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Abstract

Nowadays, high dimensional data is ubiquitous: you can think for example in images, videos or
texts. Unfortunately, this property can harm seriously the performance of some algorithms. In
this project, I analyse how dimensionality reduction can help clustering improve its performance.
In order to do that, I distinguish three di�erent clustering strategies: Traditional, two-stages and
deep clustering. In the �rst one, the clustering is applied to the raw data while in the other two
it is applied to a low dimensional representation. I focus especially on the latter approach, which
has shown promising performance in the last years. The di�erences between these approaches
are illustrated doing a series of experiments and visualisations and comparing the results.

Keywords: Arti�cial intelligence, Clustering, Dimensionality reduction, Autoencoders, Deep
clustering.

AMS2010 : Classi�cation and discrimination; cluster analysis (62H30 )
Neural nets and related approaches (62M45 )

Resum

Actualment, les dades d'alta dimensi�o s�on omnipresents: es pot pensar, per exemple, en imat-
ges, v��deos o textos. Malauradament, aquesta propietat pot perjudicar greument el rendiment
d'alguns algorismes. En aquest projecte, analitzo com la reducci�o de dimensionalitat pot ajudar
a que elclustering millori el seu rendiment. Per fer-ho, distingeixo tres estrat�egies de cluster-
itzaci�o diferents: la tradicional, la de dues etapes i elDeep clustering. En la primera, l'agrupaci�o
s'aplica a les dades brutes mentre que en les altres dos s'aplica a una representaci�o de baixa di-
mensi�o. En el treball em centro especialment en aquest �ultim enfocament, que ha demostrat un
rendiment prometedor en els darrers anys. Les difer�encies entre aquestes estrat�egies s'il·lustren
fent una s�erie d'experiments i visualitzacions i comparant els resultats.

Paraules clau: Intellig�encia arti�cial, Clusteritzaci�o, Reducci�o de la dimensionalitat,
Autoencoders, Deep clustering.
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Chapter 1

Introduction

It is well known that in the last decade there has been an explosion of the volume of data
available. But it's not just that. Today, data also comes from a wide variety of formats such as
images, texts or sensors among many others. These new formats also known as unstructured data
have usually a very high number of dimensions and are much more complex and heterogeneous
than traditional tabular data. For example, the pixel intensity vectors used to represent images
have usually thousand of dimensions.

This is not a trivial problem, but rather a fundamental obstacle in empirical science: the number
of variables to measure can be unwieldy and at times even deceptive, because the underlying
relationships or intrinsic structure can often be quite simple. This complexity can create bot-
tlenecks in the data analysis process and can worsen the performance of many algorithms that
are a�ected by the curse of dimensionality.

Therefore, it is increasingly important the extraction and discovery of the knowledge hidden in
the raw data, a process known as unsupervised learning. Right now, machine learning research
is mainly about making computers understand data the same way humans do. But the focus
is going to shift to getting computers to understand things that humans aren't able because of
the vast amount of data that have to be processed.

Here is when comes into play dimensionality reduction. This �eld can help a lot when it comes
to removing noise, since it reduces the number of dimensions of the data with a minimum loss
of information. It is useful to visualise the structure of the data, to save computer resources or
simply to get new insights. Furthermore, dimensionality reduction can be used to improve the
performance of another tasks such as clustering, as they don't have to be independent to each
other. By combining both tasks, either in separate ways, or jointly as a single algorithm, it is
possible to achieve better results that if only clustering is used.

1



CHAPTER 1. INTRODUCTION

Aim of the project

The objective of this project is to explore how dimensionality reduction can be used to improve
clustering results. In order to do this, three di�erent clustering strategies should be analysed:

Traditional clustering : It is the use of a clustering algorithm alone, without additional
help.

Two-stages clustering : It consists in using a dimensionality reduction algorithm to
reduce the dimensionality of the data before applying clustering.

Deep clustering : This category uses deep neural networks to perform jointly, or at the
same time, dimensionality reduction and clustering. Here I focus on analysing a clustering
algorithm called Deep Convolutional Embedding Clustering (DCEC) that is based mainly
on the dimensionality reduction induced by an autoencoder.

I analyse how these three strategies perform by clustering image data from di�erent datasets
and comparing the results.

Through the development of this Thesis, I pretend to accomplish the following goals:

� Introduce the literature corresponding to dimensionality reduction and clustering.

� Provide a general overview of how these techniques perform on images.

� Use dimensionality reduction to visualise the structure of the data and detect clusters.

� Use deep neural networks as a method of dimensionality reduction.

� Implement a Deep clustering algorithm called DCEC.

� Compare Deep clustering methods with traditional statistical techniques.

Structure

This bachelor's degree thesis is structured into two main parts, one theoretical and the other
practical.

2



CHAPTER 1. INTRODUCTION

In the �rst part I present all the theory underneath the algorithms I want to apply
later. I start with a general overview of the �eld of dimensionality reduction to go on to
explain di�erent algorithms, paying especial attention to neural networks. Next I provide
a description of clustering analysis and how these two �elds are interrelated. Lastly, I
present the DCEC, a Deep Clustering algorithm.

In the second part I focus on the di�erent applications of the theory and I do some
experiments. This part is form by four chapters. In the �rst one, the methodology, I
describe the data sources, the software and the analysis process used. In the second one,
I explore how di�erent dimensionality reduction techniques perform on di�erent dataset
by looking mostly at the two dimensional representations and how useful they can be at
detecting clusters. In the third chapter, I perform clustering both in the raw data and in
the low dimensional spaces generated previously. Lastly, I apply the DCEC algorithm to
di�erent datasets and I analyse its results with more traditional clustering techniques.

Summary of the methodology

Data The thesis focuses on a speci�c data type: images. In the applied section I use three
datasets with di�erent characteristics. Two datasets have only black and white images,
while the other one has colour images of bigger size.

Coding language Even though the language R has good machine learning packages the thesis
is done using Python. There are mainly two reasons for this: First, the cloud computing
service used only provides support for python and second, the integration of Python with
other Deep Learning frameworks is excellent.

Deep Learning software In recent years the software applied to Deep Learning has evolve
extraordinarily fast. I take advantage of these developments by using the library Keras
and the platform Tensorow to implement Deep Learning algorithms in a relatively easy
way.

Cloud computing Cloud computing allows you to access to computing power in an a�ordable
way. I use Google's cloud computing environment Colab because it is free and easy to
use. This environment allows you to execute code on Google's cloud servers, meaning you
can leverage the power of Google's hardware, including GPUs and TPUs, regardless of the
computer you are using.

Open code All of the algorithms used in the thesis were already implemented and in almost
all of them, the source code was available. This code in most of the cases could be found
in Github, a platform that allows hosting and sharing your code very easily.

3



Chapter 2

Main concepts

First of all, it is important to put in context some of the concepts that will be used throughout
the work. Many of them are not new, but have been used in statistics for decades. They are
only called di�erently 1. Others, more computed-related, are very recent and have started to
be used in the industry and academia only a few years ago when technological conditions have
started to allow it.

Arti�cial intelligence (AI) : While the roots are long and deep, the history of arti�cial intel-
ligence as we think of it today spans less than a century. It is the science of mimicking human
abilities, namely, being able to carry out tasks in a way that we would consider \smart". It is
an interdisciplinary �eld with multiple approaches, but the two more important are Machine
Learning and Deep Learning. They have receive much attention in recent years.

Machine Learning (ML) is a branch of AI that automates analytical model building. It
uses methods from statistics, operations research or computer science to �nd hidden insights or
patterns in data without being explicitly programmed where to look or what to conclude. It is
based around the idea that we should really just be able to give machines access to data and
let them learn for themselves. Although this �eld is very linked to statistics there are several
fundamental di�erences between them: While ML mainly focus on prediction for large-scale
problems (usually for the short term), statistics also deals with estimation (based on surface
plus noise models) and attribution (signi�cance of the variables) [1].

Currently machine learning presents three major trends or paradigms used to train models:

1Some remarkable examples of name changes include the use of feature instead of variable, input instead of
explanatory variable or output/target instead of independent variable.

4



CHAPTER 2. MAIN CONCEPTS

Reinforcement learning Takes place when a machine learns through trial and error until it
�nds the best way to complete a given task. The system learns through its mistakes to
modify its behaviour based on \rewards" for completing the assigned task, without being
speci�cally programmed to do it in a certain way. It is a very recent trend that still needs
research to enter into production.

Supervised learning Is the most used paradigm and occurs when machines are trained with
labelled data. For example, images with descriptions of the things that appear in them.
The algorithm the machine uses is able to select these labels in other databases. Therefore,
if a group of images has been labelled that show dogs, the machine can identify similar
images.

Unsupervised learning Is a type of machine learning algorithm used to draw inferences from
datasets consisting of input data without labelled responses. Within this group we can �nd
among others the tasks ofDimensionality Reduction 2 and Clustering . Clustering
algorithms are not programmed to detect a speci�c type of data, but to look for examples
that are similar and can be grouped together.

Deep learning (DL) : Is a particular sub�eld of ML that uses very big arti�cial neural
networks (ANN) to train models. It takes advantage of advances in computing power and
improved training techniques to learn complex patterns in large amounts of data. Common
applications include image and speech recognition (supervised learning), but it can also be used
for dimensionality reduction with the use of autoencoders or for clustering. Conceptually the
main advantage of deep learning over machine learning is that the former advocates to solve
the problem end-to-end, simplifying the whole process, while ML algorithms usually break the
problem down into di�erent parts, solve them individually and combine them to get the result.
In practice though, the most important di�erence between deep learning and traditional machine
learning techniques is its performance as the scale of data increases. When the amount of data
is very large (big data ), usually the performance of a neural network is signi�cantly better than
that of a machine learning algorithm.

Lastly, within the �eld of deep learning and as a form of unsupervised learning we can de�ne
Deep Clustering, one of the main topics of this thesis:

Deep clustering is the process of learning deep feature representations that favour the clus-
tering task using deep neural networks. The most promising algorithms in this sub�eld are a
form of joint unsupervised learning in the sense that they try to simultaneously learn a nice
latent representation and perform clustering.

2Although it is not widely used, dimensionality reduction can also be supervised. Some examples of su-
pervised dimension reduction are Linear discriminant analysis (LDA) or some types of neural networks with a
mid-bottleneck layer.

5



CHAPTER 2. MAIN CONCEPTS

Figure 2.1: AI Classi�cation (Source: Modi�ed from Qubole.com)
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Part I

Dimensionality reduction
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Chapter 3

Overview

In the �eld of machine learning dimensionality reduction approaches can be divided into feature
selection and feature extraction.

� Feature extraction 1: Features are projected into a new space with lower dimensionality.

� Feature selection : The aim is to select a small subset of features that minimise redun-
dancy and maximise relevance to the target (e.g. class label). Popular feature selection
techniques include: Information Gain, Chi Squares, Fisher Score, and Lasso, to name a
few.

In this thesis, when talking about dimensionality reduction I will always make reference to
feature extraction.

Dimensionality reduction or feature extraction is the transformation of high-dimensional data
into a meaningful representation of reduced dimensionality. Its aim is to preserve as much of
the signi�cant structure of the original data as possible in the low-dimensional map. In other
words, we want the original spaceX = f x1:::xng of dimensions (n , p) and the embedded space
Y = f y1:::yng of dimensions (n , q) to be assimilar as possible. Ideally, the reduced repre-
sentation should have a dimensionality that corresponds to theintrinsic dimensionality of
the data , which is the minimum number of parameters needed to account for all the observed
properties of the data.

This �eld is not new. In fact, one of the most widely used dimensionality reduction techniques,
1Feature extraction is also called feature projection. Additionally, in the �eld of machine learning people use

the term features instead of variables.

8



CHAPTER 3. OVERVIEW

Principal Component Analysis (PCA), dates back to Karl Pearson in 1901. It has been a long-
standing research topic in academia and industry for two major reasons. First, the increasingly
large volume of data is challenging constantly the existing computing capability. Second, the
notion of intrinsic structure allows us to remove some redundant dimensions facilitating, among
others, classi�cation, visualisation, and compression of high-dimensional data2.

However, in recent years new tools, more sophisticated, have been discovered. Some of them are
spectral methods, t-SNE (2008), LargeVis (2016), UMAP (2018) or Autoencoders (that took
o� in the last decade). Their main advantage is that they can reduce well complex data as they
are non-linear techniques and thus, are more exible than the traditional ones.

3.1 Key concepts

When using dimensionality reduction techniques you have to pay attention to several concepts.
Next I will provide an overview of some of them:

How the original data is structured A key idea in dimensionality reduction is that if the
data lies in a q-dimensional (q<< p) subspace of the p-dimensional space, and if we can
identify the subspace, then there exists a transformation which loses no information and
allows the data to be represented in this q-dimensional space. If the data lies in a (lin-
ear) subspace then the transformation is linear; instead, if the data lie in a q-dimensional
(curved) manifold, the transformation is non-linear. For real world data, nonlinear dimen-
sionality reduction techniques may o�er an advantage, because real world data is likely
to form a highly nonlinear manifold [2, p.1]. Linear techniques make a more restrictive
assumption but in return they are usually more intuitive and computationally faster.

Interpreatibility When interpreting the embedded space one must always be cautious as some
algorithms can lead to erroneous interpretations. The axes of the embedded space can be
interpreted in some algorithms such as factor analysis or PCA (where the dimensions
are the directions of greatest variance in the source data), but with others they have no
inherent meaning. Distances between datapoints are often very dependent on the chosen
parameters and can be misleading as well. For example, some techniques allow you to
see the presence of clusters in the data, but the distance between clusters can have no
meaning. This is especially true for autoencoders since you cannot do any interpretation
of the low dimensional space at all.

How well the distance structure is preserved within the data Regarding structure
preservation, algorithms tend to fall into two categories: those that seek to preserve geom-
etry at all scales within the data (global structure) and those that favour the preservation

2 It is not clear though whether the di�erent tasks (e.g. reduce computational load, condense the number of
variables, visualisation etc.) can share a similar solution or a di�erent tool is needed for each task.
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of local distances over global distances (local structure). In order to form good clusters is
especially important to preserve correctly the global structure of the data in order to have
meaningful distances between groups. You want techniques that preserve the topology of
the data. However, according to [3], local approaches have two principal advantages: i)
computational e�ciency: they involve only sparse matrix computations which may yield
a polynomial speedup; ii) representational capacity: they may give useful results on a
broader range of manifolds, whose local geometry is close to Euclidean, but whose global
geometry may not be.

Objective function can be convex or non-convex In the latter case the algorithms can
get stuck in local optima, getting this way a suboptimal result. However, in many occa-
sions suboptimally optimising a sensible objective function is a more viable approach than
optimising a convex objective function that contain obvious aws [2, p.25]. This is due
to the fact that in the design of a non-convex technique, there is much more freedom to
construct a sensible objective function.

How important are the hyperparameters Some techniques have a lot of hyperparameters
and their �nal result can vary widely depending on the chosen values. Moreover, often it
is di�cult to decide objectively which are these values.

3.2 The curse of dimensionality

The curse of dimensionality refers to all the problems that arise when working with high di-
mensional data, that did not occur in low dimensional spaces. Some of these problems are
data sparsity, multicollinearity, multiple testing, over�tting, numerical instability
or computing costs, among others [4]. In general they are alike and interconnected. The
problem is that data analysis tools are most often designed having in mind intuitive proper-
ties and examples in low-dimensional spaces [5], but these properties can be very di�erent in
high dimensional spaces. The underlying problem is that we just have no way to use intuition
accurately in higher dimensions; we have to rely exclusively on mathematics.

� As dimensionality grows there are less observations per region. The volume of the space
increases so fast that the available data become sparse. You can see that e�ect in �gure 3.1,
which shows the distribution of points within a region in 1 and 2 dimensions. Additional
dimensions spread out the points until, in very high dimensions, they are almost equidistant
from each other, hence distance and similarity measures become increasingly meaningless
and unreliable, completely masking clusters and other structures.

But it is not just that the amount of space goes up, but that it's arranged in a particular
way. How points are distributed at higher dimensions are not the same as in one dimension.
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Figure 3.1: High dimensions are more sparse (Source: [4])

� As dimensionality increases, there is simply more space that has to be searched for many
combinatorial problems. The number of parameters to be estimated increases exponen-
tially as the number of variables included in a model increases.

� In some �elds, it is easy to encounter a situation in which the number of variables is higher
than the number of observations (n << p). Then, we have perfect multicollinearity: we
can always express at least one of the variables as a linear combination of the others, thus
yielding perfect multiple correlation.

� The number of samples needed to estimate an arbitrary function with a given level of
accuracy grows exponentially with respect to the number of input variables (i.e., dimen-
sionality) of the function.

Solutions Increasing the number of observations is the obvious way of tackling the issue, al-
though this method is not often viable in practice. Working from the opposite di-
rection and reducing the number of dimensions directly, often appears to be a more
pragmatic solution, although dimensionality reduction techniques may themselves
be a�ected by the curse of dimensionality.

In this thesis I will use mainly three di�erent techniques:

� PCA : It is widely used due to its simplicity and intuitiveness. It will be useful as a
benchmark.

11
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� t-SNE : It is the current state-of-the-art algorithm for dimension reduction for visualisation
but it has also been applied successfully for clustering purposes. The reason is its ability
to analyse nonlinearities and its capability of adapting to the local and global structure of
the data.

� Autoencoder : It is a completely new concept since it is based in an arti�cial neural
network. It is very exible and can be adapted to di�erent kinds of data such as images
(Convolutional Autoencoder).

Moreover, I will study how these algorithms can help detect and form clusters.
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Principal Component Analysis

Principal component analysis (PCA) is one of the oldest and most popular dimensionality re-
duction techniques. It's the �rst tool that use most of the researchers to get a sense of their data
before applying other more complex methods. They tend to start with PCA to, among other
things, visualise the relationship between data points, see which are the most representative
variables, or understand the intrinsic dimensionality of the data.
In this thesis we will use PCA mostly as a benchmark to compare with more advanced methods.

4.1 How does it work

PCA �nds the directions of maximum variance in the high-dimensional data and project it onto
a smaller dimensional subspace while retaining most of the information. One way to think of it,
there are many, is with an optimisation problem that seeks areconstructed matrix as similar as
possible to the original:

Min
nX

i =1

pX

j =1

(X ij � (Y Z) ij )2

The loss function uses the mean squared error (i.e. L2 norm) to measure how similar is the
resulting matrix ( Y Z) from the original data.

X 2 Rnxp is the original data matrix with n observations andp variables. Y 2 Rnxq is the
new representation of the data andZ 2 Rqxp is the matrix that projects the data into the new
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representation. Since usuallyq << p , the new space will have a much lower dimensionality.

This problem can be solved using classic lineal algebra: You substract the mean of the data,
compute the covariance matrix and then, extract the eigenvectors and eigenvalues of this matrix.
Finally, in order to reduce the dimensions of the data, you must select a subset of the eigenvectors
to project the data into the new (sub)space.

4.2 Advantages

PCA is widely applied mostly because it is simple and easy to use, and produces good enough
results. Some of its strengths are the following:

� Is completely non-parametric. This means that the answer is unique and independent of
the user. Hence, it is often used as a black box.

� Has an analytical solution and the objective function is convex.

� It's possible to interpret the low dimensional space. You can even "attach" a name to each
principal component.

� The algorithm allows to quantify the importance of each dimension to describe the vari-
ability of a data set. Provides a means for comparing the relative importance of each
dimension.

� PCA is particularly useful when strong correlation between variables exists, since it creates
a space of uncorrelated and orthogonal variables.

� It is computationally fast compared with other algorithms.

4.3 Limitations

At the same time, the algorithm makes severalassumptions . This section provides a brief
summary of some of them.

� Is a linear dimensionality reduction technique. When doing PCA you are asking: Is there
another basis, which is a linear combination of the original basis, that best expresses our
data set?
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� Large variances have important structure. Hence, principal components with larger asso-
ciated variances represent interesting structure, while those with lower variances represent
noise.

� The principal components are orthogonal. This assumption provides an intuitive simpli�-
cation that makes PCA soluble with linear algebra decomposition techniques.

These assumptions are not true in many cases, especially that of linearity. Apart of this, PCA
is non-parametric so is not as exible as another techniques -in the sense that you cannot add
extra information to the algorithm-, and it tends to be highly a�ected by outliers in the data
because of the way the loss function is made (i.e. quadratic function).
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t-Stochastic Neighbor Embedding

T distributed-Stochastic Neighbor Embedding (t-SNE ) was introduced in 2008 by Laurens van
der Maaten and Geo�rey Hinton [6] and has become a very popular technique since then. In
particular, it the state-of-the-art algorithm for the visualisation of the structure of images and
texts in two and three dimensions. But it also seems to reduce very well the dimensionality of
images for clustering purposes. It has been proved that t-SNE is able to recover well-separated
clusters [7].

The algorithm belongs to the class of methods known asmanifold learning . They seek to
describe datasets as low-dimensional manifolds embedded in high-dimensional spaces. The ad-
vantage of these methods as opposed to more traditional techniques is that they have the ability
to preserve non linear relationships in the data. Other property of t-SNE is that it is capable of
capturing much of the local structure of the high-dimensional data very well, while also revealing
global structure such as the presence of clusters.

The process of the algorithm is the following:

1. Compute pairwisesimilarities between points in the original space using a Gaussian kernel.

2. Compute pairwise similarities between mapped points in the embedded space using a
t-Student kernel.

3. Use some objective function to measure thediscrepancy between similarities in the data
and similarities in the map and derive the gradient.

4. Iterate the process in order to continue minimising the cost function. This is usually done
using gradient descent with momentum.
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In practice, the user has to set four hyperparameters basically. According to the terminology
of Python's framkework sklearn these are ncomponents, perplexity, learning rate and n iter
[sklearn.manifold.TSNE]. A brief de�nition together with the recommended range of values is
provided next:

� n components : The number of dimensions of the embedded space. We usually want two
or three dimensions to plot the points in a scatterplot.

� perplexity : Is a parameter related to the number of nearest neighbours you want to use
in the calculations. Larger datasets usually require a larger perplexity. Typical values are
between 5 and 50. This parameter has a complex e�ect on the resulting embedded space.

� learning rate : The parameter used in the update of the mapped points during the iter-
ations of gradient descent.

� n iter : The number of iterations for the optimisation of the cost function.

Below, I explain in detail all the steps of the algorithm and what is the relevance of each
hyperparameter.

5.1 Calculating distances in the high and low dimensional spaces

To capture the structure of the data most of the dimensionality reduction methods need a
measure of distance. What this algorithm does is �rst calculate the Euclidean distance and then
transform it into probabilities representing similarities. This is done both in the high-dimensional
spaceX = f x1:::xng of dimensions (n , p) and in the low-dimensional spaceY = f y1:::yng of
dimensions (n , q).

Similarities in the original space

In the high-dimensional space the probabilities are calculated using a Gaussian Kernel with
mean x i and variance � i . The similarity of datapoint x j to datapoint x i is represented with the
conditional probability pj j i . That is to say, the probability that x i would pick x j as its neighbour
if neighbours were picked in proportion to their probability density under a Gaussian centered
at x i .

pj j i =
exp(�k x i � x j k2=2� 2

i )
P

k6= i exp(�k x i � xkk2=2� 2
i )

(5.1)
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For nearby datapoints, pj j i is relatively high, whereas for widely separated datapoints,pj j i will
be almost in�nitesimal since the tails of the Normal distribution are very small. It also should be
noted that this formula is assuming local linearity on the manifold since the Euclidean distance
is being used in the numerator (kx i � xkk2).
Lastly, the conditional probability pi j j is calculated in the same way.

Since we don't want asymmetric probabilities in the objective function afterwards, we have to
calculate the joint probabilities pij . That is achieved doing a sort of average between the two
conditional probabilities.

pij =
pj j i + pi j j

2n
(5.2)

Similarities in the embedded space

In the low-dimensional map, it is necessary to use a probability distribution that has much
heavier tails than a Gaussian to convert distances into probabilities. This allows a moderate
distance in the high-dimensional space to be faithfully modelled by a much larger distance in
the map and, as a result, it eliminates the unwanted attractive forces between map points that
represent moderately dissimilar datapoints. Usually a Student t-distribution with one degree of
freedom is used, but a di�erent number of degrees of freedom could be adequate as well.

qij =
(1 + kyi � yj k2=� ) � � +1

2

P
k6= l (1 + kyk � yl k2=� ) � � +1

2

=
(1 + kyi � yj k2) � 1

P
k6= l (1 + kyk � yl k2) � 1 (5.3)

Where � are the degrees of freedom of the Student'st distribution. As said, the usual value is
1. On the other hand, since we are using a t-Student kernel,� i is not needed.
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Gaussian Kernel The Gaussian kernel is used to compute the conditional probabilities
in the original space. Therefore, it's worth mentioning some of its characteristics. Since
the value of the kernel decreases with distance and ranges between zero (in the limit) and
one (whenx = x 0 ), it has a ready interpretation as a similarity measure.

K (x ; x 0) = exp(
�k x � x 0k2

2� 2 ) (5.4)

The adjustable parameter sigma plays a major role in the performance of the kernel, and
should be carefully tuned to the problem at hand. If overestimated, the exponential will
behave almost linearly and the higher-dimensional projection will start to lose its non-
linear power. In the other hand, if underestimated, the function will lack regularisation
and the decision boundary will be highly sensitive to noise in training data.

How to determine � i

The parameter � i is set in such a way that the conditional probability pj j i mentioned earlier has
a �xed perplexity. The perplexity is decided by the user and is the same for all the observa-
tions. This hyperparameter can be interpreted as a smooth measure of the e�ective number of
neighbours. It says (loosely) how to balance attention between local and global aspects of your
data.

Perplexity (Pi ) = 2 H (Pi )

where H(Pi ) is the Shannon entropy ofPi measured in bits

H (Pi ) = �
X

j

pj j i � log2(pj j i )

If the data is sparse the user should set a high perplexity value, meaning the value of� i will be
high and it will give higher probabilities to more distant neighbours.
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Information theory measure: Shannon Entropy

It's used to quantify the amount of uncertainty in an entire probability distribution. In
other words, the Shannon entropy of a distribution is the expected amount of information
in an event drawn from that distribution.

H (pi ) = �
X

i

pi logb(pi )

Where b is usually 2 (when we talk about bits) or e (for nats).
The logarithm is useful because it allows probable events to provide a low information
content in addition to making independent events have additive information

5.2 Objective function: KL divergence

The key of the algorithm is that if the map points yi and yj correctly model the similarity between
the high-dimensional datapoints x i and x j , then, the conditional probabilities pij and qij will
be very similar. In other words, t-SNE aims to �nd a low-dimensional data representation that
minimizes the mismatch betweenP and Q. To measure the validity of this point the Kullback-
Leibler divergence is used. Then, the cost function is given by the sum of KL divergences over
all datapoints:

Cost = DKL (P jjQ) =
X

i

X

j

pij � log(
pij

qij
) (5.5)

It's important to note that we are computing the divergence from Q to P and not the other
way around. Since it's a non-symmetrical measure this fact has consequences, one of them is
that points in the embedding space tend to go to the center. This is contrarrested by using
the t-Student kernel to measure similarities in the embedded space as it gives more weight to
distant points (explained in subsection 5.1).
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Information theory measure: Kullback-Leibler Divergence

Is a standard function to measure how di�erent two distributions are.
It is the expectation of the logarithmic di�erence between the probabilities P and Q,
where the expectation is taken using the probabilities P.
DKL (P jjQ) =

P
x2 X P(x) � log( P (x)

Q(x) )

DKL (P jjQ) Is the divergence fromQ to P. It can also be considered the information gain
achieved if Q is used instead ofP.
Properties:

� DKL = 0 if and only if P(x) = Q(x)

� It's not a true distance since it's not symmetrical: DKL (P jjQ) 6= DKL (QjjP) for
someP and Q.
This asymmetry means that there are important consequences to the choice of
whether useDKL (P jjQ) or DKL (QjjP).

� It's non-negative and the value of the divergence increases as P(x) and Q(x) become
more di�erent.

� It's well-de�ned for discrete and continuous distributions alike.

5.3 Gradient descent

Derivative of the Cost function with respect to the mapping points

@C
@yi

= 4
X

j

(pij � qij )(yi � yj )(1 + kyi � yj k2) � 1 (5.6)

The derivative of the cost function, that is, the KL divergence, depends on the di�erence between
similarities in the high and in the low dimensional representations and the di�erence between
embedded points.

Update of the mapping points
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Yt = Yt � 1 + �
@C
@Y

+ � (t)(Yt � 1 � Y t � 2) (5.7)

The points of the embedded spaceY are updated at each iteration. The algorithm tries to
decrease the cost function moving these points within the low-dimensional representation.

5.4 Weaknesses of the algorithm

T-SNE compares favourably to other dimensionality reduction techniques, though it has a series
of downfalls. As stated by van der Maaten in his seminal paper [6], the algorithm has mainly
three potential weaknesses:

1. It is unclear how t-SNE performs on general dimensionality reduction tasks .
It has been used very successfully to visualise the structure of images in two dimensions.
However, it is unclear if this speci�c task can be extrapolated to the more general case of
reduction of d number of dimensions.

2. The relatively local nature of t-SNE makes it sensitive to the curse of the intrinsic
dimensionality of the data. When t-SNE computes the probabilities in both the low
and high dimensional spaces it uses the euclidean distance between points, assuming this
way, that they are locally linear. In datasets with a high intrinsic dimensionality and an
underlying manifold that is highly varying this assumption may be violated.

3. The algorithm is not guaranteed to converge to a global optimum of its cost
function . Since the cost function is not convex a di�erent initialisation can lead to
di�erent results. Furthermore, the algorithm has several hyperparameters whose values
can change the results noticeably.

Lastly, two more minor pitfalls should be added: First, it is slow compared to other meth-
ods. t-SNE has a computational and memory complexity that is quadratic in the number of
datapoints. Second,it is di�cult to interpret and understand and can lead to misleading
conclusions if not interpreted with caution.

Despite all these weaknesses this algorithm is useful for this project because i) it is still the
state-of-the-art for visualisation purposes and ii) the loss function of the algorithm that will be
used to perform Deep clustering is very similar to the one t-SNE uses.
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5.5 Uniform Manifold Approximation and Projection (UMAP)

What started as a mathematical motivation to try to justify the approach used in t-SNE, ended
in an algorithm called UMAP [8]. While t-SNE is built by �xing some of the problems of previous
algorithms, UMAP builds a mathematically accurate solution. That is why UMAP is compet-
itive with t-SNE for visualisation quality and arguably preserves more of the global structure
with superior run time performance. UMAP's topological foundations allow the algorithm to
scale to signi�cantly larger dataset sizes than are feasible for t-SNE.

Finally, UMAP has no computational restrictions on embedding dimension, making it viable
as a general purpose dimension reduction technique for machine learning. This is particularly
important when the intention is to use the low dimensional representation for further machine
learning tasks such as clustering or anomaly detection. More information about the advantages
of UMAP over t-SNE can be found in [9].

The hyperparameters of UMAP, as stated in [10], are the following:

� d: The number of dimensions of the embedded space.

� n neighbours : The number of neighbours to consider when approximating the local
metric, which is often the Euclidean distance. Smaller values will ensure detailed manifold
structure is accurately captured (at a loss of the \big picture" or global structure), while
larger values look at larger neighbourhoods of each point, and thus, the local structure is
not properly captured.

� min dist : It provides the minimum distance apart that points are allowed to be in the
low dimensional representation. Low values on mindist will result in potentially densely
packed regions, but will hopefully help to detect clusters in the data.

� n epochs : The number of iterations of the optimisation algorithm.

Furthermore, the greater exibility of this algorithm allows us to think in two next directions
in dimensionality reduction:

� Make use of labels for supervised dimensionality reduction with the aim of inter-
preting better the internal structure of the data.

� Combine numerical and categorical data . The algorithm just needs a distance mea-
sure for the variables.
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Arti�cial neural networks

Arti�cial neural networks (ANNs) are a set of algorithms inspired by information processing and
distributed communication nodes in biological systems. They are called neural networks because
of the loosly resemblence with the neurons of the human brain. ANN have evolved greatly in the
last decade and now they are the state-of-the-art in the �elds of pattern recognition, computer
vision or natural language procession, among others. Today, they are undoubtedly the main
tool of the Deep Learning �eld.

Their popularity in recent years comes mostly due to three factors:

1. Exponential increase of available data : Neural networks start to outperform tradi-
tional algorithms when they have access to large amounts of data.

2. Improvements of existing hardware : Development of GPUs that allow operations to
be performed in parallel, greatly accelerating processing time.

3. Theoretical developments such as new activation functions or initialisation methods,
that overcame some of the previous obstacles.

First, I will focus on the simplest ANN, which is called Feedforward neural network , and in
the next sections I will explain more complex structures. The feedforward neural network was
the �rst and simplest type of arti�cial neural network devised and it can be seen as an e�cient
nonlinear function approximator based on gradient descent optimisation. It is named \feed-
forward" because as stated in [11]nodes within a particular layer are connected only to nodes
in the immediately \downstream" layer, so that nodes in the input layer activate only nodes in
the subsequent hidden layer, which in turn activate only nodes in the next hidden layer, and so
on until the nodes of the �nal hidden layer, which innervate the output layer. An illustration
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of the system can be seen in �gure 6.2. Information ows from the input layer x through the
intermediate layers until it reaches the output y.

In the next section I will start explaining the elements of a feedforward neural network although
there are many other architectures. Some of the most popular areConvolutional neural
networks (CNN), Recurrent neural networks (RNN) and Autoencoders (AE). The au-
toencoder is the structure specialised in unsupervised learning and thus it is the most interesting
one for this project.

6.1 Elements of an Arti�cial Neural Network

� A node or neuron is the core feature of a neural network. They are represented asa[l ]
j ,

which denotes the nodej in the layer l . The nodes receive information from other nodes
or from the input and so they are interconnected and grouped in layers. What a node
does is calculate a weighted sum of its inputs, add a bias and then transmit the "signal"
to the next neurons. In 6.1 you can see the structure of a node and its elements:

{ The Net function or Lineal operation is represented byz or sometimes by
P

. As
denoted in equation 6.1 this function is just the sum of the weights, the outputs of
the previous layers and the bias.

{ The Activation function is symbolised asg(:) and it is applied to the output of the
Lineal operation. Typically is a very simple function, easy to compute. A summary
of the most important functions will be provided in the next subsection.

� A layer refers to a group of nodes that operate together at a speci�c depth within the
network. By adding more layers and more units within a layer, a deep network can
represent functions of increasing complexity. They can be classi�ed as input, hidden and
output layers so it is important to distinguish the layers of the neural network and to
which one we are referring to:

{ The input layer contains the raw data, one variable in each node. It is represented
as X 2 Rnx � m where nx is the input size and m is the number of samples in the
dataset.

{ The hidden layer are the layers between the input and the output and they compose
the internal structure of the network. In �gure 6.2 you can see two intermediate or
hidden layers.

{ The output layer is the simplest layer and usually consists of a single output or
node. However for multi-class or multi-label classi�cation problems it can have several
nodes. It is represented as ^y 2 Rny � m . When an ANN has a large number of hidden
layers (usually more than one is enough), then it is called aDeep neural network .
On the other hand an autoencoder is a speci�c type of ANN in which the output
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