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1. Schizophrenia and major depressive disorder: implication 

of glutamate neurotransmission 

The human brain is likely the most complex biological organ. Complex systems 

have emerging properties that cannot be predicted from the properties of the 

single components. Hence, complex brain functions not only arise from the 

properties of individual brain regions, but also from the connectivity among 

different brain areas (Bullmore & Sporns, 2009). This concept implies that the 

brain network organization is important for its healthy functioning and that 

dysfunctions in connectivity may lead to brain disorders. In this regard, mental 

disorders have been considered as “connectopathies”, with complex 

pathological mechanisms that apply at the level of circuits and their 

communication (Bargmann & Lieberman, 2014).  

Indeed, psychiatric disorders, including schizophrenia and Major Depressive 

Disorder (MDD), that are treated as distinct categories in clinical practice, may 

share a common neural substrate, as it has been suggested by recent genetic 

and imaging studies (Cross-disorder group of the psychiatric genomics 

consortium, 2013; Chang et al., 2018; Sambataro et al., 2019; Tu et al., 2018). 

For instance, schizophrenic and depressed patients exhibited a similar pattern 

of thalamocortical hypoconnectivity, characterized by a decrease in 

thalamocortical functional connectivity with the dorsal anterior cingulate, 

anterior prefrontal cortex (PFC) and inferior parietal cortex (Tu et al., 2018). 

Thus, whereas classical theories on schizophrenia and MDD focus on 

disturbances of the brainstem monoamine systems (serotonin (5-HT), 

dopamine (DA) and noradrenaline), more recent views suggest that these 

disorders involve alterations of the glutamatergic excitatory 

neurotransmission. Indeed, glutamate (Glu) is the main excitatory 

neurotransmitter in the central nervous system and dysfunction of the 

glutamatergic system has been implicated in the pathophysiology of 
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schizophrenia and MDD (Krystal et al., 2003; Réus et al., 2016). Hence, the 

neocortex is composed by about 80-85 % excitatory pyramidal neurons whose 

activity is regulated by 15-20 % local inhibitory gamma-aminobutyric acid 

(GABA) interneurons. Likewise, many subcortical areas, such as the thalamus, 

the amygdala (Amg) or the hippocampus (HPC) have also a vast majority of 

glutamatergic excitatory neurons. Moreover, the cerebellum, a brain 

structure whose role in mental disorders has been typically neglected, 

contains a vast majority of excitatory neurons (there are 3-4 neurons in the 

cerebellum to every neuron in the cerebral cortex; Herculano-Houzel, 2010). 

 

1.1. Glutamate neurotransmission 

Glu was recognized as a neurotransmitter in the late 1970s and most 

excitatory synapses in the brain use it to carry impulses in the mammalian 

central nervous system (Meldrum, 2000). Glu is released into the synaptic 

cleft, where it binds on postsynaptic and presynaptic neural receptors and on 

glial cells. Glu receptors comprise the ionotropic and metabotropic receptors. 

Ionotropic receptors are ion channels that flux cations (calcium (Ca2+), sodium 

(Na+)) and they undergo conformational changes in response to agonist or 

antagonist binding. Ionotropic receptors can be subdivided into N-methyl-ᴅ-

aspartate receptors (NMDA-Rs), α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptors (AMPA-Rs) and kainate receptors (Traynelis 

et al., 2010). Metabotropic receptors activate or inhibit second messenger 

systems via interactions with G-proteins. To date, eight metabotropic Glu 

receptors have been identified (mGluR1-8) (Kim et al., 2008). 

NMDA-Rs have a widespread distribution and have been implicated in neural 

plasticity (Lau & Zukin, 2007), cognitive function (Collingridge et al., 2013), 

anti-NMDA-R encephalitis (Dalmau et al., 2008, 2019), as well as in 

neurodegenerative diseases (Gladding & Raymond, 2011) and psychiatric 
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disorders, such as schizophrenia (Snyder & Gao, 2013) and MDD (Amidfar et 

al., 2019). NMDA-Rs are highly permeable to Ca2+ and they were first studied 

due to their role in learning and memory (Bliss & Collingridge, 1993; Volianskis 

et al., 2015). The Ca2+ influx through NMDA-Rs is essential to up-regulate and 

down-regulate the strength of synaptic transmission, leading to induction of 

long-term potentiation (LTP) and long-term depression (LTD), respectively 

(Lisman, 2017).  

 

1.2. Schizophrenia 

Schizophrenia is a chronic psychiatric disorder characterized by positive 

symptoms (i.e., hallucinations and delusions, disorganized speech, 

disorganized or catatonic behavior), negative symptoms (i.e., avolition, social 

withdrawal, blunted affect), and cognitive deficits (i.e., working memory 

deficits, attentional deficits). This disorder affects nearly 1 % of the population 

(Perälä et al., 2007) with significant social and economic implications, partly 

because many patients have a very poor response to standard antipsychotic 

treatments (Howes et al., 2017). 

Current pharmacotherapy of schizophrenia targets the DA system (Miyamoto 

et al., 2005). It was proposed that hyperactivity in the mesolimbic DA pathway 

was the mediator of positive symptoms, whereas hypoactivity in the 

mesocortical DA pathway mediated the negative and cognitive symptoms of 

schizophrenia (McCutcheon et al., 2019; Meltzer & Stahl, 1976; Weinberger, 

1987). However, this model has been challenged by the NMDA-R 

hypofunction hypothesis of schizophrenia, which proposed that reduced 

NMDA-R activity might result in a reduced excitation of GABAergic 

interneurons and, subsequently, in a disinhibition of pyramidal cells, 

especially in the PFC (Lisman et al., 2008), leading to schizophrenic symptoms. 

This hypothesis arose from the observation that both acute or repeated 



Introduction 

6 

 

administration of phencyclidine (PCP) or ketamine, two non-competitive 

NMDA-R antagonists, induced schizophrenia-like symptoms in healthy 

humans or they exacerbated symptoms in schizophrenic patients (Javitt & 

Zukin, 1991; Lahti et al., 2001; Malhotra et al., 1996; Xu et al., 2015). 

 

1.3. Major depressive disorder 

According to the Diagnostic and Statistical Manual of Mental Disorders (5th 

ed.; DSM-5), the diagnosis of MDD requires a series of symptoms including 

depressed mood, loss of interest or pleasure in activities, irritability, lack of 

energy, dysregulated sleep or appetite, inability to concentrate, feelings of 

guilt or worthlessness, and suicidal ideation (American Psychiatric 

Association, 2013). The World Health Organization (WHO, 2017) estimates to 

affect 322 million people, a 4.4 % worldwide prevalence, and it is more 

common among females (5.1 %) than males (3.6 %). MDD is predicted to be 

the second leading cause of illness by 2030 (Mathers & Loncar, 2006) and it 

has a very high socioeconomic impact (Kessler, 2012; Trautmann et al., 2016), 

since mood disorders are estimated to cost 113 € billion to European 

countries (Gustavsson et al., 2011). The public health impact of depression is 

partially attributable to the lack of optimal treatments. 

Current standard pharmacological treatments for MDD are monoaminergic, 

based on the serendipitous discovery that drugs inhibiting the reuptake or 

metabolism of monoaminergic neurotransmitters elicited antidepressant 

effects (Kuhn, 1958; Wong et al., 1974). The therapeutic efficacy of these 

agents is limited by a delayed onset of action and low remission rates (Insel & 

Wang, 2009). Approximately one-third of depressed subjects are considered 

to have treatment-resistant depression (TRD), described as an inadequate 

response to adequate antidepressant therapy (Fava, 2003) or as failure to 

respond to one or more antidepressant treatments. However, compelling 



Introduction 

7 

 

evidence has stated the glutamatergic system as a mediator in MDD since a 

single administration of a sub-anesthetic dose of ketamine has been found to 

elicit fast-acting (within hours) and sustained (lasting up to 7 days) 

antidepressant effects in patients with TRD (Zarate et al., 2006a). 
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2. NMDA-R: structure, distribution and genetic models 

2.1. Structure of the NMDA-R 

NMDA-Rs are ligand-gated cation channels permeable to Na+, potassium (K+) 

and Ca2+. They were first identified in 1981 (Watkins & Evans, 1981), and they 

mediate excitatory signaling in the presence of glycine and Glu. NMDA-Rs 

exhibit particular properties that differentiate them from other ligand-gated 

ionotropic receptors, namely voltage-dependent blockade by magnesium 

(Mg2+) ions and high permeability to Ca2+ ions. At resting membrane potential, 

the pore of the NMDA-R channel is blocked by physiological levels of 

extracellular Mg2+, which reduces Ca2+ influx. A depolarization of sufficient 

amplitude and duration is required to release the Mg2+ ions from the pore, 

thereby allowing NMDA-Rs activation. They are called coincidence detectors 

(Nowak et al., 1984; Tabone & Ramaswami; 2012), meaning that they need 

the simultaneous stimulation of presynaptic and postsynaptic neurons. 

Therefore, NMDA-R activation requires depolarization of the postsynaptic 

neuron, which allows removal of Mg2+, and Glu release from the presynaptic 

neuron. A third element is needed, which is the presence of glycine or ᴅ-

serine. 

NMDA-Rs are tetrameric complexes (Figure 1) composed of two GluN1 

subunits with either two GluN2 subunits (i.e., GluN2A, GluN2B, GluN2C, and 

GluN2D) or a combination of GluN2 and GluN3 subunits (i.e., GluN3A or 

GluN3B) (Ulbrich & Isacoff, 2008). A single gene encodes the GluN1 subunit 

(GRIN1), whereas GluN2 subunits are encoded by four different genes 

(GRIN2A-D) and GluN3 subunits by two different genes (GRIN3A-B). Typically, 

NMDA-Rs are di-heteromers comprising two GluN1 subunits and two GluN2 

or GluN3 subunits. However, they can also assemble as tri-heteromers, such 

as GluN1/GluN2A/GluN2B or GluN1/GluN2A/GluN2C. Combinations of these 

subunits results in channels with unique pharmacological and biological 
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properties (Cull-Candy & Leszkiewicz, 2004). GluN1 and GluN3 subunits 

contain an agonist-binding domain that binds glycine or ᴅ-serine (Labrie & 

Roder, 2010) while Glu binds to the GluN2 subunit (Furukawa et al., 2005). 

Therefore, the activation of NMDA-Rs composed of GluN1/GluN2 subunits 

requires two molecules of glycine and two molecules of glutamate, while 

NMDA-Rs composed of GluN1/GluN3 subunits only require glycine. Most of 

glycine binding sites are naturally occupied because glycine is present in the 

extracellular environment of the nervous system (cerebrospinal fluid contains 

glycine; Iijima et al., 1978). On the other hand, Glu is the major excitatory 

neurotransmitter of the mammalian brain and it is released from presynaptic 

terminals of glutamatergic synapses, which make up about 90 % of cortical 

synapses (Santuy et al., 2018). 

 

 
Figure 1. NMDA receptor. Tetramer composed of two GluN1 subunits (NR1) and two 
GluN2 subunits (NR2A and NR2B). At resting membrane potential, the pore is blocked 
by Mg2+. Activation of the receptor requires two molecules of glycine that bind to 
GluN1 and two molecules of Glu that bind to GluN2. Within the channel, there is the 
PCP binding site, an allosteric site where non-competitive NMDA-R antagonists bind. 
Modified from Jaso et al., 2017. 
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2.2. Distribution of NMDA-R subunits in the brain 

Given that the GluN1 subunit is essential for the formation of the NMDA-R, its 

expression is ubiquitous throughout the central nervous system and at every 

developmental stage. However, GluN2 and GluN3 subunits show distinct 

region- and age-dependent expression patterns (Pachernegg et al., 2012; 

Pérez-Otaño et al., 2016; Sanz-Clemente et al., 2013).  

During prenatal development, GluN2B and GluN2D are the predominant 

subunits, while GluN2A and GluN2C expression is more abundant after birth. 

In the adult brain, GluN2A and GluN2B are highly expressed in PFC and HPC 

and they are involved in learning and memory via regulation of LTP and LTD 

(Baez et al., 2018; McQuail et al., 2016). It has been reported that GluN2A is 

more abundant at synapses compared to extra-synaptic locations, while 

GluN2B is enriched at extra-synaptic locations (Groc et al., 2006). The GluN2C 

subunit is highly expressed in the cerebellum (Farrant et al., 1994; Karavanova 

et al., 2007; Monyer et al., 1994; Wenzel et al., 1997), specifically in cerebellar 

granule neurons (Scherzer et al., 1997; Bhattacharya et al., 2018), and in the 

olfactory bulb (OB) (Wenzel et al., 1997). It is also found in thalamus, including 

the reticular nucleus (RtN) (Hillman et al., 2011; Ravikrishnan et al., 2018; 

Zhang et al., 2009; Zhang et al., 2012) and in the retrosplenial cortex (RSC), 

pontine and vestibular (Ve) nuclei (Karavanova et al., 2007). Studies have also 

reported GluN2C expression in layer 4 of the somatosensory cortex (Binshtok 

et al., 2006) and in parvalbumin-positive neurons in globus pallidus and 

substantia nigra (Ravikrishnan et al., 2018). In cortex, striatum, HPC and Amg, 

GluN2C-expressing cells did not co-localize with parvalbumin-positive 

neurons, but with astrocytes (Ravikrishnan et al., 2018). In contrast, a study 

reported GluN2C expression in GABAergic interneurons of the PFC (Xi et al., 

2009). Furthermore, the GluN2C subunit is also expressed in oligodendrocytes 

in the white matter of the cerebellum (Káradóttir et al., 2005). The GluN2D 
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subunit is highly expressed in diencephalon, mesencephalon and spinal cord 

(Monyer et al., 1994).  

In rodents, GluN3 is abundantly expressed during neonatal stage and its 

expression declines during adulthood (Al-Hallaq et al., 2002; Ciabarra et al., 

1995). Prenatally, GluN3A is expressed in spinal cord, medulla, pons, 

tegmentum, hypothalamus and thalamus, and postnatally is also found in OB, 

HPC, Amg, cerebral cortex and cerebellum (Ciabarra et al., 1995; Wong et al., 

2002). On the other hand, GluN3B subunit is found in motoneurons of the 

brain stem and spinal cord (Chatterton et al., 2002; Nishi et al., 2001) and it is 

also expressed at low levels in forebrain regions, such as the HPC, cerebral 

cortex, striatum, nucleus accumbens (NAc) and cerebellum (Wee et al., 2008).  

GluN2A and GluN2B subunits have high sensitivity to Mg2+ block, while 

GluN2C and GluN2D subunits display low conductance openings and weaker 

NMDA-R inhibition by Mg2+ (Cull-Candy & Leszkiewicz, 2004). GluN2C-

containing receptors show relatively unique channel properties, such as low 

conductance levels, reduced permeability of Ca2+ ions and less sensitivity to 

extracellular Mg2+ blockade compared with GluN2A and GluN2B subunits 

(Traynelis et al., 2010). This relatively low sensitivity to Mg2+ block would allow 

the GluN2C-containing receptors to be activated by ambient Glu because they 

would be able to open without a depolarization (Cull-Candy et al., 2001). 

 

2.3. Genetic models of NMDA-R subunits 

The development of subunit-selective drugs would facilitate the investigation 

of the role of NMDA-R subunits in animal behavior, however to date only 

GluN2B subunit-selective antagonists like ifenprodil (Carter et al., 1989) or Ro 

25-6981 have been developed. Therefore, genetic models have provided 

current data on the role of GluN1, GluN2A, GluN2C and GluN2D subunits.  
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Null mutation of GRIN1 is lethal (Forrest et al., 1994). Therefore, a genetic 

model for the GluN1 subunit is the GluN1 knockdown (GluN1KD), which is 

used to reproduce the NMDA-R hypofunction hypothesis of schizophrenia 

(Ramsey, 2009). GluN1KD mice presented deficient sensory processing 

measured in the pre-pulse inhibition (PPI) paradigm, no deficits on locomotor 

coordination and altered social behavior (Duncan et al., 2004). Moreover, 

GluN1KD mice exhibited age-dependent striatal spine density deficits 

(Ramsey et al., 2011) and reductions in white matter volumes in substantia 

nigra and striatum (Intson et al., 2019). 

GluN2A knockout (GluN2AKO) mice resulted in an anxiolytic- and 

antidepressant-like profile with normal sensory functions, as shown by a 

normal PPI of the startle response (Boyce-Rustay & Holmes, 2006). These mice 

presented impaired spatial working memory (Bannerman et al., 2008) and 

enhanced brain monoaminergic activity (Petrenko et al., 2013). On the other 

hand, GluN2A deletion decreased dendritic length and dendritic complexity in 

dentate granule neurons located in the inner granular zone (Kannangara et 

al., 2014).  

Regarding the GluN2B subunit, its genetic ablation was associated with 

perinatal lethality, likely because of abnormal suckling behavior (Kutsuwada 

et al., 1996).  

Studies using mice lacking the GluN2C subunit have found that this subunit 

plays an important role in the acquisition of conditioned fear and working 

memory (Hillman et al., 2011), but not in motor coordination (Kadotani et al., 

1996). These mice did not exhibit deficits in PPI, though they had a 

significantly higher startle response (Gupta et al., 2016). Regarding oscillations 

of pyramidal neurons in the medial PFC (mPFC), GluN2CKO mice presented 

reduced miniature excitatory postsynaptic current (mEPSC) frequency and 

dendritic spine density and higher frequency of miniature inhibitory 
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postsynaptic currents (mIPSC) (Gupta et al., 2016). Likewise, GluN2CKO mice 

have allowed determining that burst firing in reticular thalamic neurons is 

controlled by NMDA-Rs containing the GluN2C subunit (Liu et al., 2019). 

Concerning the GluN2D subunit, GluN2DKO mice displayed anhedonia and a 

depressive-like state (Yamamoto et al., 2017). The administration of ketamine 

did not increase locomotor activity in these mice, while wild-type (WT) mice 

exhibited hyperlocomotion under the same conditions (Sapkota et al., 2016). 

Moreover, GluN2DKO mice were less sensitive to the motor impairment 

induced by PCP (Yamamoto et al., 2013).  

Finally, young GluN3AKO mice exhibited increased spine densities, suggesting 

a role of this subunit in synaptic development and neural plasticity (Das et al., 

1998).  
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3. Non-competitive NMDA-R antagonists 

3.1. MK-801, PCP and ketamine 

Dizocilpine (MK-801), PCP and ketamine are non-competitive NMDA-R 

antagonists. They bind to an allosteric site on the receptor, known as the PCP 

binding site (Temme et al., 2018), which is found within the ion channel 

(Figure 1). An allosteric site allows a molecule to activate or inhibit the 

receptor without competing with the endogenous ligand. Since the NMDA-R 

is blocked by a Mg2+ ion and the allosteric site is within the channel, MK-801, 

PCP and ketamine can only block the channel once the receptor is open. All 

three drugs share the ability to produce anesthesia through the blockade of 

NMDA-Rs (Daniell, 1990). Moreover, their pharmacological potency to elicit 

anesthesia parallels their affinity for the PCP binding site, which is: MK-801 > 

PCP > ketamine.  

MK-801 was originally described as a potent anticonvulsant agent 

(Clineschmidt et al., 1982). Nowadays, it is mainly used as a research tool 

because it showed neurotoxic-like effects, called Olney’s lesions, in certain 

brain regions of rats (Kuroda et al., 2015; Olney et al., 1989).  

PCP (formerly known as CI-395) was synthesized in 1956 at the 

pharmaceutical company Park Davis as a surgical anesthetic. In humans, it was 

considered a safe compound until some patients experienced adverse effects 

during recovery, such as prolonged post-surgery delirium. This fact prompted 

its abandonment except in veterinary medicine. In the 1960s and 70s it 

became popularized as a recreational drug (currently classified as Schedule II 

hallucinogen) under the street names of angel dust, hog or belladonna among 

others (Bertron et al., 2018).  

Ketamine is a chemical derivative of PCP and its effects on humans as a 

dissociative anesthetic were first described in 1965 (Domino et al., 1965). 
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Actually, ketamine replaced PCP in the clinical practice and is currently used 

as an anesthetic and analgesic (Elia & Tramèr, 2005; Hocking & Cousins, 2003). 

During the Vietnam War, ketamine became a widely used treatment for 

American troops. In 1999, because of its emergence as a club drug due to its 

hallucinogenic properties, the Drug Enforcement Administration (DEA) of the 

United States of America classified ketamine under schedule III of the 

Controlled Substance Use Act, a category designated for substances with a 

moderate to low potential for physical and psychological dependence. Later 

on, the antidepressant effects of ketamine were discovered and in 2000 the 

first placebo-controlled, double-blinded clinical trial reporting antidepressant 

actions was published (Berman et al., 2000). 

 

3.2. Psychotomimetic effects of non-competitive NMDA-R 

antagonists in rodents: a pharmacological model of schizophrenia 

The administration of non-competitive NMDA-R antagonists, typically PCP but 

also MK-801 and ketamine, mimic some of the symptoms of schizophrenia in 

experimental animals, such as rodents (Lee & Zhou, 2019) and nonhuman 

primates (Elsworth et al., 2015), and have served as pharmacological models 

of this disorder. These models are intended to assess specific 

endophenotypes (behavioral traits) instead of modeling the disease as a 

whole. Moreover, they are aimed at providing tools with high predictive 

validity. 

In rodents, the psychotomimetic effects of NMDA-R antagonists are 

potentially related to the positive symptoms of schizophrenia, as they are 

prevented or reversed by antipsychotic medications (Adell et al., 2012; Krystal 

et al., 2003; Moghaddam & Jackson, 2003;). In addition, non-competitive 

NMDA-R antagonists also produce negative and cognitive deficits of relevance 

to schizophrenia (Neill et al., 2010). Behaviors associated with negative 

https://apps.webofknowledge.com/OneClickSearch.do?product=UA&search_mode=OneClickSearch&excludeEventConfig=ExcludeIfFromFullRecPage&SID=D61vLAaFdLeMYqxZYFc&field=AU&value=Cousins,%20MJ
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symptoms are social withdrawal and anhedonia, assessed by social interaction 

and sucrose preference tests. Regarding cognitive impairments, deficits in 

working memory, attention, visual learning and memory, reasoning and 

problem solving as well as social cognition have been identified using a variety 

of behavioral tests, such as novel object recognition test, attentional set-

shifting task, Y-maze, T-maze or Morris water maze among others. Moreover, 

deficits in sensorimotor gating found in schizophrenics can be assessed in 

rodents using the PPI test (Geyer et al., 2001; Powell et al., 2012). 

The effects of acute and repeated treatments have been assessed on a large 

number of variables, with long-term exposure to non-competitive NMDA-R 

antagonists more likely resembling the core symptoms of the illness. The 

acute administration of non-competitive NMDA-R antagonists in rodents 

produces psychotomimetic effects, characterized by increased locomotor 

activity, ataxia signs, stereotypies, as well as disorganization in the locomotor 

pattern and a decrease in the exploratory activity (Andiné et al., 1999; 

Carlsson & Carlsson, 1990; Geyer & Ellenbroek, 2003; Nilsson et al., 2001, 

2006; Scorza et al., 2008; Tricklebank et al., 1989). Moreover, NMDA-R 

blockade produces deficits in PPI (Leung & Ma, 2017), memory (Rogóz & 

Kaminska, 2016; Wiescholleck & Manahan-Vaughan, 2012) and social 

interaction (Rung et al., 2005). When given subchronically, non-competitive 

NMDA-R antagonists induce a sensitization of acute locomotor effects and 

prolonged impairments in cognitive function, including novel object 

recognition, an analog of human declarative memory (Castañé et al., 2015; 

Meltzer et al., 2013; Szlachta et al., 2017). In addition, chronic administration 

also leads to decreased social interaction and PPI (Matsuoka et al., 2005; Unal 

et al., 2018).  

In order to incorporate a neurodevelopmental element in the 

pathophysiology of schizophrenia (Fatemi & Folsom, 2009), non-competitive 

NMDA-R antagonists can also be subchronically administered during early 
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development, generally on the first two weeks of postnatal life. During this 

critical period of neurodevelopment, chronic NMDA-R blockade leads to 

structural, neurochemical and functional alterations in the brain that last up 

to adulthood. Neonatal models have been shown to cause decreased 

exploratory behavior and slower spatial learning (Latysheva & Rayevsky, 

2003), attentional deficits (Redrobe et al., 2012) and retarded PPI (Wang et 

al., 2001). 

 

3.3. Non-competitive NMDA-R antagonists and depression 

3.3.1. Antidepressant effects of ketamine 

It has been shown that a single intravenous infusion of ketamine (0.5 mg/kg) 

reduces depression severity and suicidality within 4 hours in patients with TRD 

and this effect can last up to 1 week (Berman et al., 2000; Xu et al., 2016; 

Zarate et al., 2006a). Moreover, some clinical trials assessing the effectivity of 

intranasal esketamine ((S)-ketamine, one of ketamine’s enantiomers) have 

revealed that it also exhibited a rapid and sustained antidepressant effect in 

patients with TRD (Daly et al., 2018) and it improved depressive symptoms 

and suicidal ideation in depressed patients at imminent risk for suicide 

(Canuso et al., 2018). As a result, on March 5, 2019, the United States Food 

and Drug Administration (FDA) approved Janssen Pharmaceutical Company 

(S)-ketamine nasal spray for the treatment of patients with MDD resistant to 

conventional antidepressant drugs (FDA, 2019). A previous study had 

demonstrated the efficacy of intranasal ketamine in TRD, a much more 

convenient administration route than intravenous infusion (Lapidus et al., 

2014). However, ketamine administration was also shown to elicit transient 

perceptual disturbances, such as mild depersonalization (detachment from 

the body and self), derealization (detachment from the environment and 

reality), altered body and time perception, euphoria, anxiety… Moreover, it 
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also caused physical side effects, like dizziness, nausea, and mild increases in 

blood pressure and heart rate (Loo et al., 2016; Romeo et al., 2015). These 

adverse effects decline within a few minutes of stopping ketamine infusion 

and fully disappear within 2 h.  

Preclinical studies have reported that ketamine produced behavioral 

antidepressant-like effects, initiated protein synthesis and its action was 

mediated by AMPA-Rs (Autry et al., 2011; Koike et al., 2011; Li et al., 2010; 

Maeng et al., 2008; Zhou et al., 2014). In these studies, a single intraperitoneal 

injection of ketamine (2.5-30 mg/kg) elicited rapid antidepressant-like effects 

in adult male rodents, demonstrated by a reduction in forced swim test (FST) 

or tail suspension test (TST) immobility time. Specifically, ketamine was found 

to promote rapid synthesis of brain-derived neurotrophic factor (BDNF) in 

HPC (Autry et al., 2011). Ketamine also rapidly activated the mammalian 

target of rapamycin (mTOR) pathway, resulting in rapid and sustained 

increase of synapse-associated proteins and spine number in PFC (Li et al., 

2010). Moreover, ketamine’s antidepressant-like effects were mediated by 

AMPA-Rs since 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-

dione (NBQX), an AMPA-R antagonist, prevented them (Koike et al., 2011; 

Maeng et al., 2008). These results were replicated and extended by Zhou et 

al. (2014), who observed that the levels of mTOR in rat HPC and PFC were 

modulated by NBQX and CX546 (an AMPA receptor agonist), further 

supporting the idea that AMPA-Rs mediate ketamine-induced antidepressant 

effects and mTOR activation. 

 

3.3.2. Importance of sex in depression 

Understanding how sex influences physiological and behavioral responses is 

essential to develop appropriate treatments, especially in the field of 

neuropsychopharmacology, which seeks to design therapeutics for disorders 
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that exhibit sex bias in the frequency, severity or response to treatment. 

Biomedical research in female animals -particularly in the field of mental 

health- has been largely neglected until recently, despite the fact that lifetime 

prevalence of MDD is twice as much in women than in men (Albert, 2015). 

Therefore, it would seem adequate to use subjects of both sexes in all 

experiments in preclinical research. Among the different reasons that 

advocate for not including female rodents in experiments, one is the fear that 

due to their estrous cycle, female rodents would increase variability and the 

testing of more subjects would be needed (Mogil, 2016). In a meta-analysis, 

behavioral, morphological, physiological and molecular traits were monitored 

in male and in female mice tested without considering the estrous cycle stage. 

They found that variability was not significantly greater in females than males 

and concluded that the use of female mice in neuroscience experiments does 

not require monitoring of the estrous cycle (Prendergast et al., 2014). Another 

study evaluating the effect of sex on the open field and the water-maze 

concluded that not tracking the estrus cyclicity of female mice did not cause 

a relevant increase of data variability (Fritz et al., 2017). 

In 2013, the first study exhibiting different sensitivities to ketamine’s 

antidepressant action between male and female rats was published (Carrier 

& Kabbaj, 2013). They reported that a low dose of ketamine (2.5 mg/kg) 

elicited antidepressant-like effects in female rodents, while it was not 

effective in their male counterparts. Moreover, they found that this sensitivity 

depended on estrogen and progesterone, since this low dose of ketamine did 

not induce antidepressant-like effects in ovariectomized female rats. In mice, 

the same results were replicated using a higher dose (3 mg/kg) in the FST 

(Franceschelli et al., 2015) and it was also suggested that this higher sensitivity 

could be mediated by estradiol, an ovarian hormone (Dossat et al., 2018). 
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3.4. Mechanism of action of non-competitive NMDA-R antagonists  

The administration of MK-801, PCP or ketamine increases Glu release and 

disorganizes the firing of cortical neurons (Homayoun et al., 2005; Lorrain et 

al., 2003; Moghaddam & Adams, 1998). Considering that NMDA-Rs are 

ubiquitously expressed in the central nervous system, it is of relevance to 

know if they preferentially act on specific NMDA-Rs subunits or on particular 

neurons or brain regions expressing NMDA-Rs. However, there is still 

uncertainty concerning their exact mechanism of action. For PCP and MK-801, 

the prevailing view is that they may block tonically active NMDA-Rs on 

GABAergic interneurons, suppressing their inhibitory effect. For ketamine, 

there are different hypothesis, not mutually exclusive, to explain its effects. 

 

3.4.1. Disinhibition hypothesis  

The disinhibition hypothesis proposes that non-competitive NMDA-R 

antagonists would preferentially act on NMDA-Rs expressed on GABAergic 

interneurons (Tsai & Coyle, 2002) (Figure 2). Under normal conditions, the 

activity of pyramidal neurons is under the control of GABAergic interneurons. 

Without this GABAergic inhibition, excitatory inputs onto pyramidal neurons 

would lead to an ever-increasing activation. It was suggested that GABA 

interneurons sense pyramidal cell activity through NMDA-Rs and, by 

modulating their inhibitory effect, they would stabilize overall pyramidal cell 

firing. However, the action of non-competitive NMDA-R antagonists would be 

interpreted as decreased pyramidal cell activity. Consequently, GABAergic 

interneurons would reduce their inhibitory output in order to compensate for 

the apparent inactivity. Therefore, non-competitive NMDA-R antagonists, by 

selectively reducing the excitation of interneurons, would increase pyramidal 

cell firing and induce schizophrenia-like symptoms. 
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This hypothesis presumes that interneurons may have a lower threshold for 

action potential generation compared with pyramidal cells, which is 

something that was suggested to occur in the HPC, where GABAergic 

interneurons were 10-fold more sensitive to NMDA-R antagonists than the 

pyramidal neurons (Grunze et al., 1996). This would mean that interneurons 

would be more depolarized, implying a higher amount of opened NMDA-Rs, 

since they are voltage gated. Given this situation, non-competitive NMDA-R 

antagonists would preferentially block NMDA-Rs in GABAergic interneurons 

because they are already activated.  

Previous studies of our group showed that PCP may act primarily on the 

GABAergic cells of the RtN of the thalamus, (Kargieman et al., 2007; Santana 

et al., 2011; Troyano-Rodriguez et al., 2014). GABA neurons in RtN, exert a 

tonic, feed-forward inhibitory effect on the rest of thalamic excitatory nuclei. 

Therefore, blockade of NMDA-Rs in RtN neurons led to disinhibition of 

excitatory thalamocortical neurons and a subsequent increase of pyramidal 

neuron discharge in mPFC. MK-801, in turn, appeared to act preferentially on 

GABAergic interneurons of the PFC (Homayoun & Moghaddam, 2007), since 

MK-801 administration decreased the firing rate of fast-spiking cells (putative 

interneurons) and increased the firing rate of regular-spiking cells (putative 

pyramidal neurons) in the PFC. In the case of ketamine, this hypothesis is 

supported by a study showing an increase in overall activity in the PFC in 

healthy volunteers after ketamine administration (Breier et al., 1997). In 

rodent studies, ketamine was also found to increase extracellular Glu levels in 

the PFC (Moghaddam et al., 1997). In another study, ketamine administration 

led to a reduction in the firing rate of putative interneurons, but, on average, 

did not produce any change on the firing rate of putative pyramidal neurons 

(Quirk et al., 2009). More recently, the effects of ketamine have been assessed 

in anesthetized and awake rats. Using exactly the same experimental 

conditions as for the PCP experiments in anesthetized rats (Kargieman et al., 
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2007; Santana et al., 2011; Troyano-Rodriguez et al., 2014), ketamine also 

inhibited the activity of RtN neurons, but unlike PCP, this effect did not 

translate into a disinhibition of thalamic and cortical neurons, which were 

equally inhibited by ketamine (Amat-Foraster et al., 2018). However, in awake 

rats, ketamine and PCP induced a comparable –and moderate– excitatory 

effect of thalamic and cortical neurons (Amat-Foraster et al., 2019). 

Interestingly, the latter study showed that both pyramidal neurons and GABA 

interneurons in mPFC were excited by PCP and ketamine, which allows to 

exclude the cortical disinhibition as a mechanism of action for both drugs. The 

remarkable differences of ketamine’s effects in awake and anesthetized rats 

cast doubts on previous ketamine studies using anesthesia. 

 

 

Figure 2. Disinhibition hypothesis. Activation of thalamocortical circuits by the action 
of non-competitive NMDA-R antagonist on GABAergic interneurons. Redrawn from 
Troyano-Rodríguez et al., 2014. 

 

3.4.2. Direct inhibition hypothesis 

The direct inhibition hypothesis proposes that ketamine would inhibit extra-

synaptic NMDA-Rs (Figure 3). Under normal conditions, there are extra-

synaptic NMDA-Rs, not located in the post-synaptic density (Hardingham & 
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Bading, 2010), and mainly formed by the GluN2B subunit (Groc et al., 2006). 

These extra-synaptic GluN2B-containing NMDA-Rs are tonically activated by 

low levels of ambient glutamate, which are directly regulated by Glu 

transporters expressed by astroglial cells (Rothstein et al., 1996). Moreover, 

these receptors, through the mTOR signaling pathway, limit protein synthesis 

and regulate excitatory synaptic plasticity (Miller et al., 2014; Wang et al., 

2011; Wang et al., 2013). Therefore, ketamine is hypothesized to specifically 

block the extra-synaptic GluN2B-containing NMDA-Rs, preventing their tonic 

activation and enabling protein synthesis.  

This hypothesis is supported by studies showing that GluN2B-selective NMDA-

R antagonists induce antidepressant effects. In humans, intravenous 

administration of CP-101,606 (traxoprodil), a GluN2B-selective NMDA-R 

antagonist, induced antidepressant effects in patients with MDD refractory to 

treatment with selective serotonin reuptake inhibitor (SSRI) therapy, though 

this effect was not rapid but appeared 5 days after treatment (Preskorn et al., 

2008). There have been no further studies replicating these results. In 

rodents, Ro 25-6981, a GluN2B-selective antagonist, transiently activated 

mTOR signaling in PFC, increasing levels of synaptic proteins and producing 

antidepressant-like responses in the FST and the novelty suppressed feeding 

test (NSFT) (Li et al., 2010). Moreover, microinfusion of Ro 25-6981 into mPFC 

was sufficient to mimic the antidepressant-like effect of systemic Ro 25-6981 

administration in the FST (Kiselycznyk et al., 2015). In mice lacking the GluN2B 

subunit, specifically in NMDA-Rs localized in pyramidal neurons, ketamine 

injection did not further decrease behavioral despair (Miller et al., 2014).  

It must be taken into consideration that studies have reported that ketamine 

has greater selectivity for GluN2C- and/or GluN2D-containing NMDA-Rs 

compared with GluN2B- and GluN2A-containing receptors (Khlestova et al., 

2016; Kotermanski & Johnson, 2009). Therefore, it is uncertain how ketamine 
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would preferentially act on GluN2B-containing receptors to elicit its 

antidepressant actions. 

 

 

Figure 3. Direct inhibition hypothesis. Ketamine would antagonize NMDA-Rs at 
excitatory synapses onto pyramidal neurons that are tonically activated by ambient 
glutamate. Created using BioRender. 

 

While inconclusive, discrepancies between these hypotheses could be 

explained by distinct preference for NMDA-R subunits, brain areas and/or by 

different sub-populations of interneurons being affected by non-competitive 

NMDA-R antagonists. 
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4. Cerebellum 

As mentioned above, the cerebellum has been a neglected brain structure in 

mental disorders. Over the years, research in this field has mainly focused on 

cortical and limbic areas, leaving aside the cerebellum, which –together with 

basal ganglia circuits– plays a major role in motor behavior. However, a few 

researchers in schizophrenia (mainly Nancy C. Andreasen) have stressed the 

role of cerebellum in schizophrenia (Andreasen et al., 1998, 1999) and recent 

studies suggest a key role of the cerebellum in higher brain functions, 

including cognition (Koziol et al., 2014; Sokolov et al., 2017). For this reason, 

and given the relevance of cerebellar GluN2C-containing NMDA-Rs found in 

the present Thesis, here I summarize some relevant aspects about the 

functional architecture of the cerebellum. 

 

4.1. Functional architecture of the cerebellum 

The cerebellar cortex is composed of three different layers and each layer has 

distinct cell types (Figure 4). The granular layer is the innermost layer and it 

contains millions of small granule cells (the most numerous cell type in the 

brain), in addition to excitatory Golgi cells, Lugaro cells, mossy fibers, and 

unipolar brush cells. The middle layer is called the Purkinje cell layer because 

it primarily contains Purkinje cell somas, apart from candelabrum 

interneurons and astrocytes called Bergmann glia. The superficial layer, called 

molecular layer, is made up primarily of the large dendrites of Purkinje cells 

as well as granule cells axons, referred to as parallel fibers, but also contains 

stellate and basket cell inhibitory interneurons and climbing fibers. 

Climbing fibers and mossy fibers constitute the majority of the afferents 

entering the cerebellum. Climbing fibers terminate within the molecular layer 

and each one of them forms several synaptic contacts with the dendrites of a 



Introduction 

26 

 

single Purkinje cell (each Purkinje cell is innervated by one climbing fiber). 

Mossy fibers terminate within the granular layer, where they deliver 

excitatory signals to granule cells. Granule neurons are excitatory and convey 

the information providing a single ascending axon that bifurcates into a 

parallel fiber and synapses with the dendrites of Purkinje cells. Purkinje cells 

are inhibitory and deliver the output of the cerebellar cortex to the deep 

cerebellar nuclei (DCN), which send projections back to the brainstem, or to 

the cerebral cortex via the thalamus.  

Below the three layers, embedded in the white matter, there are the DCN. 

These three bilateral pairs of cerebellar nuclei, called fastigial, interposed and 

lateral nucleus (LN), transmit the output of the cerebellum to the rest of the 

brain and spinal cord (Sillitoe & Joyner, 2007). 

 

Figure 4. Structural organization of the cerebellar cortex. There are three different 
layers with distinct cell types. The afferents to the cerebellar cortex are the climbing 
fibers and the mossy fibers. Copied from Mosconi et al., 2015. 
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4.2. Cerebellum and NMDA-R subunits 

In the adult cerebellum, each layer and cellular type exhibits a different GluN 

subunit profile. Purkinje neurons mostly express GluN2A subunit, followed by 

GluN2D and low levels of GluN2C, while granule cells show high levels of 

GluN2C subunit and moderate levels of GluN2A and GluN2D subunits 

(Scherzer et al., 1997). Moreover, GluN3A and GluN3B expression has been 

described in the three layers of the cerebellar cortex, with GluN3A being 

especially expressed in granule neurons (Wong et al., 2002) and GluN3B in 

Purkinje cells (Wee et al., 2008). 

Granule cells show changes in the expression of the different GluN2 subunits 

during development. The GluN2B subunit is expressed during migration and 

after arrival in the internal granular layer, but its expression disappears in 

adulthood (Monyer et al., 1994). In contrast, GluN2A subunit expression 

begins postnatally during migration. Conversely, the GluN2C subunit is not 

detected in the internal granular layer of the immature brain, but it is heavily 

expressed during synaptic pruning (Monyer et al., 1994).  

 

4.3. Motor functions and cortico – cerebellar connectivity 

The cerebellum has long been regarded as contributing to the planning, 

learning and execution of movement (Clarac, 2008). The hallmark of 

cerebellar damage is not loss of movement, but loss of sensorimotor 

coordination or impaired timing (Bareš et al, 2010). In fact, it acts as a 

coordination center, using sensory inputs from the periphery to fine-tune 

movement and balance. The cerebellum receives a copy of the motor 

commands and, based on this information and exteroceptive and 

proprioceptive inputs, it predicts the sensory outcome of that motor act 

(Blakemore et al., 2001). A sensory discrepancy between the intended 
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movement and the actual movement allows for rapid adjustments in the 

motor output, essential for learning and refine coordination. The extremely 

high discharge rate of granule and Purkinje cells (up to 200 Hz for granule cells 

in certain experimental conditions) allows for these fast adjustments in a 

feed-forward manner. 

The cerebellum is reciprocally connected with the neocortex and the basal 

ganglia and these connections are mediated by different nuclei of the 

thalamus (Figure 5) (Bostan et al., 2013, 2018). The motor cortex projects via 

the pons to granule cells in the cerebellar cortex (Kelly & Strick, 2003) and it 

also projects to the striatum in the basal ganglia (Bolam et al., 2000). Studies 

have suggested that regions of the cerebellar cortex that receive input from 

the motor cortex are the same as those that project to the motor cortex (Kelly 

& Strick, 2003). Efferents from the DCN, being the LN (or dentate nucleus in 

humans) the major output nucleus of the cerebellum, project to multiple 

subdivisions of the thalamus (Percheron et al., 1996). One of these 

subdivisions is the motor thalamus, which includes the ventrolateral (VL) and 

ventral anterior (VA) nuclei and receives massive afferents from the 

cerebellum and basal ganglia, conveying the information to motor cortical 

areas (Kuramoto et al., 2009). In addition, the motor thalamus and the central 

lateral (CL) thalamic nucleus receive GABAergic afferents from the RtN 

(Kuramoto et al., 2011; Lam & Sherman, 2015; Sawyer et al., 1991). The VL 

receives glutamatergic projections from the LN (Dum & Strick, 2003; 

Kuramoto et al., 2011; Tanaka et al., 2018) and the VA receives GABAergic 

projections from the basal ganglia, specifically from the substantia nigra pars 

reticulata (SNr) (Kuramoto et al., 2011; Tanaka et al., 2018). It is unlikely that 

the motor thalamus integrates information from cerebellum and basal ganglia 

because projections from both areas do not converge at the neuronal level or 

within a territory (Bosch-Bouju et al., 2013). The cerebellum and basal ganglia 

are also directly linked, since the LN projects to the striatum through the CL 
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(Ichinohe et al., 2000) and the basal ganglia, through the subthalamic nucleus, 

project to the cerebellar cortex (Jwair et al., 2017; Moers-Hornikx et al., 2011). 

The motor cortex is reciprocally connected to VL and VA (Dum & Strick, 2003; 

Haber & Calzavara, 2009; Tlamsa & Brumberg, 2010) and it contains neurons 

that receive from and/or project to specific areas of the brain in a layer-

specific manner. Thalamocortical inputs from VL and VA are mainly 

glutamatergic and target layers I, II and V of the motor cortex (Hooks et al., 

2013; McFarland & Haber, 2002). Specifically, the part of the motor thalamus 

that receives basal ganglia output mainly projects to layer I, while the part 

that receives cerebellum output projects to layers II to V in the motor cortex 

(Kuramoto et al., 2009; Shigematsu et al., 2016; Tanaka et al., 2018). On the 

other hand, corticothalamic neurons project from layers V and VI to VL and 

VA (Na et al., 1997).  

 

Figure 5. Cortico – cerebellar connectivity. The motor cortex projects to the 
cerebellum through the pons and the cerebellum projects back to the motor cortex 
trough the thalamus. CL: central lateral thalamic nucleus; LN: lateral nucleus; RtN: 
reticular nucleus of the thalamus; SNr: substantia nigra pars reticulata; VA/VL: ventral 
anterior and ventrolateral nuclei of the thalamus. 

 

4.4. Non-motor functions of the cerebellum 

Apart from the motor functions, the cerebellum has also been implicated in 

non-motor functions, such as cognition, language, emotion and reward 
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(Adamaszek et al., 2017; Kim et al., 1994; Koziol et al., 2014; Mariën et al., 

2014; Sokolov et al., 2017; Wagner et al., 2017). Tract-tracing studies have 

proved that the cerebellum, linked through the pons and thalamus, is 

connected to motor and non-motor cortical regions, such as the PFC (Dum & 

Strick, 2003; Kelly & Strick, 2003; Middleton & Strick, 1994), creating the 

potential for the cerebellum to influence cognition. Regarding its implication 

in mental illnesses, there has been accumulating evidence about cerebellar 

abnormalities in schizophrenia and mood disorders such as MDD (Dutta et al., 

2014; Heath et al., 1979; Lupo et al., 2019; Picard et al., 2008). On a 

connectivity level, schizophrenic and depressed patients had a higher causal 

out-inflow (net flow) from the cerebellum to the mPFC compared to healthy 

controls (Jiang et al., 2019), meaning they had an increased effective 

connectivity. Another study also found an increased causal connectivity in the 

prefrontal-thalamic-cerebellar circuit in schizophrenic patients, which was 

suggested to be a compensatory mechanism for the structural deficits (Guo et 

al., 2015). In addition, this altered connectivity between the cerebellum and 

the PFC, specifically the right dorsolateral part, was associated with negative 

symptom severity (Brady et al., 2019). In medication-free depressed patients, 

there was a reduced fractional anisotropy (a measure of water diffusion that, 

when it is decreased, is associated with abnormalities in the cellular 

microstructure (i.e., the integrity of white matter pathways)) in the white 

matter of the right cerebellum hemispheric lobule (Jiang et al., 2017). 

Moreover, MDD patients exhibited in the left cerebellum a significantly 

decreased regional homogeneity (Liu et al., 2010), an “index of network 

centrality for characterizing the importance of the node in the human 

functional connectome” (Jiang & Zuo, 2016). Finally, a reduction in cerebellar 

volume was found in patients with MDD (Escalona et al., 1993), further 

supporting the role of the cerebellum in MDD.
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The main objective of my PhD has been to study the involvement of GluN2C-

containing NMDA-Rs in the psychotomimetic actions of non-competitive 

NMDA-R antagonists as well as in the antidepressant effects of ketamine. 

Given that one of the sites of action of non-competitive NMDA-R antagonists 

is the RtN and that the GluN2C subunit is expressed in this nucleus, our 

working hypothesis was that the psychotomimetic and the antidepressant-

like effects induced by non-competitive NMDA-R antagonists would be partly 

attenuated in absence of the GluN2C subunit. In order to examine this 

hypothesis, we have used mice lacking the GluN2C subunit. 

In addition, we have studied the intracellular signaling pathways of the 

antidepressant-like effect of ketamine in rats. 

The specific objectives have been:  

1. To evaluate the psychotomimetic effects induced by MK-801 and PCP in 

WT and GluN2CKO mice.  

2. To characterize the brain circuits involved in the effects of MK-801 and PCP 

using c-fos mRNA expression in WT and GluN2CKO mice.  

3. To examine the effects of sex in the psychotomimetic and antidepressant 

actions of ketamine -including neurochemical effects- in WT and 

GluN2CKO mice. 

4. To characterize the brain circuits involved in the effects of ketamine using 

c-fos mRNA expression in male and female WT and GluN2CKO mice. 

5. To characterize NMDA-R subunits distribution in WT and GluN2CKO mice. 

6. To assess ketamine’s antidepressant-like effect in rats and its relationship 

to intracellular signaling pathways. 
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1. Subjects 

Male and female WT and GluN2CKO mice backcrossed onto a C57BL/6J 

genetic background (achieving >99%) and male Wistar rats (weighing 275–

350g) purchased from Charles River Laboratories (France) were used. In mice, 

behavioral tests were conducted at 8 to 12 weeks-of-age. Rats were daily 

handled for at least 5 days before any test. All animals were maintained in the 

animal facilities of the School of Medicine in the University of Barcelona, in a 

controlled environment (12-h light/dark cycle, 22 ± 1 °C room temperature) 

with ad libitum access to food and water. All experimental procedures were 

conducted in accordance with national (Royal Decree 53/2013) and European 

legislation (Directive 2010/63/EU, on the protection of animals used for 

scientific purposes, 22 September 2010), and were approved by the 

Institutional Animal Care and Use Committee of the University of Barcelona. 

 

2. Drugs 

MK-801, PCP (Sigma-Aldrich, MA) and ketamine (Ketolar®, Pfizer) were 

dissolved in saline. PCP had its pH adjusted to 6.0-7.0 with sodium 

bicarbonate. MK-801 (0.25 mg/kg) and ketamine (10-30 mg/kg) were injected 

intraperitoneally (i.p.), while PCP (5 mg/kg) was injected by subcutaneous 

route (s.c.). Doses of MK-801 and PCP were selected in order to effectively 

produce the behavioral motor syndrome as previously described (Castañé et 

al., 2015; Scorza et al., 2010). Doses of ketamine were chosen in order to elicit 

antidepressant-like effects (Fukumoto et al., 2016; Yang et al., 2013). Doses 

are expressed as free base. The volume of injection was 4 ml/kg in mice and 1 

ml/kg in rats. 

 

 



Methods 

38 

 

3. Effects of NMDA-R antagonists in WT and GluN2CKO mice 

3.1. Behavioral studies in mice 

Open field test. Mice were placed in a dimly lighted (20-30 lux) arena (35 x 35 

cm) during a 30-min trial. The test started 30 min after MK-801 or saline, 15 

min after PCP or saline or immediately after ketamine or saline 

administration. Male mice were used in MK-801 and PCP experiments, where 

distance moved (cm) and meandering (the change in direction of movement 

of the animal relative to the distance moved; °/cm) were automatically 

recorded by a camera mounted above the open field and connected to a 

computer equipped with a video-tracking software (Ethovision XT-12.0, 

Noldus, The Netherlands). In ketamine experiments, male and female mice 

were used and distanced moved was analyzed using the SMART 3.0 video 

tracking software (Panlab/Harvard apparatus, USA). In addition, behavioral 

signs such as number of rearings and falls (during horizontal displacement or 

by loss of balance while performing rearings), as well as the intensity of 

hindlimb abduction and circling were observed and scored using a graded 

scale (0, absent; 1, equivocal; 2, present; and 3, intense) as previously 

published (Scorza et al., 2010; Spanos & Yamamoto, 1989). All behaviors were 

recorded by a trained experimenter blind to mice genotype as previously 

described (Scorza et al., 2010). After recording the animal behavior, the open 

field was cleaned with alcohol 30 % before placing the following animal. Mice 

were naive to the open field and were used only once.  

Rotarod test. Two different protocols were used in male mice in order to 

assess motor coordination under drug administration and motor learning 

under basal conditions. The apparatus consisted of a black striated rod (3 cm 

in diameter) supported 20 cm above the floor (Rota-rod/RS, Letica Scientific 

Instruments, Spain). For motor coordination, mice were first trained to stay in 

the rod at 4 rpm for 1 min and at 8 rpm for 2 min. Animals that achieved 2 min 
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in the rod at 8 rpm in three or less training sessions (training criteria) 

performed the test. On the testing day, drug free mice were retrained on the 

rod at 8 rpm as before. Afterwards, animals were tested 2.5 h or 2 h after MK-

801 or PCP administration respectively, with the apparatus revolving at 8 rpm. 

Latency to fall was recorded until criteria (2 min) or three trials elapsed, 

whatever occurred first. Motor learning was assessed using an accelerating 

protocol in which the rotarod accelerated from 4 to 40 rpm over a 5-min 

period. Mice were placed on the rotating drum and the acceleration started 

after a couple of seconds. The latency to fall was measured automatically. 

Mice were trained for four consecutive days, with one daily session consisting 

of 4 trials and a 300-s inter-trial interval.  

Pre-pulse inhibition (PPI) test. Male mice were individually tested in an 

acoustic startle chamber (Panlab/Harvard apparatus, Spain) and PackWin 

software controlled the delivery of all stimuli to the animals and recorded the 

response. During four previous days to testing, mice were habituated for 15 

min to the chamber at background noise levels (60 dB). At the testing day, the 

experiment started 25 min after administration of MK-801 or 10 min after 

administration of PCP, with a 5-min adaptation period during which the 

animals were exposed to 60-dB background white noise that lasted 

throughout the test. Afterward, a basal startle reflex was measured by 

administrating 10 repeated pulse stimuli (115 dB, 8 kHz, 40-ms duration each). 

Then, animals were exposed to 4 different trial types randomly presented: 10 

pulse alone trials (115 dB, 8 kHz, 40 ms), 10 pre-pulse alone trials (80 dB, 10 

kHz, 20 ms), 10 pre-pulse and pulse trials (100 ms prepulse onset to pulse 

onset) and 10 no-stimuli trials during which only background noise was 

present. The startle reflex was measured for 1 s after the administration of 

the stimulus; the inter-trial interval was 29 s and the test lasted 30 min in total. 

Pre-pulse inhibition was calculated as the percent inhibition of the startle 
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amplitude evoked by the pulse alone: % PPI = [(magnitude on pulse alone trial 

– magnitude on pre-pulse + pulse trial) / magnitude on pulse alone trial] x 100. 

Tail suspension test (TST). Male and female mice were tested 30 min after 

ketamine administration. They were suspended 30 cm above the floor by 

adhesive tape placed approximately 1 cm from the tip of the tail. Clear hollow 

cylinders (2.1 cm length, 1.5 cm outside diameter, 1.1 cm inside diameter, 2.1 

grams) were placed around the tails of mice to prevent tail climbing behavior. 

Sessions were videotaped for 6 min and the immobility time was determined 

by an experimenter blind to mice genotype and treatment. 

Forced swim test (FST). Male mice were tested 30 min after ketamine 

administration. They were forced to swim in a clear methacrylate cylinder (15 

cm diameter x 30 cm height) containing 20 cm of water maintained at 24 ± 

1°C, as described by Porsolt et al. (1978). The cylinder was filled with fresh 

water for every single animal. Mice were given a single trial that lasted 6 min 

and it was recorded using a video camera system. In a posterior analysis, the 

time the animal spent immobile during the last 4 min of the test was 

quantified by an experimenter blind to treatment and genotype.  

Novelty suppressed feeding test (NSFT). The testing apparatus consisted of a 

box (35 cm x 35 cm) with the floor covered with 1 cm of wooden bedding. Two 

food pellets were placed in the highly illuminated center of the arena (600 lx) 

on a white circular paper (8 cm in diameter). Male mice underwent a 24-h 

food deprivation in order to motivate food consumption behavior during test. 

30 min after ketamine administration, each mouse was placed in the corner 

of the testing arena. During a 10-min test, the latency to feed was measured, 

only sniffing was not considered. Immediately after the animal began to eat 

the chow, the mouse was placed alone and food consumption in the 

homecage was measured for 5 min. 
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3.2. Intracerebral microdialysis studies in mice 

Extracellular DA, 5-HT or Glu concentration were measured by in vivo 

intracerebral microdialysis in freely moving mice as previously described 

(Castañé et al., 2008; López-Gil et al., 2009). Briefly, one concentric dialysis 

probe (1 mm membrane length for NAc, 2 mm membrane length for mPFC) 

was previously implanted in the NAc of anaesthetized male mice (coordinates 

in mm: AP: +1.5; ML: −0.65; DV: −5) or in the mPFC of male and female 

anaesthetized mice (coordinates in mm: AP: +2.2; ML: −0.2; DV: −3.4). The 

coordinates were taken from bregma and top of skull and experiments were 

performed 24-48 h after surgery. Mice were continuously perfused with 

artificial cerebrospinal fluid (aCSF) enriched with calcium (in mM: 125 NaCl, 

2.5 KCl, 2.52 CaCl2, 1.18 MgCl2) at a rate of 1.65 μl/min with a syringe pump 

(WPI model sp220i, Aston, UK) attached to an overhead liquid swivel (Instech, 

Plymouth Meeting, PA, USA). For DA measurements in NAc, aCSF contained 

10 μM nomifensine and 20-min samples were collected in vials containing 5 

µL of 10 mM HClO4 after a stabilization period of 1 h. For 5-HT and Glu 

measurements in mPFC, aCSF contained 1 μM citalopram and 30-min samples 

were collected after a stabilization period of 3 h. Neurotransmitter 

concentrations were determined by High Performance Liquid 

Chromatography (HPLC). 5-HT and DA levels were measured by 

electrochemical detection (+ 0.7 V, Waters 2465, Waters Cromatografía, 

Spain). Samples were injected in a Waters 717 plus autosampler (Waters 

Cromatografía, Spain) and a Waters 515 pump and a 2.6 µm particle size C18 

column (75x4.6 mm, Kinetex, Phenomenex, Spain) were used. In both cases, 

the detection limit was 3 fmol. For DA, the mobile phase consisted of 0.15 M 

Na2HPO4, 0.9 mM PICB8, 0.5 mM Na2-EDTA (pH adjusted to 2.8 with 

phosphoric acid), and 10 % methanol, it was pumped at 0.8 ml/min and the 

total sample analysis time lasted 5 min. For 5-HT, the mobile phase consisted 

of 0.15 M NaH2PO4·H2O, 1.7 mM PICB8, 0.2 mM Na2-EDTA (pH adjusted to 2.8 
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with phosphoric acid), and 16 % methanol, it was pumped at 1 ml/min and 

the total sample analysis time lasted 5 min. For Glu measurements, a 

fluorimetric detector (Waters 2475, Waters Cromatografía, Spain) set at 360 

nm excitation and 450 nm emission wavelengths was used. The detection limit 

was 0.3 pmol. Dialysate samples were precolumn derivatized with OPA 

reagent. The mobile phase consisted of two components: solution A (0.05 M 

Na2HPO4, pH adjusted to 5.6 with phosphoric acid, and 28 % methanol), and 

solution B (methanol/H2O at an 8:2 ratio). The mobile phase was pumped at 

0.8 ml/min (Waters 600 HPLC Pump, Waters Cromatografía, Spain) and a 

gradient was established going from 100 % of solution A to 100 % of solution 

B, and returning to initial conditions in a 20 min run time. Glu was separated 

in a 5 µm particle size XBridge Shield RP18 Waters column (100x3 mm, Waters 

Cromatografía, Spain). Baseline neurotransmitter levels were calculated as 

the average of the four pre-drug samples. At the end of the experiments, mice 

were sacrificed and a Fast Green solution was perfused through the dialysis 

probe to stain the surrounding tissue for subsequent histological examination. 

Brains were removed and histologically processed in order to confirm the 

localization of the dialysis probes. Only data obtained from animals with 

histologically correct probe placements were used for subsequent statistical 

analysis. 

 

3.3. Molecular studies in mice 

In situ hybridization (ISH). Male and female mice were sacrificed 1 h after 

treatment and brains were rapidly removed, frozen on dry ice and stored at -

30 °C until processed. Brain coronal sections (14 μm) were cut using a 

microtome-cryostat (HM500-OM, Microm, Germany), thaw-mounted onto 

APTS (3-aminopropyltriethoxysilane, Sigma, MO, USA)-coated slides, kept at 
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−30 °C and fixed in 4 % paraformaldehyde. The following primer sequences of 

mRNAs were used: 

- c-fos, gene ID: NM_022197.1 

sense, 5’-GACCATGATGTTCTCGGGTTTCAACGCGGACTACGAGGCGTCATCCTC-3’ 

- zif268, gene ID: M22326.1 

sense, 5’-GCATCATCTCCTCCAGTTTGGGGTAGTTGTCCATGGTGGGTGAGT-3’ 

The oligonucleotides were labeled with [33P]-dATP (42500 Ci mmol−1; 

DuPont-NEN, MA, USA) with terminal deoxynucleotidyltransferase 

(Calbiochem, CA, USA) and purified with ProbeQuant G-50 Micro Columns (GE 

Healthcare UK Limited, UK), as described previously (Santana et al., 2004). 

Hybridized sections were exposed (zif268: 2 days; c-fos: 7 days) to Biomax MR 

film (Kodak, Sigma-Aldrich, Spain) with intensifying screens. Relative mean 

grey values (MGV) (arbitrary units) were measured with an image analyzer 

(Fiji, Madison, WI, USA). Two consecutive brain sections at any level of interest 

(AP coordinates from atlas Franklin & Paxinos, 2007) were analyzed for each 

mouse and averaged to obtain individual values.  

 

4. NMDA-R subunit distribution in male WT and GluN2CKO mice 

In situ hybridization (ISH). Male mice were sacrificed and brains were rapidly 

removed, frozen on dry ice and stored at -30 °C until processed. Brain coronal 

sections (14 μm) were cut using a microtome-cryostat (HM500-OM, Microm, 

Germany), thaw-mounted onto APTS (3-aminopropyltriethoxysilane, Sigma, 

MO, USA)-coated slides, kept at −30 °C and fixed in 4 % paraformaldehyde. 

The following primer sequences of mRNAs were used:  

- GluN1, gene ID: 14810Grin1 

sense, 5’-GGGCGAATGTCAGCAGGTGCATGGTGCTCATGAGCTCCGGGCACA-3’ 

- GluN2A, gene ID: 14811Grin2a 

sense, 5’-AAGTTCGCGTTCTGTCACGTCGTGGCTGTGACCCAGCAGCACCGC-3’ 
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- GluN2B, gene ID: 14812Grin2b 

sense, 5’-AAGTGCCCACGAGGATGACAGCGATGCCGATGCTGGGGGGGCTCT-3’ 

- GluN2C, gene ID: 14813Grin2c 

sense, 5’-TCCCTGCCCTGCGCCCAGCCTTGCCCAAGCACCAAGGAGTGAAGT-3’ 

- GluN2D, gene ID: 14814Grin2d 

sense, 5’-TGGCGCACGCCAGCGCCAGCAGCAGCAGCATCTTAGCGGGGCCCC-3’ 

The oligonucleotides were labeled with [33P]-dATP (42500 Ci mmol−1; 

DuPont-NEN, MA, USA) with terminal deoxynucleotidyltransferase 

(Calbiochem, CA, USA) and purified with ProbeQuant G-50 Micro Columns (GE 

Healthcare UK Limited, UK), as described previously (Santana et al., 2004). 

Hybridized sections were exposed (GluN1: 1 day; GluN2A: 4 days; GluN2B: 7 

days; GluN2C and GluN2D: 15 days) to Biomax MR film (Kodak, Sigma-Aldrich, 

Spain) with intensifying screens. Relative MGV (arbitrary units) were 

measured with an image analyzer (Fiji, Madison, WI, USA). Two consecutive 

brain sections at any level of interest (AP coordinates from atlas Franklin & 

Paxinos, 2007) were analyzed for each mouse and averaged to obtain 

individual values. 

 

5. Effects of ketamine in rats 

5.1. Behavioral studies in rats 

Open field test. Rats were placed in a dimly lighted (20-30 lux) arena (35 x 35 

cm) during a 30-min trial. The test started 30 min after ketamine (10-20 

mg/kg) or saline injection. Distance moved (cm) was automatically recorded 

by a camera mounted above the open field and connected to a computer 

equipped with a video-tracking software (VideoTrack View Point software, 

France). After recording the animal behavior, the open field was cleaned with 

alcohol 30 % before placing the following animal. Rats were naive to the open 

field and were used only once. 
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Forced swim test (FST). Rats were forced to swim in a clear methacrylate 

cylinder (20 x 46 cm) filled with water (24 ± 1 °C) to a depth of 30 cm, and 

from which they could not escape (Porsolt et al., 1978). Animals were 

subjected to a pretest session lasting 15 min and 24-hours later, 30 min after 

ketamine treatment (10-20 mg/kg), a 5-min test was performed and recorded, 

as previously reported (Slattery & Cryan, 2012). The cylinders were filled with 

fresh water for every single animal. In a posterior analysis, the time the animal 

spent immobile during the test was quantified by an experimenter blind to 

treatment. 

Novelty suppressed feeding test (NSFT). The testing apparatus consisted of a 

box (90 x 90 x 40 cm) with the floor covered with 1 cm of wooden bedding. 

Two food pellets were placed in the highly illuminated center of the arena 

(600 lx) on a black circular paper (10 cm in diameter). Rats underwent a food 

restriction protocol (18 g per day for 3 days + 24 h deprivation) in order to 

motivate food consumption behavior during test. 30 min after ketamine 

administration (10-15 mg/kg), each rat was placed in the corner of the testing 

arena. During a 10-min test, the latency to feed was measured, only sniffing 

was not considered. As a control, food consumption in the homecage was 

measured at 5 min and 24 h after the test. 

 

5.2. Molecular studies in rats 

Synaptosome preparation and western blotting (WB). The activation of mTOR 

and the ribosomal protein S6 kinase (p70S6K) was assessed 30 min after 

ketamine (15 mg/kg) administration. Immediately after decapitation, brains 

were removed and placed on an ice-cold plate. Brain sections were dissected 

out, quickly frozen on dry ice and stored at -80 °C. Tissue was dounce-

homogenized by 10 strokes with a loose pestle and 10 strokes with a tight 

pestle in 30 volumes of ice-cold synaptosome lysis buffer (in mM: 2.5 CaCl2, 
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124 NaCl, 3.2 KCl, 1.06 KH2PO, 26 NaHCO3, 1.3 MgCl2, 10 Glucose, 320 Sucrose, 

20 HEPES/NaOH pH7.4) including phosphatase inhibitors (in mM: 5 NaPyro, 

100 NaF, 1 NaOrth, 40 beta-glycer-olphosphate) and protease inhibitors (1 

μg/mL leupeptin, 10 μg/mL aprotinin, 1 μg/ml pepstatin and 1 mM 

phenylmethylsulfonyl fluoride). This crude homogenate was centrifuged for 1 

min at 2000 ×g, 4 °C, the supernatant was recovered (S1) and the pellet 

resuspended in 1 mL of synaptosome lysis buffer for further centrifugation (1 

min at 2000 ×g, 4 °C). This second supernatant (S2) was recovered and 

combined with S1. Total supernatant (S1 + S2) was passed through a 10 μm 

nitrocellulose filter and centrifuged for 1 min at 4000 ×g, 4 °C to attain the 

supernatant (S3). S3 was transferred to a new tube and centrifuged for 4 min 

at 14000 ×g, 4 °C. This final supernatant (S4) was discarded and the pellet was 

used as the synaptosomal fraction. Samples with equal amounts of total 

protein (20 µg per well) were separated in 8% sodium dodecyl sulfate-

polyacrylamide gel before electrophoretic transfer onto nitrocellulose 

membrane (Bio-Rad, Spain). Membranes were blocked for 1 h at 21 ± 1 °C in 

Tris-buffered saline (100 mmol/L NaCl, 10 mmol/L Tris, pH 7.4) with 0.1% 

Tween-20 and 3% bovine serum albumin. Afterwards, membranes were 

incubated for 2 h with the primary antibodies: anti-phospho-mTOR (rabbit, 

1:300, Ser2448), anti-phospho-p70S6K (rabbit, 1:300, Thr389) (Cell Signaling 

Technology), anti-β-actin (mouse, 1:15000, MAB1501, MerckMillipore). 

Bound antibodies were detected with horseradish peroxidase-conjugated 

anti-rabbit or anti-mouse antibodies and visualized by enhanced 

chemiluminescence detection (SuperSignal, Pierce, Spain). Digital images 

were acquired on a ChemiDoc XRS System (Bio-Rad) and quantified by The 

Quantity One software v4.6.3 (Bio-Rad). Optical density values for target 

proteins were normalized to β-actin as loading control in the same sample and 

expressed as a percentage of control group (saline). 
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Quantitative real-time polymerase chain reaction (qRT-PCR). The genic 

expression of post synaptic density protein 95 (PSD95) and synapsin I was 

evaluated 6 h after ketamine (15 mg/kg) administration. The following 

primers specific for rat were used:  

- PSD95  

sense, 5’-GGATCACAGGGTCGAGAAGA-3’ 

antisense, 5’-TGATGATGGGACGAGCATAG-3’ 

- Synapsin I  

sense, 5’-GGACGGAAGGGATCACATTA-3’ 

antisense, 5’-TGGTGATCCCCAATGAGTG-3’  

- β-actin  

sense, 5’-GGAGATTACTGCCCTGGCTCCTA-3’ 

antisense, 5’-GACTCATCGTACTCCTGCTTGCTG-3’  

Total RNA was isolated from tissues with Trizol solution (Sigma-Aldrich) and 

was digested using TURBO DNA-free™ kit (Life technologies) to eliminate the 

genomic DNA. Complementary DNA synthesis was performed using iScript™ 

cDNA synthesis kit (Biorad). qRT-PCR (7900HT Fast Real-Time PCR System, 

Applied Biosystems) was performed using GoTaq® qPCR Master Mix 

(Promega) in 20 µl of reaction mix. Quantification was performed by using the 

comparative CT Method (ΔΔCT Method). All the samples were tested in 

duplicate and the relative expression values were normalized to the 

expression value of β-actin cDNA. Results were expressed as the unitary ratio 

vs saline controls.  
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6. Statistical analysis 

The number of animals used for each test is reported in the figure legends. 

The sample sizes were determined based on power analysis and common 

practice in behavioral (≈10 animals per group) and molecular studies (≈5 

animals per group). The data are expressed as mean ± S.E.M.. Statistical 

analysis was carried out using unpaired t-test, one-way analysis of variance 

(ANOVA) followed by Bonferroni post hoc comparisons, two-way ANOVA 

followed by Newman-Keuls post hoc comparisons, two-way repeated 

measures ANOVA followed by Bonferroni post hoc comparisons and three-

way ANOVA followed by Newman-Keuls post hoc comparisons. In all cases, 

the level of significance was set at p<0.05. 
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1. Involvement of the GluN2C subunit in the mechanism of 

action of MK-801 and PCP in male mice 

1.1. Behavioral syndrome 

The acute administration of MK-801 (0.25 mg/kg) or PCP (5 mg/kg) 

significantly enhanced locomotor activity in GluN2CKO compared to WT mice 

(Figure 6a). For MK-801, two-way ANOVA showed a main effect of treatment 

(F1,32=24.33; p<0.0001) and genotype (F1,32=4.98; p<0.05). Post hoc 

comparisons indicated a significant hyperlocomotion in GluN2CKO mice after 

MK-801 treatment (p<0.01) and a significant difference between MK-801-

treated WT and GluN2CKO mice (p<0.01). For PCP, two-way ANOVA showed 

a significant main effect of treatment (F1,28=34.70; p<0.0001), genotype 

(F1,28=11.61; p<0.01) and interaction (F1,28=4.90; p<0.05). Post hoc 

comparisons showed a significant increase in locomotor activity in treated 

animals (p<0.05 for WT, p<0.01 for GluN2CKO) and a significant difference 

between PCP-treated WT and GluN2CKO mice (p<0.01). 

The two NMDA-R antagonists increased meandering in both genotypes 

(Figure 6b). Two-way ANOVA showed a significant effect of treatment in the 

MK-801 study (F1,32=35.03; p<0.0001) and a significant effect of treatment 

(F1,28=50.30; p<0.0001) and interaction (F1,28=4.69; p<0.05) in the PCP study. 

Post hoc comparisons indicated a significant increase in meandering after MK-

801 or PCP administration in both genotypes (p<0.01, all cases). However, no 

differences between genotypes were obtained in drug-treated mice, although 

a tendency to reduced meandering in GluN2CKO compared to WT mice was 

noted. 

Both drugs dramatically reduced the number of rearings in WT and GluN2CKO 

mice (Figure 6c), even though this decrease was significantly less marked in 

GluN2CKO mice treated with PCP. Thus, for MK-801 two-way ANOVA showed 
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a main effect of treatment (F1,33=300.90; p<0.0001). Post hoc comparisons 

indicated a significant decrease in rearings in both genotypes (p<0.01, all 

cases). For PCP, two-way ANOVA showed a main effect of treatment 

(F1,27=56.50; p<0.0001) and genotype (F1,27=7.91; p<0.01). Post hoc 

comparisons showed a significant reduction in rearings in both genotypes 

(p<0.01, all cases) and a significant difference between PCP-treated WT and 

GluN2CKO mice (p<0.05). 

Moreover, acute administration of MK-801 and PCP enhanced the number of 

falls, hindlimb abduction and the circling behavior in both genotypes, and 

these effects were dramatically less marked in GluN2CKO mice, particularly 

for the number of spontaneous falls and the circling behavior (Figure 7a-c).  

For the number of falls, two-way ANOVA revealed a main effect of treatment 

(F1,34=63.68; p<0.0001), genotype (F1,34=45.77; p<0.0001) and interaction 

(F1,34=45.77; p<0.0001) in mice treated with MK-801. For PCP, there was a 

main effect of treatment (F1,27=26.92; p<0.0001), genotype (F1,27=23.61; 

p<0.0001) and interaction (F1,27=23.61; p<0.0001). Post hoc comparisons 

showed a significant increase in the number of falls in WT mice after MK-801 

or PCP treatment (p<0.01, all cases) and significant differences between WT 

and GluN2CKO mice treated with both drugs (p<0.01, all cases) (Figure 7a). 

Regarding hindlimb abduction, two-way ANOVA indicated a main effect of 

treatment (F1,35=192.40; p<0.0001), genotype (F1,35=7.09; p<0.05) and 

interaction (F1,35=7.09; p<0.05) for MK-801. For PCP, there was a main effect 

of treatment (F1,27=65.61; p<0.0001), genotype (F1,27=9.90; p<0.01) and 

interaction (F1,27=9.90; p<0.01). Post hoc comparisons indicated a significant 

increase in hindlimb abduction in both genotypes after both drugs (p<0.01, all 

cases) and significant differences between WT and GluN2CKO mice treated 

with MK-801 or PCP (p<0.01, all cases) (Figure 7b). 
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For circling behavior, two-way ANOVA indicated a main effect of treatment 

(F1,35=12.70; p<0.01), genotype (F1,35=4.30; p<0.05) and interaction 

(F1,35=4.30; p<0.05) in mice treated with MK-801. For PCP, there was a main 

effect of treatment (F1,27=17.45; p<0.001), genotype (F1,27=17.45; p<0.001) 

and interaction (F1,27=17.45; p<0.001). Post hoc comparisons showed a 

significant increase in circling behavior in WT mice after both drugs (p<0.01, 

all cases) and significant differences between WT and GluN2CKO mice treated 

with MK-801 or PCP (p<0.01, all cases) (Figure 7c). 

 

Figure 6. Effects of MK-801 (0.25 mg/kg; n=8-10/group) and PCP (5 mg/kg; n=7-

8/group) in male WT and GluN2CKO mice on a) Locomotor activity, b) Meandering and 

c) Rearings. *p<0.05, **p<0.01 vs saline; #p<0.05, ##p<0.01 vs WT (Newman-Keuls 

post hoc test) 
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Figure 7. Effects of MK-801 (0.25 mg/kg; n=8-10/group) and PCP (5 mg/kg; n=7-

8/group) in male WT and GluN2CKO mice on a) Falls, b) Hindlimb abduction and c) 

Circling. **p<0.01 vs saline; ##p<0.01 vs WT (Newman-Keuls post hoc test) 

 

1.2. Rotarod test  

The administration of MK-801 (0.25 mg/kg) significantly decreased the latency 

to fall (s) after drug injection in both genotypes, and this effect was 

significantly attenuated in GluN2CKO mice. Two-way ANOVA showed a main 

effect of treatment (F1,36=250.90; p<0.0001) and interaction (F1,36=8.22; 

p<0.01). Post hoc comparisons showed a significant reduction in the latency 

to fall in WT and GluN2CKO mice after treatment (p<0.01, all cases) and a 

significant difference between MK-801-treated WT and GluN2CKO mice 

(p<0.01) (Figure 8a). Likewise, acute treatment with PCP (5 mg/kg) 

significantly reduced the latency to fall in WT but not GluN2CKO mice. Thus, 

two-way ANOVA showed a main effect of treatment (F1,25=18.59; p<0.001) 

and genotype (F1,25=5.06; p<0.05). Post hoc comparisons indicated a 

significant decrease in the latency to fall in WT mice after treatment (p<0.01) 

and a significant difference between PCP-treated WT and GluN2CKO mice 
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(p<0.01) (Figure 8a). Moreover, there was no significant difference in motor 

learning (latency to fall) between both genotypes (Figure 8b). 

1.3. Pre-pulse inhibition test 

Acute treatment with MK-801 (0.25 mg/kg) and PCP (5 mg/kg) similarly 

reduced the startle reflex in response to the pre-pulse plus pulse trials in both 

genotypes, though there were no differences in the amplitude of the startle 

response (data not shown). Thus, two-way ANOVA showed a main effect of 

treatment (F2,54=24.05; p<0.0001), but not of genotype or the treatment x 

genotype interaction. Post hoc comparisons showed a significant decrease of 

% PPI in drug-treated vs saline-treated mice (p<0.01, all cases) (Figure 8c). 

 

Figure 8. a) Latency to fall in the rotarod test after MK-801 (0.25 mg/kg; n=9-11/group) 
or PCP (5 mg/kg; n=7-8/group) administration. b) Latency to fall in the rotarod test in 
basal conditions (n=10/group). c) Percentage (%) of pre-pulse inhibition after MK-801 
(0.25 mg/kg) or PCP (5 mg/kg) administration (n=10/group). **p<0.01 vs saline; 
##p<0.01 vs WT (Newman-Keuls post hoc test) 

1.4. In vivo intracerebral microdialysis 

Baseline extracellular concentrations of DA in NAc in WT and GluN2CKO mice 

were 8 ± 1 fmol/30µl (n=12) and 9 ± 2 fmol/30µl (n=11), respectively. 
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Unpaired t-test revealed no significant differences between genotypes. Saline 

injections did not alter dialysate DA values (Figure 9a) whereas MK-801 

induced a moderate elevation (Figure 9b). Two-way repeated measures 

ANOVA showed a significant effect of time (F15,210=2.51; p<0.01) but not of 

genotype or time x genotype interaction.  

 

Figure 9. Time course of extracellular levels of DA in the NAc after a) Saline 
administration (n=7-8/group) or b) MK-801 administration (0.25 mg/kg; n=7-9/group) 
in male WT and GluN2CKO mice. Microdialysis data are expressed as percentages of 
four basal values (fractions 1-4). The values are expressed as mean ± S.E.M. The arrow 
represents the time of IP injection of saline or MK-801. Dialysate fractions were 20 
min each. 
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1.5. c-fos and zif268 mRNA expression 

The effects of MK-801 and PCP on c-fos mRNA expression are shown following 

an anatomical anteroposterior order (Figures 10, 11 and 12). A detailed 

statistical analysis (two-way ANOVA) is shown in Table 1. 

In WT mice, MK-801 (0.25 mg/kg) significantly enhanced c-fos mRNA 

expression in mPFC, cingulate cortex (Cg), NAc (p<0.01, all cases) and piriform 

cortex (Pir) (p<0.05) and significantly decreased its expression in upper and 

deep layers of primary and secondary motor cortices (Upper M1-M2, Deep 

M1-M2) (p<0.01, all cases). In GluN2CKO mice, MK-801 significantly increased 

c-fos expression in mPFC, NAc (p<0.01, all cases) and Pir (p<0.05) and 

significantly reduced its expression in Upper M1-M2 (p<0.05). Significant 

differences between WT and GluN2CKO mice treated with MK-801 were 

found in mPFC, Cg, caudate-putamen nuclei (CPu) and NAc (p<0.01, all cases). 

In WT mice, PCP (5 mg/kg) significantly enhanced c-fos mRNA expression in 

mPFC, Cg, CPu, NAc and Pir (p<0.01, all cases) and significantly decreased its 

expression in Upper M1-M2 (p<0.01). In GluN2CKO mice, PCP significantly 

increased c-fos expression in mPFC, NAc (p<0.01, all cases) and Pir (p<0.05) 

and significantly reduced its expression in Upper M1-M2, Deep M1-M2 and 

CPu (p<0.01, all cases). Significant differences between WT and GluN2CKO 

mice treated with PCP were found in Cg, CPu and NAc (p<0.01, all cases) 

(Figure 10). 

In WT mice, MK-801 (0.25 mg/kg) significantly enhanced c-fos mRNA 

expression in RSC, HPC, habenula (Hb) and different thalamic nuclei 

(paraventricular thalamic nucleus, PV; mediodorsal thalamic nucleus, MD; 

intermediodorsal thalamic nucleus, IMD; centromedial thalamic nucleus, CM; 

paracentral thalamic nucleus, PC; VL; and reuniens and rhomboid nuclei of the 

thalamus, Re/Rh) (p<0.01, all cases). In GluN2CKO mice, MK-801 significantly 

increased c-fos expression in RSC, HPC, Hb, different thalamic nuclei (PV, MD, 
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IMD, CM, Re/Rh) (p<0.01, all cases) and PC (p<0.05). Significant differences 

between WT and GluN2CKO mice treated with MK-801 were found in PC and 

VL (p<0.01, all cases). In WT mice, PCP (5 mg/kg) significantly enhanced c-fos 

mRNA expression in RSC, HPC and different thalamic nuclei (PV, MD, IMD, CM, 

PC, VL, Re/Rh) (p<0.01, all cases). In GluN2CKO mice, PCP significantly 

increased c-fos expression in different thalamic nuclei (PV, MD, IMD, CM, PC, 

VL, Re/Rh) (p<0.01, all cases). Significant differences between WT and 

GluN2CKO mice treated with PCP were found in RSC (p<0.01) and HPC 

(p<0.05) (Figure 11). 

In WT mice, MK-801 (0.25 mg/kg) significantly enhanced c-fos mRNA 

expression in Amg, entorhinal cortex (EC) and dorsal raphe (DR) (p<0.01, all 

cases) and significantly decreased its expression in crus1 of the ansiform 

lobule (Crus1) and cerebellar simple lobule (Sim) (p<0.01, all cases). In 

GluN2CKO mice, MK-801 significantly increased c-fos expression in Amg, EC, 

DR (p<0.01, all cases) and Ve (p<0.05) and significantly reduced its expression 

in Sim (p<0.01). Significant differences between WT and GluN2CKO mice 

treated with MK-801 were found in Amg, lobules 4 and 5 of the cerebellar 

vermis (4/5Cb) (p<0.05, all cases) and Crus1 (p<0.01). In WT mice, PCP (5 

mg/kg) significantly enhanced c-fos mRNA expression in EC (p<0.01) and 

significantly decreased its expression in Crus1 and Sim (p<0.01, all cases). In 

GluN2CKO mice, PCP significantly increased c-fos expression in Ve (p<0.01) 

and significantly decreased its expression in Sim (p<0.01). Significant 

differences between WT and GluN2CKO mice treated with PCP were found in 

EC, Crus1 (p<0.01, all cases) and Ve (p<0.05) (Figure 12). 
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Figure 10. C-fos mRNA expression for male WT and GluN2CKO mice after MK-801 (0.25 
mg/kg) or PCP (5 mg/kg) administration in upper, intermediate and deep layers of 
primary and secondary motor cortices (Upper M1-M2, Mid M1-M2 and Deep M1-M2, 
AP: +2.10), medial prefrontal cortex (mPFC, AP: +2.10), cingulate cortex (Cg, AP: 
+1.18), caudate-putamen nuclei (CPu, AP: +1.18), nucleus accumbens (NAc, AP: +1.18) 
and piriform cortex (Pir, AP: +1.18) (n=8-10/group in saline groups; n=4-5/group in 
treated groups). *p<0.05, **p<0.01 vs saline; ##p<0.01 vs WT (Newman-Keuls post 
hoc test) 
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Figure 11. C-fos mRNA expression for male WT and GluN2CKO mice after MK-801 (0.25 
mg/kg) or PCP (5 mg/kg) administration in retrosplenial cortex (RSC, AP: -1.70), 
hippocampus (HPC, AP: -1.70), habenula (Hb, AP: -1.70), paraventricular thalamic 
nucleus (PV, AP: -1.70), mediodorsal thalamic nucleus (MD, AP: -1.70), 
intermediodorsal thalamic nucleus (IMD, AP: -1.70), centromedial thalamic nucleus 
(CM, AP: -1.70), paracentral thalamic nucleus (PC, AP: -1.70), ventrolateral thalamic 
nucleus (VL, AP: -1.70), reuniens and rhomboid nuclei of the thalamus (Re/Rh, AP: -
1.70) and reticular nucleus (RtN, AP: -1.70) (n=8-10/group in saline groups; n=4-
5/group in treated groups). *p<0.05, **p<0.01 vs saline; #p<0.05, ##p<0.01 vs WT 
(Newman-Keuls post hoc test) 
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Figure 12. a) C-fos mRNA expression for male WT and GluN2CKO mice after MK-801 
(0.25 mg/kg) or PCP (5 mg/kg) administration in amygdala (Amg, AP: -3.40), entorhinal 
cortex (EC, AP: -3.40), dorsal raphe (DR, AP: -4.60), crus 1 of the ansiform lobule 
(Crus1, AP: -6.00), cerebellar simple lobule (Sim, AP: -6.00), lobules 4 and 5 of the 
cerebellar vermis (4/5Cb, AP: -6.00), vestibular nucleus (Ve, AP: -6.00), and lateral 
nucleus (LN, AP: -6.00). (n=8-10/group in saline groups; n=4-5/group in treated 
groups). b) On the left, analyzed regions of the cerebellum from the Franklin & Paxinos 
mouse atlas; on the right, representative film images of c-fos mRNA expression in the 
different experimental groups. *p<0.05, **p<0.01 vs saline; #p<0.05, ##p<0.01 vs WT 
(Newman-Keuls post hoc test) 
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Table 1. Two-way ANOVA (treatment (T) and genotype (G) as factors) for c-fos 
expression data in male WT and GluN2CKO mice in upper, intermediate and deep 
layers of primary and secondary motor cortices (Upper M1-M2, Mid M1-M2 and Deep 
M1-M2, AP: +2.10), medial prefrontal cortex (mPFC, AP: +2.10), cingulate cortex (Cg, 
AP: +1.18), caudate-putamen nuclei (CPu, AP: +1.18), nucleus accumbens (NAc, AP: 
+1.18), piriform cortex (Pir, AP: +1.18), retrosplenial cortex (RSC, AP: -1.70), 
hippocampus (HPC, AP: -1.70), habenula (Hb, AP: -1.70), paraventricular thalamic 
nucleus (PV, AP: -1.70), mediodorsal thalamic nucleus (MD, AP: -1.70), 
intermediodorsal thalamic nucleus (IMD, AP: -1.70), centromedial thalamic nucleus 
(CM, AP: -1.70), paracentral thalamic nucleus (PC, AP: -1.70), ventrolateral thalamic 
nucleus (VL, AP: -1.70), reuniens and rhomboid nuclei of the thalamus (Re/Rh, AP: -
1.70), reticular nucleus (RtN, AP: -1.70), amygdala (Amg, AP: -3.40), entorhinal cortex 
(EC, AP: -3.40), dorsal raphe (DR, AP: -4.60), crus 1 of the ansiform lobule (Crus1, AP: 
-6.00), cerebellar simple lobule (Sim, AP: -6.00), lobules 4 and 5 of the cerebellar 
vermis (4/5Cb, AP: -6.00), vestibular nucleus (Ve, AP: -6.00), and lateral nucleus (LN, 
AP: -6.00). 

  

Figure

Upper M1-M2 F2,33=21.91 p<0.0001 F1,33=0.01 n.s. F2,33=1.68 n.s. 10

Mid M1-M2 F2,34=1.48 n.s. F1,34=0.22 n.s. F2,34=5.37 p<0.01 10

Deep M1-M2 F2,33=10.80 p<0.001 F1,33=0.36 n.s. F2,33=5.04 p<0.05 10

mPFC F2,34=110.80 p<0.0001 F1,34=5.86 p<0.05 F2,34=6.52 p<0.01 10

Cg F2,34=12.40 p<0.0001 F1,34=59.92 p<0.0001 F2,34=19.12 p<0.0001 10

CPu F2,33=1.48 n.s. F1,33=75.25 p<0.0001 F2,33=33.78 p<0.0001 10

NAc F2,34=507.40 p<0.0001 F1,34=121.90 p<0.0001 F2,34=50.11 p<0.0001 10

Pir F2,33=14.56 p<0.0001 F1,33=0.52 n.s. F2,33=0.41 n.s. 10

RSC F2,34=26.99 p<0.0001 F1,34=4.57 p<0.05 F2,34=10.17 p<0.001 11

HPC F2,33=44.05 p<0.0001 F1,33=6.81 p<0.05 F2,33=3.13 n.s. 11

Hb F2,34=54.20 p<0.0001 F1,34=0.06 n.s. F2,34=0.15 n.s. 11

PV F2,34=90.98 p<0.0001 F1,34=1.92 n.s. F2,34=0.60 n.s. 11

MD F2,31=80.70 p<0.0001 F1,31=0.10 n.s. F2,31=0.42 n.s. 11

IMD F2,32=27.92 p<0.0001 F1,32=1.48 n.s. F2,32=0.55 n.s. 11

CM F2,34=25.75 p<0.0001 F1,34=0.05 n.s. F2,34=0.24 n.s. 11

PC F2,32=43.54 p<0.0001 F1,32=5.68 p<0.05 F2,32=4.72 p<0.05 11

VL F2,32=54.41 p<0.0001 F1,32=22.36 p<0.0001 F2,32=9.59 p<0.001 11

Re/Rh F2,33=244.20 p<0.0001 F1,33=0.36 n.s. F2,33=0.64 n.s. 11

RtN F2,33=6.49 p<0.01 F1,33=0.05 n.s. F2,33=0.04 n.s. 11

Amg F2,33=61.06 p<0.0001 F1,33=7.61 p<0.01 F2,33=2.55 n.s. 12

EC F2,33=121.20 p<0.0001 F1,33=27.17 p<0.0001 F2,33=16.02 p<0.0001 12

DR F2,32=21.52 p<0.0001 F1,32=0.05 n.s. F2,32=3.35 p<0.05 12

Crus1 F2,32=4.45 p<0.05 F1,32=35.42 p<0.0001 F2,32=11.33 p<0.001 12

Sim F2,33=47.41 p<0.0001 F1,33=4.81 p<0.05 F2,33=1.60 n.s. 12

4/5Cb F2,32=1.73 n.s. F1,32=16.28 p<0.001 F2,32=5.19 p<0.05 12

Ve F2,33=9.78 p<0.001 F1,33=8.42 p<0.01 F2,33=3.47 p<0.05 12

LN F2,34=3.60 p<0.05 F1,34=0.38 n.s. F2,34=0.15 n.s. 12

Treatment (T) Genotype (G) T x G
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The effects of MK-801 and PCP on zif268 expression are shown in Figure 13. 

In Crus1, two-way ANOVA showed a main effect of genotype (F1,23=12.47; 

p<0.01). Post hoc comparisons showed significant differences between WT 

and GluN2CKO mice treated with MK-801 or PCP (p<0.05, all cases). In Sim, 

two-way ANOVA indicated a main effect of treatment (F2,23=3.73; p<0.05), 

genotype (F1,23=21.50; p<0.001) and treatment x genotype interaction 

(F2,23=5.17; p<0.05). Post hoc comparisons showed a reduction in zif268 

expression after MK-801 administration in WT mice (p<0.05) and significant 

differences between WT and GluN2CKO mice treated with MK-801 or PCP 

(p<0.01, all cases). In 4/5Cb, two-way ANOVA showed a main effect of 

treatment (F2,20=7.44; p<0.01), genotype (F1,20=16.52; p<0.001) and treatment 

x genotype interaction (F2,20=4.80; p<0.05). Post hoc comparisons showed 

increased zif268 expression in GluN2CKO mice after MK-801 (p<0.05) or PCP 

(p<0.01) treatment and significant differences between WT and GluN2CKO 

mice treated with MK-801 (p<0.01) or PCP (p<0.05). 

 

 

Figure 13. Zif268 mRNA expression for male WT and GluN2CKO mice after MK-801 
(0.25 mg/kg) or PCP (5 mg/kg) administration in crus 1 of the ansiform lobule (Crus1, 
AP: -6.00), cerebellar simple lobule (Sim, AP: -6.00) and lobules 4 and 5 of the 
cerebellar vermis (4/5Cb, AP: -6.00) (n=4-5/group). *p<0.05, **p<0.01 vs saline; 
#p<0.05, ##p<0.01 vs WT (Newman-Keuls post hoc test) 
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2. Involvement of the GluN2C subunit in the mechanism of 

action of ketamine in male and female mice 

2.1. Behavioral syndrome 

The acute administration of ketamine (10 and 30 mg/kg) significantly 

increased locomotor activity in male and female GluN2CKO mice (Figure 14). 

For male mice, two-way ANOVA showed a main effect of treatment 

(F2,59=25.32; p<0.0001), genotype (F1,59=17.57; p<0.0001) and interaction 

(F2,59=5.49; p<0.01). Post hoc comparisons indicated a significant increase in 

locomotor activity in male GluN2CKO mice after ketamine administration 

(p<0.01, all cases) and a significant difference between male WT and 

GluN2CKO mice treated with ketamine (p<0.01, all cases). For female mice, 

two-way ANOVA showed a main effect of treatment (F2,63=24.47; p<0.0001), 

genotype (F1,63=11.93; p<0.01) and interaction (F2,63=6.98; p<0.01). Post hoc 

comparisons revealed a significant increase in locomotor activity in female WT 

mice after the high dose of ketamine (p<0.01) and in female GluN2CKO mice 

after both doses of ketamine (p<0.01, all cases). Moreover, a significant 

difference between female WT and GluN2CKO mice treated with ketamine 

(10 mg/kg; p<0.01) was also found. 

 

Figure 14. Effects of ketamine (10 and 30 mg/kg) in male and female WT and 
GluN2CKO mice on locomotor activity (percentage of distance from saline-treated 
mice) (n=15-18/group in saline groups; n=8-10/group in treated groups). **p<0.01 vs 
saline; ##p<0.01 vs WT (Newman-Keuls post hoc test) 
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Ketamine (10 and 30 mg/kg) reduced the number of rearings in male and 

female WT and GluN2CKO mice (Figure 15a). For male mice, two-way ANOVA 

showed a main effect of treatment (F2,59=65.99; p<0.0001) and genotype 

(F1,59=5.95; p<0.05). Post hoc comparisons indicated a significant reduction in 

the number of rearings in both genotypes after ketamine treatment (p<0.01, 

all cases). For female mice, two-way ANOVA showed a main effect of 

treatment (F2,63=74.64; p<0.0001) and genotype (F1,63=5.40; p<0.05). Post hoc 

comparisons revealed a significant reduction in the number of rearings in both 

genotypes after ketamine treatment (p<0.01 in all cases, except in GluN2CKO 

mice after the low dose of ketamine, p<0.05) and a significant difference 

between female WT and GluN2CKO mice after ketamine 10 mg/kg (p<0.01).  

Ketamine (30 mg/kg) significantly increased the number of falls in male and 

female WT mice (Figure 15b). For male mice, two-way ANOVA showed a main 

effect of treatment (F2,59=20.38; p<0.0001). Post hoc comparisons indicated a 

significant increase in the number of falls in male WT mice (p<0.01). For 

female mice, two-way ANOVA showed a main effect of treatment (F2,63=31.35; 

p<0.0001), genotype (F1,63=29.48; p<0.0001) and interaction (F2,63=24.73; 

p<0.0001). Post hoc comparisons revealed a significant increase in the number 

of falls in female WT mice (p<0.01) and a significant difference between 

female WT and GluN2CKO mice treated with ketamine 30 mg/kg (p<0.01).  

Regarding hindlimb abduction, ketamine (10 and 30 mg/kg) increased this 

ataxic behavior in both genotypes and sexes (Figure 15c). For male mice, two-

way ANOVA showed a main effect of treatment (F2,59=159.40; p<0.0001), 

genotype (F1,59=24.39; p<0.0001) and interaction (F2,59=12.82; p<0.01). Post 

hoc comparisons indicated a significant increase in hindlimb abduction after 

ketamine in both genotypes (p<0.01, all cases) and a significant difference 

between male WT and GluN2CKO mice treated with the high dose of ketamine 

(p<0.01). For female mice, two-way ANOVA showed a main effect of 

treatment (F2,63=110.50; p<0.0001), genotype (F1,63=7.39; p<0.01) and 
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interaction (F2,63=3.87; p<0.05). Post hoc comparisons revealed a significant 

increase in hindlimb abduction in both genotypes after ketamine (p<0.01 in 

all cases, except in GluN2CKO mice after the low dose of ketamine, p<0.05) 

and a significant difference between female WT and GluN2CKO mice after 

ketamine 30 mg/kg (p<0.01). 

Ketamine (30 mg/kg) increased circling behavior in male and female WT mice 

(Figure 15d). For male mice, two-way ANOVA showed a main effect of 

treatment (F2,59=74.50; p<0.0001), genotype (F1,59=96.96; p<0.0001) and 

interaction (F2,59=72.06; p<0.0001). For female mice, two-way ANOVA showed 

a main effect of treatment (F2,63=29.41; p<0.0001), genotype (F1,63=23.59; 

p<0.0001) and interaction (F2,63=20.80; p<0.0001). In both sexes, post hoc 

comparisons indicated a significant increase in circling behavior in WT after 

the high dose of ketamine (p<0.01, all cases) and a significant difference 

between WT and GluN2CKO mice after ketamine 30 mg/kg (p<0.01, all cases). 

 

2.2. Antidepressant-like effect 

Acute administration of ketamine (10 mg/kg) in male mice did not produce 

changes in the latency to feed in the NSFT (Figure 16a). In the FST, two-way 

ANOVA showed a main effect of treatment (F1,36=5.28; p<0.05) (Figure 16b). 

Ketamine (30 mg/kg) decreased the immobility time in the TST in male and 

female WT and GluN2CKO mice (Figure 16c). For male mice, two-way ANOVA 

showed a main effect of treatment (F2,54=86.36; p<0.0001). Post hoc 

comparisons indicated a significant reduction in immobility in male WT mice 

after ketamine 10 mg/kg (p<0.05) and in male WT and GluN2CKO mice after 

ketamine 30 mg/kg (p<0.01, all cases). For female mice, two-way ANOVA 

showed a main effect of treatment (F2,67=22.70; p<0.0001). Post hoc 

comparisons revealed a significant decrease in immobility in female WT and 

GluN2CKO mice after ketamine 30 mg/kg (p<0.01, all cases).  
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Figure 15. Effects of ketamine (10 and 30 mg/kg) in male and female WT and 
GluN2CKO mice on a) Rearings (percentage from saline-treated mice), b) Falls, c) 
Hindlimb abduction and d) Circling (n=15-18/group in saline groups; n=8-10/group in 
treated groups). *p<0.05, **p<0.01 vs saline; ##p<0.01 vs WT (Newman-Keuls post 
hoc test) 
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Figure 16. Effects of 10 mg/kg ketamine in male mice on a) NSFT (n=9) and b) FST 
(n=10). c) Percentage of immobility from saline-treated mice in the TST after ketamine 
(10 and 30 mg/kg) in male (n=14-15 in saline groups; n=7-8 in treated groups) and 
female (n=16-18 in saline groups; n=7-12 in treated groups) WT and GluN2CKO mice. 
*p<0.05, **p<0.01 vs saline (Newman-Keuls post hoc test) 

 

2.3. In vivo intracerebral microdialysis 

Baseline extracellular concentrations of 5-HT in mPFC in male WT and 

GluN2CKO mice were 17 ± 2 fmol/50µl (n=19) and 14 ± 2 fmol/50µl (n=17), 

respectively. Unpaired t-test revealed no significant differences between 

genotypes. Baseline extracellular concentrations of Glu in mPFC in male WT 

and GluN2CKO mice were 11 ± 1 pmol/50µl (n=19) and 9 ± 1 pmol/50µl (n=17), 

respectively. Unpaired t-test revealed no significant differences between 

genotypes. Baseline extracellular concentrations of 5-HT in mPFC in female 

WT and GluN2CKO mice were 21 ± 4 fmol/50µl (n=13) and 18 ± 4 fmol/50µl 
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(n=14), respectively. Unpaired t-test revealed no significant differences 

between genotypes. Baseline extracellular concentrations of Glu in mPFC in 

female WT and GluN2CKO mice were 7 ± 1 pmol/50µl (n=12) and 7 ± 1 

pmol/50µl (n=14), respectively. Unpaired t-test revealed no significant 

differences between genotypes. 

Ketamine (10 mg/kg) significantly increased 5-HT and Glu release in mPFC of 

male WT mice (Figure 17). For 5-HT, three-way ANOVA showed a main effect 

of time (F9,279=5.46; p<0.000001), treatment x time interaction (F9,279=4.14; 

p<0.0001), genotype x time interaction (F9,279=3.66; p<0.001) and treatment x 

genotype x time interaction (F9,279=2.74; p<0.01). For Glu, three-way ANOVA 

showed a main effect of treatment (F1,31=8.96; p<0.01), time (F9,279=2.72; 

p<0.01) and treatment x genotype x time interaction (F9,279=2.62; p<0.01). In 

both cases, post hoc comparisons indicated a significant increase of 5-HT and 

Glu release in ketamine-treated WT mice vs controls (p<0.01, all cases) and a 

significant difference between WT and GluN2CKO mice treated with ketamine 

(p<0.01, all cases) in fraction 5. 

Ketamine (30 mg/kg) significantly enhanced 5-HT and Glu release in mPFC in 

male mice (Figure 18). For 5-HT, three-way ANOVA showed a main effect of 

treatment (F1,31=19.17; p<0.0001), genotype (F1,31=12.01; p<0.01), time 

(F9,279=8.33; p<0.0000), treatment x genotype interaction (F1,31=11.81; 

p<0.01), treatment x time interaction (F9,279=7.57; p<0.0000), genotype x time 

interaction (F9,279=3.37; p<0.001) and treatment x genotype x time interaction 

(F9,279=3.11; p<0.01). Post hoc comparisons indicated a significant increase of 

5-HT release in ketamine-treated WT mice compared to controls in fraction 5 

(p<0.01) and fraction 6 (p<0.05) and a significant difference between WT and 

GluN2CKO mice treated with ketamine in fraction 5 (p<0.01) and fraction 6 

(p<0.05). For Glu, three-way ANOVA showed a main effect of treatment 

(F1,32=16.69; p<0.001), time (F9,288=5.44; p<0.0000), treatment x time 

interaction (F9,288=4.71; p<0.0000) and treatment x genotype x time 
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interaction (F9,288=2.01; p<0.05). Post hoc comparisons indicated a significant 

increase of Glu release in ketamine-treated WT (p<0.05) and GluN2CKO 

(p<0.01) mice compared to controls in fraction 5. Post hoc comparisons also 

revealed a significant increase of Glu release in ketamine-treated WT mice 

(p<0.01) and a significant difference between WT and GluN2CKO mice treated 

with ketamine (p<0.01) in fraction 10. 

In female mice, ketamine (30 mg/kg) significantly increased 5-HT and Glu 

release in mPFC (Figure 19). For 5-HT, three-way ANOVA showed a main effect 

of treatment (F1,46=8.18; p<0.01), time (F9,414=7.74; p<0.0000) and treatment 

x time interaction (F9,414=5.55; p<0.0000). Post hoc comparisons indicated a 

significant increase of 5-HT release in WT and GluN2CKO female mice (p<0.01, 

all cases) and a significant difference between WT and GluN2CKO mice treated 

with ketamine (p<0.01) in fraction 5. For Glu, three-way ANOVA showed a 

main effect of treatment (F1,46=11.41; p<0.01), time (F9,414=5.00; p<0.0000) 

and treatment x time interaction (F9,414=4.24; p<0.0000). Post hoc 

comparisons indicated a significant increase of Glu release in GluN2CKO mice 

in fractions 9 and 10 (p<0.01, all cases) and a significant difference between 

WT and GluN2CKO mice treated with ketamine (p<0.01) in fraction 9.  
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Figure 17. Time course of extracellular levels of a) Serotonin and b) Glutamate in mPFC 
after saline (n=7-8/group) or ketamine (Ket10; 10 mg/kg; n=8-9/group) administration 
in male WT and GluN2CKO mice. Microdialysis data are expressed as percentages of 
four basal values (fractions 1-4). The values are expressed as mean ± S.E.M. The arrow 
represents the time of IP injection of saline or ketamine. Dialysate fractions were 30 
min each. **p<0.01 vs saline; ##p<0.01 vs WT (Newman-Keuls post hoc test) 

 

 

a) Serotonin 

b) Glutamate 

 0  2  4  6  8  1 0

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

K e t1 0  G lu

F r a c t io n  n u m b e r  ( 3 0  m in  e a c h )

G
lu

 d
ia

ly
s

a
t
e

 i
n

 m
P

F
C

(%
 o

f 
b

a
s

a
l 

v
a

lu
e

s
)

W T  s a lin e

W T  K e t1 0

G lu N 2 C K O  s a lin e

G lu N 2 C K O  K e t1 0

* *

# #

P O S T  H O C S  D E  L A  T H R E E  W A Y  A N O V A  F E T A

A M B  E L  P R O G R A M A  S T A T IS T IC A

 0  2  4  6  8  1 0

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

K e t1 0  5 -H T

F r a c t io n  n u m b e r  ( 3 0  m in  e a c h )

5
-H

T
 d

ia
ly

s
a

te
 i

n
 m

P
F

C

(%
 o

f 
b

a
s

a
l 

v
a

lu
e

s
)

W T  s a lin e

W T  K e t1 0

G lu N 2 C K O  s a lin e

G lu N 2 C K O  K e t1 0# #

* *

P O S T  H O C S  D E  L A  T H R E E  W A Y  A N O V A  F E T A

A M B  E L  P R O G R A M A  S T A T IS T IC A

 0  2  4  6  8  1 0

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

K e t1 0  5 -H T

F r a c t io n  n u m b e r  ( 3 0  m in  e a c h )

5
-H

T
 d

ia
ly

s
a

te
 i

n
 m

P
F

C

(%
 o

f 
b

a
s

a
l 

v
a

lu
e

s
)

W T  s a lin e

W T  K e t1 0

G lu N 2 C K O  s a lin e

G lu N 2 C K O  K e t1 0# #

* *

P O S T  H O C S  D E  L A  T H R E E  W A Y  A N O V A  F E T A

A M B  E L  P R O G R A M A  S T A T IS T IC A

 0  2  4  6  8  1 0

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

K e t1 0  5 -H T

F r a c t io n  n u m b e r  ( 3 0  m in  e a c h )

5
-H

T
 d

ia
ly

s
a

te
 i

n
 m

P
F

C

(%
 o

f 
b

a
s

a
l 

v
a

lu
e

s
)

W T  s a lin e

W T  K e t1 0

G lu N 2 C K O  s a lin e

G lu N 2 C K O  K e t1 0# #

* *

P O S T  H O C S  D E  L A  T H R E E  W A Y  A N O V A  F E T A

A M B  E L  P R O G R A M A  S T A T IS T IC A

WT saline 

WT Ket10 

GluN2CKO Ket10 

GluN2CKO saline 

WT saline 

WT Ket10 

GluN2CKO Ket10 

GluN2CKO saline 



Results 

72 

 

 

Figure 18. Time course of extracellular levels of a) Serotonin and b) Glutamate in mPFC 
after saline (n=9/group) or ketamine (Ket30; 30 mg/kg; n=8-9/group) administration 
in male WT and GluN2CKO mice. Microdialysis data are expressed as percentages of 
four basal values (fractions 1-4). The values are expressed as mean ± S.E.M. The arrow 
represents the time of IP injection of saline or ketamine. Dialysate fractions were 30 
min each. *p<0.05, **p<0.01 vs saline; #p<0.05, ##p<0.01 vs WT (Newman-Keuls post 
hoc test) 
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Figure 19. Time course of extracellular levels of a) Serotonin and b) Glutamate in mPFC 
after saline (n=13-14/group) or ketamine (Ket30; 30 mg/kg; n=11/group) 
administration in female WT and GluN2CKO mice. Microdialysis data are expressed as 
percentages of four basal values (fractions 1-4). The values are expressed as mean ± 
S.E.M. The arrow represents the time of IP injection of saline or ketamine. Dialysate 
fractions were 30 min each. **p<0.01 vs saline; ##p<0.01 vs WT (Newman-Keuls post 
hoc test) 
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2.4. c-fos mRNA expression 

The effects of ketamine on c-fos mRNA expression in male mice are shown 

following an anatomical anteroposterior order (Figures 20, 21 and 22). A 

detailed statistical analysis (two-way ANOVA) is shown in Table 2. 

In male WT mice, ketamine (30 mg/kg) significantly enhanced c-fos mRNA 

expression in intermediate layer of primary and secondary motor cortices 

(Mid M1-M2), mPFC and Cg (p<0.01, all cases). In male GluN2CKO mice, 

ketamine significantly increased c-fos expression in Mid M1-M2, Deep M1-

M2, mPFC, NAc (p<0.01, all cases) and Cg (p<0.05). Significant differences 

between male WT and GluN2CKO mice treated with ketamine were found in 

Mid M1-M2, Deep M1-M2 (p<0.01, all cases) and CPu (p<0.05) (Figure 20). 

In male WT mice, ketamine (30 mg/kg) significantly enhanced c-fos mRNA 

expression in RSC (p<0.05) and PV (p<0.01). In male GluN2CKO mice, ketamine 

significantly increased c-fos expression in PV and IMD (p<0.01, all cases) and 

significantly reduced its expression in HPC (p<0.01). Significant differences 

between male WT and GluN2CKO mice treated with ketamine were found in 

HPC (p<0.05), Hb, PV and IMD (p<0.01, all cases) (Figure 21). 

In male WT mice, ketamine (30 mg/kg) significantly decreased c-fos mRNA 

expression in Crus1, Sim, 4/5Cb and Ve (p<0.01, all cases). In male GluN2CKO 

mice, ketamine significantly reduced c-fos expression in Crus1, Sim (p<0.01, 

all cases) and 4/5Cb (p<0.05). No significant differences were found between 

male WT and GluN2CKO mice (Figure 22). 
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Figure 20. C-fos mRNA expression for male WT and GluN2CKO mice after ketamine 
(30 mg/kg) administration in upper, intermediate and deep layers of primary and 
secondary motor cortices (Upper M1-M2, Mid M1-M2 and Deep M1-M2, AP: +2.10), 
medial prefrontal cortex (mPFC, AP: +2.10), cingulate cortex (Cg, AP: +1.18), caudate-
putamen nuclei (CPu, AP: +1.18), nucleus accumbens (NAc, AP: +1.18) and piriform 
cortex (Pir, AP: +1.18) (n=4-5/group). *p<0.05, **p<0.01 vs saline; #p<0.05, ##p<0.01 
vs WT (Newman-Keuls post hoc test) 
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Figure 21. C-fos mRNA expression for male WT and GluN2CKO mice after ketamine 
(30 mg/kg) administration in retrosplenial cortex (RSC, AP: -1.70), hippocampus (HPC, 
AP: -1.70), habenula (Hb, AP: -1.70), paraventricular thalamic nucleus (PV, AP: -1.70), 
mediodorsal thalamic nucleus (MD, AP: -1.70), intermediodorsal thalamic nucleus 
(IMD, AP: -1.70), centromedial thalamic nucleus (CM, AP: -1.70), paracentral thalamic 
nucleus (PC, AP: -1.70), ventrolateral thalamic nucleus (VL, AP: -1.70), reuniens and 
rhomboid nuclei of the thalamus (Re/Rh, AP: -1.70) and reticular nucleus (RtN, AP: -
1.70) (n=4-5/group). *p<0.05, **p<0.01 vs saline; #p<0.05, ##p<0.01 vs WT (Newman-
Keuls post hoc test) 
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Figure 22. C-fos mRNA expression for male WT and GluN2CKO mice after ketamine 
(30 mg/kg) administration in dorsal raphe (DR, AP: -4.60), crus 1 of the ansiform lobule 
(Crus1, AP: -6.00), cerebellar simple lobule (Sim, AP: -6.00), lobules 4 and 5 of the 
cerebellar vermis (4/5Cb, AP: -6.00) and vestibular nucleus (Ve, AP: -6.00) (n=4-
5/group). *p<0.05, **p<0.01 vs saline (Newman-Keuls post hoc test) 
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Table 2. Two-way ANOVA (treatment (T) and genotype (G) as factors) for c-fos 
expression data in male WT and GluN2CKO mice in upper, intermediate and deep 
layers of primary and secondary motor cortices (Upper M1-M2, Mid M1-M2 and Deep 
M1-M2, AP: +2.10), medial prefrontal cortex (mPFC, AP: +2.10), cingulate cortex (Cg, 
AP: +1.18), caudate-putamen nuclei (CPu, AP: +1.18), nucleus accumbens (NAc, AP: 
+1.18), piriform cortex (Pir, AP: +1.18), retrosplenial cortex (RSC, AP: -1.70), 
hippocampus (HPC, AP: -1.70), habenula (Hb, AP: -1.70), paraventricular thalamic 
nucleus (PV, AP: -1.70), mediodorsal thalamic nucleus (MD, AP: -1.70), 
intermediodorsal thalamic nucleus (IMD, AP: -1.70), centromedial thalamic nucleus 
(CM, AP: -1.70), paracentral thalamic nucleus (PC, AP: -1.70), ventrolateral thalamic 
nucleus (VL, AP: -1.70), reuniens and rhomboid nuclei of the thalamus (Re/Rh, AP: -
1.70), reticular nucleus (RtN, AP: -1.70), dorsal raphe (DR, AP: -4.60), crus 1 of the 
ansiform lobule (Crus1, AP: -6.00), cerebellar simple lobule (Sim, AP: -6.00), lobules 4 
and 5 of the cerebellar vermis (4/5Cb, AP: -6.00) and vestibular nucleus (Ve, AP: -6.00). 

 

  

Figure

Upper M1-M2 F1,16=5.43 p<0.05 F1,16=2.20 n.s. F1,16=2.20 n.s. 20

Mid M1-M2 F1,16=55.48 p<0.0001 F1,16=5.52 p<0.05 F1,16=5.52 p<0.05 20

Deep M1-M2 F1,16=6.62 p<0.05 F1,16=4.70 p<0.05 F1,16=4.70 p<0.05 20

mPFC F1,16=67,81 p<0.0001 F1,16=0.71 n.s. F1,16=0.71 n.s. 20

Cg F1,15=31.27 p<0.0001 F1,15=0.91 n.s. F1,15=0.91 n.s. 20

CPu F1,16=0.71 n.s. F1,16=5.93 p<0.05 F1,16=5.93 p<0.05 20

NAc F1,16=15.60 p<0.01 F1,16=0.81 n.s. F1,16=0.81 n.s. 20

Pir F1,16=8.48 p<0.05 F1,16=0.13 n.s. F1,16=0.13 n.s. 20

RSC F1,16=14.54 p<0.01 F1,16=0.13 n.s. F1,16=0.13 n.s. 21

HPC F1,16=5.47 p<0.05 F1,16=5.95 p<0.05 F1,16=5.95 p<0.05 21

Hb F1,16=0.29 n.s. F1,16=7.98 p<0.05 F1,16=7.98 p<0.05 21

PV F1,16=187.30 p<0.0001 F1,16=15.04 p<0.01 F1,16=15.04 p<0.01 21

MD F1,16=7.39 p<0.05 F1,16=1.23 n.s. F1,16=1.23 n.s. 21

IMD F1,15=8.02 p<0.05 F1,15=9.48 p<0.01 F1,15=9.48 p<0.01 21

CM F1,15=3.33 n.s. F1,15=2.74 n.s. F1,15=2.74 n.s. 21

PC F1,16=0.02 n.s. F1,16=0.18 n.s. F1,16=0.18 n.s. 21

VL F1,16=0.93 n.s. F1,16=1.84 n.s. F1,16=1.84 n.s. 21

Re/Rh F1,16=7.57 p<0.05 F1,16=0.24 n.s. F1,16=0.24 n.s. 21

RtN F1,16=0.39 n.s. F1,16=2.03 n.s. F1,16=2.03 n.s. 21

DR F1,16=0.09 n.s. F1,16=0.14 n.s. F1,16=0.14 n.s. 22

Crus1 F1,15=54.79 p<0.0001 F1,15=0.05 n.s. F1,15=0.05 n.s. 22

Sim F1,15=91.17 p<0.0001 F1,15=0.80 n.s. F1,15=0.80 n.s. 22

4/5Cb F1,15=30.77 p<0.0001 F1,15=0.49 n.s. F1,15=0.49 n.s. 22

Ve F1,15=11.44 p<0.01 F1,15=3.72 n.s. F1,15=3.72 n.s. 22

Treatment (T) Genotype (G) T x G
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The effects of ketamine on c-fos mRNA expression in female mice are shown 

following an anatomical anteroposterior order (Figures 23, 24 and 25). A 

detailed statistical analysis (two-way ANOVA) is shown in Table 3. 

In female WT mice, ketamine (30 mg/kg) significantly enhanced c-fos mRNA 

expression in Upper M1-M2 and Pir (p<0.05, all cases) and in Mid M1-M2, 

Deep M1-M2, mPFC, Cg and NAc (p<0.01, all cases). In female GluN2CKO mice, 

ketamine significantly increased c-fos expression in Mid M1-M2 (p<0.05) and 

in CPu, NAc and Pir (p<0.01, all cases). Significant differences between female 

WT and GluN2CKO mice treated with ketamine were found in Mid M1-M2 and 

Cg (p<0.01, all cases) (Figure 23). 

In female WT mice, ketamine (30 mg/kg) significantly enhanced c-fos mRNA 

expression in RSC, PV, MD, IMD, PC, VL, Re/Rh, RtN(p<0.01, all cases) and CM 

(p<0.05). In female GluN2CKO mice, ketamine significantly increased c-fos 

expression in PV, MD, IMD, PC, Re/Rh (p<0.01, all cases) and CM (p<0.05). 

Significant differences between female WT and GluN2CKO mice treated with 

ketamine were found in PV (p<0.01) (Figure 24). 

In female mice, ketamine (30 mg/kg) did not produce any changes in c-fos 

mRNA expression in DR, Crus1, Sim, 4/5Cb and Ve (Figure 25). 
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Figure 23. C-fos mRNA expression for female WT and GluN2CKO mice after ketamine 
(30 mg/kg) administration in upper, intermediate and deep layers of primary and 
secondary motor cortices (Upper M1-M2, Mid M1-M2 and Deep M1-M2, AP: +2.10), 
medial prefrontal cortex (mPFC, AP: +2.10), cingulate cortex (Cg, AP: +1.18), caudate-
putamen nuclei (CPu, AP: +1.18), nucleus accumbens (NAc, AP: +1.18) and piriform 
cortex (Pir, AP: +1.18) (n=5-6/group). *p<0.05, **p<0.01 vs saline; ##p<0.01 vs WT 
(Newman-Keuls post hoc test) 
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Figure 24. C-fos mRNA expression for female WT and GluN2CKO mice after ketamine 
(30 mg/kg) administration in retrosplenial cortex (RSC, AP: -1.70), hippocampus (HPC, 
AP: -1.70), habenula (Hb, AP: -1.70), paraventricular thalamic nucleus (PV, AP: -1.70), 
mediodorsal thalamic nucleus (MD, AP: -1.70), intermediodorsal thalamic nucleus 
(IMD, AP: -1.70), centromedial thalamic nucleus (CM, AP: -1.70), paracentral thalamic 
nucleus (PC, AP: -1.70), ventrolateral thalamic nucleus (VL, AP: -1.70), reuniens and 
rhomboid nuclei of the thalamus (Re/Rh, AP: -1.70) and reticular nucleus (RtN, AP: -
1.70) (n=5-6/group). *p<0.05, **p<0.01 vs saline; ##p<0.01 vs WT (Newman-Keuls 
post hoc test) 
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Figure 25. C-fos mRNA expression for female WT and GluN2CKO mice after ketamine 
(30 mg/kg) administration in dorsal raphe (DR, AP: -4.60), crus 1 of the ansiform lobule 
(Crus1, AP: -6.00), cerebellar simple lobule (Sim, AP: -6.00), lobules 4 and 5 of the 
cerebellar vermis (4/5Cb, AP: -6.00) and vestibular nucleus (Ve, AP: -6.00) (n=5-
6/group) 
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Table 3. Two-way ANOVA (treatment (T) and genotype (G) as factors) for c-fos 
expression data in female WT and GluN2CKO mice in upper, intermediate and deep 
layers of primary and secondary motor cortices (Upper M1-M2, Mid M1-M2 and Deep 
M1-M2, AP: +2.10), medial prefrontal cortex (mPFC, AP: +2.10), cingulate cortex (Cg, 
AP: +1.18), caudate-putamen nuclei (CPu, AP: +1.18), nucleus accumbens (NAc, AP: 
+1.18), piriform cortex (Pir, AP: +1.18), retrosplenial cortex (RSC, AP: -1.70), 
hippocampus (HPC, AP: -1.70), habenula (Hb, AP: -1.70), paraventricular thalamic 
nucleus (PV, AP: -1.70), mediodorsal thalamic nucleus (MD, AP: -1.70), 
intermediodorsal thalamic nucleus (IMD, AP: -1.70), centromedial thalamic nucleus 
(CM, AP: -1.70), paracentral thalamic nucleus (PC, AP: -1.70), ventrolateral thalamic 
nucleus (VL, AP: -1.70), reuniens and rhomboid nuclei of the thalamus (Re/Rh, AP: -
1.70), reticular nucleus (RtN, AP: -1.70), dorsal raphe (DR, AP: -4.60), crus 1 of the 
ansiform lobule (Crus1, AP: -6.00), cerebellar simple lobule (Sim, AP: -6.00), lobules 4 
and 5 of the cerebellar vermis (4/5Cb, AP: -6.00) and vestibular nucleus (Ve, AP: -6.00). 

 

 

 

  

Figure

Upper M1-M2 F1,20=6.69 p<0.05 F1,20=2.07 n.s. F1,20=1.69 n.s. 23

Mid M1-M2 F1,20=34.84 p<0.0001 F1,20=5.63 p<0.05 F1,20=3.64 n.s. 23

Deep M1-M2 F1,20=9.14 p<0.01 F1,20=4.07 n.s. F1,20=2.75 n.s. 23

mPFC F1,20=23.62 p<0.0001 F1,20=2.47 n.s. F1,20=3.32 n.s. 23

Cg F1,19=7.44 p<0.05 F1,19=6.77 p<0.05 F1,19=6.77 p<0.05 23

CPu F1,20=17.98 p<0.001 F1,20=0.61 n.s. F1,20=0.61 n.s. 23

NAc F1,20=97.84 p<0.0001 F1,20=0.27 n.s. F1,20=0.27 n.s. 23

Pir F1,20=28.70 p<0.0001 F1,20=0.80 n.s. F1,20=0.80 n.s. 23

RSC F1,19=19.91 p<0.001 F1,19=2.40 n.s. F1,19=2.40 n.s. 24

HPC F1,20=2.88 n.s. F1,20=0.01 n.s. F1,20=0.01 n.s. 24

Hb F1,20=8.68 p<0.01 F1,20=0.09 n.s. F1,20=0.09 n.s. 24

PV F1,20=69.96 p<0.0001 F1,20=11.69 p<0.01 F1,20=11.69 p<0.01 24

MD F1,20=40.03 p<0.0001 F1,20=0.41 n.s. F1,20=0.41 n.s. 24

IMD F1,18=24.34 p<0.0001 F1,18=0.05 n.s. F1,18=0.05 n.s. 24

CM F1,19=18.25 p<0.001 F1,19=0.05 n.s. F1,19=0.05 n.s. 24

PC F1,20=29.22 p<0.0001 F1,20=0.18 n.s. F1,20=0.18 n.s. 24

VL F1,20=21.91 p<0.001 F1,20=1.29 n.s. F1,20=1.29 n.s. 24

Re/Rh F1,18=76.42 p<0.0001 F1,18=1.30 n.s. F1,18=0.15 n.s. 24

RtN F1,19=14.36 p<0.01 F1,19=2.10 n.s. F1,19=2.10 n.s. 24

DR F1,20=0.92 n.s. F1,20=0.10 n.s. F1,20=0.10 n.s. 25

Crus1 F1,17=0.27 n.s. F1,17=0.03 n.s. F1,17=0.03 n.s. 25

Sim F1,16=0.19 n.s. F1,16=0.72 n.s. F1,16=0.72 n.s. 25

4/5Cb F1,15=0.68 n.s. F1,15=0.05 n.s. F1,15=0.05 n.s. 25

Ve F1,17=7.85 p<0.05 F1,17=0.04 n.s. F1,17=0.04 n.s. 25

Treatment (T) Genotype (G) T x G
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3. GluN1 and GluN2A-D subunit distribution in male WT and 

GluN2CKO mice 

Deletion of the GluN2C subunit produced remarkable changes in the mRNA 

expression of GluN1 subunit (Table 4, Figure 26). There were significant 

decreases in the expression of the GluN1 subunit in the outer part of the OB 

(OB(o)) and Crus1 (p<0.05, all cases) and in the inner part of the OB (OB(i)), 

mPFC, Sim, and 4/5Cb (p<0.01, all cases). It also caused increases of the GluN1 

subunit in thalamic nuclei (PV, IMD, CM, and Re/Rh) and HPC (p<0.05, all 

cases) and in RSC, Hb, and MD (p<0.01, all cases). 

Deletion of the GluN2C subunit produced minor changes in the mRNA 

expression of GluN2A, GluN2B and GluN2D subunits (Table 4). For the GluN2A 

subunit, there was an increase in its expression in DR (p<0.05). Regarding the 

GluN2B subunit, an increase in MD (p<0.05) and a decrease in Ve (p<0.05) was 

found. For the GluN2D subunit, there was a decline in its expression in OB(i) 

(p<0.05).  

In WT mice, GluN2C subunit mRNA (Figure 27) was detected in OB(o), OB(i), 

Crus1, Sim, 4/5Cb, Ve, MD, CM, IMD, Pir, Re/Rh, PV, Hb, RSC, NAc, HPC, 

mPFC, Amg, CPu, Cg, and DR (areas are listed in descending order of GluN2C 

expression). No signal above background levels was detected in GluN2CKO 

mice. 
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Figure 26. Representative film images of GluN1 mRNA expression in coronal sections 
of male WT and GluN2CKO mice in different anteroposterior coordinates from the 
Franklin & Paxinos mouse atlas. 
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Figure 27. Representative film images of GluN2C mRNA expression in coronal sections 
of male WT mice in different anteroposterior coordinates from the Franklin & Paxinos 
mouse atlas. 

  

+3.92 +2.10 +1.18 

-1.70 -4.60 -6.00 

GluN2C 



Results 

88 

 

4. Ketamine’s antidepressant-like effect in rats 

4.1. Antidepressant-like effect 

Ketamine (10, 15 and 20 mg/kg), injected 30 min prior to the test, induced 

antidepressant-like responses in the FST (Figure 28a). One-way ANOVA 

showed a main effect of treatment (F3,32=7.61; p<0.001). Post hoc 

comparisons indicated that all three doses of ketamine significantly reduced 

the immobility time (p<0.05 for ketamine 10 mg/kg, p<0.01 for ketamine 15 

and 20 mg/kg). Nevertheless, ketamine (10 and 15 mg/kg) did not reduce the 

immobility time when administered 1 h prior to the test (Figure 28b). 

Ketamine (10 and 15 mg/kg), injected 30 min prior to the test, did not induce 

an anxiolytic-like behavior in the NSFT (Figure 28c). One-way ANOVA showed 

a main effect of treatment (F2,18=18.83; p<0.0001). Post hoc comparisons 

indicated that both doses of ketamine significantly increased the latency to 

feed. Ketamine (10, 15 and 20 mg/kg) significantly reduced locomotor activity 

in the open field (Figure 28d). One-way ANOVA showed a main effect of 

treatment (F3,14=12.59; p<0.001). Post hoc comparisons indicated that all 

three doses of ketamine significantly produced hypolocomotion (p<0.05 for 

ketamine 10 mg/kg, p<0.01 for ketamine 15 and 20 mg/kg).  
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Figure 28. Effects of ketamine (Ket10, Ket15 and Ket20 for ketamine 10, 15 or 20 
mg/kg respectively) in the a) FST at 30 min (n=13 in saline group, n=7-9 in treated 
groups), b) FST at 1 h (n=8-10/group), c) NSFT at 30 min (n=7/group) and d) OF (n=4-
5/group). *p<0.05; **p<0.01 vs saline (Bonferroni post hoc test or Student’s t-test) 

 

4.2. Intracellular signaling 

Ketamine (15 mg/kg) significantly activated mTOR in PFC (t(9)=2.29; p<0.05) 

and ventral HPC (vHPC) (t(10)=3.27; p<0.01) and it significantly enhanced 

phospo-p70S6K in PFC (t(10)=6.11; p<0.0001) and vHPC (t(10)=2.44; p<0.05) 

(Figure 29). 

Ketamine (15 mg/kg) significantly increased mRNA levels of PSD95 in DR 

(t(8)=3.11; p<0.05) and synapsin I in PFC (t(8)=2.31; p<0.05), dorsal HPC (dHPC) 

(t(8)=2.34; p<0.05), vHPC (t(8)=2.62; p<0.05) and DR (t(8)=3.26; p<0.05) (Figure 

30). 
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Figure 29. a) Representative immunoblot of p-mTOR (Ser2448), p-p70S6K (Thr389) 
and β-actin. Optical density quantification of b) p-mTOR and c) p-p70S6K 30 min after 
ketamine (15 mg/kg) administration in prefrontal cortex (PFC), ventral hippocampus 
(vHPC) and dorsal raphe (DR) (n=5-6/group). *p<0.05; **p<0.01 vs saline (Student’s t-
test) 
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Figure 30. a) PSD95 and b) Synapsin I expression 6 h after ketamine (15 mg/kg) 
administration in prefrontal cortex (PFC), dorsal hippocampus (dHPC), ventral 
hippocampus (vHPC) and dorsal raphe (DR) (n=5/group). *p<0.05 vs saline (Student’s 
t-test) 
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Compelling evidence supports the hypothesis that dysfunction of the 

glutamatergic system mediates the pathophysiology of schizophrenia (Krystal 

et al., 2003) and MDD (Réus et al., 2016). In schizophrenia, the involvement 

of Glu neurotransmission mainly arises from findings that blockade of the 

NMDA-R by non-competitive NMDA-R antagonists induced symptoms that 

mimicked those of schizophrenia in healthy humans and they aggravated 

symptoms in schizophrenic patients (Javitt & Zukin, 1991; Lahti et al., 2001; 

Malhotra et al., 1996; Xu et al., 2015). More recently, it has been found that a 

single subanaesthetic dose of the non-competitive NMDA-R antagonist 

ketamine elicits rapid and sustained antidepressant effects in patients with 

TRD (see Xu et al., 2016 for a review). Starting from these observations, PCP, 

MK-801 and ketamine have been used to attempt to develop a 

pharmacological rodent model of schizophrenia (Lee & Zhou, 2019) and 

ketamine has also been studied in rodents in order to identify the 

neurobiological basis of its fast antidepressant actions (Browne & Lucki, 

2013). Nevertheless, the exact mechanism of action by which MK-801, PCP 

and ketamine exert these effects is yet to be fully elucidated. 

It has been hypothesized that non-competitive NMDA-R antagonists 

preferentially block NMDA-Rs on cortical GABAergic interneurons (Homayoun 

& Moghaddam, 2007) or GABAergic projection neurons such as RtN neurons 

(Kargieman et al., 2007; Santana et al., 2011; Troyano-Rodriguez et al., 2014), 

consequently increasing thalamo-cortical activity in PFC, RSC, EC, CM and MD, 

among other areas (Celada et al, 2013). Given that the GluN2C subunit is 

expressed in thalamic areas including the RtN (Karavanova et al., 2007; 

Ravikrishnan et al., 2018; Wenzel et al., 1997; Zhang et al., 2012), and 

modulates burst firing in RtN neurons (Liu et al., 2019), in the present thesis, 

we investigated the involvement of the GluN2C subunit in the mechanism of 

action of non-competitive NMDA-R antagonists to produce psychotomimetic 
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and/or antidepressant effects, under the working hypothesis that these 

effects would be partly attenuated in absence of the GluN2C subunit. 

The data from the present thesis show that the GluN2C subunit appears to be 

strongly involved in motor components of the behavioral syndrome induced 

by non-competitive NMDA-R antagonists, while the antidepressant-like 

effects of ketamine are preserved. The differential role of the GluN2C subunit 

in mediating the psychotomimetic and antidepressant effects of ketamine 

identifies this subunit as a potential target for preventing the emergence of 

pro-psychotic effects while keeping a full antidepressant action.  
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1. GluN2CKO mice show less motor impairment after acute 

NMDA-R blockade by MK-801 and PCP 

Typically, non-competitive NMDA-R antagonists induce a behavioral 

syndrome, resembling that of a psychotic state, that in animals is defined by 

hyperlocomotion, ataxia signs (falls, hindlimb abduction) and stereotypies 

(circling), as well as other behavioral responses like abnormal locomotor 

pattern and a decrease in the exploratory activity (rearings) (Andiné et al., 

1999; Carlsson & Carlsson, 1990; Geyer & Ellenbroek, 2003; Nilsson et al., 

2001; Nilsson et al., 2006; Scorza et al., 2008; Tricklebank et al., 1989). 

Accordingly, in the present study, MK-801 and PCP induced robust 

psychotomimetic effects in WT mice. However, in GluN2CKO mice, some 

motor components of the behavioral syndrome induced by both drugs were 

dramatically attenuated. Specifically, the circling score, the number of falls, 

and the hindlimb abduction score were extremely reduced in GluN2CKO 

mice, suggesting a better motor coordination in the absence of the GluN2C 

subunit. In support of this hypothesis, GluN2CKO mice spent more time on 

the rotarod compared to WT mice after acute MK-801 or PCP treatment, 

despite showing the same ability for motor learning, motor coordination 

and spontaneous activity in basal conditions (Hillman et al., 2011; Kadotani 

et al., 1996; Shelkar et al., 2019). Moreover, a better motor coordination 

due to reduced stereotypes and ataxia in GluN2CKO mice could explain the 

significant increase in the distance moved in the mutant animals, since 

stereotypies and hyperlocomotion have been considered competitive 

behaviors (Wu et al., 2005). 

DA projections to the NAc have been associated with PCP-induced 

hyperlocomotion (McCullough & Salamone, 1992) and depletion of DA in 

NAc attenuated the locomotor stimulating effects of PCP (Steinpreis & 

Salamone, 1993). Given that GluN2CKO mice exhibited a higher locomotor 
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activity and much better coordination than WT mice after NMDA-R 

blockade, we evaluated DA release in NAc after MK-801 treatment. The 

present results show that MK-801 elevated DA release in the NAc similarly 

in both genotypes, indicating that the greater locomotor activity in 

GluN2CKO mice did not depend on a differential activity of mesolimbic DA 

pathways. These results are in agreement with previous studies suggesting 

that activation of DA neurotransmission in NAc is not sufficient to sustain 

the locomotor activity effects of NMDA-R antagonists (Moghaddam & 

Adams, 1998; Ouagazzal et al., 1994) and further support the hypothesis 

that the better motor coordination of GluN2CKO mice would be due to a 

differential NMDA-R blockade. 

The GluN2C subunit (present study) seems not the unique NMDA-R subunit 

involved in the impaired locomotor and coordination induced by non-

competitive NMDA-R antagonists. Indeed, PCP administration led to a 

reduced motor impairment in the rotarod test in GluN2DKO mice 

(Yamamoto et al., 2013) and no hyperlocomotion was observed in these 

animals after PCP or ketamine treatment (Hagino et al., 2010; Ikeda et al., 

1995; Sapkota et al., 2016; Yamamoto et al., 2016). However, the very high 

abundance of the GluN2C subunit in the cerebellum and the involvement of 

this brain structure in motor coordination suggest that GluN2C subunits may 

play a critical role in the motor actions of MK-801 and PCP. 

In order to investigate the neurobiological basis of the described motor 

differences between WT and GluN2CKO mice, we used c-fos expression as a 

surrogate marker of neuronal activity, given its direct relationship with 

neuronal discharge (Dragunow & Faull, 1989; Konkle & Bielajew, 2004; 

Kovács, 2008; Lladó-Pelfort et al., 2012). In general, MK-801 and PCP 

administration evoked a very similar pattern of increased c-fos expression, as 

it has already been reported (Castañé et al., 2015; Inta et al., 2009). Thus, 

acute NMDA-R blockade elicited significant increases in c-fos mRNA 
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expression 1 h post-treatment in many brain areas, such as mPFC, NAc, Pir, 

RSC, HPC, thalamic nuclei, and EC. As expected, MK-801 and PCP increased c-

fos mRNA expression in areas that have been described to exhibit structural 

alterations in schizophrenic patients, such as Cg, HPC, thalamus and Amg 

(Shepherd et al., 2012). In the present study, we found significant decreases 

of c-fos mRNA expression in upper and deep layers of the motor cortices as 

well as in the cerebellar areas Crus1 and Sim (4/5Cb marginally significant) 

after MK-801 or PCP administration. Previous studies have also reported 

decreases in c-fos expression in brain areas with high basal activity (Mineur et 

al., 2007; Mineur et al., 2016). Therefore, the decrease in c-fos expression, at 

least in the cerebellum, likely reflects the very high activity and discharge 

rates of granule cells, which can show bursts that consist of tens of spikes at 

instantaneous frequencies over 800 Hz upon sensory stimulation (Beugen et 

al., 2013). Hence, unlike in forebrain, where non-competitive NMDA-R 

antagonist may increase the activity of principal neurons via disinhibition (see 

above), their action in cerebellar granule cells appears to be mainly inhibitory, 

likely blocking NMDA-Rs that contribute to maintain these very high rates of 

neuronal activity. 

Interestingly, genotype differences on c-fos expression were found in 

cerebellar areas Crus1, 4/5Cb and Ve, mostly showing a lessened effect of 

non-competitive NMDA-R antagonists in the GluN2CKO mice.  

In agreement, genotype differences among cerebellar areas Crus1, Sim and 

4/5Cb were also found using zif268, although the effects were less robust 

probably because we sacrificed the animals 1 h after treatment and not 30 

min after the injection, when zif268 expression shows a high expression in 

C57BL/6J mice (Ziólkowska et al., 2015). Although the decreased activity of 

motor cortices probably contribute to motor dysfunction after NMDA-R 

blockade, genotype differences in motor coordination would be more likely 

attributable to cerebellum activity. It is known that the cerebellum does not 
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initiate movement, but it contributes to coordination, precision, and accurate 

timing. It receives input from motor areas, sensory systems of the spinal cord 

and from other parts of the brain and integrates these inputs to refine motor 

activity. In agreement, cerebellar dysfunction deeply alters fine movement, 

equilibrium, posture, and motor learning. Moreover, we cannot exclude that 

other motor-related areas such the basal ganglia or the motor thalamus may 

also contribute to the behavioral variances between WT and GluN2CKO mice, 

since genotype differences in these areas were also observed. Concretely, 

MK-801 and PCP increased c-fos expression in CPu and NAc (MK-801’s effect 

in CPu did not reach statistical significance), but this increase was significantly 

attenuated in GluN2CKO mice. In the VL nucleus of the thalamus, MK-801 only 

increased c-fos expression in WT mice, not in GluN2CKO mice, while PCP 

increased c-fos in both genotypes. 

Remarkably, MK-801 and PCP have been reported to produce neuronal 

damage in Cg and RSC, which are brain regions suggested to be related to the 

psychotomimetic effects (Nishizawa et al., 2000; Olney et al., 1989; Tomitaka 

et al., 2000). As anticipated, both drugs increased c-fos expression in Cg and 

RSC of WT mice. Nevertheless, there were differences between WT and 

GluN2CKO mice in both areas, since MK-801 and PCP did not increase c-fos 

expression in Cg and neither did PCP in RSC of GluN2CKO mice. These 

genotype differences further support the hypothesis that the Cg and RSC are 

involved in the psychotic-like effects of non-competitive NMDA-R antagonists 

because GluN2CKO mice, which exhibited less psychotomimetic effects, were 

less affected by MK-801 and PCP. 

Overall, our results support that both MK-801 and PCP partly evoke their 

motor actions by interacting with GluN2C-containing NMDA-Rs, possibly 

located in the cerebellum, since it is a brain structure strongly involved in 

motor coordination and it contains, by large, the highest density of GluN2C 

subunits in brain (Monyer et al., 1994; Lin et al., 1996; Wenzel et al., 1997), 
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particularly in cerebellar granule neurons (Scherzer et al., 1997; Bhattacharya 

et al., 2018).  

Besides the positive symptomatology, another relevant aspect in 

schizophrenia is the impairment in sensorimotor gating, which can be 

assessed using the PPI test. The PPI reflex is a measure of the suppression of 

irrelevant information (Braff & Geyer, 1990) and clinical studies have 

demonstrated that patients with schizophrenia showed impairments in 

automatically filtering irrelevant thoughts and sensory stimuli (Dissanayake 

et al., 2013). In agreement with previous studies, PCP and MK-801 

produced deficits in PPI in WT mice (Ishii et al., 2010; Long et al., 2006; 

Shirai et al., 2012; Spooren et al., 2004). However, in contrast to the above 

differences in motor activity and coordination, mice from both genotypes 

exhibited identical responses (startle amplitude, % of PPI) to PCP and MK-

801, suggesting that the GluN2C subunit is not involved in the expression 

of sensorimotor gating deficits after NMDA-R blockade. Recently, Shelkar 

and colleagues (Shelkar et al., 2019) showed similar results regarding MK-

801-induced PPI deficits in WT and GluN2CKO mice. However, in this study 

authors suggest that the GluN2C subunit is important for the rescue of MK-

801-induced deficits by the GluN2C/2D potentiator CIQ, as CIQ attenuated 

MK-801-induced impairment in PPI in WT mice (Suryavanshi et al., 2014), 

but not in GluN2CKO mice (Shelkar et al., 2019). 

Moreover, no significant differences were observed between drug-free WT 

and GluN2CKO mice in the PPI response, as it had already been reported 

(Gupta et al., 2016; Shelkar et al., 2019). To date, other NMDA-R subunits 

have been involved in sensory gating in basal conditions, since reduction of 

GluN1 (Duncan et al., 2004) or block of the GluN2B subunit in GluN2AKO 

mice led to disruptions in PPI (Spooren et al., 2004), though GluN2AKO mice 

exhibit a normal PPI response (Boyce-Rustay & Holmes, 2006; Spooren et 

al., 2004). More recently, a reduction of the PPI was also found in GluN2D 
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heterozygotes and GluN2DKO mice, together with increased startle 

amplitude (Shelkar et al., 2019). 

The brain circuitry responsible for the PPI of the startle response involves 

mainly the limbic cortex, basal ganglia structures and the pontine 

tegmentum (Swerdlow et al., 2001). Therefore, the absence of genotype 

differences between WT and GluN2CKO mice in the PPI test agrees with the 

poor expression of GluN2C subunits in the above brain structures (Monyer 

et al., 1994; Lin et al., 1996; Wenzel et al., 1997).  

In summary, GluN2C-containing NMDA-Rs in the cerebellum may be involved 

in the motor components of the psychotomimetic action of MK-801 and PCP, 

but not in the impairment in sensorimotor gating produced by these two non-

competitive NMDA-R antagonists. Even though the cerebellum is not typically 

considered a brain area of interest in schizophrenia, Andreasen and 

colleagues have postulated that a dysfunction in cortico-thalamic-cerebellar 

circuitry may account for the cognitive deficits in this disorder (Andreasen et 

al., 1998). Moreover, Hillman et al. (2011) have reported working memory 

deficits in GluN2CKO mice, despite having intact reference memory, 

suggesting the participation of the GluN2C subunit in cognition. Therefore, it 

would be interesting to further study the role of the cerebellum and the 

GluN2C subunit in other cognitive tests under the challenge of a non-

competitive NMDA-R antagonist.  
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2. Ketamine-induced antidepressant-like effects are 

preserved in GluN2CKO mice 

Ketamine, as well as MK-801 and PCP, is a non-competitive NMDA-R 

antagonist that not only elicits psychotomimetic effects, but also exerts 

antidepressant responses. Therefore, we evaluated the involvement of the 

GluN2C subunit in both actions. Since MDD is a psychiatric disorder with a 

higher prevalence among females than males (WHO, 2017), we assessed 

ketamine’s effects in both sexes. 

Ketamine induced psychotomimetic effects in male and female WT and 

GluN2CKO mice. The stereotypes (circling) and ataxic behavior (falls, 

hindlimb abduction) were dramatically reduced in GluN2CKO mice of both 

sexes. These results are similar to the ones reported by MK-801 and PCP, 

where the absence of the GluN2C subunit led to a better motor 

coordination, and further support the involvement of the GluN2C subunit 

in the motor components of the psychotomimetic effects induced by non-

competitive NMDA-R antagonists. Of the three NMDA-R antagonists used 

in the present thesis, MK-801 is the one eliciting a greater behavioral 

syndrome, followed by PCP and ketamine, and its effects on increased 

locomotor activity, ataxia and stereotypes lasted longer than those of PCP 

or ketamine (data not shown). Concerning the psychotomimetic effects of 

ketamine on both sexes, we did not statistically compare both male and 

female results because they underwent behavioral testing on alternating 

weeks, but it seems that there are no relevant differences between males 

and females as similar dose-dependent effects of ketamine were found. 

These results may be in contrast with previous studies that reported that 

female rats were more sensitive to NMDA-R blockade by MK-801 than 

males, showing an increased and long-lasting recumbency (Hur et al., 
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1999), locomotor activity, ataxia and head weaving (Hönack & Löscher, 

1993) after 5 mg/kg or 0.1-0.3 mg/kg of MK-801, respectively. 

We did not evaluate PPI in WT and GluN2CKO mice after ketamine 

administration since experiments with MK-801 and PCP had already proved 

that the GluN2C is not involved in sensorimotor gating. Moreover, other 

research groups have already studied the deficits in PPI caused by 30 mg/kg 

of ketamine in mice (Lin et al., 2016; Zanos et al., 2017). 

Regarding the antidepressant action of ketamine, we found that 30 mg/kg 

but not 10 mg/kg of the drug elicited antidepressant-like effects in mice of 

both sexes and genotypes, as seen by the reduction in the immobility time 

in the TST. These results clearly suggest that the GluN2C subunit is not 

involved in the antidepressant-like effects of ketamine. While some studies 

have described antidepressant-like effects after 10 mg/kg or lower doses 

of ketamine 30 min (Franceschelli et al., 2015; Mantovani et al., 2003), 45 

min (Ghasemi et al., 2009) or 1 h (Zanos et al., 2016) before the TST or FST 

in male WT mice, others have only found significant responses at higher 

doses (Cruz et al., 2009; Koike et al., 2011; Nguyen & Matsumoto, 2015). In 

our study, GluN2CKO mice did not exhibit a depressive-like phenotype in 

the TST nor FST as previously reported (Hillman et al., 2011). However, a 

recent study that also used GluN2CKO mice found basal differences in the 

FST (Shelkar et al., 2019). These discrepancies could be explained by strain 

differences on anxiety-like behaviors and immobility between C57BL/6N 

(Shelkar et al., 2019) and C57BL/6J mice (present study), as C57BL/6N 

exhibited a higher anxiety-like behavior (Matsuo et al., 2010; Simon et al., 

2013). 

Regarding the contribution of sex to the antidepressant-like effects of 

ketamine, there is evidence showing that female rats are more sensitive to 

the rapid antidepressant-like effects of ketamine, since they usually 
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respond to lower doses of ketamine (i.e. 2.5 or 3 mg/kg) that are not 

effective to their male counterparts (Carrier & Kabbaj, 2013; Sarkar & 

Kabbaj, 2016). In mice, ketamine exhibited controverted results in freely 

cycling females, with studies supporting this higher sensitivity 

(Franceschelli et al., 2015; Zanos et al., 2016) and others reporting no 

differences between males and females (Dossat et al., 2018), as the present 

study. 

In addition to the glutamatergic system, serotonergic neurotransmission 

might also be involved in the antidepressant actions of ketamine (du Jardin 

et al., 2016). Studies of our group have reported that an acute increase of 

glutamatergic neurotransmission in the infralimbic cortex (ventral 

subdivision of the mPFC), produced by blockade of the glial Glu transporter-

1 (GLT-1), evoked antidepressant-like effects associated with an increase of 

serotonergic activity (Gasull-Camós et al., 2017, 2018, see publications in 

the annex section). Other studies supporting the contribution of the 

serotonergic system have shown that depletion of 5-HT by para-

chlorophenylalanine (pCPA, a 5-HT synthesis inhibitor) attenuated the 

antidepressant-like effects of ketamine 30 min (Fukumoto et al., 2016) and 

24 h (Gigliucci et al., 2013; Pham et al., 2017) after its administration, 

suggesting a key role of 5-HT in the antidepressant-like action of ketamine. 

Thus, we evaluated the contribution of the serotonergic and glutamatergic 

systems using in vivo microdialysis in mPFC in male and female mice, since, 

to our knowledge, sex differences in the neurochemical effects of ketamine 

have been poorly addressed.  

An increase of extracellular levels of 5-HT were found in mPFC in WT and 

GluN2CKO mice of both sexes after an antidepressant-like effective dose of 

ketamine (30 mg/kg). Although some genotype differences exist, our 

results suggest that 5-HT may be contributing to the observed 

antidepressant response. Results regarding Glu neurotransmission do not 
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parallel the antidepressant response, since no rapid increases of Glu were 

found in either WT or GluN2CKO female mice after ketamine 

administration. We are not the first to describe sex-differentiated effects 

of ketamine, since a study had previously indicated that repeated ketamine 

treatment induced different neurochemical and molecular effects 

depending on sex (Thelen et al., 2016).  

Interestingly, the increases in 5-HT or Glu (when found) were transient, 

reaching a maximum within the first 30 min after the administration of 

ketamine and then returning to basal levels. This matches the fast 

pharmacokinetic profile of ketamine in male C57BL/6, which its half-life has 

been reported to be approximately of 13 min (Maxwell et al., 2006) or 

between 30 to 40 min (Sato et al., 2004). Unexpectedly, Glu levels in mPFC 

peaked at 2-3 h after ketamine (30 mg/kg) treatment in some experimental 

groups, which would not be a direct effect of ketamine, given its faster 

pharmacokinetic profile.  

Previous microdialysis studies have shown that ketamine increased the 

extracellular levels of 5-HT in the PFC of male rats (Amargós-Bosch et al., 

2006; Kinoshita et al., 2018; López-Gil et al., 2012, 2019) and so did each of 

its enantiomers in male mice (Ago et al., 2019). However, there are 

controverted results regarding Glu release in this area, with studies 

showing increases of Glu (Moghaddam et al., 1997; Lorrain et al., 2003) or 

no effects (López-Gil et al., 2019). Moreover, Glu increases in rats were 

long-lasting (Moghaddam et al., 1997; Lorrain et al., 2003) after ketamine 

administration.  

Altogether, our results suggest that an increase in serotonergic -but not 

glutamatergic- transmission may be involved in the acute antidepressant-

like response of ketamine. Nevertheless, the neurochemical basis of the 



Discussion 

107 

 

antidepressant response of ketamine in male and female WT and 

GluN2CKO mice deserves further attention. 

In order to identify brain areas responding to ketamine’s treatment, we 

used ISH studies to investigate the expression of the immediate early gene 

c-fos. In WT mice, ketamine increased c-fos expression in Mid M1-M2, 

mPFC, Cg, and PV in both sexes. Moreover, ketamine induced c-fos 

expression in RSC of male and female WT mice, as it had been described 

after a dose of 10 mg/kg (Inta et al., 2009) or 50 mg/kg (Nakao et al., 2002; 

Nishizawa et al., 2000). Remarkably, the DR was not activated in male nor 

female mice after ketamine treatment, which would have been expected 

given that ketamine enhanced 5-HT neurotransmission and a previous 

study had reported a significantly increased c-fos immunoreactivity in DR 

after systemic 30 mg/kg ketamine administration (Fukumoto et al., 2016). 

Surprisingly, ketamine did not systematically activate thalamic nuclei in 

male mice, as it would have been expected since MK-801 and PCP increased 

c-fos expression in thalamus. Nevertheless, female mice did exhibit an 

increased activity in all thalamic nuclei analyzed after ketamine treatment. 

On the other hand, small reductions in c-fos expression where only found 

in cerebellar areas of male mice, while no decreases in c-fos were found in 

female mice. Overall, even though there were no differences between 

males and females in the behavioral variables analyzed, we did find a 

differential brain activation after ketamine treatment between sexes. 

In comparison with MK-801 and PCP, ketamine did not evoke a general 

pattern of c-fos activation. Unexpectedly, we did not replicate the 

cerebellar genotype differences found after MK-801 or PCP administration. 

However, the magnitude of c-fos change observed in most brain areas after 

ketamine was more moderate than after MK-801 or PCP administration, 

which would complicate the appreciation of genotype differences.  
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A possible explanation for the behavioral and molecular differences among 

the three non-competitive NMDA-R antagonists could be their affinity for the 

PCP binding site. The order of affinity (MK-801 > PCP > ketamine; Temme et 

al., 2018) is the same as their order of potency with which these drugs induced 

psychotomimetic effects (Tricklebank et al., 1987). Therefore, ketamine 

activated c-fos activation in a lower number of brain areas than MK-801 or 

PCP because it has a weaker effect on NMDA-Rs. Another reason could be the 

subunit preference of each drug. On one hand, it has been described that 

sensitivity to MK-801 is greater for GluN2A and GluN2B-containing receptors 

than GluN2C or GluN2D-containing receptors (Bresink et al., 1996; Dravid et 

al., 2007). Further, it was suggested that ketamine would preferentially act on 

GluN2C and/or GluN2D subunits (Kotermanski & Johnson, 2009). Moreover, 

based on this previous study, it was hypothesized that, at a concentration at 

which ketamine produces psychosis in humans, this drug would selectively 

block a substantial fraction of GluN2C-containing NMDA-Rs, with less effect 

on other subunits (Khlestova et al., 2016). However, there are two important 

facts that must be taken into consideration. First, this conclusion was reached 

using diheteromeric receptors. Therefore, ketamine’s preference for GluN2C-

containing triheteromeric receptors remains unknown. Second, ketamine’s 

preference for the GluN2C subunit might not be due to a higher affinity for 

this subunit, but due to the differential capacity of GluN2C for Mg2+ block, 

meaning that ketamine may block distinct NMDA-R subunits depending on 

local Mg2+ concentrations. 
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3. Compensatory mechanisms in GluN2CKO mice 

One of the limitations of studies using constitutive knockout mice is that 

compensatory mechanisms may exist during brain development. In order to 

investigate this issue we performed ISH studies to investigate whether GluN2C 

had been replaced with other NMDA-R subunits in the brain of GluN2CKO 

mice. 

In WT mice, we found that the GluN2C subunit was highly expressed in 

cerebellum and olfactory bulb, and moderately in different thalamic nuclei, as 

previously reported (Farrant et al., 1994; Karavanova et al., 2007; Monyer et 

al., 1994; Wenzel et al., 1997). Our data extended these earlier studies by also 

showing GluN2C expression in other brain areas, such as Pir, Hb, NAc, HPC, 

mPFC, Amg, CPu, Cg and DR.  

The NMDA-R is a tetramer that requires two GluN1 subunits with either two 

GluN2 subunits or a combination of GluN2 and GluN3 subunits (Cull-Candy et 

al., 2001). Therefore, it would be expected that in the GluN2CKO mice, the 

GluN2C subunit would be replaced by another GluN2 subunit or by a GluN3 

subunit. Contrary to this expectation, the present results suggest that the 

GluN2C subunit was not systematically replaced by any other GluN2 subunit. 

However, complete deletion of the GluN2C led to significant changes in GluN1 

expression. On one hand, the GluN1 subunit was significantly decreased in 

olfactory bulb, mPFC and cerebellar cortex (Crus1, Sim and 4/5Cb). 

Furthermore, its expression was increased in RSC, HPC, Hb and thalamus (PV, 

MD, IMD, CM and Re/Rh). These results partially replicate those of another 

study, which reported significant reductions in the expression of GluN1, 

GluN2A and GluN2B subunits in the whole cerebellum from postnatal day 21 

GluN2CKO mice (Lu et al., 2006).  

Reductions in GluN1 subunit expression may suggest a downregulation of 

NMDA-Rs in the olfactory bulb and cerebellum. Moreover, the fact that we 
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did not find reductions in any GluN2 subunits may suggest that only 

diheteromeric GluN1-GluN2C NMDA-Rs disappeared. In contrast, increases of 

GluN1 subunit are more difficult to explain, and we can speculate that a 

substitution of GluN2C with the GluN1 may occur in triheteromeric receptors. 

Nevertheless, no definite conclusion can be drawn about the possible 

compensatory mechanisms in GluN2CKO mice until evaluation of GluN3A and 

GluN3B mRNA expression (in progress) and/or receptor binding studies are 

performed in order to determine the density of NMDA-Rs in WT and 

GluN2CKO mice. 

Overall, deletion of GluN2C subunit produced minor changes on the 

expression of GluN2A, GluN2B and GluN2D subunits, yet a significant 

reduction of GluN1 subunit expression in cerebellar areas. Therefore, the 

reported behavioral differences observed in the GluN2CKO mice, and in 

particular, the reduced motor incoordination induced by non-competitive 

NMDA-R antagonists may not only be attributable to the lack of the GluN2C 

subunit, but also to the compensatory changes in other subunits ensuing 

genetic manipulation. Another shortcoming of this study is that we did not 

assess GluN subunits distribution in female WT and GluN2CKO mice. 
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4. Acute ketamine administration induces rapid, but not 

sustained, antidepressant-like effects and activates mTOR 

pathway in rats 

Ketamine is presently considered a revolutionary treatment in psychiatry 

because a single administration of this drug produces fast and sustained 

antidepressant actions in patients with TRD (see Xu et al., 2016 for a 

review). However, some aspects of these clinical findings are difficult to 

replicate in experimental animals, in particular, the presence of long-lasting 

antidepressant-like effects at times exceeding the actual presence of the 

drug. 

Here we found that an acute administration of ketamine in a range of doses 

between 10 and 20 mg/kg induced rapid antidepressant-like responses in 

the FST. In particular, we observed a significant decrease of the immobility 

time 30 min after ketamine administration, in agreement with previously 

published reports (Wang et al., 2014; Yang et al., 2013), and this effect was 

obtained in the absence of drug-induced psychomotor stimulation. 

Interestingly, the temporal course of the behavioral effect follows the 

pharmacokinetics of (S)-ketamine in Wistar rats, whose brain concentration 

rises sharply, reaching a maximal concentration 15 min after subcutaneous 

administration (Gastambide et al., 2013). Despite some studies reported 

longer lasting effects (1 h after administration) (Wang et al., 2011), in our 

experimental conditions we did not find any significant effect of ketamine 

at this time point, as already described with a dose of 10 mg/kg ketamine 

(Gigliucci et al., 2013). Therefore, we were not able to reproduce the 

sustained antidepressant-like effects of ketamine in rats. To date, few 

studies have shown long-lasting antidepressant-like effects after acute 

ketamine administration, such as at 24 h in rats and mice (Burgdorf et al., 
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2013; Gigliucci et al., 2013; Li et al., 2010; Pham et al., 2017; Zanos et al., 

2016) or even at 1 week in mice (Autry et al., 2011). 

In the NSFT, ketamine did not elicit an anxiolytic-like behavior, which is 

contrary to other studies where ketamine reduced the latency to feed 

(Carrier & Kabbaj, 2013; Wang et al., 2014). Remarkably, ketamine elicited 

hypolocomotion, in agreement with another study (Gigliucci et al., 2013) 

but in contrast with other reports that did not find any effects of ketamine 

on locomotor activity (Wang et al., 2014; Yang et al., 2013). Therefore, the 

increased latency to feed in the NSFT could be attributed to 

hypolocomotion and not to an anxiogenic effect of ketamine. 

Overall, the present data support the view that acute ketamine 

administration induces rapid antidepressant-like responses in the FST 

within a short time window, paralleling its pharmacokinetics. Temporal 

differences between the present study and other reports may be explained 

by experimental conditions such as rat strain (Burke et al., 2016; Tizabi et 

al., 2012) or sex (Carrier & Kabbaj, 2013; Franceschelli et al., 2015). 

Moreover, previous exposure to stressful environments may also mediate 

in the antidepressant-like response of ketamine (Fitzgerald et al., 2019). In 

addition, sex of the human experimenter should be taken into 

consideration, since male scent was found necessary to elicit ketamine’s 

antidepressant effects under specific conditions (Georgiou et al., 2018). 

Another variable could be the source of ketamine, although no systematic 

evidence associates the supplier of ketamine with the behavioral outcome 

of rodent experiments (Browne & Lucki, 2013). Altogether, these 

experimental conditions may affect replicability and should be considered 

when comparing studies. 

It has been hypothesized that the antidepressant response of ketamine is 

mediated by induction of mTOR signaling and subsequent synaptogenesis 
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after stimulation of Glu transmission and AMPA-Rs activation (Duman et 

al., 2012). Moreover, a dysregulation in mTOR signaling is associated with 

MDD (Jernigan et al., 2011; Karolewicz et al., 2011) and post-mortem 

studies have described lower levels of mTOR and p70S6K in the PFC of 

depressed patients (Jernigan et al., 2011).  

We found increased levels of the phosphorylated form of mTOR in a 

preparation enriched in synaptoneurosomes in the PFC and vHPC. Evidence 

of mTOR activation was supported by increased phosphorylation of the 

downstream protein p70S6K in both areas. These results are in agreement 

with previous data showing that activation of mTOR signaling occurs in the 

PFC and HPC at low but not high anesthetic doses of ketamine, which in 

turn produce rapid antidepressant behavioral actions (Li et al., 2010; Yang 

et al., 2013). Interestingly, a partial agonist at the glycine binding site of the 

NMDA-R, rapastinel (formerly GLYX-13), has been found to induce rapid 

(Burgdorf et al., 2013) but not sustained (Yang et al., 2016) antidepressant-

like effects in rats, which are paralleled by increased mTOR signaling in the 

mPFC (Liu et al., 2017). 

Taking into account that activation of mTOR and p70S6K has been 

functionally linked with synaptic plasticity (Hoeffer & Klann, 2010), 

initiation of protein translation and cell growth (Fenton & Gout, 2011; 

Tavares et al., 2015), we investigated the mRNA levels of two synaptic 

proteins: PSD95 and synapsin I. On one hand, PSD95 is a scaffolding protein 

located at excitatory synapses and it is involved in the stabilization, 

recruitment and trafficking of NMDA-Rs and AMPA-Rs to the postsynaptic 

membrane (Chen et al., 2000; Kornau et al., 1995). On the other hand, 

synapsin I plays an important role in synapse formation and modulates 

neurotransmitter release (Mirza & Zahid, 2018; Song & Augustine, 2015). 

Previous work has reported significant increased levels of PSD95 and 

synapsin I in PFC (Li et al., 2010), and we further extended these results 
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describing increased levels of PSD95 in DR and synapsin I in HPC and DR. 

Overall, these molecular changes reinforce the idea that the antidepressant 

effects of ketamine could be prompted by activation of the mTOR signaling 

pathway. 

However, other mechanisms than NMDA-R blockade may be involved in the 

action of ketamine, either in the acute or sustained antidepressant effects. 

First, of the three non-competitive NMDA-R antagonists studied, MK-801 also 

elicited antidepressant-like effects in rodents (Maeng et al., 2008; Rosa et al., 

2003; Skolnick et al., 2015) and activated mTOR signaling (Yoon et al., 2008), 

while PCP did not (Turgeon et al., 2007). Moreover, memantine, another non-

competitive NMDA-R antagonist with the same affinity for the NMDA-R than 

ketamine, did not exhibit antidepressant effects in two double-blinded, 

placebo-controlled studies (Lenze et al., 2012; Zarate et al., 2006b). In 

addition, while the NMDA-R hypothesis of ketamine action would predict 

greater efficacy of (S)-ketamine since it is shows more affinity at the NMDA-R 

site than (R)-ketamine (Domino, 2010), studies have demonstrated greater 

and longer antidepressant-like effects of (R)-ketamine (Chang et al., 2019; 

Fukumoto et al., 2017; Yang et al., 2015; Zanos et al., 2016; Zhang et al., 2014). 

This discrepancy between affinity and potency also suggests that ketamine’s 

antidepressant effects may not entirely depend on NMDA-R antagonism. For 

instance, ketamine exhibited binding affinity for the dopamine D2 and 

serotonin 5-HT2 receptors (Kapur & Seeman, 2002; Tsukada et al., 2000). In 

addition, ketamine inhibited monoamine (norepinephrine, DA and 5-HT) 

transporters (Nishimura et al., 1998) and also modulated subtypes of the 

GABAA receptor in granular neurons within the cerebellum (Hevers et al., 

2008). Therefore, it would be interesting to study the contribution of these 

other targets on the antidepressant effects of ketamine. Finally, in 2016, it 

was hypothesized that (2S,6S;2R,6R)-hydroxynorketamine (HNK), a 

metabolite of ketamine, was necessary for its long-lasting antidepressant 
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action in rodent tests, which involved the activation of AMPA-Rs and did not 

depend on NMDA-R inhibition (Zanos et al., 2016). Since then, other 

researchers have replicated and extended this finding (Chou et al., 2018; 

Fukumoto et al., 2019; Pham et al., 2018). 
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The main conclusions of the present work can be summarized as follows: 

 
- The GluN2C subunit is strongly involved in motor components of the 

psychotomimetic syndrome induced by non-competitive NMDA-R 

antagonists, but not in sensorimotor gating deficits. Its genetic deletion 

results in an improved motor coordination after NMDA-R blockade.  

 

- The GluN2C subunit plays a role in the differential neural activation of 

motor areas induced by MK-801 or PCP administration, such as the 

cerebellum and the basal ganglia. These results allow to identify the 

cerebellum, where the GluN2C subunit is highly expressed, as a key 

regional target in the action of these non-competitive NMDA-R 

antagonists. 

 

- The GluN2C subunit does not contribute to the antidepressant-like effects 

induced by ketamine in both sexes. These effects likely involve different 

networks than those involved in the psychotomimetic effects and probably 

depend on increased 5-HT neurotransmission in mPFC. 

 

- Deletion of the GluN2C subunit produces remarkable changes in the 

expression of the GluN1 subunit in cerebellar and thalamic areas, which 

may contribute to the behavioral and molecular differences between both 

genotypes. 

 

- Acute ketamine treatment induces rapid but not sustained 

antidepressant-like responses in rats. It activates the mTOR signaling 

pathway and the expression of synaptic proteins in PFC, HPC and DR. 
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Glial GLT-1 blockade in infralimbic cortex as a new strategy to evoke 

rapid antidepressant-like effects in rats 
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This study proposes different roles of the infralimbic (IL) and the prelimbic 

(PrL) cortices on mood regulation. Concretely, the present work shows that 

enhancing glutamatergic transmission into IL, but not PrL, evokes rapid 

antidepressant-like effects in rats. These effects depend on increased 

serotonin (5-HT) release in the mPFC, which is probably mediated by the 

activation of IL- dorsal raphe projection. 
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This study further supports the implication of the infralimbic (IL)-dorsal raphe 

projection in the antidepressant effects evoked by increasing glutamate 

transmission into the IL cortex. Moreover, the present work demonstrates the 

opposite roles played by presynaptic (dorsal raphe) and post-synaptic (IL) 5-

HT1A receptors in preventing or facilitating, respectively, the antidepressant 

response.
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Astrocyte control of glutamatergic activity: Downstream effects on 

serotonergic function and emotional behavior 
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This review focuses on the pathophysiological causes of major depressive 

disorder (MDD), paying a special attention to three important and interrelated 

factors: 1) the ventral anterior cingulate cortex (vACC) hyperactivity seen in 

untreated and treatment-resistant MDD patients, 2) the tight control of 

serotonergic neurotransmission by vACC, and 3) the role of astrocytes in 

glutamatergic neurotransmission, mainly via astrocyte glutamate 

transporters. Along these lines, we also review recent studies form our group 

testing the working hypothesis that astrocyte-induced alterations of 

excitatory neurotransmission in the infralimbic cortex (IL) (rodent equivalent 

of vACC) may alter the activity of raphe 5-HT neurons via descending afferents 

from IL and evoke depressive-like or antidepressant-like effects in rodents. 
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