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3Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
4Departament de Bioquı́mica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
5Unitat de tuberculosi experimental, Institut Germans Trias i Pujol, Badalona, Spain
6Senior author
7Lead Contact

*Correspondence: jlloberas@ub.edu (J.L.), acelada@ub.edu (A.C.)

https://doi.org/10.1016/j.celrep.2020.108079
SUMMARY
Mitofusin 2 (Mfn2) plays a major role in mitochondrial fusion and in the maintenance of mitochondria-endo-
plasmic reticulum contact sites. Given that macrophages play a major role in inflammation, we studied the
contribution of Mfn2 to the activity of these cells. Pro-inflammatory stimuli such as lipopolysaccharide
(LPS) induced Mfn2 expression. The use of the Mfn2 and Mfn1 myeloid-conditional knockout (KO) mouse
models reveals that Mfn2 but not Mfn1 is required for the adaptation of mitochondrial respiration to stress
conditions and for the production of reactive oxygen species (ROS) upon pro-inflammatory activation.
Mfn2 deficiency specifically impairs the production of pro-inflammatory cytokines and nitric oxide. In addi-
tion, the lack of Mfn2 but not Mfn1 is associated with dysfunctional autophagy, apoptosis, phagocytosis, and
antigen processing. Mfn2floxed;CreLysM mice fail to be protected from Listeria,Mycobacterium tuberculosis, or
LPS endotoxemia. These results reveal an unexpected contribution of Mfn2 to ROS production and inflam-
mation in macrophages.
INTRODUCTION

Mitochondria are highly dynamic organelles that are in a contin-

uous process of fusion and fission and constantly reshaping their

morphology in response to cellular needs and functions. These

dynamics influence the biology of mitochondria and play a

crucial role in functions, such as apoptosis, autophagy, Ca2+ ho-

meostasis, oxidative metabolism, and respiration (Liesa and

Shirihai, 2013; Sebastián et al., 2017; Zorzano et al., 2015). In

mammals, mitochondrial fusion is mediated by mitofusin 1

(Mfn 1), Mfn2, and optic atrophy 1 (Opa1) (Zorzano et al.,

2010). In addition to its function in mitochondrial fusion, Mfn2

is also critical for the establishment of interactions betweenmito-

chondria and the endoplasmic reticulum (ER) (Bach et al., 2005;

de Brito and Scorrano, 2008a; Sebastián et al., 2012; Zorzano

et al., 2015).

The dysfunction of mitochondria and the ER underlie meta-

bolic alterations. In this regard, Mfn2 is associated with obesity

and type 2 diabetes in both humans and rodents (Bach et al.,

2005; Sebastián et al., 2012; Zorzano et al., 2015). In addition,

genetic mutations inMFN2 cause Charcot-Marie-Tooth disease
This is an open access article under the CC BY-N
type 2A, a peripheral neuropathy (Bombelli et al., 2014; Verho-

even et al., 2006; Z€uchner et al., 2004). Mfn2 is involved not

only in peripheral neuropathy but also in the function of hypotha-

lamic neurons, a cell population that regulates food intake and

energy homeostasis (Schneeberger et al., 2013). More recently,

a connection between Mfn2 dysfunction, aging, and age-related

muscular impairment has been reported (Sebastián et al., 2016).

Macrophages play a major role in regulating metabolism and

inflammatory responses (Biswas and Mantovani, 2012). On the

other hand, mitochondria are master regulators of metabolism

but are also increasingly being recognized as central hubs for

innate immune signaling (Tur et al., 2017; Weinberg et al.,

2015;West et al., 2011b). Given the relevance of the link between

Mfn2 and mitochondrial function, here, we addressed the role of

this protein in the functional activity of macrophages in inflam-

mation. There is only one previous report showing the relevance

of Mfn2 in macrophages. In this study, Ichinohe et al. (2013)

demonstrated, in an in vitro model using small interfering RNA

(siRNA), the role of Mfn2 in inflammasome activation.

Macrophages play a critical role during immune response.

Pro-inflammatory activators, such as lipopolysaccharide (LPS),
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Figure 1. Mfn2 Is Highly Expressed in Macrophages, Is Induced by Pro-inflammatory Stimuli, and Is Required for Mitochondrial Integrity

(A) Mfn2 expression in different tissues compared to peritoneal macrophages, as well as in relation to Mfn2floxedCre+ mice.

(B) Mfn2 expression in peritoneal macrophages and BMDMs, as well as in relation to Mfn2�/� macrophages.

(C) Mfn2 expression in activated BMDMs from WT and Mfn2�/� macrophages. LPS, IFN-g, and IL-4 were added for 6 h at 10 ng/ml.

(D) Macrophage mitochondria stained with Mitotracker Deep Red (mitochondria), Calcein (cytoplasm), and Hoechst (nuclei) and observed by confocal fluo-

rescence microscopy. Zooms of z stacks from images with at least 20 cells are shown. Bar, 10 mm.

(E) Quantification of the mitochondrial fragmentation degree.

(F) Quantification of the average volume for each ‘‘single’’ mitochondrion.

(G) Macrophage mitochondrial mass calculated by staining with Mitotracker Green.

(H) Number of mitochondrial DNA (mDNA) copies relative to the genomic DNA (gDNA).

All results are shown as mean ± SD from three independent experiments compared using two-way ANOVA; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Photographs are representative of five independent experiments. See also Figures S1–S3.
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or interferon g (IFN-g) induce reactive oxygen species (ROS), a

variety of molecules and free radicals derived frommolecular ox-

ygen that are essential mediators of the macrophage functional

activities (Bodgan, 2001). The major source of ROS has been

attributed to nitric oxide synthase (NOS) induced by pro-inflam-

matory activators (Bogdan, 2001).

Here, we provide evidence that macrophages require Mfn2 to

adapt mitochondrial respiration and to produce ROS. Using a

conditional mouse Mfn1�/�, we demonstrate that the alterations

detected in Mfn2-deficient macrophages are not due to reduced

mitochondrial fusion but are instead to lower ROS production.

The lack of ROS production results in defective extracellular

signal-regulated kinase (ERK) and p38 signaling, which in turn re-

duces the production of pro-inflammatory cytokines and nitric

oxide. In addition, Mfn2 deficiency is associated with dysfunc-

tional autophagy, apoptosis, phagocytosis, and antigen pro-
2 Cell Reports 32, 108079, August 25, 2020
cessing. Our results unravel a key unexpected contribution of

Mfn2 to ROS production and inflammation in macrophages.

RESULTS

Mfn2 Is Highly Expressed in Macrophages and Is
Induced upon Pro-inflammatory Activation
Peritoneal and bone-marrow-derived macrophages (BMDMs)

expressed high amounts of Mfn2, at similar levels to those found

in the brain or the heart (Figures 1A and 1B). This high expression

indicated that Mfn2 might play a relevant role in macrophage

biology. Stimulation of macrophages with the Toll-like receptor

(TLR) ligands LPS (TLR4), R848 (TLR7 and TLR8), and CpGB

(TLR9) upregulatedMfn2 expression (Figures 1C and S1A). How-

ever, Mfn1 or Opa-1 expression was not affected by LPS (Fig-

ures S1A and S1B), supporting the notion that Mfn2 and Mfn1,
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despite being highly homologous, have different functions (Ishi-

hara et al., 2004). Stimulation of the cells with the pro- (IFN-g) or

the anti-inflammatory cytokine (interleukin-4 [IL-4]) did not

modify Mfn2, Mfn1, or Opa1 expression (Figures 1C and S1B),

indicating that the expression of Mfn2 is specifically induced

by TLR ligands.

To determine Mfn2 function in macrophages, we generated a

myeloid-conditional KO mouse (Mfn2floxed; Cre-LysM). In the

BMDMs and peritoneal macrophages of this model, no Mfn2

expression was detected, even under stimulation with TLR li-

gands (Figures 1A–1C). The deficiency in Mfn2 did not modify

the mRNA expression of Mfn1 or Opa1 (Figure S1B).

Characterization of Mfn2�/� Macrophages
BMDMs from wild-type (WT) and Mfn2floxed; Cre+ mice show the

same ability to respond to activation, proliferation, and apoptotic

stimuli as the natural populations of monocytes and peritoneal

macrophages (Celada et al., 1984). The morphology and the

specific differentiation markers of the BMDMs from WT and

Mfn2floxed; Cre+ mice (Mfn2�/� hereafter) were similar (Figures

S1C–S1E). Furthermore, the lack of Mfn2 in these cells did not

affect the number of circulating myeloid cells (Figure S1F).

In contrast to other cell types (Peng et al., 2015; Zhang et al.,

2015), in the Mfn2�/� model, the proliferation and cell cycle pro-

gression of macrophages in response to macrophage colony

stimulating factor (M-CSF) was independent of Mfn2 (Figures

S2A–S2C). Also, markers of senescence, such as telomere

shortening (Sebastián et al., 2009), were not found in these cells

(Figure S2D).

Mfn2, in conjunction with Opa1 and Mfn1, regulates the

morphology of the mitochondrial network bymediating fusion be-

tween adjacent organelles (de Brito and Scorrano, 2008b). To

examine the effects of Mfn2 depletion on the morphology of mito-

chondria, we stained macrophages with the mitochondrial-spe-

cific dye MitoTracker Deep Red. Although WTmacrophages pre-

sented a fused and filamentous mitochondrial network, with a

higher average volume for each mitochondrion, Mfn2�/� macro-

phages showed highly fragmented mitochondria in the form of

small spheres or short rods (Figures 1D, 1E, and S3A). These ob-

servations demonstrate that, as in other cell types (Chen et al.,

2003; Hall et al., 2016; Sebastián et al., 2012), macrophages

require Mfn2 to maintain a correct mitochondrial architecture.

Although the average volume of each mitochondrion was

smaller inMfn2�/� macrophages (Figure 1F), the total mitochon-

drial mass per cell, as determined by flow cytometry, was unal-

tered (Figure 1G). Furthermore, we extracted total DNA (nuclear

and mitochondrial) from macrophages and measured the mito-

chondrial DNA (mDNA) copy number by qPCR. Mfn2�/� macro-

phages showed similar levels of mDNA compared to control

macrophages (Figure 1H).

Mfn2 Deficiency Impairs Mitochondrial Membrane
Potential and ROS Production
We then studied the effects of Mfn2 deficiency on mitochondrial

function. Mfn2�/� macrophages showed a drastic reduction in

mitochondrial membrane potential (mDJ), and this was barely

sensitive to cyanide m-chlorophenyl hydrazone (CCCP) treat-

ment (Figures 2A and S3B).
Basal or ATP-coupled mitochondrial respiration of Mfn2�/�

macrophages was not altered compared to WT counterparts

(Figures 2B and 2C). However, the maximal respiratory capacity,

obtained by disruption of the mitochondrial proton gradient with

the uncoupler CCCP, was markedly diminished inMfn2�/� mac-

rophages (Figure 2B). The maximal mitochondrial respiratory ca-

pacity also allowed calculation of the spare respiratory capacity,

which was decreased in Mfn2-deficient macrophages (Fig-

ure 2D). These results indicate that Mfn2�/� macrophages

respire to their maximum capacity under basal conditions and

are consequently unable to further increase their respiration

rate in response to a metabolic challenge.

Given the impaired mitochondrial respiration in Mfn2�/� mac-

rophages, we examined whether these cells showed increased

glycolysis as a compensatory mechanism for the reduced respi-

ratory capacity. To this end, we determined the extracellular

acidification rate (ECAR) in real time. At baseline, no differences

in ECAR were observed. To induce maximum glycolysis, we

incubated macrophages with oligomycin A, which inhibits ATP

synthase, thus stimulating the alternative generation of ATP by

glycolysis. Even under this condition, maximal glycolysis was

unaffected by Mfn2 deficiency (Figure 2E).

Macrophages were incubated with the red fluorescent dyeMi-

toSox, which selectively stains mitochondrial ROS (mROS). In

the absence of Mfn2, the production of mROS in macrophages

was severely decreased under basal conditions and did not

recover after LPS stimulation (Figures 2F and S3C). As a control,

we treated cells with n-acetyl cysteine (NAC), which reduced

LPS-induced ROS production to similar levels to those present

in control and Mfn2-deficient cells.

In addition to mROS, we also measured total cellular ROS by

using the fluorescent probe 207’-dichlorofluorescin diacetate

(DCF-DA). This probe is not specific for a particular type of

ROS and responds to all ROS activity within the cell, such as

that of NADPH oxidases. Under basal conditions,Mfn2�/� mac-

rophages also showed decreased cytoplasmic ROS, which was

further accentuated after LPS stimulation (Figures 2G, S3D, and

S3E).

In contrast, the expression of the antioxidant enzymes cata-

lase and SOD2 was not affected byMfn2 deficiency (Figure 2H).

This observation indicates that the decrease in ROS levels was

due to a reduction in ROS production rather than to increased

degradation.

To determine if the role of Mfn2 on ROS production is related to

themitochondrial fusionor to theER-mitochondrial interactions,we

generated a myeloid-conditional KO mouse, Mfn1floxed; Cre-LysM.

Although Mfn1 participates in mitochondrial fusion (Figure 2I) and

shows an 80% similarity with Mfn2, these two proteins exert other

activities that differ between them. In this regard, Mfn1 is not

involved in ER-mitochondrial contacts. In BMDMs from Mfn1�/�

animals,mROSwasnotaltered in relation to thecontrols, evenafter

LPS activation (Figure 2J).

Mfn2 Is Critical for Macrophage Pro-inflammatory
Activation
The induction of pro-inflammatory genes by LPS in

macrophages is mediated by a series of signaling transduction

pathways, including mitogen-activated protein kinases (MAPKs)
Cell Reports 32, 108079, August 25, 2020 3



Figure 2. Mfn2 Is Required for Mitochondrial Respiration under Stress Conditions and for ROS Production

(A) Mitochondrial potential (mDJ). As a control, the proton uncoupler CCCP was used.

(B)Oxygenconsumption ratio (OCR) ofBMDMswasmeasuredduring sequential treatmentwith oligomycin (625 nM), CCCP, rotenone (1 mM), and antimycin A (1 mM).

(C) Quantification of ATP.

(D) Spare respiratory capacity.

(E) Glycolysis was calculated by measuring the extracellular acidification rate (ECAR) under basal conditions and after the addition of oligomycin.

(F) mROS was measured by MitoSox staining. Cells were treated with LPS (10 ng/ml) for 1 h or LPS with n-acetyl cysteine (NAC) (20 mM). Cells were incubated

with NAC for 1 h before the LPS treatment.

(G) Total cellular ROS was measured by DCF-DA (50 mM) staining.

(H) Relative mRNA expression for catalase and Sod2 in control and LPS-stimulated BMDMs.

(I) mROS production in Mfn1�/�. The results are from three to five independent experiments.

See also Figure S3.
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(Lloberas et al., 2016). After LPS stimulation, the activation of the

c-jun N-terminal kinase 1/2 (JNK1/2) inMfn2�/� macrophages is

indistinguishable from that of their WT counterparts (Figure S4A).

However, the phosphorylation of p38 and ERK1/2 induced by

LPS was significantly reduced inMfn2�/� macrophages (Figures

3A andS4B). Furthermore, the LPS-induced activation of nuclear

factor kB (NF-kB) also showed a moderate decrease in these

cells (Figure 3B). These data confirm previous observations indi-

cating that mROS production is required for NF-kB activation

(Formentini et al., 2017).

As expected from the reduced activation of ERK1/2, p38, and

NF-lB, the expression of pro-inflammatory cytokines IL-1b, tu-

mor necrosis factor a (TNF-a), IL-6, and IL-12 was dramatically

reduced in LPS-stimulated Mfn2�/� macrophages (Figure 3C).

The production of TNF-a and IL-6 was reduced in Mfn2-deficient

cells (Figures 3D and 3E). Furthermore, Mfn2 was also required

for the normal expression of Nos-2 and for the production of ni-

tric oxide upon LPS stimulation (Figures 3C and 3F).

To determine the mechanism impairing the LPS-mediated in-

duction of pro-inflammatory genes, we tested the expression of

the MAPK phosphatase-1 (MKP-1), which dephosphorylates

MAPKs in macrophages (Lloberas et al., 2016). The lack of

Mfn2 did not affect the expression of MKP-1 (Figure S4C).

Because ROS act as second messengers in the regulation of

many signaling pathways, including MAPKs and NF-kB (Tur

et al., 2017; West et al., 2011b), and the production of these rad-

icals is disrupted in Mfn2�/� macrophages, we hypothesized

that this lack of ROSmediates the impaired inflammatory activa-

tion. Macrophages treated for 1 h with the antioxidant NAC

(which abolishes total cellular ROS) before LPS activation

showed reduced p38 and ERK1/2 phosphorylation (Figures 3G

and S4D), as well as a decreased induction of pro-inflammatory

cytokines in response to LPS (Figure 3C). As a control, we used

MitoTempo, a mROS-specific scavenger, which caused a dra-

matic repression of Nos-2, TNF-a ,and IL-12 (Figure S4E). The

expression of genes encoding IL-1b, IL-6, TNF-a, or IFN-b, and

their response to LPS was not altered in Mfn1-deficient macro-

phages (Figure S5A).

ER stress responses, which can be regulated by Mfn2, may

provide an alternative mechanism to explain the defect in inflam-

matory activation associated withMfn2 deficiency (Bettigole and

Glimcher, 2015; Hotamisligil, 2010), (Muñoz et al., 2013; Ngoh

et al., 2012). We stimulated macrophages with either LPS or

thapsigargin, a drug that induces ER stress by blocking Ca2+

channels at the ER. Among the ER-stress-associated genes

determined, Gadd34 and Wfs1 expression showed a significant

difference betweenWT andMfn2�/�macrophages (Figure S3H).

Therefore, we cannot exclude the participation of ER stress re-

sponses in the modulation of pro-inflammatory activation by

Mfn2. No differences in ER-stress-associated genes were

observed between WT andMfn1�/� macrophages (Figure S5B).

The observation that Mfn2 is required for ROS production—a

process that is required for the regulation of macrophage pro-in-

flammatory activity—prompted us to study whether this protein

is also involved in anti-inflammatory activation. With the excep-

tion of Ym1 (chitinase-3-like), stimulation of Mfn2�/� macro-

phages with IL-4 revealed no differences in the expression of

anti-inflammatory-related markers, such as Arginase1,Mannose
receptor, and Fizz1 (resistin-like a) (Figure S5C). In addition, the

enzymatic activity of arginase-1 showed no significant differ-

ences between WT and Mfn2�/� cells (Figure S5D). Finally, the

phosphorylation of Stat6, the major signaling transduction

pathway of IL-4, was not affected in the absence of Mfn2

(Figure S5E).

These results confirm that Mfn2 is necessary for the correct

pro-inflammatory activation of macrophages and suggest

that the associated reduction of ROS production may underlie

the defect in the pro-inflammatory activation of Mfn2�/�

macrophages.

Mfn2 Is Required in a Non-septic Inflammation Model
To determine whether the defects in inflammation observed in

Mfn2�/� macrophages are translated in vivo, we used dinitrofe-

nolbenzene (DNFB)-induced ear irritation as a model of sterile

inflammation (Pereira-Lopes et al., 2015). In this model, the irri-

tant DNFB was applied to the mouse ear. Monocytes migrate

from the bloodstream to the damaged ear, where they differen-

tiate into macrophages. These recruited macrophages play a

major role in both the initiation and resolution of the inflammation

(Bonneville et al., 2007).

At day 10 after treatment, the weight and thickness of the in-

flamed ears were significantly higher in WT mice than in

Mfn2floxed; Cre-LysM animals (Figures 4A and 4B). Likewise, the

expression of the pro-inflammatory cytokines TNF-a, IL-6, and

IL-1b in the inflamed ears was higher in WT mice (Figure 4C).

No inflammation was observed in the ears of the controls (i.e.,

treated with vehicle alone). These data demonstrate that macro-

phages requireMfn2 to generate a strong and efficient inflamma-

tory response in a non-septic environment.

Mfn2 Is Involved in Autophagy, Phagocytosis, and
Antigen Processing
Mitochondrial fusion and Mfn2 are intrinsically interlinked within

the mitochondrion life cycle, a process that includes mitochon-

drial biogenesis and mitophagy (Song and Dorn, 2015; Soriano

et al., 2006; Youle and van der Bliek, 2012). Mitochondria fuse

to complement damaged components. But, when a single mito-

chondrion is damaged beyond repair, it is targeted by the auto-

phagy machinery for degradation, thus preventing re-fusion to

other mitochondria. If mitochondria do not fuse, the damage

cannot be repaired and the organelle is targeted by autophagy

(Twig et al., 2008; Youle and van der Bliek, 2012), which is also

modulated by Mfn2 (Ding et al., 2015; Song and Dorn, 2015).

We evaluated autophagy by measuring the levels of the

lipidated form of LC3 (LC3-II), which is associated with autopha-

gosome formation. LC3-II levels were higher in Mfn2�/� macro-

phages than in control cells under basal conditions (Figures 5A

and 5B). LPS treatment of Mfn2�/� macrophages caused LC3-

II expression to decrease to the levels of unstimulated WT cells.

This decrease is possibly attributable to an increase in lysosomal

activity. However, autophagosome formation in WT macro-

phages was not affected by LPS stimulation (Figures 5A and

5B). Treatment with bafilomycin A1, an inhibitor of autophago-

some-lysosome fusion, increased LC3-II levels in unstimulated

and LPS-stimulated WT cells, as well as in LPS-stimulated

Mfn2�/� macrophages. However, this treatment failed to further
Cell Reports 32, 108079, August 25, 2020 5



Figure 3. Pro-inflammatory Macrophage Activation Is Impaired in the Absence of Mfn2

(A) Cells were incubated with LPS (10 ng/ml) for the indicated times, and phosphorylation of p38 and ERK1/2 was measured.

(B) NF-kB activation was measured as the phosphorylation of p65 subunit.

(C) mRNA expression of pro-inflammatory cytokines in basal conditions after 3 h of LPS stimulation with or without previous treatment with NAC.

(D and E) TNF-a and IL-6.

(F) Levels of nitric oxide (NO).

(G) WT BMDMs were treated or not with NAC before the LPS treatment, and phosphorylation was measured.

(H) Control andMfn2�/� macrophages were treated with thapsigargin (Tg) (3 mM) for 24 h, and then the gene expression was determined by qPCR. All results are

from three independent experiments. See also Figures S4 and S5.

6 Cell Reports 32, 108079, August 25, 2020
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Figure 4. Mfn2 Is Required in a Non-septic Model of Inflammation

(A) Hematoxylin and eosin staining of ear sections at day 10. Scale bar 500 mm.

(B) Ear net weight and thickness at day 10.

(C) mRNA expression of DNFB-treated ears. The images and results are representative of two independent experiments each with five mice per group.
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enhance the already high levels of LC3-II in Mfn2�/� macro-

phages, and therefore, their autophagic flux decreased

compared to WT cells (Figures 5A and 5C). Altogether, these

data demonstrate that Mfn2 maintains autophagy and that in

the absence of this process autophagosomes accumulate and

autophagic flux is markedly diminished.

There is a close relationship between autophagy and

apoptosis (Mariño et al., 2014). A comparison of WT and

Mfn2�/� macrophages revealed a similar percentage of

apoptotic cells under basal conditions. However, after LPS stim-

ulation, Mfn2�/� macrophages showed a significant increase in

apoptosis compared to WT counterparts (Figure 5D).

Autophagy is also related to phagocytosis (Hurley and Young,

2017). We therefore examined whether in this critical function

Mfn2was also involved. The removal of apoptotic bodies bymac-

rophages is an important process through which tissue homeo-

stasis is maintained (Poon et al., 2014). Mfn2�/� macrophages

failed to properly phagocytose apoptotic bodies frommurine thy-
mocytes (Figures 5E and S6A). Pre-stimulation with cytochalasin

D, which depolymerizes actin and inhibits phagocytosis, abol-

ished apoptotic body uptake in both WT and Mfn2�/� macro-

phages, thereby confirming that the differences observed were

due to phagocytosis and not only to the binding of apoptotic

bodies to the cellular membrane (Figures 5E and S6A).

In the absence of Mfn2, macrophages infected with the GFP-

expressing Aeromonas hydrophila, a Gram-negative bacterium,

showed a decrease in phagocytosis, as determined by both flow

cytometry and colony-forming unit (CFU) quantification from

macrophage lysates after 1 h of incubation (Figures 5F and

5G). This decrease was also confirmed using pHrodo-conju-

gated Escherichia coli (Gram negative) (Figure 5H) and Staphylo-

coccus aureus (Gram positive) (Figure S6B). Furthermore, the

phagocytic capacity of WT macrophages treated with NAC for

1 h decreased, reaching levels similar to those of Mfn2�/� mac-

rophages (Figures 5H and S6B). This observation points to the

involvement of ROS in the phagocytosis of bacterial pathogens.
Cell Reports 32, 108079, August 25, 2020 7



Figure 5. Mfn2 Is Essential for Autophagy, Apoptosis, and Phagocytosis

(A) Autophagy was measured by western blot of the lipidated form of LC3 (LC3-II) under basal conditions or under stimulation with LPS (10 ng/ml), and/or

bafilomycin A (BafA) at 50 nM. Results are representative of four independent experiments.

(B) LC3-II in relation to b-actin.

(C) Autophagic flux as the fold increase in band intensity in BafA conditions to without BafA.

(D) Apoptosis.

(E) Phagocytosis of apoptotic bodies in BMDMs treated with or without cytochalascin D (2 mg/ml).

(F) Mean fluorescence intensity (MFI) showing BMDM phagocytosis of GFP-expressing Aeromonas hydrophila.

(G) CFU count of BMDM lysates 1 h after infection with Aeromonas hydrophila.

(H) Phagocytosis of pHrodo-conjugated Escherichia coli by BMDMs. Cells were treated for 1 h with NAC before bacteria were added and phagocytosis per-

formed.

(legend continued on next page)
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The levels of LC3-II were similar in control and Mfn1�/� mac-

rophages under basal conditions and after LPS or bafilomycin

A1 treatment (Figures S6C and S6D). In addition, the phagocy-

tosis of apoptotic bodies or Staphylococcus aureus was not

altered in Mfn1�/� macrophages (Figure 5I). All these data sup-

port the involvement of ROS in the phagocytic activity of

Mfn2�/� macrophages.

In recent years, autophagy and phagocytosis have been

postulated to be inter-regulated processes (Tur et al., 2017).

The proposed mechanism to explain this relationship involves

p62/sequestosome1, a protein required for autophagosome for-

mation that is induced by LPS. When not sequestered in the au-

tophagosome, this protein activates nuclear protein (erythroid-

derived 2)-like 2 (NFE2L2), a transcription factor required for

the expression of two class A scavenger receptors, namely

macrophage receptor with collagenous structure (MARCO) and

macrophage scavenger receptor-1 (MSR1), which are both

required for phagocytosis (Bonilla et al., 2013). In both untreated

and LPS-treatedMfn2�/� macrophages, the expression of class

A scavenger receptors was decreased (Figure 6A). This observa-

tion suggests that Mfn2 participates in the LPS induction of

MARCO and MSR1. The receptors detect both Gram-positive

and Gram-negative bacteria, as well as other targets, such as

apoptotic bodies, and their interaction with the corresponding

ligand induces the phagocytosis of the bound target (Peiser

et al., 2000).

The MARCO promoter contains antioxidant response ele-

ments that mediate the effect of NFE2L2 (or NRF2) (Harvey

et al., 2011). We determined the expression of NRF2 under basal

conditions and LPS stimulation. This factor was decreased in

Mfn2�/� macrophages when compared to the controls (Fig-

ure 6B). These results could explain the low levels of scavenger

receptors, MARCO and MSR1, and also the reduced phagocy-

tosis associated with Mfn2 deficiency.
The Lack of Mfn2 Is Associated with Defective
Bactericidal Activity and Protein Processing
So far, our results reveal that Mfn2 plays a major role in the

phagocytosis of both bacteria and apoptotic bodies. Next, we

studied whether Mfn2 is also involved in the degradation of

phagocytosed bacteria. To this end, we performed a gentamycin

protection assay to eliminate non-phagocytosed bacteria. CFUs

were counted from macrophage lysates at various time points.

After 24 h of phagocytosis, a drastic reduction in the number

of CFUs was observed in both WT and Mfn2�/� macrophages,

thereby indicating bacterial degradation (Figure S6E). Macro-

phage bactericidal activity was calculated as the percentage of

initial bacteria that survived after 24 h. Bacteria phagocytosed

by WT macrophages showed a marked decrease in survival

compared to Mfn2�/� macrophages (Figure 6C). This observa-

tion thus indicates impaired bactericidal activity of the latter.

As antigen-presenting cells, macrophages can also trigger

adaptive immune responses. To measure this functional activity,

macrophages were pre-stimulated for 24 h with IFN-g and then
(I) Phagocytosis of apoptotic bodies was measured as in (E), incubating cells and

S. aureus was measured as in (F), incubating cells and bacteria for 2 h at 37�C.
See also Figure S6.
pulsed with either the full listeriolysin O (LLO), a major virulence

factor of Listeria monocytogenes, or an 11-amino-acid pre-pro-

cessed peptide of the same protein (190-201 LLO). The cells

were then washed and incubated with a CD4+ T cell hybridoma

with specificity for 190-201 LLO. The supernatants of these cul-

tures were collected and incubated with a cell line that grows in

an IL-2-dependent manner. Proliferation was then measured.

Mfn2�/� macrophages processed and presented LLO, albeit

somewhat less efficiently than WT macrophages (Figure 6D).

However, no defect was observed when we used the peptide

190-201 LLO (Figure 6E). This observation suggests that the

processing of the LLO protein, but not the antigen presentation

itself, was impaired in Mfn2�/� macrophages. In addition,

MHC-II expression was measured after incubation of macro-

phages with INF-g. The expression of this marker was slightly

decreased in Mfn2�/� macrophages and probably has no bio-

logical relevance (Figure S6F).
Mfn2 Is Required for the Immune Response to Listeria

monocytogenes, Mycobacterium tuberculosis, and LPS
Endotoxemia
To address the role of Mfn2 in immune responses in vivo, we

studied murine infection with Listeria monocytogenes. This

microorganism is a Gram-positive facultative intracellular bacte-

rium with a preference to infect macrophages, and it grows

preferentially in the spleen and liver. The L. monocytogenes

intraperitoneal infection model is a rapid and quantitative assay,

either by enumeration of liver and spleen CFUs or by monitoring

the survival of infected animals (Portnoy et al., 2002).

We infected mice intraperitoneally and monitored their survival

until the mice started recovering weight. The time course of the

disease was similar in both groups; mice started to die at day 4,

with the highest mortality observed at day 5 post-inoculation. At

day 11, all the surviving mice from both groups started to recover

bodyweight. However, the survival ofMfn2floxed; Cre-LysMmicewas

severely reduced compared to WT counterparts, reaching a sig-

nificant decrease of more than 40% (Figure 7A). Another group

of mice was infected with this bacterium and was sacrificed

48 h later to obtain spleen and liver samples. The early stage of

innate resistance in Mfn2floxed; Cre-LysM animals was clearly

affected, as noted by the marked increase in bacterial counts at

48 h (Figure 7A). This observation thus indicates that these mice

were unable to control the infection.

To understand the molecular mechanisms involved in the

dysfunctional immune responses to listeria, we infected BMDMs

in vitro with Listeria monocytogenes. In Mfn2�/� macrophages,

the expression of TNF-a and IL-1b was reduced (Figure S7A),

suggesting that these cells failed to generate normal levels of

pro-inflammatory cytokines in response to this infection.

We also used an in vivo mouse model of infection with Myco-

bacterium tuberculosis by using a sub-lethal dose of mycobac-

teria. Under these conditions, all WT mice survived the infection.

However, the survival of the Mfn2floxed; Cre-LysM group was

severely decreased, with merely 50% living by the end of the
apoptotic bodies for 2 h at 37�C or at 4�C (negative control). Phagocytosis of

Results are shown from at least three independent experiments.
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Figure 6. Mfn2 Is Critical for Protein Degra-

dation

(A) The expression of class A scavenger receptors

Marco and Msr1.

(B) NRF2 determined by western blot and quanti-

fication of three independent experiments.

(C) BMDMs phagocyted Aeromonas hydrophila

for 1 h, and then non-phagocyted bacteria were

removed with a gentamycin treatment (300 mg/ml)

for 1 h. BMDMswere incubated at 37�C, and lysed

at 24 h. The percentage of the surviving bacteria at

24 h relative to the initial CFU count is shown.

(D) Antigen presentation of the LLO full protein by

IFN-g stimulated (10 ng/ml for 24 h) BMDMs. Cells

were pulsed with the full listeriolysin O (LLO) at the

indicated concentrations. Macrophages were

washed and incubated with a CD4+ T cell hybrid-

oma with specificity for 190-201 LLO. The super-

natants were collected and incubated with a cell

line that grows in an IL-2-dependent manner, and

proliferation was measured.

(E) Same as (D) but cells were pulsed with an 11-

amino-acid peptide (190-201 LLO). Results are

shown from three independent experiments.
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experiment (Figure 7B). Furthermore, the CFU count was signif-

icantly higher in the lungs and spleen of Mfn2floxed; Cre-LysM mice

than in WT animals (Figure 7B).

We also examined the role of Mfn2 in LPS-induced endotoxe-

mia. To this end, in previous assays, we determined the sub-le-

thal intraperitoneal dose of LPS. We then monitored mouse

survival at this dose. Mice start to die at 36 h post-injection,

and the survival at 4 days ofMfn2floxed; Cre-LysMmicewas strongly

reduced, reaching a significant decrease of more than 60%

(Figure 7C). The serum levels of TNF-a were increased in

Mfn2floxed; Cre-LysM mice, and this increase negatively correlated

with survival (Figure 7C). In addition, 2 groups of 4 mice (WT and

Mfn2floxed; Cre-LysM) were sacrificed 48 h after LPS injection.

Histopathological lesions attributable to LPS inoculation were

present in bothWT andMfn2floxed; Cre-LysMmice; however, the le-

sions, particularly those in the kidney, heart (Figures S7B–S7E),

lungs, and retroperitoneal and adipose tissue, tended to be

more numerous and intense in theMfn2floxed; Cre-LysM mice. Spe-

cifically, the necrosis of bone marrow tissue was observed only

in the latter (Figures S7F and S7G). Our data demonstrate that

Mfn2-deficientmiceweremore susceptible to LPS-induced sep-

tic shock.

These results suggest an apparent contradiction between

in vitro and in vivo data concerning the LPS-dependent induction
10 Cell Reports 32, 108079, August 25, 2020
of TNF-a. However, it has been reported

that the ingestion of apoptotic bodies in-

hibits pro-inflammatory cytokine produc-

tion (Fadok et al., 1998). Indeed, this may

explain the enhanced TNF-a production

detected in Mfn2-deficient macro-

phages, which show a decrease in the

phagocytosis of apoptotic bodies. Thus,

we propose that Mfn2-deficient macro-

phages experience massive TNF-a pro-
duction during endotoxin shock because the low ingestion of

apoptotic bodies does not lead the cells to switch to an anti-in-

flammatory phenotype.

To provide further evidence of this, we incubated macro-

phages with apoptotic bodies for 1 h. These cells were then

washed and further incubated with LPS for 18 h. Macro-

phages activated with LPS and apoptotic bodies showed a

negative correlation between phagocytosis and TNF-a pro-

duction (Figure 7D). Thus, TNF-a production was greater in

Mfn2-deficient macrophages than in the WT group (Figure 7D).

In contrast, under conditions in which macrophages were

incubated with LPS but without apoptotic bodies, WT cells

showed higher TNF-a production than Mfn2-deficient cells

(Figure 7D). In these studies, the latter cells showed a

decreased capacity to phagocytose apoptotic bodies

(Figure S7H).

These results support a previous observation showing that

phagocytosis of apoptotic bodies by LPS-treated macrophages

inhibits the secretion of pro-inflammatory cytokines, such as

TNF-a or IL-1b, thus inducing the switch from a pro- to anti-in-

flammatory phenotype (Fadok et al., 1998).

All these results indicate that Mfn2 deficiency in macrophages

severely impairs the ability of the organism to fight infectious

agents.



Figure 7. Mfn2floxed;CreLysM Mice Fail to be

Protected from Listeria monocytogenes,

Mycobacterium tuberculosis, or LPS Endo-

toxemia

(A) Left panel: mice were infected by intraperito-

neal injection of Listeria monocytogenes, and

survival was measured (12 mice per group in 2

independent experiments, in the figure results

were pooled). Right panel: CFU count in spleen

and liver lysates from 48-h infected mice (6 mice

per group in 2 independent experiments).

(B) Left panel: mice infected with Mycobacterium

tuberculosis with an aerosol, and survival was

determined (12 mice per group). Right panel: CFU

count in lung and spleen lysates from infected

mice (3 mice per group).

(C) Left panel: mice were injected intraperitoneally

with LPS, and survival was measured (10 mice per

group in 2 independent experiments; in the figure,

results were pooled). Right panel: mice were in-

jected intraperitoneally with LPS and sacrificed

24 h later. TNF-a was then determined in serum (5

mice per control group and 8 WT and 11

Mfn2floxed;CreLysM mice treated with LPS).

(D) TNF-a secretion of BMDMs incubated in vitro

for 1 h with media (control), apoptotic bodies, or

apoptotic bodies plus LPS. Cells were then

washed and incubated in media for 17 h. Super-

natants were obtained, and the cytokine was

measured. As a control, TNF-a secretion was

determined in LPS-treated macrophages without

addition of apoptotic bodies. The results are

shown from three independent experiments.

See also Figure S7.
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DISCUSSION

Mitochondrial fusion proteins Mfn1 and Mfn2 show key similar-

ities but also profound differences. Both proteins are present

at the outer mitochondrial membrane and show GTP binding ac-

tivity. However, Mfn1 shows a higher affinity to GTP than Mfn2

(Ishihara et al., 2004). In addition, Mfn1 shows much greater
Ce
GTPase activity than Mfn2 (Ishihara

et al., 2004). It has recently been docu-

mented that Mfn2 but not Mfn1 has the

capacity to bind phosphatidylserine (PS)

in vitro and to promote the transfer of

PS from the ER to mitochondria (Hernan-

dez-Alvarez et al., 2019).

In mouse models, it has been clearly

recognized that Mfn1 and Mfn2 exert

distinct roles. Specific ablation of Mfn2

in the liver causes insulin resistance,

glucose intolerance, liver disease, and

ER stress (Hernandez-Alvarez et al.,

2019; Sebastián et al., 2012). In contrast,

Mfn1 ablation in the liver protects against

insulin resistance and does not lead to ER

stress (Kulkarni et al., 2016).

In addition, ablation of Mfn2 in hypo-
thalamic pro-opiomelanocortin (POMC) neurons causes ER

stress, leptin resistance, and, as a result, hyperphagia, reduced

energy expenditure, and obesity (Schneeberger et al., 2013). In

contrast, ablation of Mfn1 specifically in POMC neurons causes

attenuated hypothalamic gene expression programs during the

fast-to-fed transition, and this attenuation is linked to altered in-

sulin secretion (Ramirez et al., 2017).
ll Reports 32, 108079, August 25, 2020 11
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It is interesting to note that agents that induce stress, such as

the TLR ligands (LPS, CPGB, or R848) induced Mfn2, but not

Mfn1, in macrophages. This observation suggests that Mfn2 is

a critical protein for the macrophage during stress, when large

amounts of ROS are required. In keeping with this idea, it has

been shown that LPS induces mitochondrial repurposing by

reducing ATP synthesis and enhancing ROS production through

oxidation of succinate andmitochondrial hyperpolarization (Mills

et al., 2016). These metabolic alterations induce the pro-inflam-

matory function of macrophages.

Mfn2 is a ubiquitous protein, with particularly high expression

in brain, heart, and skeletal muscle (Bach et al., 2003). The high

expression of Mfn2 in macrophages, which show levels as

elevated as those in brain and heart, suggest that this protein

plays an important role in these cells. Indeed, Mfn2 expression

levels in BMDMs were very similar to those found in peritoneal

macrophages.

The absence of Mfn2 in macrophages resulted in aberrant

mitochondrial morphology, including increased fragmentation

and decreased mitochondrial volume. These findings support

other observations in various cellular models, such as mouse

embryonic fibroblasts (MEFs) (Chen et al., 2003), skeletal muscle

cells and hepatocytes (Sebastián et al., 2012), and cardiac cells

(Hall et al., 2016). As reported in other cell types, despite the

morphological abnormalities observed in the mitochondria of

macrophages, the total mitochondrial mass of these cells is

not altered (Mourier et al., 2015; Papanicolaou et al., 2011).

Mfn2 controls mDc in macrophages, as described in other

cellular models (Fang et al., 2016; Papanicolaou et al., 2011).

This parameter is an indicator of the energization state of mito-

chondria, which is generated when protons are pumped from

the matrix to the inner membrane space as a result of electron

flow through the electron transport chain. Therefore, a low

mDc can be associated with an impaired respiratory capacity,

which is precisely what we observed in Mfn2�/� macrophages.

Under steady-state conditions, the absence of Mfn2 did not alter

mitochondrial respiration. However, although control macro-

phages increased their respiration under stress conditions, this

was not the case for Mfn2�/� macrophages, whose mitochon-

drial respiration was unaltered. In the absence of Mfn2, this

lack of change was probably related to the low levels of mito-

chondrial coenzyme Q10, which is responsible for the optimal

function of the respiratory chain (Mourier et al., 2015).

Changes in the mDc and mitochondrial respiration lead to al-

terations in mROS production. These highly reactive molecules

are generated by the leakage of electrons from the respiratory

chain, resulting in a partial reduction of molecular oxygen. There-

fore, increasedmitochondrial respiration andmDc imply a higher

flow of electrons through the electron transport chain and poten-

tially a greater leakage of electrons, thus producing superoxide

(Handy and Loscalzo, 2012). The stimulation of macrophages

by pro-inflammatory activators induced a massive production

of ROS, which are necessary not only to ensure the correct acti-

vation of several signaling pathways but also to kill bacteria (Tur

et al., 2017; Weinberg et al., 2015; West et al., 2011b), a cellular

function that is exclusive to phagocytes. Interestingly, in contrast

to other cells, such as cardiomyocytes (Chen et al., 2012; Song

et al., 2014), in which a lack of Mfn2 induces an increase in ROS
12 Cell Reports 32, 108079, August 25, 2020
production, in macrophages, ROS production is decreased

under basal conditions and particularly when macrophages

are stimulated by pro-inflammatory pathogen-associated

molecular patterns (PAMP) ligands of TLR, but not by the major

endogenous activator IFN-g. This specificity is similar to the

induction of Mfn2, thereby suggesting that this is a primitive sys-

tem of immune stress to achieve protection against infectious

agents.

Interestingly, Mfn2 is necessary to generate ROS not only dur-

ing LPS activation but also under basal conditions. This observa-

tion therefore suggests that the defect in ROS production in

Mfn2�/� macrophages is the result of widespread dysfunctional

mitochondrial activity rather than a failure in TLR signal transduc-

tion (West et al., 2011a). This notion is supported by the observa-

tion that ROS induction with antimycin A, which directly triggers

mROS at the respiratory complexes, is also dependent on Mfn2.

The disrupted ROS production in Mfn2�/� macrophages has

dramatic effects on the immune response. First, we observed

a reduction of LPS induction of pro-inflammatory cytokine pro-

duction, which is probably associated with the decrease in

ROS levels (Emre et al., 2007; Park et al., 2015). In addition,

LPS-treated Mfn2�/� macrophages showed reduced p38 and

ERK phosphorylation levels, probably as a result of the

decreased amount of ROS. Without enough ROS, the cysteine

andmethionine residues from proteins in these pathways cannot

be oxidized, thus potentially disrupting their activity. These ob-

servations may explain the defective sterile inflammation in

Mfn2floxed; Cre-LysM mice.

Second, we observed that the lack of Mfn2 in macrophages

was associated with an accumulation of autophagosomes, and

when analyzing the autophagic flux, we found that Mfn2 was

also crucial for the lysosomal degradation of autophagosomes.

A similar phenotype has been described in cardiomyocytes

and in skeletal muscle and the proposed underlying mechanism

involved the Mfn2 recruitment of RAB7, a protein necessary for

autophagosome-lysosome fusion (Sebastián et al., 2016; Zhao

et al., 2012). This increase in autophagy and autophagosome

accumulation may explain the alterations observed in apoptosis,

phagocytosis, and protein degradation. All these factors

contribute to deteriorated resistance to infections, as well as to

improper antigen presentation, which are critical events for the

correct activity of a healthy immune system. Importantly, our

data identify Mfn2 in macrophages as an early mechanism

through which the immune system responds to infection by es-

tablishing an axis TLR, mitochondria, and ROS.

Our conclusions were supported by the results of in vivo

experimental models related to infection. The absence of Mfn2

in myeloid cells led to increased susceptibility to

L. monocytogenes and to M. tuberculosis, two infections in

which macrophages play a critical role. A single-nucleotide poly-

morphism (SNP) of MFN2 that confers susceptibility to tubercu-

losis has recently been reported in humans (Qi et al., 2017),

thereby supporting our observations.

Although Mfn2�/� macrophages incubated in vitro produced

lower levels of TNF-a in response to LPS, in vivo mice lacking

Mfn2 died more frequently under lethal dose 50 (LD50) doses of

LPS than their counterparts. This apparent contradiction can

be attributed to the defect in phagocytosis associated with the
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lack of Mfn2. Phagocytosis of apoptotic bodies is a critical event

that switches the macrophage from a pro- to an anti-inflamma-

tory phenotype (Fadok et al., 1998) to prevent excess destruc-

tion (Valledor et al., 2010). The early stages of endotoxin shock

are characterized by massive TNF-a production, which induces

tissue destruction. In WTmice, the macrophages switched to an

anti-inflammatory phenotype after phagocytosis of apoptotic

bodies and stopped producing TNF-a. However, Mfn2-deficient

mice showed decreased phagocytosis, and although in vitro the

production of TNF-a slowly decreased (Figure 3D), the levels of

circulating TNF-a in vivo were increased in Mfn2floxed; Cre-LysM

mice (Figure 7D). The in vitro experiments confirmed that, after

phagocytosis of apoptotic bodies, the phenotype of LPS-acti-

vated macrophages switched to produce lower amounts of

TNF-a (Figure 7D), thereby confirming previous observations

(Byrne and Reen, 2002; Fadok et al., 1998; Lucas et al., 2003).

Given thatMfn2�/�macrophages showed lower levels of phago-

cytosis, they continued to produce TNF-a. This suggests an

in vivo role of phagocytosis in the switch of macrophages to an

anti-inflammatory phenotype. However, we cannot exclude

other possibilities to explain the apparent contradiction between

the in vivo production of TNF-a and the in vitro results.

Mfn1 also plays a role in mitochondrial fusion and shares 80%

similarity to Mfn2 (Chen and Chan, 2004), but contrary to Mfn2,

production of mROS was not modified in relation to the controls

or even after LPS stimulation. Using the conditional KOmouse of

Mfn1, we suggested that the anomalies caused by Mfn2 were

related to the lack of ROS.

Finally, it was recently shown that the uptake of multiple

apoptotic bodies by macrophages requires dynamin-related

protein 1 (Drp1), a molecule that mediates mitochondrial

fission (Wang et al., 2017). This observation, together with

our results, emphasizes the critical role of the mitochondria

dynamics of macrophages in the homeostasis of the immune

system.
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OxyBlot Kit Millipore Cat# S7150

ReliaPrep RNA Miniprep Systems Promega Cat# Z6010

SYBR Green Master Mix Applied Biosystems Cat# 4309155

SYBR� Green RT-PCR Reagents Kit Applied Biosystems Cat# 4306736
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Experimental Models: Cell Lines
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cells
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Mouse: IL-2-dependent CTLL-2 ATCC ATCC TIB-214
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Experimental Models: Organisms/Strains

Mouse: Mfn2flox/flox C57BL/6J Chen et al., 2007 N/A

Mouse: Mfn1flox/flox C57BL/6J Chen et al., 2007 N/A

Mouse: CreLysM C57BL/6J Clausen et al., 1999 N/A

Mouse: Mfn2flox Cre- C57BL/6J This paper N/A

Mouse: Mfn2floxed;CreLysM This paper N/A

Oligonucleotides

See Table S1 for qPCR primer probes N/A N/A

Software and Algorithms

Biogazelle Qbase+ software Biogazelle https://www.qbaseplus.com/

FlowJo Version 10 FlowJo https://www.flowjo.com/solutions/flowjo/

downloads

Imaris software Version 9.6 Bitplane https://imaris.oxinst.com

Open-source image analysis software Fiji https://imagej.net/Fiji

Prism Version 5.0 GraphPad Software Inc. https://www.graphpad.com/
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Antonio

Celada (acelada@ub.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
This study did not generate any unique datasets or code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial strains
Aeromonas hydrophila (serovar O:34) with a pWIL plasmid-containing eGFP was kindly provided by Dr. Susana Merino (University of

Barcelona, Spain), and was grown at 37�C in LB-agar plates. Listeria monocytogenes (strain10403S) was a kind gift from Dr. Carlos

Ardavı́n (National Center for Biotechnology/CSIC, Madrid, Spain), and was grown at 37�C in brain-heart infusion agar plates.
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Cell lines
L-929 (mouse fibroblasts) cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% (vol/vol)

heat-inactivated fetal bovine serum (HI-FBS), 10 U/mL penicillin and 100 mg/mL streptomycin. Cells were cultured in a humidified

CO2 incubator at 37�C. L-929 cells were originally derived from normal adipose tissue from a 100-day-old male C3H/An mouse.

CD4+ T cell hybridomas against the 190-201 segment of listeriolysin O (LLO) has been described (Carrero et al., 2012). The hybrid-

omas were maintained in DMEM+10% FBS. The IL-2-dependent CTLL-2 cell line was maintained in RPMI 1640, 2 mM Glutamine,

10 U/ml recombinant IL-2 and10% FBS.

Primary cell cultures
Bone marrow-derived macrophages (BMDMs) were generated from 6- to 12-week-old mice as described (Celada et al., 1984).

Briefly, epiphyses from femora and tibiae were removed, and these bones were flushed with pre-warmed DMEM to extract the

bone marrow. Bone marrow cells were cultured in Petri dishes with DMEM-containing 20% (vol/vol) heat inactivated FBS, 30% L-

cell-conditioned media as M-CSF source, 100 U/mL penicillin, and 100 mg/mL streptomycin. Cells were incubated at 37�C in a hu-

midified 5% CO2 atmosphere. Macrophages loosely adhere to the Petri dishes and were harvested with cold PBS without causing

cell death. A homogeneous population of adherent macrophages was obtained after seven days of culture (> 98%CD11b and F4/80

positive cells). Unless stated otherwise, BMDMs were left for 16 h in medium without M-CSF to allow synchronization of cell cycles

prior to stimulation.

Murine peritoneal macrophages were obtained from a peritoneal lavage with sterile PBS as described (Celada et al., 1984). Briefly,

10 mL of ice-cold PBS was injected intraperitoneally into mice previously sacrificed by cervical dislocation. PBS from the peritoneal

cavity was then recovered, and cells were pelleted down and cultured in plastic dishes for 3 h at 37�C in a humidified 5% CO2 at-

mosphere with DMEM containing 10% FBS. Non-adherent cells were then discarded thus leaving the adherent population of peri-

toneal macrophages.

Unless specified otherwise, the concentrations of cytokines, growth factors, and PAMPs used to activate macrophages were the

following: IFN-g, IL-4, LPS, M-CSF and GM-CSF 10 ng/ml; CpGB 100 nM/ml; and R848 1 mg/ml. LPS was purchased from Sigma-

Aldrich (L3129, Lipopolysaccharides from Escherichia coliO127:B8). In previous experiments, the results obtained with the commer-

cial LPS were compared with highly purified LPS from Salmonella abortus equi, provided by Dr. C. Galanos (Max Planck Institute,

Freiburg, Germany) (Casals et al., 2007). No differences were found between the two.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal work was conducted following the guidelines established by the Animal Research Committee of the Catalan Government

(number 9158). Micewere socially housed under a 12 h light/dark cycle with ad libitum access to water and food. They were randomly

assigned to experimental groups.Mfn2floxed;CreLysMmice were obtained by crossingMfn2floxp/floxp andMfn1floxp/floxpmice (kindly pro-

vided by Dr. David Chan, through the Mutant Mouse Regional Resource Center) and a mouse strain expressing Cre recombinase

under the control of myeloid-specific promoter lysozyme M (CreLysM) (a generous gift from Dr. Ángel Nebreda, IRB Barcelona).

Both colonies were generated in a C57BL/6JRj background. Mfn2floxed;CreLysM descendants and the corresponding WT mice

(Mfn2Flox Cre-) from the same background were maintained in the SPF facility at the Barcelona Science Park. In all procedures, female

mice at the age of 8 to 10 weeks old were used.

METHOD DETAILS

RNA extraction, reverse-PCR, and qPCR
Total RNA was extracted, purified, and treated with DNase using the ReliaPrep RNA system kit, as recommended by the manufac-

turer. 400 ng of RNA was retrotranscribed to cDNA using the Moloney murine leukemia virus (MMLV) reverse transcriptase RNase H

Minus, following the manufacturer’s specifications. Quantitative PCR (qPCR) was performed using SYBR Green Master Mix, as rec-

ommended by themanufacturer. Non-retrotranscribed RNA samples were used as negative controls for each gene.When signal was

detected in these negative controls (< 32 Ct), the primer pairs used were discarded and replaced with alternative ones for the same

gene. Furthermore, the amplification efficiency for each pair of primers was calculated by making a standard curve of serially diluted

cDNA samples. Only the pairs of primers with an amplification efficiency of 100 ± 10%were used. The list of primers can be found in

Table S1.

Data were analyzed by the DDCt method (Bustin et al., 2009) using Biogazelle Qbase+ software. Gene expression was normalized

to three reference genes (i.e., housekeeping genes): Hprt1, L14, and Sdha (unless otherwise specified). The stability of these refer-

ence genes was determined by checking that their geNorm M value was lower than 0.5 (Hellemans et al., 2007).

Mitochondrial DNA quantification
Total DNA from 106 BMDMs cultured in 12-well plates in DMEM+10%FBS for 16 h was isolated using the DNeasy Blood and Tissue

Kit and following the manufacturer’s instructions. DNA concentration and purity was quantified in a NanoDrop ND-1000 system

(Thermo Scientific). qPCR with this DNA was performed as described before. The number of copies of mitochondrial DNA
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(mDNA) was calculated by measuring the expression of two mitochondrial-encoded genes, namely Cytochrome c oxidase I and

Nadh dehydrogenase II, and normalizing them by the expression of two single-copy nuclear-encoded genes, b-2 microglobulin

and PE-CAM1. The relative expression of the ribosomal subunit 18S, a multicopy nuclear gene, was used as control.

Telomere measurement
Telomere length was measured as described (Callicott and Womack, 2006). Briefly, genomic DNA was extracted with the DNeasy

Blood and Tissue Kit and qPCR was performed as described. Telomere length was calculated by measuring the relative number

of telomere copies to two single-copy nuclear genes (T/S ratio, b-2 microglobulin and PE-CAM1).

Western blot protein analysis
To obtain total protein lysates, BMDMs (at least 106 cells) were washed in cold PBS and lysed with TGH-NaCl (1% Triton X-100, 10%

glycerol, 50 mM HEPES, and 250 mM NaCl) plus protease inhibitors, as indicated (Pereira-Lopes et al., 2015). Lysates were centri-

fuged to remove cellular debris. The protein concentration was determined using the Bradford Protein Assay. Total protein lysates

(50 mg) were separated by SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membranes using the iBlot2 system

(Thermo Fisher) and following the manufacturer’s instructions. Membranes were blocked for 1 h at room temperature in blocking

buffer (5% dry milk in TBS-0.1% Tween 20) and then incubated with primary antibody in blocking buffer for 16 h at 4�C. The mem-

branes were then washed three times x 5 min with TBS-Tween and incubated for 1 h at room temperature with the corresponding

horseradish peroxidase (HRP)-conjugated secondary antibody diluted 1:1000 in blocking buffer. After washing as before, ECL detec-

tion was performed, and membranes were exposed to X-ray films. When necessary, band intensity was quantified using the open-

source image analysis software Fiji (Schindelin et al., 2012). Anti-ERK1/2, anti-ERK1/2 (pT202/pY204), anti-MKP1, anti-STAT6

(pY641), anti-p38 and p38 (pT180/Y182) were used at a dilution of 1:1,000; anti-JNK1/2, anti-JNK1/2 (pT183/Y185) and anti-LC3

at 1:500 dilution; and anti-b-actin at 1:10000 dilution.

Extracellular and intracellular staining and flow cytometry
For extracellular marker staining, BMDMs were collected, resuspended in staining buffer (5% FBS in PBS), and seeded in 96-well

plates at 4�C with 5 mM EDTA. Fc gamma receptors were blocked using an anti-CD16/CD32 antibody for 15 min at 4�C. Labeling
was performed by incubating the cells with the correspondent antibody mix for 30min at 4�C. An isotype for each antibody was used

as control.

For intracellular NF-lB staining, BMDMs were collected, resuspended in staining buffer, and transferred to 96-well plates (105

cells/well). They were then fixed in 4% paraformaldehyde for 15 min. After that, they were permeabilized with 0.2% Triton-X10 for

5 min. FcgRs were then blocked and the cells were stained. The antibody used was Phospho-NF-kB subunit p65 diluted 1:50. In

this case, DAPI gating was not used to discriminate dead cells.

After staining, samples were acquired in a Gallios Flow Cytometer (Beckman coulter). Unless otherwise specified, the following

gating strategy was followed: first, macrophages (or leukocytes when specified) were selected on the basis of their forward (FS-

A) and side scatter (SS-A). Singlets were then selected using FS-A and the signal peak height (FS-H) parameters. Finally, dead cells

were discriminated by DAPI staining. Data were analyzed with FlowJo 10.

Mitochondrial mass and membrane potential
To stain mitochondria and quantify mitochondrial mass, BMDMs were stained with MitoTracker Green following the manufacturer’s

instructions. Mean fluorescence intensity (MFI) was used to measure mitochondrial mass. Mitochondrial membrane potential was

assessed with TMRE-Mitochondrial Membrane Potential Assay Kit and following the manufacturer’s instructions.

Mitochondrial fluorescence microscopy
105 BMDMs were seeded in 8-well m-slide plates. Cells were washed with cold PBS and incubated with MitoTracker Deep Red, as

recommended by themanufacturer. Microscopy images were obtained in a Leica SP2 spectral confocal microscope (AOBS system),

maintaining 37�C and 5% CO2 for the duration of the experiment. Confocal images were recorded every 0.5 mm in the z-plane to re-

cord the whole cellular volume. Five images with at least 20 cells were captured for each condition. Images were analyzed using

Imaris software. For each cell, the number of isolated components (a measure of the degree of mitochondrial fragmentation) and

the average volume per mitochondrion was measured.

Mitochondrial respiration and glycolytic metabolism
An XF24 analyzer (Seahorse Biosciences) was used to measure BMDM mitochondrial function in real time. Macrophages were

seeded into XF24 cell culture plates at a density of 2x105 cells/well and left for 16 h in medium without M-CSF in a 37�C-humidified

incubator with 5%CO2. Mediumwas replaced by un-buffered XF assay mediumwith 5mM glucose and 2mM L-glutamine and then

equilibrated in a non-CO2 incubator for 1 h. The oxygen consumption ratio (OCR) and extracellular acidification rate (ECAR: a mea-

sure of glycolysis) were analyzed by sequentially adding drugs that modify the activity of the electron transport chain (ETC). Oligo-

mycin was used at a concentration of 625 nM to target ATP synthase, and ATP coupling was measured. Cyanide m-chlorophenyl

hydrazone (CCCP) used at 1.25 mM targets the inner mitochondrial membrane and measures maximal respiration; rotenone used
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at 1 mM targets Complex I and measures OCR inhibition, and antimycin A used at 1 mM targets Complex III and measures OCR

inhibition.

The following respiration parameters were calculated: a) Basal respiration: energy demand under baseline conditions (calculated

as the third OCR measurement under basal conditions); b) ATP coupling: respiration to meet ATP production (obtained by adding

oligomycin); c) Maximal respiration: maximum rate of respiration a cell can achieve (obtained by adding CCCP); d) Spare respiratory

capacity: capacity of the cell to respond to increased energy demands (calculated as the increase in % from basal to maximal respi-

ration); and e) Non-mitochondrial respiration: oxygen consumed by non-mitochondrial sources (obtained by adding antimycin A and

rotenone). The concentrations of substrates and inhibitors used were based on prior experiments conducted for the optimization of

the titration protocols.

ROS measurements
Mitochondrial superoxide production (mROS) was measured by incubating BMDMs with MitoSox red, following the manufacturer’s

instructions. Hydrogen peroxide (total cellular ROS) was measured by staining cells with 50 mM 207’-dichlorofluorescin diacetate

(DCF-DA) (Sigma Aldrich), as described (Pereira-Lopes et al., 2015). When indicated, 5 mM antimycin A or 10 mM n-acetyl cysteine

(NAC) was used to modulate ROS production. Protein oxidation was detected with the OxyBlot Kit.

Arginase activity assay
Arginase activity was measured as described (Classen et al., 2009). Briefly, 105 BMDMs were cultured in 96-well plates and stimu-

lated with IL-4 for 24 h. After washing, cells were lysed in 0.1%Triton. Arginase activity wasmeasured in the lysates by adding L-argi-

nine and MnCl2, and finally, optical density at 540 nm was read after reaction with a-isonitrosopropiophenone (a-ISPP).

ATP measurement
106 BMDMswere cultured in 6-well plates for 16 h in DMEM+10%FBS. The cells were then washed in cold PBS and lysed in 100mM

Tris-HCl+4mM EDTA (pH 7.75) by thermal shock (quick-freeze in liquid nitrogen and an immediate thaw in a 37�Cwater bath buffer).

ATP from lysates was measured using the ATP-determination kit, following the manufacturer’s protocol. Total protein from lysates

was also measured using the Bradford Protein Assay. The results were expressed as amount of ATP normalized by protein

concentration.

Determination of TNF-a, IL-6, nitrites and cellular proliferation
BMDMs (105 cells) were plated in 96-well plates. They were then stimulated with the indicated reagents for the indicated times or left

untreated. Supernatant was collected and diluted 1/8. TNF-a was determined using the Mouse TNF-a ELISA Ready-SET-go! kit

(eBioscience) and IL-6 using the mouse IL-6 ELISA kit (Invitrogen) following the manufacturer’s instructions. Nitrites were measured

using the Griess Reagent Kit (Promega) and cellular proliferation using the Cell Proliferation ELISA BrdU kit (Roche).

Cell cycle analysis
BMDMs (106) were cultured in DMEM+10%FBS in 12-well plates for 16 h. They were then left unstimulated or treated as specified for

24 h and then fixedwith 95%ethanol. Next, cells were incubatedwith propidium iodide (PI) andRNase A. Cell cycle distributions were

analyzed on the basis of IP staining (G1, S, and G2).

Phagocytosis assays
BMDMs (106 cells) were cultured in 12-well plates in DMEM+10%FBS without antibiotics for 16 h. They were then infected with the

GFP-expressing Aeromonas hydrophila (serovar O:34) at a multiplicity of infection (MOI) of 25. To this end, 100 mL of exponentially

growing bacterial suspension was added to the macrophages and immediately centrifuged. Cells were then incubated in a 37�C 5%

CO2 incubator for the indicated periods. After that, phagocytosis was stopped by washing cells five times with 5 mM EDTA in PBS.

eGFP fluorescence inside the cells was quantified by flow cytometry in a Gallios cytometer.

A phagocytosis assay was also performed using pHrodo red S. aureus BioParticles (Molecular probes) and pHrodo green E. coli

BioParticles (Molecular probes) and following the manufacturer’s instructions. In this case, 105 macrophages were cultured in a 96-

well dark-bottom plate in DMEM+10%FBS for 16 h. Bioparticles (1 mg/ml) were then added, and the cells were cultured for the indi-

cated times. pHRhodo fluorescence was quantified in a plate fluorimeter. As control, phagocytosis wasmeasured in BMDMs treated

with cytochalascin D (2 mg/ml).

Bactericidal activity
BMDMs (106 cells) were infected at MOI 25 with Aeromonas hydrophila, and a phagocytosis assay was performed for 60 min, as

above. Alternatively, 60 min after infection, cells were washed three times with PBS and then incubated for 1 h with 300 mg/mL of

gentamycin in DMEM+10%FBS to eliminate non-phagocytosed bacteria. Medium was then removed, and cells were washed three

times with PBS. They were then lysed with 0.02%Triton X-100. Lysates were serially diluted, cultured in LB plates, and left to grow for

24 to 48 h. Colony-forming units (CFUs) were then counted.
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In vitro Listeria monocytogenes infection
BMDMs (106 cells) were cultured in antibiotic-free DMEM+10%FBS in 12-well plates for 16 h. They were then infected at MOI 5 with

exponentially growing Listeria monocytogenes (strain10403S). To eliminate non-phagocytosed bacteria, after 30 min of incubation

medium was replaced by fresh medium comprising 5 mg/ml gentamycin in DMEM+10%FBS. RNA was extracted after 6 h of incu-

bation, as explained before.

Phagocytosis of apoptotic bodies
Apoptotic bodies were obtained by incubating mice thymocytes with 30 mM etoposide for 16 h. After washing, apoptotic cells were

stained with 5(6)-Carboxyfluorescein N-hydroxysuccinimidyl ester (CFSE) and added to a 106 BMDM culture in a proportion of 10:1

(Apoptotic bodies:BMDM). After 1 h of incubation, non-phagocytosed apoptotic cells were washed out, and macrophages were

analyzed by flow cytometry. Incubation with 2 mg/ml cytochalascin D prior to phagocytosis was used as negative control.

Apoptosis
Apoptotis was determined by incubating BMDMs with the Annexin V-FITC Apoptosis Detection Kit, following the manufacturer’s in-

structions. Live (double negative), necrotic (DAPI positive), early (Annexin-V positive), and late apoptotic (double positive) cell pop-

ulations were detected by flow cytometry.

Antigen presentation assay
Antigen presentation was performed as described (Carrero et al., 2012). Briefly, BMDMs (105 cells) were incubated in 96-well plates

with the indicated dilutions of antigen (listeriolysin O (LLO) or the 190-201 peptide of LLO), and then co-cultured in a 1:2 proportion

with CD4+ T cell hybridomas specific for that antigen. In the case of antigen presentation, the hybridomas release IL-2. After 24 h,

supernatant was transferred to tubes and subjected to several freeze-thaw cycles to eliminate cells. Then supernatants were incu-

batedwith CTLL-2 cells, a line that proliferates in an IL-2-dependentmanner. The proliferation of CTLL-2 cells wasmeasured by puls-

ing themwith 3H-thymidine (0.5 mCi/plate) for 8 h and then counting disintegration in a b-counter. A positive control with recombinant

IL-2 and a negative one with medium alone were used.

Mouse DNFB ear inflammation assay
2,4-dinitrofenolbenzene (DNFB) was diluted 1% in acetone. Female mice were anesthetized with isoflurane, and 10 mL of 1%DNFB

was homogeneously applied to the whole extension of one ear. Vehicle alone (acetone) was applied to the other ear as a control (Per-

eira-Lopes et al., 2015). At the times indicated, mice were euthanized, and a punch of the same radius was taken in both treated and

control ears tomeasure inflammation. Ear puncheswereweighed and then each onewas used for both RNA extraction and histology.

For histology, ear punches were fixed in 4% paraformaldehyde for 24 h and then embedded in paraffin. Ear sections were stained

with hematoxylin and eosin. Images were collected with a Nikon E800microscope, and ear thicknessmeasurements were calculated

with Fiji software (Schindelin et al., 2012).

Mouse Listeria monocytogenes challenge
Listeria monocytogenes (strain10403S) was kindly provided by Professor Carlos Ardavı́n (National Center for Biotechnology/CSIC,

Madrid, Spain). 2x104 CFU/Kg of exponentially growing Listeria were diluted in 5 mL of sterile PBS and injected intraperitoneally

into WT and Mfn2floxed;CreLysM female mice between 8 and 12 weeks old. Survival, weight, and clinical symptoms were monitored

twice a day. The experiment was stopped when all the surviving mice started to recover weight (day 12 post-infection). Moribund

and surviving mice were humanely euthanized following the guidelines of the Animal Research Committee.

In additionally, a group of three mice of each genotype were separated from the others. These mice were sacrificed at day 2 post-

infection, and spleen and liver were mechanically lysed, passed through a nylon strainer, serially diluted, and seeded in brain-heart

media plates to quantify CFUs.

Mouse Mycobacterium tuberculosis challenge
For this experiment, female mice were shipped to the ‘‘Unitat de Tuberculosis Experimental de l’Hospital Germans Trias i Pujol,’’ Ba-

dalona, Spain, where they were kept under controlled conditions in a P3 high-security facility. Animals were infected with a low-dose

aerosol (100 CFU/mice) of Mycobacterium tuberculosis (strain H37Rv) (Cardona et al., 2003), and survival was monitored for six

weeks. In addition, at week 3 post-infection, three mice from each group were sacrificed, and lungs and spleen lysates were seeded

to count CFUs.

Mouse LPS endotoxemia challenge
Mice were injected intraperitoneally with a sublethal dose of LPS (15 mg kg-1) in a volume of 500 ml that was diluted in saline. Survival

after LPS challenge was assessed every 12 h for three days. All surviving mice were killed at the end of the fourth day. In addition, at

24 h post-infection, mice from each group were sacrificed, and blood was obtained by cardiac puncture. Also 4 WT andMfn2floxed;-

CreLysM were sacrificed 48 h after LPS injection. Liver, retroperitoneal adipose tissue, brown and white adipose tissue, adrenal gland,

brain, heart, spleen, lung, salivary gland, submandibular lymph node, kidney, stomach, large intestine, pancreas, mesentery, striated
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muscle and bone marrow were removed and embedded in OCT solution. Cryosections of 10 mmwere stained with hematoxylin and

eosin, following standard protocols (Gijbels and deWinther, 2011). The samples were evaluated by the Histopathology Facility of the

Institute of Research in Biomedicine, Barcelona, Spain.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were analyzed using the non-parametric Mann-Whitney U test or the unpaired Student’s t test, as indicated in each figure

legend. When two or more variables were compared, a two-way ANOVA test followed by a Bonferroni correction was used, as indi-

cated in the figure legends. Survival curves were compared using the Mantel-Cox (log-rank) test. Center, dispersion, and n are

defined in each figure legend. For all analyses, significance was set at p < 0.05. Statistical analyses were performed using GraphPad

Prism 6.0 software.
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Similar results were found in three independent experiments. (D) Mean fluorescence intensity (MFI)
of different surface markers in BMDM. (E) Percent of cells positive for F4/80, CD11b, and CD115,
and negative for Ly6C. Positive and negative gates have been established using isotypes of the
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of Z-stacks from images. Photography are representative of five independent experiments. Scale bar
represents 10μm with the exception of the amplification x8 panels (1μm) (B) To measure
mitochondrial potential (mΔΨ) flow cytometry with TMRE staining was used. As negative control, the
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Figure S4. Mfn2 promotes p38 and Erk activation in response to LPS. (A) Cells were incubated
with LPS (10ng/ml) for the indicated times and phosphorylation of JNK was measured by western blot.
A representative blot is shown of three independent experiments and band intensity quantification is
shown. (B) Band intensity quantification of Figure 3A in relation to the non-phosphorylated form. (C)
WT and Mfn2-/- macrophages were treated with or without LPS (10ng/ml) for 1h. mkp1 mRNA
expression was determined by qPCR and the protein by Western blot which figure is representative of
two independent experiments. (D) Band intensity quantification of Figure 3G in relation to the non-
phosphorylated form. (E) Relative mRNA expression of Nos2, Tnf-α and Il-12 in basal conditions after
3h of LPS stimulation with or without previous treatment with Mito Tempo (50µM). All the other graphs
are shown as mean ± SD from three independent experiments compared using two-way ANOVA:
*p<0.05, **p<0.01, ***p<0.001. Related to Figure 3.
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A

Figure S5. The lack of Mfn1 do not alter the anti-inflammatory macrophage activation or ER
stress responses. (A) Control and Mfn1-/- macrophages were treated with LPS (10 ng/ml) for the
indicated times, then the gene expression was determined by qPCR. (B) Control and Mfn1-/-

macrophages were treated with Thapsigargin (Tg) (3µM) for 24h, then the gene expression was
determined by qPCR. (C) Macrophages were treated with IL-4 (10ng/ml) for the indicated times, then
the gene expression was determined by qPCR. (D) Macrophages were treated with IL-4 for 24h and
arginase activity was determined. Arginase activity represented as units of enzyme per million of
BMDMs. (E) Western blot of whole protein extracts from IL4 stimulated BMDMs. Band intensity of P-
STAT6 relative to β-actin. Western blot in D is representative of three independent experiments. All
the other results are shown as mean ± SD from three independent experiments compared using two-
way ANOVA: *p<0.05 . Related to Figure 3.
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Figure S6. Phagocytosis is impaired in cells lacking Mfn2-/-. (A) Autophagy was measured in
control and Mfn1-/- macrophages by Western blot of the lipidated form of LC3 (LC3-II) in basal, or
stimulated with LPS (10ng/ml), and/or bafilomycin A (BafA) at 50nM. (B) Quantification of three
independent experiments. (C) WT and Mfn2-/- macrophages were untreated or cytochalascin D-treated
(2µg/ml). Then macrophages were incubated with CFSE-stained apoptotic bodies from thymocytes in a
relation of 10/1 macrophage. Phagocytosis was evaluated by flow cytometry as shown in the figure. (D)
Phagocytosis at the specified time of pHrodo-conjugated Staphylococcus aureus by BMDM at 1mg/ml.
When convenient, cells were treated for 1h with NAC (20nM) before bacteria were added and
phagocytosis performed. (E) BMDM phagocyted Aeromonas hydrophila for 1h and then, non-
phagocyted bacteria were removed with a gentamycin treatment (300µg/ml) for 1h. BMDM were
incubated at 37ºC, and lysed at indicated times. The percentage of surviving bacteria was calculated
based on counts. (F) MHC-II expression at the surface of IFN-γ (10ng/ml for 24 h) treated BMDM was
measured by flow cytometry. Results are shown as mean ± SD from at least three independent
experiments compared using two-way ANOVA: *p<0.05, **p<0.01, ***p<0.001. Related to Figure 5.
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Figure S7. Mfn2floxed;CreLysM mice fail to be protected from Listeria monocytogenes, or LPS
endotoxemia. (A) mRNA expression from BMDM incubated in vitro with a MOI 5 L. monocytogenes
for 6h. The results are shown as mean ± SD from three independent experiments compared using
two-way ANOVA: ***p<0.001. Four WT and Mfn2floxed; Cre-LysM mice were sacrificed 48h after LPS
injection. (B) WT mouse, kidney: incipient necrosis/apoptosis in epithelial cells. (C) Mfn2floxed; Cre-LysM

mouse, kidney: focal areas of epithelial tubular cell necrosis. (D) WT mouse, heart: inflammatory
infiltrate in the auricular pericardium. (E) Mfn2floxed; Cre-LysM mouse, heart: myocardial multifocal
purulent infiltrates. (F) WT mouse, sternum: bone marrow myeloid increase. (G) Mfn2floxed; Cre-LysM

mouse, sternum: bone marrow necrosis. (H) Control of phagocytosis of Fig. 7 D. Phagocytosis of
apoptotic bodies was measured in BMDM control and treated with cytochalascin D (2µg/ml). Cells
were incubated at a 1:10 macrophage:apoptotic bodies ratio for 1h and phagocytosis was evaluated
by flow cytometry. Scale bar represents for B, C, F and G 100μm and for D and E 250μm. Results
are shown as mean ± SD from three independent experiments compared using two-way ANOVA:
***p<0.01. Related to Figure 7.
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Supplemental Table 1 for qPCR primer probes. Related to STAR Methods.

Oligonucleotides 

qPCR primer probe 18S Forward Merck KGaA 5´-TAGAGGGACAAGCGGCGTTC 

qPCR primer probe 18S Reverse Merck KGaA 5´-CGCTGAGCCAGTCAGTCAGTGT 

qPCR primer probe Arg1 Forward Merck KGaA 5’-TTGCGAGACGTAGACCCTGG 

qPCR primer probe Arg1 Reverse Merck KGaA 5´-CAAAGCTCAGGTGAATCGGC 

qPCR primer probe Atf4 Forward Merck KGaA 5´-CCGGAAATTCGTCAACGAGC 

qPCR primer probe Atf4 Reverse Merck KGaA 5´-AGATCGTCCTAAAGGCCCCA 

qPCR primer probe Bip Forward Merck KGaA 5´-TGTGTGTGAGACCAGAACCG 

qPCR primer probe Bip Reverse Merck KGaA 5´-TAGGTGGTCCCCAAGTCGAT 

qPCR primer probe Chop Forward Merck KGaA 5´-CGACAGAGCCAGAATAACAGC 

qPCR primer probe Chop Reverse Merck KGaA 5´-AAGGTGAAAAGGCAGGGACTC 

qPCR primer probe Cytochrome c oxidase 1 Forward Merck KGaA 5´-GCCCCAGATATAGCATTCCC 

qPCR primer probe Cytochrome c oxidase 1 Reverse Merck KGaA 5´-GTTCATCCTGTTCCTGCTCC 

qPCR primer probe Fizz1 Forward Merck KGaA 5´-TCTGCCCCAGGATGCCAACTTTGA 

qPCR primer probe Fizz1 Reverse Merck KGaA 5´-GTCCAGTCAACGAGTAAGCACAGGC 

qPCR primer probe Gadd 34 Forward Merck KGaA 5´-TACCCGGAGAGAAGCAGAA 

qPCR primer probe Gadd 34 Reverse Merck KGaA 5´-GGCTTCGATCTCGTGCAAAC 

qPCR primer probe Hprt1 Forward Merck KGaA 5´-ATCATTATGCCGAGGATTTGG 

qPCR primer probe Hprt1 Reverse Merck KGaA 5´-GCAAAGAACTTATAGCCCCC 

qPCR primer probe IFN-β Forward Merck KGaA 5´-CAGCTCCAAGAAAAGGACGAAC 

qPCR primer probe IFN-β Reverse Merck KGaA 5´-GGCAGTGTAACTCTTCTGCAT 

qPCR primer probe Il-1β Forward Merck KGaA 5´-TGGGCCTCAAAGGAAAGAAT 

qPCR primer probe Il-1β Reverse Merck KGaA 5´-CAGGCTTGTGCTCTGCTTGT 

qPCR primer probe Il-6 Forward Merck KGaA 5´CCAGAGATACAAAGAAATGATGG 

qPCR primer probe Il-6 Reverse Merck KGaA 5´-ACTCCAGAAGACCAGAGGAAAT 

qPCR primer probe Il-12β Forward Merck KGaA 5´-TGGTTTGCCATCGTTTTGCTG 

qPCR primer probe Il-12β Reverse Merck KGaA 5´-ACAGGTGAGGTTCACTGTTTCT 

qPCR primer probe Il14 Forward Merck KGaA 5´-TCCCAGGCTGTTAACGCGGT 

qPCR primer probe Il14 Reverse Merck KGaA 5´-TCCCAGGCTGTTAACGCGGT 

qPCR primer probe Marco Forward Merck KGaA 5´- CGAATCTTTCCAACGCGTCC 

qPCR primer probe Marco Reverse Merck KGaA 5´-CAGAGCCACCTCCATAGCTG 

qPCR primer probe Mfn1 Forward Merck KGaA 5´-CCCAGCAGCCCCGGATAATGC 

qPCR primer probe Mfn1 Reverse Merck KGaA 5´-GGGTCGTCCACGTCAGCCTC 

qPCR primer probe Mfn2 Forward Merck KGaA 5´-GCCAGCTTCCTTGAAGACAC 

qPCR primer probe Mfn2 Reverse Merck KGaA 5´-GCAGAACTTTGTCCCAGAG 

qPCR primer probe Mkp1 Forward Merck KGaA 5´-GGACAACCACAAGGCAGACAT 

qPCR primer probe Mkp1 Reverse Merck KGaA 5´-GGCCTGGCAATGAACAAACA 

qPCR primer probe Mrc1 Forward Merck KGaA 5´-CGCCCACCAGAGCCCACAAC 

qPCR primer probe Mrc1 Reverse Merck KGaA 5´-TGCTCGCCAGCTCTCCACCT 

qPCR primer probe Msr1 Forward Merck KGaA 5´-GTGCTGTCTTCTTTACCAGCA 

qPCR primer probe Msr1 Reverse Merck KGaA 5´-ATGCTGTCATTGAACGTGCG 

qPCR primer probe Nadh 2 Forward Merck KGaA 5´-CCTATCACCCTTGCCATCAT 

qPCR primer probe Nadh 2 Reverse Merck KGaA 5´-GAGGCTGTTGCTTGTGTGAC 

qPCR primer probe Nos2 Forward Merck KGaA 5´-GCCACCAACAATGGCAACA 

qPCR primer probe Nos2 Reverse Merck KGaA 5´-CGTACCGGATGAGCTGTGAATT 

qPCR primer probe Opa1 Forward Merck KGaA 5´-AGGACTTCTTCACTGCAGGTC 

qPCR primer probe Opa1 Reverse Merck KGaA 5´-TCTGCAGCACCAGCTTCCGC 

qPCR primer probe Pecam-1 Forward Merck KGaA 5´-CAACGCGGCAAACTAACCAA 

qPCR primer probe Pecam-1 Reverse Merck KGaA 5´-CCGACTCCCCGTCAGCCAAT 

qPCR primer probe Sdha Forward Merck KGaA 5´-TGGGGAGTGCCGTGGTGTCA 



qPCR primer probe Sdha Reverse Merck KGaA 5´-CATGGCTGTGCCGTCCCCTG 

qPCR primer probe Sod1 Forward Merck KGaA 5´-GGAACCATCCACTTCGAGCA 

qPCR primer probe Sod1 Reverse Merck KGaA 5´-CCCATGCTGGCCTTCAGTTA 

qPCR primer probe Sod2 Forward Merck KGaA 5´-AGGAGAAGTACCACGAGGCT 

qPCR primer probe Sod2 Reverse Merck KGaA 5´-GCAGGCAGCAATCTGTAAGC 

qPCR primer probe Sxbp1 Forward Merck KGaA 5´-CTGAGTCCGCAGCAGGTG 

qPCR primer probe Sxbp1 Reverse Merck KGaA 5´-GGCAACAGTGTCAGAGTCCA 

qPCR primer probe Telomeric region Forward Merck KGaA 5´-GGTTTTTGAGGGTGAGGGTGAGGG 
TGAGGGTGAGGGT 

qPCR primer probe Telomeric region Reverse Merck KGaA 5´-TCCCGATTATCCCTATCCCTATCCCTA 
TCCCTATCCCTA 

qPCR primer probe Tgfβ Forward Merck KGaA 5´-GAGACGGAATACAGGGCTTTC 

qPCR primer probe Tgfβ Reverse Merck KGaA 5´-TCTCTGTGGAGCTGAAGCAAT 

qPCR primer probe Tnfα Forward Merck KGaA 5´-CCAGACCCTCACACTCAGATC 

qPCR primer probe Tnfα Reverse Merck KGaA 5´-CACTTGGTGGTTTGCTACGAC 

qPCR primer probe Wfs1 Forward Merck KGaA 5´-CAGAGCTGGTCCCATGAAGG 

qPCR primer probe Wfs1 Reverse Merck KGaA 5´-GGCAAGGCGTAGGTAGTGTT 

qPCR primer probe Xbp1 Forward Merck KGaA 5´-CTGACGAGGTTCCAGAGGTG 

qPCR primer probe Xbp1 Reverse Merck KGaA 5´-ACATAGTCTGAGTGCTGCGG 

qPCR primer probe Ym1 Forward Merck KGaA 5´GCCAGCAGAAGCTCTCCAGAAGCA 

qPCR primer probe Ym1 Reverse Merck KGaA 5´-GCACTGAACGGGGCAGGTCC 

qPCR primer probe β-2 microglobulin Forward Merck KGaA 5´-CTGACCGGCCTGTATGCTA 

qPCR primer probe β-2 microglobulin Reverse Merck KGaA 5´-CAGTCTCAGTGGGGGTGAAT 
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