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Abstract

Background: Basolateral amygdalar projections to the prefrontal cortex play a key role in modulating behavioral responses to 
stress stimuli. Among the different neuromodulators known to impact basolateral amygdalar-prefrontal cortex transmission, 
the corticotrophin releasing factor (CRF) is of particular interest because of its role in modulating anxiety and stress-associated 
behaviors. While CRF type 1 receptor (CRFR1) has been involved in prefrontal cortex functioning, the participation of CRF type 
2 receptor (CRFR2) in basolateral amygdalar-prefrontal cortex synaptic transmission remains unclear.
Methods: Immunofluorescence anatomical studies using rat prefrontal cortex synaptosomes devoid of postsynaptic elements 
were performed in rats with intra basolateral amygdalar injection of biotinylated dextran amine. In vivo microdialysis and 
local field potential recordings were used to measure glutamate extracellular levels and changes in long-term potentiation 
in prefrontal cortex induced by basolateral amygdalar stimulation in the absence or presence of CRF receptor antagonists.
Results: We found evidence for the presynaptic expression of CRFR2 protein and mRNA in prefrontal cortex synaptic terminals 
originated from basolateral amygdalar. By means of microdialysis and electrophysiological recordings in combination 
with an intra-prefrontal cortex infusion of the CRFR2 antagonist antisauvagine-30, we were able to determine that CRFR2 
is functionally positioned to limit the strength of basolateral amygdalar transmission to the prefrontal cortex through 
presynaptic inhibition of glutamate release.
Conclusions: Our study shows for the first time to our knowledge that CRFR2 is expressed in basolateral amygdalar afferents 
projecting to the prefrontal cortex and exerts an inhibitory control of prefrontal cortex responses to basolateral amygdalar 
inputs. Thus, changes in CRFR2 signaling are likely to disrupt the functional connectivity of the basolateral amygdalar-
prefrontal cortex pathway and associated behavioral responses.
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Introduction
The basolateral amygdala (BLA) plays a critical role in modu-
lating anxiety and stress-associated behaviors (Jaferi and 
Bhatnagar, 2007), in part through its regulation of prefrontal 
cortex (PFC) response to emotional stimuli (Morgan and 
LeDoux, 1995; Garcia et  al., 1999; Davis and Whalen, 2001; 
Gilmartin and Helmstetter, 2010; Milad and Quirk, 2012). 
Among the different neuromodulators known to impact BLA-
PFC transmission (Floresco and Tse, 2007; Rodrigues et  al., 
2009; Tejeda et al., 2015; Hervig et al., 2017), the corticotrophin 
releasing factor (CRF) is of special interest because of its role 
in regulating behavioral responses to stressors (Heinrichs 
et al., 1995; Koob and Heinrichs, 1999) by integrating the endo-
crine and neuronal systems (Vale et  al., 1981). CRF receptor 
activation has been shown to modulate neuronal excitability 
in the BLA (Rainnie et  al., 1992) and glutamatergic synaptic 
transmission in the PFC (Liu et al., 2015). Interestingly, the fa-
cilitatory effect of CRF onto PFC output neurons is mediated by 
activation of CRF type 1 receptor (CRFR1) and requires intact 
BLA inputs (Shekhar et al., 2005).

While CRFR1 is widely expressed throughout the brain (De 
Souza et al., 1985; Lovenberg et al., 1995; Van Pett et al., 2000) 
and its action has been well documented (Liu et al., 2004, 2005; 
Jaferi and Bhatnagar, 2007; Miguel et  al., 2014, Hupalo et  al., 
2016; Uribe-Mariño et al., 2016), the distribution of CRF type 2 
receptors (CRFR2) is more discrete and its functional impact re-
mains unclear (Van Pett et al., 2000; Guan et al., 2014). For in-
stance, CRFR2 modulation of synaptic transmission through 
diverse mechanisms has been described in the amygdala (Liu 
et al., 2004; Fu et al., 2008), hippocampus (Pollandt et al., 2006), 
and ventral tegmental area (Williams et al., 2014). However, the 
role of CRFR2 in the synaptic transmission in the PFC is not 
known. Thus, the goal of the present study is to determine the 
expression of CRFR2 in PFC synaptic terminals originated from 
the BLA and its role in modulating BLA transmission to the PFC. 
To address these questions, we utilized biochemical and histo-
chemical approaches in combination with in vivo microdialysis 
and electrophysiological measures to determine whether the 
expression of CRFR2 is functionally positioned to limit the 
strength of BLA transmission via inhibition of glutamate re-
lease in the PFC.

Materials and Methods

Animals

Male Sprague-Dawley rats (270–300  g) were used. The experi-
mental protocols were approved by the Bioethical Committee 
of the Faculty of Biological Sciences of Pontificia Universidad 
Católica de Chile. Electrophysiological experiments were 
performed following the USPHS Guide for Care and Use of 
Laboratory Animals and were approved by the Rosalind Franklin 
University Institutional Animal Care and Use Committee for the 
care and use of laboratory animals.

Preparation of PFC Synaptosomes

Purified synaptosomes of PFC, devoid of the postsynaptic 
density, were prepared on a discontinuous Percoll gradient as 
described (Rodrigues et al., 2005; Ciruela et al., 2006; Slater et al., 
2016). After decapitation, the PFC, including both infra- and 
prelimbic regions of the PFC, according to the Atlas of Paxinos 
and Watson (1986) was dissected out of coronal slices of 4 ani-
mals per sample. The coordinates to dissect PFC were AP: 3.7–
2.7 mm from bregma, ML: 1.0 mm, and DV: 3.0–6.0 mm from the 
skull. These animals were exclusively used for synaptosomal 
preparation. The extracted tissue was placed in a glass Potter 
homogenizer with 10  mM HEPES, 320  mM sucrose, and 3  mM 
EDTA, pH 7.4, and centrifuged at 1000 g for 10 minutes at 4°C. 
The supernatant was centrifuged at 17 000 g for 20 minutes at 
4°C. The obtained pellet was resuspended and centrifuged in 
a Percoll gradient (PVP-silica colloid; Sigma Aldrich, St Louis, 
MO) at 15 000 g for 20 minutes at 4°C. The synaptosomal frac-
tion was dissolved (in an equal volume to the fraction obtained) 
in 320  mM sucrose solution for immunofluorescence. The 
synaptosomal protein concentration was determined by Micro 
BCA Protein Assay Kit (Thermo Fisher).

Immunofluorescence in PFC Synaptosomes

Immunofluorescence in synaptosomes was performed as 
previously described (Ciruela et  al., 2006; Slater et  al., 2016). 
Synaptosomes from PFC (15 μg of synaptosomal protein) were 
seeded on coverslips coated with poly-L-lysine (Sigma Aldrich) 
and fixed with 4% PFA/10% sucrose for 15 minutes, permeabil-
ized with 0.2% Triton X-100, and incubated for 1 hour with 
blocking solution (4% bovine serum albumin in phosphate 
buffered saline). The synaptosomes were incubated 1 hour at 
room temperature with primary antibodies and thereafter for 
1 hour with the secondary antibodies (1:200; Invitrogen). The 
primary antibodies used were mouse anti-syntaxin 1 (1:2000; 
MAB 336; Millipore), mouse anti-PSD95 (1:1000; 75-028; UC 
Davis/NIH NeuroMab Facility), goat anti-CRFR2 (1:200; SC-1826; 
Santa Cruz Biotechnology), and mouse anti-vesicular glu-
tamate transporter 1 (1:500; 75-066; UC Davis/NIH NeuroMab 
Facility). The images were captured with a 100× objective in 
a confocal microscope (Olympus, Fluoview FLV1000) and ana-
lyzed with FLUOVIEW v6.0 software. Each synaptosomal prep-
aration was obtained from 4 animals, and photographs for 
quantification were taken with 60× from 8 different subareas 
in each coverslip.

Biotinylated Dextran Amine (BDA) Injections and 
Immunohistochemistry

Rats (4 rats for each sample) were anesthetized with isofluorane 
(4% for induction and 1–1.5% for maintenance) and stereotaxically 
injected with 1 μL of 10% BDA 10 kDa (Thermo Fisher) at a rate of 
0.1 μL/30 s with a 33-G Hamilton syringe in the BLA (AP = 2.8 mm, 

Significance Statement
Corticotrophin-releasing factor (CRF), through its action on CRF type 1 and CRF type 2 receptors, is central for the regulation of 
adaptive responses to stressors. However, the mechanism by which CRF receptor signaling modulates synaptic transmission re-
mains elusive, especially within the corticolimbic circuitry. Here, we found that CRF type 2 receptor is expressed in basolateral 
amygdalar terminals projecting to the prefrontal cortex and is functionally positioned to limit the strength of amygdalar trans-
mission via inhibition of glutamate release.
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ML = 4.8  mm, and DV = 8.2  mm from Bregma). Seven days after 
the surgery, the animals were decapitated to prepare synapto-
somes from the PFC or perfused for immunohistochemistry. 
Animals were perfused intracardially with 4% paraformaldehyde 
(PFA), and brains were postfixed in 4% PFA overnight and then 
kept in 20% sucrose for 48 hours. Brains were sliced in 30-μm cor-
onal sections with a cryostat (Leica CM 1510, Wetzlar, Germany). 
BDA immunohistochemistry was performed as described (55). 
Coronal sections were mounted on gelatin-coated slides and 
coverslip using Entellan (Merck), and the images were captured 
in an epifluorescence microscope (Nikon, FLV1000). In the case 
of PFC synaptosomes prepared from BDA-injected animals, they 
were processed for immunofluorescence using the secondary 
antibody Streptavidin-AlexaFluor647 (1:200; Thermo Fisher).

RT-PCR

Total RNA from whole PFC (1 rat per sample) and synaptosomal 
preparation (4 rats per sample) from PFC were isolated using Trizol 
reagent (Invitrogen). The reverse transcriptase enzyme used was 
the RevertAid Reverse Transcriptase (Thermo Fisher). The primers 
used are listed in Table 1. Each PCR program was carried out with 
Platinum Taq DNA Polymerase (Invitrogen) for 30 to 35 cycles, and 
the PCR product sizes were evaluated by agarose gel staining with 
SYBR Safe DNA gel stain (ThermoFisher) and confirmed by using 
the Macrogene sequencing service (Macrogene, Seoul, Korea).

In Vivo Microdialysis

Animals (total of 17 rats exclusively used for in vivo 
microdialysis experiments) were anesthetized with 8% chloral 
hydrate (400  mg/kg, i.p.) and placed in a stereotaxic appar-
atus. The body temperature was maintained by an electrical 
blanket at 37°C, and the anesthesia was maintained at 0.8 µL/
min by an electrical infusion pump (BASi). Microdialysis probes, 
2  mm long (MAB 2.14.2, Microbiotech), were implanted in the 
PFC (AP = 3.2 mm, ML = 0.7 mm, and DV = 5.0 mm from Bregma), 
and CMA 11 (CMA Microdialysis AB) were implanted in the BLA 
(AP = 2.8 mm, ML = 4.8 mm, and DV = 8.2 mm from Bregma). The 
microdialysis protocol used was previously described (Vega-
Quiroga et al., 2018). Artificial cerebrospinal fluid (aCSF) was per-
fused through the microdialysis probes at 2  µL/min. After the 
stabilization period (90 minutes), samples were collected every 
10 minutes from the PFC. At the time indicated, 70 mM K+-aCSF 
was perfused through the microdialysis probe in the BLA for 
10 minutes. Antisauvagine-30 (1  µM, Tocris), CP154,526  (1  µM, 
Tocris), or kynurenic acid (1  mM, Sigma) was perfused intra-
BLA, as indicated in the figures. At the end of the microdialysis 
protocol, animals were decapitated and the brains were re-
moved and stored in 4% PFA for verification of the microdialysis 
probe placements. The determination of glutamate was per-
formed using HPLC-fluorometric determination, as previously 
described (Sotomayor-Zárate et al., 2010).

In Vivo Recordings of BLA-Evoked Local Field 
Potential (LFP) Responses in Medial PFC

All LFP recordings in the medial PFC were obtained using a con-
centric bipolar electrode (SNE-100  × 50  mm; Rhodes Medical 
Instruments Inc., Summerland, CA) attached to a 28-gauge can-
nula to enable local administration of CRF receptor antagon-
ists (aCSF as control) while stimulating the BLA, as previously 
described (Caballero et al., 2014; Thomases et al., 2014). Briefly, 
rats were anesthetized with 8% choral hydrate (400 mg/kg, i.p.), 
fixed in a stereotaxic apparatus (ASI Instruments, Warren, MI), 
and maintained at 37–38°C (Physitemp Instruments, Clifton, 
NJ) while a steady supplementary level of anesthesia (400 μL/h, 
i.p.) was delivered throughout the recording session. The inten-
sity of BLA stimulation was chosen from the minimal current 
(0.5–0.7 mA range) needed to elicit a reliable LFP response with 
<15% variability in slope and amplitude. Typically, single evoked 
pulses (300-μs square pulses) were delivered every 15 seconds 
through a computer-controlled pulse generator (Master-8 AMPI, 
Jerusalem, Israel) during baseline recording, and changes in the 
slope of LFP potentiation were assessed following a protocol 
of high-frequency stimulation (HFS; 50 pulses at 100 Hz/15 s × 
4)  delivered into the BLA. Single PFC infusions of 1.0  μL aCSF 
alone or in combination with Antisauvagine-30 (300  nM) or 
CP154,526 (1 μM) were delivered at a rate of 0.1 μL/min prior to 
BLA HFS. The chemical composition of the aCSF solution was 
(in mM): 122.5 NaCl, 3.5 KCl, 25 NaHCO3, 1 NaH2PO4, 2.5 CaCl2, 1 
MgCl2, 20 glucose, 1 ascorbic acid (pH: 7.40, 295–305 mOsm). All 
time-course plots summarizing the effects of the HFS shown in 
the figures were created using a bin size window of 2 minutes 
(i.e., mean slope value from 8 field responses per data point). At 
the end of the recording sessions, animals were killed and the 
brains removed for histological assessment of the recording and 
stimulating sites, as previously described (Thomases et al., 2014).

Statistical Analyses

Statistical analyses were performed with the statistical software 
GraphPad Prism 6 (GraphPad Software). The data are expressed 
as the mean ± SEM. All plots in the LFP experiments are the nor-
malization of the HFS drive LFP in the PFC every 2 minutes. The 
microdialysis and HFS-driving LFP experiments were analyzed with 
1-way ANOVA or 2-way ANOVA, followed by Tukey post-hoc test.

Results

CRFR2 and Its mRNA Are Present in PFC 
Glutamatergic Terminals From BLA

We first determined whether CRFR2 distribution in the 
PFC is presynaptic using a synaptosomal preparation de-
void of postsynaptic elements (Rodrigues et  al., 2005). 
Immunofluorescence conducted in PFC synaptosomes enriched 

Table 1. Primers used for RT-PCR

Gene Forward primer Reverse primer

D1R 5´-CATGCCAAGAATTGCCAGACC 3´ 5´-CTCTTCCTTCTTCAGGTCCTC-3´
CRFR2 5´-AAGAGCTGCTTTTGGACGGCT-3´ 5´-GGCGATTCGGTAATGCAGGTC-3´
CRFR1 5´-TCCACCTCCCTTCAGGATCA-3´ 5´-TGCAGGCCAGAAACATTGC-3´
REST 5´-TACACGGCACACCTGAAGCACC-3´ 5´-TTGCGTGTCGGGTCACTTCGTG-3´
β-Actin 5´-CACCCGCGAGTA CAACCTTC-3´ 5´-CCCATACCCACCATCACACC-3´

RC-PCR, Reverse transcription polymerase chain reaction.
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in presynaptic elements revealed the presence of CRFR2 
(Fig. 1A–C), as shown by co-staining with syntaxin 1 (presynaptic 
marker) (Fig. 1A), and the staining for CRFR2 did not colocalize 
with PSD95 (postsynaptic marker) (Fig. 1B). Overall, 85.7% ± 7.3% 
of PFC synaptosomes bearing CRFR2 were positive for syntaxin 
1. In addition, the 62% ± 7.8% of PFC synaptosomes positive for 
CRFR2 stain were positive for the vesicular glutamate trans-
porter 1 (glutamatergic neuronal marker) (Fig. 1C). These results 
indicate that CRFR2 is present in glutamatergic terminals in 
the PFC.

Next, we asked whether mRNA for CRFR2 could be found 
in the PFC synaptic terminals. Data from mRNA extracted 
from PFC synaptosomes (devoid of postsynaptic elements) and 
from whole PFC tissue indicate that CRFR2 mRNA is detectable 
only in the PFC synaptosomal preparation (Fig. 1D). It is worth 
mentioning that the synaptosomal fraction is a small percentage 
of the whole PFC preparation, explaining why CRFR2 mRNA was 
observed only in the synaptosomal preparation and not in the 
whole PFC preparation. Instead, CRFR1 mRNA was found in both 
PFC synaptosomes and whole PFC tissue. To further evaluate 
the quality of the mRNA samples, we analyzed the presence of 
mRNA for dopamine D1 receptor and RE1-silencing transcrip-
tion factor (Chong et al., 1995; Palm et al., 1998). The mRNA for 
dopamine D1 receptor was present in both preparations but 
in higher amounts in whole PFC tissue samples. RE1-silencing 
transcription factor mRNA was present only in whole PFC 
tissue, indicating that the synaptosomal preparation is clean of 
nonsynaptosomal elements. These results indicate that CRFR2 
is expressed exclusively in PFC synaptic terminals. Finally, we 
injected the anterograde tracer BDA into the BLA to determine 
whether PFC glutamatergic terminals bearing CRFR2 originate 
from the BLA (Fig. 2A–B). Overall, 11.6% ± 0.6% of PFC synapto-
somes prepared from BDA-injected animals (n = 3) showed 
immunoreactivity for CRF2 (Fig. 2C). Together, these results in-
dicate that some CRFR2 are expressed in PFC glutamatergic ter-
minals originated in the BLA.

CRF2 Negatively Controls Glutamate Release in the 
BLA-PFC Circuit

To determine the role of CRFR2 in PFC glutamatergic terminals 
originated in the BLA, we conducted in vivo microdialysis 
measure in the PFC and assessed how the local infusion of the 
CRFR2 antagonist antisauvagine-30 (aSvg, 1 µM) alters glutamate 
levels elicited following BLA stimulation (Fig. 3). We found that 
PFC infusion of aSvg significantly increased basal glutamate 
levels (Fig.  3B–C), an effect that was further potentiated fol-
lowing BLA stimulation (Fig. 3B, D). In contrast, PFC infusion of 
the CRFR1 antagonist CP154,526 (CP154, 1 µM) significantly re-
duced basal glutamate levels (Fig. 3B–C), yet the extent of glu-
tamate increase following BLA stimulation resembles that of 
aCSF controls (Fig. 3B, D). Collectively, these results indicate that 
local prefrontal CRFR1 and CRFR2 contribute to regulate basal 
glutamate levels, but only the CRFR2 apparently exerts an in-
hibitory control on BLA-evoked glutamate release in the PFC.

Prefrontal CRFR2 Signaling Limits Afferent 
Transmission Originated From BLA in Vivo

We next examined the effects of PFC infusion of the CRFR2 
antagonist aSvg (300  nM) on prefrontal LFP responses elicited 
from the BLA following a protocol of HFS (Fig. 4) (Caballero et al., 
2014). As shown previously, HFS of the BLA induces a sustained 
potentiation of LFP responses in the PFC (Caballero et al., 2014; 

Thomases et al., 2014). Relative to aCSF controls, PFC infusion 
of aSvg markedly facilitated the amplitude of LFP potentiation 
(Fig. 4B–C). However, PFC infusion of the CRFR1 antagonist CP154 
failed to disrupt the pattern of LFP potentiation (Fig.  4B–C). 
Collectively, these results reveal that CRFR2 signaling is func-
tionally positioned in the PFC to limit the gain of BLA transmis-
sion, whereas CRFR1 does not play a major role in this process.

Discussion

We found compelling evidence revealing for the first time, to our 
knowledge, that CRFR2 is expressed in BLA afferents projecting 
to the PFC. Our results also show that CRFR2 is functionally posi-
tioned to limit the strength of BLA glutamatergic transmission 
to the PFC, possibly through a presynaptic inhibition of glu-
tamate release.

CRF receptors are differentially distributed in the brain 
(Henckens et  al., 2016), with CRFR2 displaying a more dis-
crete expression than that of CRFR1. In the PFC, we observed 
that CRFR2 is expressed in glutamatergic terminals originated 
from the BLA. Similar presynaptic expression of CRFR2 has 
been found in distinct brain areas (Lawrence et al., 2002; Fu and 
Neugebauer, 2008), suggesting that changes in CRFR2 signaling 
may impact the strength of synaptic transmission in a region-
specific manner. Our results also indicate the presence of CRFR2 
mRNA in PFC synaptosomes, suggesting that CRFR2 expression 
could be locally regulated, as it has been shown for tyrosine-
hydroxylase (Jiménez et al., 2002; Gervasi et al., 2016).

Prefrontal blockade of CRFR2, but not CRFR1, enhanced BLA-
evoked glutamate release and LFP potentiation in the PFC. These 
results indicate CRFR2 signaling in the PFC plays a critical role in 
limiting the strength of glutamatergic transmission originated 
from the BLA. Although this inhibitory effect of CRFR2 in the PFC 
has not been previously reported, our results are consistent with 
published data showing an inhibitory role of CRFR2 signaling in 
the regulation of synaptic transmission. For example, CRFR2 
activation decreases the amplitude of glutamatergic transmis-
sion in the lateral septum (Liu et al., 2004), and its antagonism 
increases the frequency of excitatory postsynaptic currents in 
the centro-lateral amygdala (Fu and Neugebauer, 2008). CRFR2 
activation also diminishes the gain of glutamatergic transmis-
sion into ventral tegmental area dopamine neurons (Williams 
et  al., 2014). However, CRFR2 can also facilitate glutamatergic 
transmission as revealed by its effects on the amplitude of exci-
tatory postsynaptic currents in the central amygdala (Liu et al., 
2004; Pollandt et  al., 2006) and NMDA-mediated postsynaptic 
currents in dopamine neurons (Hahn et al., 2009). Collectively, 
CRFR2 signaling can exert both inhibitory and excitatory effects 
on glutamatergic transmission in a synapse-specific manner, 
yet the distinct mechanisms mediating such opposing actions 
remain unclear.

CRF receptors are known to be activated by CRF and 
urocortins (Bale and Vale, 2004). While CRFR1 binds to both 
CRF and urocortin I with high affinity (Chen et al., 1993, Perrin 
et al., 1993; Vaughan et al., 1995), CRFR2 binds with high affinity 
to urocortins I-III (Perrin et al., 1995). Both CRF and urocortins 
have been shown to modulate synaptic transmission in dif-
ferent brain areas (Gallagher et  al., 2008), including the PFC, 
BLA, and lateral septum (Liu et  al., 2004, 2005; Orozco-Cabal 
et al., 2008). Thus, changes in urocortin levels are likely to im-
pact CRFR2 signaling and contribute to fine-tuning PFC output 
and behavior by modulating the activity of its major afferents, 
including inputs from the BLA. It has been shown that CRF 
is present in PFC neurons (Swanson et  al., 1983; reviewed in 
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Figure 1. CRF type 2 receptor (CRFR2) are expressed in PFC presynaptic terminals. (A–C) Confocal images showing immune detection of CRFR2 in PFC synaptosomes, 

devoid of postsynaptic elements. (A) Immunofluorescence detection of CRFR2 (green) in PFC presynaptic terminals (identified as syntaxin 1 positive; red) (scale 

bar = 2 µm). (B) Immunofluorescence detection of CRFR2 (green) in PFC synaptosomes with a postsynaptic terminal marker (identified as PSD95 positive; red) (scale 

bar = 2 µm). (C) Immunofluorescence detection of CRFR2 (green) in PFC glutamate presynaptic terminals (identified as vesicular glutamate transporter 1 positive; red) 

(scale bar = 5 µm). The arrows indicate some of the colocalized synaptosomes in the image. (D) RT-PCR analysis for D1R, CRFR2, CRFR1, REST, and β-actin in RNA ex-

tracted from PFC synaptosomes and whole PFC tissue.



Copyedited by: oup

Yarur et al. | 113

Deussing and Chen, 2018), mainly in GABAergic interneurons 
(Yan et  al. 1998). Urocortin I  has also been found in the PFC 
(Bittencourt et al., 1999). In addition, there are other possible 
sources of CRF in PFC such as the input from central amygdala 
neurons that express CRF (Merali et al, 2008). Further studies 
are warranted to determine which endogenous ligand is re-
sponsible for driving CRFR2 signaling and limiting prefrontal 
response to BLA inputs.

In summary, CRFR2 in the PFC is functionally positioned to 
limit the gain of glutamatergic transmission originated from the 
BLA, which in turn suggests a more complex role of BLA-PFC 
pathway in emotion and other CRF-related behaviors. This in-
hibitory action of CRFR2 may provide a mechanism by which 
BLA transmission is regulated in the PFC during emotional acti-
vation. Further studies should address how modulation of BLA-
PFC synapses by CRFR2 shapes decision-making processing in 

Figure 2. CRF type 2 receptor (CRFR2) are expressed in PFC synaptic terminals originated in BLA. (A) Coronal brain sections showing the injection site of BDA in BLA 

(scale bar = 100 µm). (B) Coronal brain sections showing labeled BDA fibers in PFC (scale bar = 200 µm). (C) Confocal images of PFC synaptosomes obtained from a BDA-

injected animal and subjected to immunofluorescence for CRFR2 (green) and BDA (red) (scale bar = 2 µm). Arrows depict double-labeled synaptosomes.

Figure 3. PFC infusion of the CRF type 2 receptor (CRFR2) antagonist aSvg-30 (aSvg) enhanced BLA-induced glutamate release in the PFC. (A) Brain coronal sections 

showing the placement of the microdialysis probes in BLA (−3.1 mm to −3.3 mm from bregma) (bottom) and PFC (3.7 mm to 3.2 mm from bregma) (top). (B) Measurement 

of PFC extracellular glutamate levels using in vivo microdialysis. The vertical gray bar indicates the time of BLA stimulation with local perfusion of 70 mM K+-aCSF, and 

the horizontal black line indicates the time of intra-PFC infusion of the antagonists. PFC glutamate levels in the presence of aCSF (n = 6), 1 µM of the CRFR2 antagonist 

aSvg (n = 6), and 1 µM of the CRFR1 antagonist CP154,526 (CP154, n = 5). Changes in PFC glutamate levels were normalized to the first 3 values for each condition. (C) 

Normalized glutamate levels to the pre-drug infusion period (20 minutes) summarizing the mean values obtained in the PFC before BLA stimulation (50 minutes) and 

10 minutes post-BLA stimulation (70 minutes; gray area in B). So, 2-way ANOVA revealed a main effect of treatment (F2,14 = 60.6, P < .0001), a main effect of time (F1,14 = 80.8, 

P < .0001), and treatment × time interaction (F2,14 = 19.6, P < .0001; ***P < .0005, **P < .005 vs aCSF, Tukey post-hoc test). (D) Effects of aSvg and CP154 infusion on BLA-induced 

PFC glutamate increase. One-way ANOVA revealed a main effect of BLA stimulation (F2,14 = 8.9, P = .003; **P < .005 vs aCSF, Tukey post-hoc test).
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response to changes in emotional states (Uribe-Mariño et  al., 
2016; Moghaddam, 2016; Sun et al., 2019).
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