer consumption on the overall hydration status has been studied among men.
Unfortunately, no studies on this issue have been performed in women. Hobson and Maughan
(2010) investigated the effect of low-alcohol doses on induced euhydration or hypohydration [107],
administering alcohol-free or alcoholic beer in each case to create four experimental conditions. In the
euhydrated group, those consuming alcoholic beer produced more total urine in the 4 h after intake
and for 3 h also exhibited considerably higher serum osmolality, a parameter associated with fluid
balance, although the difference had disappeared at 4 h, the end of the monitoring period. The authors
also mentioned that sodium excretion was notably lower in the alcohol consumers [108]. In an
elderly population with more hydration problems, Polhuis et al. (2017) observed a temporary diuretic
effect only after moderate consumption of stronger alcoholic beverages (wine, spirits), but not beer.
This demonstrates that: (i) moderate consumption of beer and other weak alcoholic beverages may
be safe in terms of hydration for the elderly and (ii) the diuretic effect was plainly triggered by the
amount of alcohol in the beverage [108].

Several studies have investigated the effect of beer or its components in those practicing sports,
monitoring hydration status, muscle performance, environmental conditions, and duration of exercise
in male athletes [105,109,110]. The most controversial component of beer is ethanol. An early study
from 1997 reported that the retention volume of the total fluid ingested was about 20% lower in those
who consumed an alcohol-free beer supplemented with 4% alcohol compared to those who drank
non-supplemented alcohol-free beer, following intermittent cycle ergometer exercises in the heat that
induced dehydration of up to 2% of body mass [111]. Alcohol itself undoubtedly has a negative effect
on exercise performance, although its extent may also depend on other factors, such as the mode
and duration of exercise [109]. In extreme conditions, when the body requires greater hydration, any
diuretic or anti-hydration effect of the ethanol in beer is more easily noted. Jiménez-Pavón et al. (2015)
observed that consumption of 660 mL of regular beer (4% alcohol) after 1 h of running in hot conditions
had no deleterious effect on any hydration marker [106]. Two other studies evaluated the effect of
water, beer or alcohol-free beer on fluid and electrolyte homeostasis in male athletes or physically
active men [112,113]. Castro-Sepulveda et al. (2016) reported that an intake of 700 mL of alcoholic
beer before aerobic exercising increased plasma K+ and decreased plasma Na+ during the exercise
activity, with a negative impact on athletic performance. Notably, this effect was not observed when
alcohol-free beer was administered, to the extent that the decrease in plasma Na+ during exercise was
lower than after the ingestion of water. Accordingly, alcohol-free beer might be an effective sports
drink for maintaining electrolyte homeostasis in males when taken before exercise [113]. In contrast,
another study found that rehydration of young, healthy, and physically active males with non-alcoholic
beer was not advantageous with regard to water [112]. A more recent study evaluated the effects
of ingesting isotonic drinks or beer with different alcohol concentrations after mild dehydration or
exercise among males. The net fluid balance was measured after a 5-hour observation period and
the lowest rate of fluid retention (21%) was obtained for beer with 5% alcohol, whereas the highest
(42%) was recorded for an isotonic sports drink [114]. Interestingly, the effects of modifying the sodium
and alcohol content of beer have also been studied [115,116]. Participants consumed low-alcohol beer
(2% alcohol + 25 or 50 mM/L of sodium) or normal beer (3.5% alcohol + 25 mM/L of sodium) and after
exercise, the greatest fluid retention was observed in consumers of beer with the highest electrolyte
content and the lowest concentration of alcohol (2% alcohol + 50 mM/L of sodium) [116].
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While non-alcoholic beer has promising effects in terms of fluid homeostasis in the context of aerobic
exercise, a low dose of alcohol (0.5 g/kg of body weight) consumed before muscle damage-inducing
anaerobic exercise had no impact on the posterior muscle performance or related water loss in ten
healthy young males [110].

Notably, all the aforementioned studies were performed in men. More research is needed to
understand the effects of different types of drinks on the hydration state of female athletes, in order to
improve performance and provide personalized supplementation recommendations [101].

3. Implications and Future Research

Most of the health benefits of beer are thought to be originated by its non-alcoholic components,
mainly polyphenols. Although found in small quantities in the final product, the flavonoid XN (whose
only source is hops) is of particular interest. Intestinal metabolites of related flavonoids, notably
8-PN, could also have an important role in human health. Other components, such as silicon or bitter
acids, may help to explain other health effects of beer consumption, such as improvement in bone
density. Nevertheless, the beneficial properties of beer components outlined in this review have not
been extensively studied because of the adverse effects of ethanol. Human interventional trials are
required to elucidate the real association between beer intake and health benefits in women, but the
consumption of ethanol is an important obstacle for their development. We, therefore, suggest a
directional change towards the non-alcoholic fraction of beer and its effect on the female population as
an interesting target for future studies. With some authors already using this strategy, a greater focus
on alcohol-free beer will lead to the emergence of more human trials and new evidence in this field.
Finally, new long-term randomized trials on the effects of moderate alcoholic and non-alcoholic beer
consumption (and other alcoholic beverages) on health and diseases, including cardiovascular disease,
obesity, diabetes, cancer, cognitive decline, osteoporosis, and others in women (and also in women) are
needed to better define the protective role (or not) of beer consumption, independent of other lifestyle
factors, on the aforementioned conditions.

4. Conclusions

Although the results of studies on abdominal fat deposition in female beer consumers are
inconsistent, moderate consumption appears not to have a significant effect on adiposity. Moderate
beer intake has also been associated with improved bone health in elderly women in observational
studies. Moreover, the non-alcoholic fraction of beer is of potential interest as a counteracting agent for
bone mass loss after menopause.

In the elderly, beer intake does not seem to pose a risk for hydration. When ingested before
exercise, beer with lower alcohol content has a better rehydration effect, and the consumption of
alcohol-free beer may even have a positive impact on electrolyte homeostasis. However, the effects of
beer on hydration in women still need to be investigated.
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