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ABSTRACT 
The ketogenic diet (KD) is a high-fat, low-carbohydrate, and moderate-protein diet 

that was first described in 1921, with the goal of mimicking the anticonvulsant effects 

of fasting. KD causes an increased ketone bodies production, allowing the brain to 

obtain an alternative fuel to glucose. Recently, its clinical use has expanded 

notoriously, as well as scientific interest, due to its possible positive effects on various 

diseases. Based on a bibliographic research, this work aims to analyse the current 

information on KD and its variants, in addition to review some studies that assess its 

application in two illnesses: glucose transporter type 1 deficiency syndrome (GLUT1DS) 

and Alzheimer's disease (AD), as examples of rare and neurodegenerative illness, 

respectively. On one hand, GLUT1DS is an encephalopathy with a wide spectrum of 

manifestations, with seizures being the most common. In this disorder, KD-derived 

ketone bodies represent an efficient alternative energy source. On the other hand, AD 

is the most frequent cause of dementia and its incidence is expected to increase in the 

coming decades. Currently, there is no cure, so the neuroprotective effects of ketone 

bodies may decrease the mitochondrial dysfunction, oxidative stress, and 

neuroinflammation present in AD. Although overall, both the reported cases of 

GLUT1DS and preclinical and clinical studies in AD demonstrate clinical benefits with 

KDs, more research is needed to better understand their role in diverse diseases. 

Keywords: ketogenic diet, ketone bodies, GLUT1 Deficiency Syndrome, Alzheimer 

 

La dieta cetogénica (DC) es una dieta alta en grasas, baja en carbohidratos y moderada 

en proteínas que fue descrita por primera vez en 1921, con el objetivo imitar los 

efectos anticonvulsivos del ayuno. La DC provoca un aumento en la producción cuerpos 

cetónicos, permitiendo al cerebro obtener un combustible alternativo a la glucosa. 

Recientemente su uso clínico se ha expandido notoriamente, así como también el 

interés científico, por sus posibles efectos positivos en diversas enfermedades. A partir 

de una búsqueda bibliográfica, este trabajo pretende analizar la información actual de 

la DC y sus variantes, y revisar algunos estudios que evalúen su aplicación en dos 

enfermedades: el síndrome de deficiencia del transportador de glucosa tipo 1 

(SDGLUT1) y la enfermedad de Alzheimer (EA), como ejemplos de enfermedad rara y 

neurodegenerativa, respectivamente. Por una parte, el SDGLUT1 es una encefalopatía 

con un amplio espectro de manifestaciones, siendo las crisis convulsivas las más 

comunes. En esta enfermedad, los cuerpos cetónicos representan una eficaz fuente 

alternativa de energía. Por otra parte, la EA es la causa más común de demencia y se 

prevé que su incidencia aumente en las próximas décadas. Actualmente, no existe una 

cura, por tanto, los efectos neuroprotectores de los cuerpos cetónicos podrían 

disminuir la disfunción mitocondrial, estrés oxidativo y neuroinflamación presentes en 

la EA. Aunque en general, tanto los casos reportados de SDGLUT1 como los estudios 

preclínicos y clínicos en EA, demuestran beneficios clínicos con las DCs, se necesita 

más investigación para comprender mejor su papel en diversas enfermedades. 

Palabras clave: dieta cetogénica, cuerpos cetónicos, Síndrome Deficiencia GLUT1, 
Alzheimer 
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ACRONYMS 

acetyl-Coa: acetyl coenzyme A 

AD: Alzheimer’s disease 

ADAS-Cog: Alzheimer’s Disease Assessment Scale-Cognitive Subscale 

APOE: apolipoprotein E 

APP: amyloid precursor protein 

ATP: adenosine triphosphate 

Aβ: amyloid-beta 

β-OHB: beta-hydroxybutyrate 

BBB: blood-brain barrier 

BDH: beta-hydroxybutyrate dehydrogenase 

CoA: coenzyme A 

CSF: cerebrospinal fluid 

g: gram/s 

GABA: γ-aminobutyric acid 

GLUT1: glucose transporter type 1 

GLUT1SD: glucose transporter type 1 Deficiency Syndrome 

KATP: ATP-sensitive potassium 

KD: ketogenic diet 

LCT: long-chain triglyceride 

LGIT: low-glycemic index treatment 

MAD: modified Atkins diet 

MCI: mild cognitive impairment 

MCT: medium-chain triglyceride 

MCT1: monocarboxylate transporter 1 

MCTKD: medium-chain triglyceride ketogenic diet 

mmol/L: millimole/litre 

mPTP: membrane permeability transition pore 

NAD: nicotinamide adenine dinucleotide 

NFT: neurofibrillary tangle 

NIA: National Institute on Aging 

NMDA: N-methyl-D-aspartate 

Nrf2: nuclear factor erythroid 2-related factor 2 

OXCT1: 3-oxoacid CoA-transferase 1 

PED: paroxysmal exercise-induced dyskinesia 

PET: positron emission tomography 

ROS: reactive oxygen species 

SLC2A1: solute carrier family 2 member 1 

TCA: tricarboxylic acid 
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1. INTRODUCTION 

A ketogenic diet (KD) is defined as a diet high in fats and low in carbohydrates, with 

an adequate amount of proteins (1). The original KD emerged in the early 1920s when 

several patients suffering from epilepsy were treated with a type of diet regimen that 

mimicked the effects of fasting, an anticonvulsant strategy already used by some 

contemporary physicians. Actually, the control of seizures through sustained fasting 

dates back to the time of Hippocrates, but the first scientific observations were 

recorded by two French physicians in 1911 (2).  

In a fasting state, the energy expended by the tissues firstly comes from the glucose 

metabolism and stored glycogen. If fasting is prolonged, fatty acids can also serve as 

an energy source through their breakdown in the liver, and the excess of acetyl 

coenzyme A (acetyl-Coa) produced is then utilized as a substrate for ketone bodies 

production: beta-hydroxybutyrate (β-OHB), acetoacetate and acetone. At the end, a 

new metabolic state named ketosis occurs, where ketone bodies levels in serum 

increase in detriment to glucose levels, so there is a fuel shift (3).  

In 1921, doctor Wilder, from Mayo Clinic, suggested that the ketosis could be reached 

by a different dietary strategy. He proposed that a high-fat and low-carbohydrate diet 

could be maintained for a much longer period of time than fasting, and he was the 

first one to refer to this type of regimen as “Ketogenic Diet”. Over the following two 

decades, KD was widely administered to epileptic children. But the appearance of the 

first antiepileptic drugs, like diphenylhydantoin in 1938, were relegating its use, most 

probably due to the simplicity of prescribing a pill as opposed to a strict dietary 

regimen (2,4).  

However, in recent years, the clinical use of KD has experienced a resurgence because 

although several anticonvulsant drugs are available, some patients with epilepsy still 

fail to achieve significant relief of convulsions. Interestingly, in the mid-1990s, a 

successful treatment of intractable generalized seizures in a child called Charlie was 

reported in the news media. The patient’s father, a famous film director, created the 

Charlie Foundation in order to contribute to disseminate this therapy through courses 

and audiovisual material. Moreover, this foundation supported the first multicenter 

prospective study testing the efficacy of the KD and since then, the role of KD in 

refractory epilepsy have been evaluated in numerous studies (2).  

The appearance of adverse effects, in addition to the restrictive nature of the diet can 

lead patients to low compliance. In an attempt to increase variability, palatability and 

tolerability of the diet, various variants with a lower fat-to-protein and carbohydrate 

ratio have been designed: the ketogenic medium-chain triglyceride ketogenic diet 

(MCTKD), the modified Atkins diet (MAD) and the low-glycemic index treatment (LGIT) 

(5).  
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Currently, there is a growing scientific interest in the KD since investigations 

performed to clarify the mechanisms underlying the anticonvulsant effects of KD have 

allowed to consider its application in other diseases (4).  

KD is the treatment of choice for type 1 glucose transporter deficiency syndrome 

(GLUT1DS). This syndrome is caused by a default in the protein responsible for 

transporting glucose across the blood-brain barrier (BBB), which results in an energy 

deficiency of the brain. It is manifested in convulsions in the early stages of life and 

impaired brain growth, often related to developmental delay and movement disorders. 

The entrance of KD-derived ketone bodies allows the brain to obtain energy by a 

different mechanism than glucose (6,7). 

Ketone bodies not only serve as energy substrate but are also able to interact with a 

variety of receptors, channels and metabolic enzymes. The diverse mechanisms of 

action have been studied and ketone bodies have been seen to play a neuroprotective 

role through various pathways such as (8): 

● Maintenance of energy metabolism 

● Modulation of synaptic transmission 

● Reduction of oxidative stress 

● Modulation of inflammation  

Some of these processes are characteristic of certain neurological conditions such as 

Alzheimer's disease (AD), a neurodegenerative disease that is characterized by 

progressive loss of memory and sense of orientation, cognitive impairment, language 

difficulties and changes in personality and behaviour. Nowadays, the only available 

pharmacological therapies just appear to be useful to alleviate symptoms (9). So, 

according to some studies carried out lately -that will be reviewed in this final degree 

project-, KD could also mean a potential alternative for this disease treatment. 
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2.  OBJECTIVES 

Since there has been recently an increasing interest in the application of KD in other 

diseases than refractory epilepsy, this work aims to examine the current knowledge of 

KDs to later understand its role in GLUT1DS and AD. To this end, a bibliographic 

research has been done about: 

- KD’s definition, associated metabolic changes, neuroprotective effects, 

variants, clinical protocol and adverse effects 

- GLUT1DS’ definition, manifestations, diagnosis and treatment 

- AD’s definition, manifestations, etiology, pathogenesis, diagnosis and treatment 

- Evidence of the implementation of ketogenic therapies on GLUT1DS and on AD, 

through different studies 

 

 

3.  METHODS 

An exhaustive bibliographic research has been carried out in order to achieve the 

objectives exposed before.  

Firstly, a general research about the KD was done using the databases PubMed and Sci 

Finder. Articles since 2010 to the present were limited, and only studies that the 

Centre de Recursos per a l’Aprenentatge i la Investigació facilitated the open access, 

are included in this work.  

Some review articles in which neuroprotective effects of the KD were explained, 

allowed me to decide about the illnesses I could associate with the KD: GLUT1 

Deficiency Syndrome and Alzheimer’s disease. More detailed information about these 

them were consulted in the mentioned databases and some websites from official 

organizations. At the same time, more specific research about the relationship 

between KDs and the two diseases was done through the databases using, for instance, 

the keywords “ketogenic diet”, “variants”, “neurodegenerative”, “Alzheimer” or 

“GLUT1”. Several studies were excluded owing to its low relevance for the objectives 

of this work. 

In an attempt to find out the original sources of certain specific information, some 

bibliographic references of selected articles were analysed and included. By this 

method, I also found interesting studies associating KDs with the two diseases. Finally, 

I looked up ongoing trials in Clinicaltrials.gov.  

This bibliographic research has also permitted me to elaborate an informative article, 

as an example of dissemination activity.   
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4.  RESULTS 

4.1. Ketogenic diet 

Characterized as a high-fat, adequate-protein and low-carbohydrates diet, the KD 

induces ketone bodies production through fat metabolism. The aim of this diet is to 

mimic a fasting response, replacing glucose as the predominant caloric source, as well 

as facilitating enough protein to sustain growth and development in pediatric patients 

(1,10).  

The classic KD, designed by Wilder, consists of a macronutrient ratio, also termed 

ketogenic ratio of 4:1 (4 grams (g) of fat to 1 g of protein and carbohydrates combined) 

(11). In a traditional Mediterranean diet (figure 1), the predominant macronutrients 

are carbohydrates (12). Glucose represents the main energy source for the body and 

the not-used-glucose is stored as glycogen (3). However, with a classic KD, the 

proportions of macronutrients vary: 90% from fats, 4% from carbohydrates and 6% from 

proteins (figure 2) (10). 

Figure 1. Macronutrient proportions in a 
traditional Mediterranean diet (12)  

     Figure 2. Macronutrient proportions in a 
classic KD (10) 

 

 

4.1.1.  Metabolic changes associated with the ketogenic diet 

By reducing carbohydrate intake, glucose availability is reduced, and glycogen deposits 

are depleted. This situation triggers the breakdown of triglycerides to free fatty acids 

and glycerol, and the mobilization of lipids stored from adipose tissue to the liver. 

Fatty acids submit to β-oxidation to produce acetyl-CoA, which enters the tricarboxylic 

acid (TCA) cycle, and then condenses with oxaloacetate to form citrate. Meanwhile, 

glycerol acts as a substrate for gluconeogenesis (3). It should be noted that 

gluconeogenesis also requires oxaloacetate as an intermediate (4). Thus, the high rate 

of β-oxidation generates a great amount of acetyl-CoA, that exceeds the capacity of 

the TCA cycle to synthesize citrate. In these circumstances, the surplus of acetyl-Coa 

serves as a substrate for the ketone bodies synthesis: acetoacetate, β-OHB and acetone 

(3).  
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KD brings the body into a state of ketosis, where ketone bodies preferably feed cellular 

metabolism in place of glucose (8). Adequate ketosis is reached when β-OHB levels in 

blood are approximately 4-5 millimole/litre (mmol/L) (13). Some tissues with high-

metabolic demands, such as the heart, skeletal muscle or central nervous system can 

benefit from this energy source switch. For example, since fatty acids can not directly 

penetrate the BBB, ketone bodies become the optimal alternative fuel for the 

metabolism in the brain (figure 3) (4,14).  

 

Figure 3. Ketosis and brain energy metabolism. Glucose enters the brain via the 

facilitated glucose transporter GLUT1 (  ), fatty acids can not enter (x), and ketone 

bodies penetrate the BBB via the monocarboxylate transporter 1 (MCT1) (  ). In the 

brain, glucose and ketone bodies enter the TCA cycle as acetyl-CoA for energy 

production. Adapted from (15). 

 
Ketone bodies production, or ketogenesis, takes place primarily in the mitochondrial 

matrix of hepatic cells. The acetyl-Coa excess permits the generation of the first 

ketone body, acetoacetate, from which the other two ketone bodies derive. On one 

hand, it is largely reduced to β-OHB, by β-OHB dehydrogenase (BDH). On the other 

hand, the third ketone body, acetone, is produced due to a spontaneous 

decarboxylation of the remaining fraction of acetoacetate in some tissues. Acetone is 

a volatile product that is mostly exhaled through the lungs, whilst β-OHB and 

acetoacetate are released into the blood circulation thanks to the monocarboxylate 

transporter 1 (MCT1) of the liver. 
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Extrahepatic tissues can internalize circulating ketone bodies through the MCT1 in 

order to get acetyl-CoA and, subsequently, to produce energy. Ketone bodies 

utilization, or ketolysis, occurs in the mitochondria and starts with the participation 

of BDH, which converts β-OHB back to acetoacetate. Then, acetoacetyl-CoA is formed 

by the conjugation of acetoacetate with Coenzyme A (CoA) thanks to 3-oxoacid CoA-

transferase 1 (OXCT1). Finally, two molecules of acetyl-CoA are generated, and then 

oxidized via the TCA cycle and the electron transport chain to obtain energy, in the 

form of adenosine triphosphate (ATP) (3). The fact that OXCT1 is not expressed in the 

liver and that differing enzymes are implicated in these two opposite metabolic 

pathways, prevents a worthless cycle of ketone bodies synthesis and degradation (14). 

4.1.2.  Neuroprotective effects of the ketogenic diet 

Despite quite a century of use, the mechanisms underlying the efficacy of the KD have 

not yet been totally elucidated. Based on the documented biochemical pathways of 

KD in numerous studies -mainly carried out in epilepsy-, several mechanistic theories 

have been proposed (8). This work aims to focus on the most observed neuroprotective 

effects. 

 Improvement of energy metabolism in the brain 

KD involves an enhancement of the metabolic pathways implicated in energy 

production occurring in the mitochondria of brain neurons. Ketone bodies are a more 

efficient energy source compared to glucose, because they are metabolized faster than 

glucose and are able to access directly to the TCA cycle, whereas glucose has to 

undergo glycolysis. As a consequence of a greater metabolism of ketone bodies, 

glycolysis is inhibited (16–18). Moreover, KD helps to restore intermediates of the TCA 

cycle by facilitating high amounts of acetyl-CoA (4). Long-term KD administration has 

also found to stimulate the mitochondrial biogenesis and significantly upregulate the 

expression of genes encoding many enzymes that are responsible for mitochondrial 

energetic metabolism. 

All these mechanisms improve ATP generation, which in turn lead to an increase in 

energy reserves as ATP, and the excess is stored as phosphocreatine (16).  

 Modulation of synaptic transmission 

Higher energy reserves enable a better synaptic transmission. This boosts the 

adaptability of neurons to challenge stressful conditions (16). One possible mechanism 

implicated could be the opening of ATP-sensitive potassium (KATP) channels, which 

raises the seizure threshold. KATP channels open when levels of glycolytic ATP 

(produced by glucose oxidation) are low, and this is precisely what happens with KD 

therapy (19). Another mechanism could involve ketone bodies in the mitochondrial 

permeability mediated by the membrane permeability transition pore 

(mPTP). Prolonged excitotoxicity can initiate the opening of this pore, through which 
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pro-apoptotic factors are released that promote cell death. Ketone bodies, by reducing 

the reactive oxygen species (ROS), may inhibit the mPTP opening (20).  

Elevated ATP levels may also alter the concentrations of various neurotransmitters, 

such as adenosine, glutamate and γ-aminobutyric acid (GABA), contributing to the 

stability of synaptic transmission. An increased ATP production drives to a rise of 

adenosine levels that ultimately, derive in a decrease of neuron excitability via 

adenosine A1 receptors (21). Glutamate is the principal excitatory neurotransmitter of 

the brain, whilst GABA is the main inhibitor. Ketone bodies may modulate the 

metabolism of these neurotransmitters, promoting inhibitory GABA neurotransmission. 

In neurons, glutamate can be transformed into either GABA or aspartate in a reaction 

that also requires oxaloacetate. Because a KD induces metabolic changes that need 

available oxaloacetate to be condensed with acetyl-CoA for incorporation into the TCA 

cycle, aspartate creation is diminished (4). Moreover, aspartate inhibits glutamate 

decarboxylase, an enzyme that catalyses the conversion of glutamate to GABA. 

Therefore, a decline in aspartate levels promotes a further GABA synthesis (22). 

Additionally, ketone bodies can directly compete with chloride for allosteric activation 

of vesicular glutamate transporters, resulting in lower glutamate release (4). Finally, 

β-OHB may boost the concentration of neurotrophins, responsible for the activation of 

multiple proteins involved in neuronal biogenesis (23). 

 Mitigation of ROS 

ROS production from metabolism pathways is physiological. However, when generation 

overcomes antioxidant systems, ROS accumulate, causing oxidative stress. KD 

promotes mechanisms that mitigate ROS. For instance, KD activates the Nuclear factor 

erythroid 2-related factor 2 (Nrf2), a transcriptional factor that regulates genes 

involved in antioxidant mechanisms, such as those related to glutathione, an 

antioxidant molecule (24,25). KD also contribute to protect against ROS through an 

increase in the ratio between the oxidized and reduced forms of nicotinamide adenine 

dinucleotide (NAD+/NADH), and an improved expression of uncoupling proteins. 

Besides, β-OHB has been shown to inhibit histone deacetylases class I (HDAC1), which 

is associated with a higher resistance to oxidative damage, by inducing the expression 

of detoxifying genes (4). 

 Anti-inflammatory effects 

KD also exerts neuroprotective effects through anti-inflammatory mechanisms. The 

great amount of fatty acids facilitated by KD induces the activation of peroxisome 

proliferator-activated receptor gamma (PPARγ), which can reduce the expression of 

the nuclear factor κB (NF-κB), implicated with the release of pro-inflammatory 

cytokines (8). It has been discovered that β-OHB activates the hydroxycarboxylic acid 

receptor 2, expressed in microglia, dendritic cells and macrophages, and also may 

diminish the release of pro-inflammatory cytokines, through the inhibition of the 

innate immune sensor NOD-like receptor 3 inflammasome.  
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There has been controversy about whether ketone bodies are responsible for the 

anticonvulsant effects of KD, mainly because, according to a few clinical observations, 

ketone bodies levels in blood inconsistently correlate with seizure control. However, 

researchers suggest that the differences may be related to heterogeneity of the diet 

or differences in methodology between studies (11). To generalize, the subjacent 

mechanisms of KD are likely multiple and synergistic, and include a variety of 

molecular, genetic, cellular and metabolic factors (26). 

4.1.3.  Types of ketogenic diets 

In the classic KD, fats provide approximately 90% of energetic diet value and are 

principally composed of long-chain fatty acids, which have 16–20 carbon atoms. 

Despite the documented efficacy of the classic KD against convulsive disorders, its 

implementation may pose a challenge. Drastic changes in eating habits are needed to 

introduce, and are difficult to maintain in the long term. Hence, over time, in order 

to increase flexibility and palatability, and consequently adherence, other KDs variants 

have been developed, allowing patients to achieve a similar effect (27). These variants 

have a lower macronutrient ratio (3:1, 2:1 or 1:1), resulting in less strict KDs. They are 

chosen based on age, individual tolerability, goal level of ketosis and protein 

requirements (11). 

In 1971, the medium-chain triglyceride ketogenic diet (MCTKD) was designed to deliver 

60% of its calories from medium-chain triglycerides (MCTs), which have two or three 

fatty acid chains comprised of 6-12 carbon atoms, such as caprylic acid, the main 

component of the MCTKD (5,28). MCTs can be consumed as coconut oil or as an 

emulsion. As they are metabolized faster than long-chain triglycerides (LCTs), less fat 

intake is needed to induce ketosis, therefore, a greater consumption of protein and 

carbohydrate is possible. With this diet, patients consume more varieties of food (1,6). 

Nevertheless, comparing with the classic KD, an higher rate of gastrointestinal 

problems may appear, such as diarrhea, vomiting, bloating and abdominal cramps (28). 

In order to obtain better tolerability, a modified version was suggested, beginning only 

with a 30% of calories from MCTs, and a larger LCT content. With this modified MCTKD, 

the MCT percentage is required to be incremented gradually, in detriment of LCT 

percentage (1). MCT oil has also been applied as a supplement to the classic KD to 

boost ketosis and improve lipid abnormalities (6).  

In 2003, a more flexible variety was described, the Modified Atkins Diet (MAD). 

“Modified” because its aim was not the weight loss, but the increase of adherence, 

especially in adults. The MAD is based on a ratio of 1:1, has no restriction of protein, 

fluids or calories, and contains 10-30 g of carbohydrates/day. All carbohydrates are 

permitted and can be eaten throughout the day or at one meal. The initial amount of 

carbohydrates, 10 g/day in children and 15 g/day in adults, can be elevated to 20-30 

g/day after a couple of months depending on the response (29). With the MAD, the 

weighing of food portions or an initial hospital stay are not necessary (5). 
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In 2005, Pfeifer et al. designed the low-glycemic index treatment (LGIT), that includes 

approximately 40-60 g of carbohydrates/day, only allowing those foods with a glycemic 

index below 50. By its features, the LGIT prevents large postprandial rises in blood 

glucose, permitting more stable circulating glucose levels (30). 

The distinct compositions of these diets are shown in Table 1. In addition, some 

ketogenic dietary supplements, like ketone esters, are currently being target of 

interest as potential substitutes for KD (11).  

 

Table 1. Composition of the KDs and its variants (5) 

4.1.4. Protocol  

Dietary plan requires a well-defined protocol of implementation and maintenance. 

 Previous assessment 

Prior to initiation of the KD, a visit with a KD-trained multidisciplinary team is 

important for providing counselling, as well as for nutritional and laboratory 

evaluation. Moreover, it is recommended to carry out ancillary testing, such as 

electroencephalogram, echocardiogram or renal ultrasound (6). This team usually 

consists of dietitians, nurses and a licensed clinical social worker. They should advise 

the family about the lifestyle implications of the diet, the efficacy rate and the most 

common adverse events (31).  

Furthermore, during the visit, possible contraindications must be considered. For 

instance, patients should undergo a metabolic diagnostic in order to exclude β-

oxidation defects, liver disease or metabolic disorders interfering with glucose or 

ketone bodies homeostasis (6). Also, interactions of KD with other treatments are 

important to consider. For example, valproic acid, an anticonvulsant drug, may 

interfere with the therapeutic objective of KD and contribute to carnitine deficiency 

(which can appear with both KD and valproic acid use) (11). Accordingly, it may 

Diet 
Ketogenic 

ratio 

% carbo- 

hydrate 
% protein 

% fat 

(LCT) 

% fat 

(MCT) 

Classic KD 4:1 4 6 90 0 

MCTKD 3:1 19 10 11 60 

Modified 

MCTKD 
3:1 19 10 41 30 

MAD 1:1 10 25 65 0 

LGIT 0,6:1 10 30 60 0 
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provoke a liver failure (28). In addition, a concomitant use of carbonic anhydrase 

inhibitors (acetazolamide, topiramate and zonisamide) may worsen metabolic acidosis, 

which can occur after KD treatment. Other contraindications to consider are inability 

to sustain adequate nutrition (like anorexia), and non-compliance by parents or 

caregivers. Finally, it is important to minimize medications, parenteral and 

intravenous fluids containing carbohydrates and sugar, which could reverse ketosis 

(6,11). 

After discarding any contraindications, dietitians explain to patients and caregivers 

how to start the treatment and calculate energetic requirements of the patient, basing 

on KD administration route, as well as age, sex, stress factor, baseline weight and 

height, level of activity, and the nutrition intake history (31). Regardless of the type, 

KDs must include mainly foods rich in fats, whilst those protein foods must provide 

high-quality proteins (32). Examples of them, in addition to various nutrient-dense 

foods able to optimize KDs, are shown in table 2. For patients or caregivers, preparing 

tasty and variable meals can suppose a challenge, so counsellors can propose meal 

plans and recommend websites, videos or publications about KD from support groups 

such as the Charlie Foundation or Matthew’s Friends or The Daisy Garland (33–35). 

Moreover, the first two have created the “Keto Diet Calculator” and the “Electronic 

Ketogenic Manager”, respectively, to assist professionals and caretakers in the 

management of this dietary therapy (6).  

Recommended foods for KDs 

Commonly-used foods  Nutrient-dense foods 

Animal fats  

(pork lard, cow butter…) 
Asparagus 

Avocado Arugula  

Cheese  

(mascarpone, brie,  

gorgonzola, cheddar…) 

Blackberries  

Eggs  
Brassica vegetables 

(broccoli, cauliflower…) 

Green olives in brine Celery  

Nuts Green tea 

Oily fish  

(eel, salmon…) 
Radishes 

Processed meat  Spinach 

Vegetable oils Sunflower seeds 

Table 2. Recommended foods for KDs. Adapted from (13,32). 
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 Initiation 

To begin the diet, two approaches can be considered: with or without fasting. 

Originally, patients had to fast for 12-24 hours, and be hospitalized to prevent 

hypoglycemia and dehydration. With this approach, calories and fluids are restricted. 

It is recommended for patients with a greater need for a rapid response, because 

fasting may lead to a faster seizure reduction. Calories are added gradually according 

to the tolerance (6,36). The necessity of fasting was discussed later, and it was proved 

not to be essential, since this method can generate stress on the patient and may have 

immediate side effects. Without fasting, hospitalization is not required and ketogenic 

ratio increases gradually, from 1:1 to 4:1. It results in fewer side effects and a better 

tolerance, whereas efficacy is maintained (37). For these reasons, nowadays, patients 

tend not to fast (36).  

 Follow-up 

To test efficacy, KD should be tried for at least 3 months from ketosis is reached. For 

the first months, patient’s progress should be evaluated monthly by the KD-trained 

team, and then every 3–6 months. During all the treatment, it is important that the KD 

team can be easily to contact in case of doubts or problems (6,36).  

 Withdrawal 

It has been seen in children with epilepsy, that diet should be sustained for at least 2 

years. Children with GLUT1DS or pyruvate dehydrogenase deficiency likely require KD 

treatment for longer, until adolescence. Although KD can be interrupted abruptly in 

an emergency, it is more frequently tapered over several months, by gradually 

lowering the ketogenic ratio from 4:1 to 2:1, and then relaxing restrictions on 

measuring carbohydrate, calories and fluids intake (6).  

4.1.5. Side effects  

Many of side effects associated with the use of ketogenic diets that have been reported 

in the literature refer to those that appear with the classic KD and in patients with 

epilepsy (table 3). 

Table 3. Most reported side effects of KDs (11,38) 

 

Most reported side effects of KDs 

Gastrointestinal effects Kidney stones 

Metabolic abnormalities Vitamin and mineral deficiencies 

Weight loss Growth retardation 

Dyslipidemia  
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The most commonly adverse effects are gastrointestinal symptoms, including 

constipation, diarrhea, nausea, vomiting, and abdominal pain. These effects are 

usually transient and mild, and rarely need pharmaceutical intervention or diet 

discontinuation, but may require a lower ketogenic ratio. To prevent or relieve them, 

it is recommended also taking multiple small meals throughout the day, daily exercise 

and an increased intake of fiber, sodium and fluids (10,11). 

The shift in macronutrient ratio can also trigger metabolic abnormalities, such as 

dehydration, hypoglycemia, metabolic acidosis or electrolyte imbalance (38). It is 

worth noting that acidosis and dehydration have been recorded to be more typical with 

protocols beginning with fasting (37). Weight loss is also frequently reported. Inasmuch 

as many adults suffering from neurologic disorders are overweight or obese, weight 

loss could mean a positive effect for them (11).  

With a long-term KD therapy, there may be a transient elevation of lipids, increasing 

the risk of cardiomyopathy and atherosclerosis (27). However, lipid levels tend to 

normalize with continued treatment (11). To prevent dyslipidemia, a higher proportion 

of unsaturated to saturated fats, the addition of MCT oil, a lower ketogenic ratio, and 

carnitine supplementation may be helpful (38). KD may involve a larger risk of 

developing kidney stones, that can be avoided by adequate fluid intake, alkalization 

of the urine and with potassium citrate administration (7,38).  

With the regimen, vitamin and mineral deficiencies may be prevailing because of the 

limited consumption of fruit, vegetables, enriched grains, and foods rich in calcium. 

The principal deficiencies observed concern vitamin B, vitamin D and calcium. This is 

of particular importance in postmenopausal women, since such deficiencies can 

exacerbate the risk of osteopenia and osteoporosis (11,32). Apart from that, in 

children, an inadequate calcium intake can further impair bone mineralization, so a 

correct growth can be affected. Nevertheless, the results concerning the KDs impact 

on growth retardation are conflicting (32). 

 

4.2. Different applications of the ketogenic diets 

Despite most of the studies proving the neuroprotective role of the KD have been 

carried out on patients suffering from refractory epilepsy, beneficial effects of KD have 

been suggested to may extend to other disorders such as GLUT1DS, pyruvate 

dehydrogenase deficiency, Parkinson’s disease, AD, amyotrophic lateral sclerosis, 

cancer or obesity. This wide variety of disorders can be related to the fact that KD 

may exert benefits beyond seizure control (11,14). This final degree project focuses 

on the application of KD in the GLUT1DS and the AD.  
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4.2.1. Glucose Transporter 1 Deficiency Syndrome  

Glucose transporter type 1 (GLUT1) Deficiency Syndrome is a rare genetic metabolic 

disorder that predominantly affects children. Its prevalence estimates to be ranged 

from one case per 90000 to one case per 24000 people. This gap could be explained 

because GLUT1DS may go unrecognised or misdiagnosed (39). GLUT1DS is characterized 

by an impaired transfer of glucose across the BBB and into the brain cells. GLUT1 

deficiency leads to a low availability of glucose, the main energy source for the brain 

and, consequently to a dysfunction in cerebral metabolism and neuronal activity (40).  

It is also known as “De Vivo disease” because it was first described in the medical 

literature in 1991 by doctor De Vivo and his colleagues. They reported two children 

who presented the same clinical manifestations: early-onset and drug-resistant 

seizures, developmental delay, acquired microcephaly and movement disorders. 

Furthermore, the analysis showed low concentrations of glucose in cerebrospinal fluid 

(CSF) (hypoglycorrhachia) but no hypoglycemia. Also, low CSF lactate concentrations 

were detected. Based on these findings, a defect in the protein responsible for glucose 

transport across the BBB was proposed. Later, these speculations were ratified by 

observing an impaired glucose uptake into erythrocytes (in which GLUT1 is also 

expressed), and through genetic analysis (41,42), in which mutations in the gene 

encoding GLUT1 (solute carrier family 2 member 1 -SLC2A1) were identified. GLUT1DS 

was originally classified in the group of epileptic encephalopathies, in which 

convulsions are associated with progressive psychomotor dysfunction (39).  

4.2.1.1. Manifestations 

The manifestations described by De Vivo represent the classic phenotype of GLUT1DS. 

Nowadays, it has been recognised that this syndrome has a wider spectrum of 

manifestations, with variable degrees of severity, from mild motor dysfunctions to 

harsh neurological complications (43).  

The most typical symptoms are seizures, which usually emerge within the first months 

of life. A deceleration of head growth may occur, and affected individuals can develop 

mild-to-moderate delays in development. Movements disorders such as hypotonia, 

ataxia, spasticity and dystonia, may cause difficulty walking, whereas cognitive 

alterations, ranging from mild learning disability to severe intellectual impairment, 

may drive to difficulty speaking. Some patients with GLUT1DS may suffer from 

paroxysmal exercise-induced dyskinesia (PED), which commonly begin in late childhood 

and adolescence (39). It is characterised by episodes of sudden, transient and 

involuntary movements, that are triggered by prolonged exercise, such as walking or 

running long distances (39,44).  

Moreover, although less common, some patients may develop the atypical or non-

classic phenotype, that includes movement disorders and cognitive impairment 

without epilepsy, or asymptomatic cases (39).  
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4.2.1.2. Diagnosis 

Individuals with a suspected clinic of GLUT1DS are recommended to undergo a fasting 

lumbar puncture. Diagnosis may be established with a low CSF glucose concentration, 

termed hypoglycorrhachia (< 2.2 mmol/l), in the absence of hypoglycemia, and in 

combination with low to normal CSF lactate levels. Hypoglycorrhachia represents the 

biochemical hallmark of GLUT1DS, but other specialized tests may help to establish an 

accurate diagnosis. For instance, carrying out a molecular analysis of the SLC2A1 gene. 

Nevertheless, only 70%-80% of patients carry SLC2A1 mutations. Likewise, patients 

sharing identical mutations often do not exhibit the same manifestations, suggesting 

alternative disease mechanisms (45). Another useful test could be a positron emission 

tomography (PET) scan, where a diminished chemical activity in the brain 

(hypometabolism) could be detected. As GLUT1DS is also expressed in erythrocytes, 

glucose uptake tests in these cells may also contribute to clarify the diagnosis, since 

GLUT1 activity is reduced by approximately 50% in individuals with GLUT1DS (39).  

At all events, relying on one only method of diagnosis can lead to false-negative 

results, especially with mild manifestations. Hence, the most convenient is to submit 

to various tests (45). 

4.2.1.3. Treatment 

The diagnosis of GLUT1DS is often made later than the onset of clinical manifestations 

such as seizures, which are, therefore, typically and mistakenly treated with 

antiepileptic drugs, such as phenobarbital, sodium valproate, carbamazepine, 

lamotrigine, topiramate or clonazepam (40). They are generally ineffective in GLUT1DS 

and in fact, drugs including phenobarbital, narcotics and caffeine can exacerbate the 

frequency of convulsions, through the inhibition of GLUT1 (39). Since GLUT1DS is 

associated to a low glucose availability in the brain, seeking an alternative energy 

source remains central for an optimal brain growth and development in the long term 

(43).  To achieve it, the KD is considered the first choice of for GLUT1DS, because the 

KD-derived ketone bodies are able to cross the BBB providing thereby sufficient fuel 

for the brain. When KD is not feasible or sufficient, another appropriate therapeutic 

approach should be contemplated.  

Recently two compounds, alpha lipoic acid and triheptanoin have been proposed as 

potential supplementary treatments of GLUT1DS. Alpha lipoic acid is an antioxidant 

molecule believed to help cellular glucose uptake (45). Triheptanoin is an MCT that is 

metabolized to ketone bodies with 4 or 5 carbon atoms, unlike KD, which uniquely 

provide ketone bodies with 4 carbons. Thus, triheptanoin permits to obtain more 

intermediates of the TCA cycle (46). 
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4.2.2. Alzheimer’s Disease  

Alzheimer’s disease (AD) is a neurodegenerative disease with a high impact on global 

public health. It is the most common form of dementia and may contribute to 50–60% 

of cases. Dementia is a generic term for several progressive illnesses that mainly affect 

elderly people and may cause alterations in memory, thinking, behaviour and emotion, 

in an enough manner to interfere ability to perform everyday activities (47).  

World Health Organization estimates that 50 million people worldwide suffer from 

dementia and this number is projected to reach 82 million in 2030 and 152 in 2050 

(48). This dramatic rise may be explained by an increasing life expectancy of the 

population (49). Because of its neurodegenerative nature, AD entails burdens not only 

on people suffering from this disease, but also on their caregivers, families and society 

in general. Besides, it has significant repercussions in terms of medical care costs (50). 

4.2.2.1. Manifestations 

Initially, individuals may experience the termed “mild cognitive impairment (MCI) due 

to AD”, in which they suffer a cognitive decline greater than expected for their age, 

but it does not significantly interfere with daily activities (50), so MCI precedes 

dementia. These first symptoms may be overlooked and are characterized by 

forgetfulness and confusion, for example, having problems with remembering newly 

learned information, losing track of the time or becoming lost in familiar places. 

Symptoms of AD gradually worsen and become clearer, including severe disorientation, 

a deterioration in cognitive abilities (such as decision-making and difficulty in 

performing previously routine tasks), and behaviour, personality and mood changes 

(47,48,51). More and more, patients have problems recognizing family and friends, 

difficulty swallowing, speaking and walking, and a larger need for help with personal 

care. At the end of their lives, individuals are usually in bed and require complete care 

(50,51). 

4.2.2.2. Etiology 

More than a century after Alois Alzheimer first described AD, its etiology is not entirely 

understood yet (14). Numerous factors are involved in the development of AD, both 

genetic and environmental, that seem to interact with each other (52). 

Advanced age is the most important risk factor. The percentage of people with AD rises 

dramatically with age (figure 4) (14,49). As people get old, there is a deterioration in 

protective mechanisms for the brain, such as levels of growth factors, optimal energy 

metabolism and efficient repairing processes, that may lead to a greater AD risk. With 

ageing, there is also a higher prevalence of cardiovascular diseases and diabetes that 

can promote AD through vascular or inflammatory mechanisms (52). 
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Even though most patients suffering from AD begin to suffer from symptoms after age 

65, a very low proportion of total AD cases (probably fewer than 1%) have 

manifestations earlier. It is called “early-onset” AD, has a faster progression compared 

to the predominant “late-onset” AD, and is caused by the transmission of autosomal 

dominant mutations in genes that encode proteins involved in the generation of 

amyloid plaques, features in AD. 

The most established genetic risk factor of the “late-onset” AD is the apolipoprotein E 

(APOE) ε4 allele, which encodes the APOE4 lipid-carrier. In contrast, the more common 

ε3 and the rare ε2 alleles are relatively protective against AD (52). APOE has a key role 

in the maintenance of lipid homeostasis in the brain. ε4 allele carriers have reduced 

levels of APOE compared with ε4 non-carriers (53). In any case, it should be emphasized 

that ε4 allele is not essential to develop AD (50).  

The female gender may also be a risk factor, as approximately two-thirds of AD 

patients are women (53). Additional risk factors include depression, low educational 

attainment, social isolation, cognitive inactivity, toxicants (like aluminium), repeated 

head injury, or a diet with a high-glycemic index (associated with increased insulin 

resistance) (11,14,48). 

4.2.2.3. Pathogenesis 

There are two histopathological hallmarks in the brain that are associated with AD: 

- Amyloid plaques, deposits build up in the spaces between neurons. They consist 

of amyloid-beta (Aβ) peptides generated from the amyloid precursor protein 

(APP), by the enzymes β-secretase and γ-secretase (51,52). 

- Neurofibrillary tangles (NFTs), found inside neurons, result of abnormal 

hyperphosphorylation and aggregation of tau protein (54). 

Figure 4. Prevalence of AD by age ranges in Spain (49) 
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Although people without AD also develop some plaques and tangles as they age, those 

with AD accumulate greater amounts (51), due to an imbalance between deposition 

and clearance.  

Aβ peptides provoke a loss of synapses that results in a dysregulation of some 

neurotransmitters, for example, they may promote a decreased release of 

acetylcholine and neurotrophins (54). Moreover, cells exposed to Aβ have found to 

suffer from disruption in calcium homeostasis, which may lead to an increase in 

calcium influx via N-methyl-D-aspartate (NMDA) receptors. Thus, because of high 

intracellular calcium levels, there is an atypical prolonged release of glutamate, 

leading to excitotoxicity and subsequently cell death (55). As neurons die, the affected 

regions atrophy or shrink, causing ultimately the AD manifestations. AD progresses from 

these first symptoms to widespread and more severe neurological complications 

because the first neurons affected are those in regions involved in memory. The other 

complications arise as a consequence of the destruction of neurons in other brain 

regions (50). 

In the pathogenesis of AD, other highlight mechanisms seem to be implicated, including 

mitochondrial dysfunction, hypometabolism of glucose, oxidative stress and cytokine-

mediated inflammation, among others.  

Aβ peptides inhibit relevant mitochondrial enzymes in the brain (54). Mitochondrial 

dysfunction in turn brings about diminished ATP production from the oxidation of 

glucose. A reduced uptake and metabolism of glucose may contribute to the 

progression of AD (14). It correlates with a lower concentration of GLUT1 observed in 

the brain of individuals with AD (56). Mitochondrial dysfunction also promote oxidative 

damage, since the main site of ROS generation is, in fact, mitochondria (57). Oxidative 

stress can trigger an increased Aβ deposition, by inducing β-secretase activity (58). 

Cytokine-mediated inflammation appears owing to a chronic response of the immune 

system against brain damage. Also, the BBB suffers from a dysfunction in its effort to 

protect the brain from oxidative stress and inflammation (54). Additionally, APOE ε4 

can accelerate the neurodegenerative course of AD, by inducing an incremented 

production of Aβ peptide and an impairment of its clearance (52).  

Many of the pathological features of AD described have been detected even prior to 

the first clinical symptoms. This stage has been denominated “preclinical AD”, and 

remains still under investigation (50). 

4.2.2.4. Diagnosis 

An AD diagnosis with 100% certainty requires a microscopic autopsy of the brain, where 

'tangles' and 'plaques' can be detected in damaged areas. But nowadays, AD may be 

diagnosed in living patients with more than 95% of accuracy, by exclusion of other 

potential causes for dementia. Prior steps consist of taking the clinical history from 

patients and their families and evaluating cognitive function by neuropsychological 
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tests. Then, other causes of dementia are ruled out, such as low thyroid function, 

vitamin deficiencies, infections, cancer or depression, through brain PET scans and 

tests of CSF (52).  

Since it is known that neuropathology of AD emerges before symptomatology, 

identifying “preclinical AD” biomarkers has become a challenge, because they would 

allow an early diagnosis of AD to be established (50).  

4.2.2.5. Treatment 

On average, people with AD aged 65 and older live four to eight years after diagnosis, 

but some live up to 20 years with AD. To date, there is no available treatment to 

prevent AD or modify its progressive course (51). Only a few approved drugs by Food 

and Drug Administration (FDA) may ameliorate the symptoms by regulating the activity 

of the neurotransmitters. These approved drugs are acetylcholinesterase inhibitors 

(donepezil, galantamine and rivastigmine), which increase the concentration of 

acetylcholine at synapses and are indicated for the symptomatic treatment of mild-to-

moderately severe AD, and an uncompetitive NMDA receptor antagonist, memantine, 

that blocks the excitatory effects of glutamate and is indicated for moderate to severe 

AD. (59).  

Still, these medications seem to help patients in a limited duration. Furthermore, it 

takes a long time to observe whether investigational treatments are effective (50). So, 

it is of utmost importance to offer support therapies to patients and their families and 

carers in order to obtain an optimal management of AD and overall quality of life (48). 

People with AD may also suffer from other disorders, such as depression, apathy, 

wandering, sleep disturbances, agitation and aggression along AD pathogenesis, which 

should be treated (50). 

 

4.3. Impact of the ketogenic diets on neurological diseases 

4.3.1. Studies associating the ketogenic diets with GLUT1 Deficiency 

Syndrome 

To date, many GLUT1DS patients have been effectively treated with a KD. Most of the 

documented effects of KDs on this disorder that can be found in the literature come 

from case reports and series.  

Klepper et al. (15) assessed the application of a ketogenic formula in four infants 

between 6-28 weeks of age suspected of GLUT1DS, who presented seizures and 

hypoglycorrhachia. The treatment, beginning with an initial fast, was based on a 3:1 

ketogenic ratio. Additional sugar-free supplements of vitamin D, iron, fluoride and 

calcium were administered when necessary. Adequate ketosis was achieved within 24 
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hours and all four patients did not suffered from seizures during the diet. In general, 

the therapy was well tolerated, and parental compliance was good. As GLUT1DS 

diagnosis was only confirmed in two patients, the diet was interrupted in the others. 

In one infant, MCTs were substituted for LCTs to reverse development failure. Adverse 

effects were limited to kidney stones in one patient, which were reverted following 

oral rehydration and alkalization of the urine. 

Various researchers evaluated the effects of a MAD therapy on GLUT1DS patients. In 

all studies, the diet was initiated without fasting, total calories and fluids were not 

restricted, and carbohydrates were limited to approximately 10g/day.  

For instance, a group of Japanese researchers -Ito et al. (60)- described positive 

outcomes with this therapy, and concluded that the effectiveness of the MAD was 

similar to the classic KD, as well as MAD seems to be tolerable for a long-term 

application. They reported the case of a 7-year-old child who suffered from epilepsy 

at an earlier age and have been treated with anticonvulsants, progressively showed 

development delay, and episodes of ataxia and loss of consciousness mainly before 

meals. After several neurological tests and identification of a mutation in the GLUT1 

gene, GLUT1DS diagnosis was confirmed and KD therapy was proposed to parents. 

However, they refused to introduce such a restrictive diet, therefore MAD was chosen. 

Supplementation of vitamin B1, B6, B12 and calcium was required. After 3 days with 

MAD, the analysis revealed an increment of β-OHB levels in blood at over 5 mmol/L. 

His ataxia and paroxysmal loss of consciousness before meals decreased. After 3 

months of treatment, carbohydrates limitation was lowered to 15g/day. MAD was in 

general well tolerated, without significant side effects. Later, in 2011, the same 

researchers (61) assessed the response to MAD in six males with GLUT1DS aged 7 to 16 

years, during a period ranging from 1 to 42 months. The GLUT1DS diagnosis had been 

confirmed by mutational analyses or glucose uptake studies. The ketogenic ratio in this 

study stood at nearly 2.5 to 2.1:1. During all period, urinary ketosis was adequate. The 

MAD led to an important decrease in seizures and paroxysmal events. Motivation, 

cognitive function and motor abnormalities improved in most individuals. Only some 

patients, in the early days after starting the diet, displayed temporarily nausea, 

vomiting, fatigue, headache, constipation, hyperlipidaemia or hyperuricemia. 

Successfully outcomes were also obtained with MAD in a 6-year-old girl in Austria, 

according to Haberlandt et al. (62). This girl had been diagnosed with GLUT1DS, after 

detecting hypoglycorrhachia and a mutation in the SLC2A1 gene. At baseline, 

laboratory testing was performed to exclude metabolic defects. She also underwent to 

electrocardiography and echocardiography, which were both normal, like the 

laboratory tests results. β-hydroxybutyric acid in the initial days of MAD presented 

values above 2 mmol/L. With MAD introduction, convulsions disappeared, and still 

remained seizure-free over the follow-up period, that lasted 17 months. Also, her 

intellectual quotient boosted during the treatment. Although speech problems and 

motor dysfunction did not enhance, ataxia and muscle hypotonia did.  
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Interestingly, Kitamura et al. (63) proved that the introduction of a MAD in a 4-year-

old girl with GLUT1DS for 18 months permitted to identify a reduction in the levels of 

oxidative stress markers in CSF and an increment in the phosphocreatine/ATP ratio, 

suggesting that hypoglycorrhachia may lead to oxidative damage and lipid 

peroxidation. After the dietary therapy, oxidative damage in the brain was reduced, 

and energy reserve capacity was improved.   

The MAD has also been applied to adolescents or adults suffering from GLUT1DS. Leen 

et al. (64) evaluated the effectiveness and feasibility of MAD for the treatment of 

GLUT1DS-related movement disorders, in four patients between 15 to 30 years old. At 

MAD initiation, they had no seizures or of low frequency. Vitamin supplementation was 

given, and carnitine was measured in case of suspected deficiency. Carbohydrate 

intake was raised in steps of 5g if possible, according to clinical judgment. All patients 

achieved mild-to-moderate ketosis within 1 day to 1 week (β-OHB values in blood of 

0.3– 2.0 mmol/L). With the MAD, paroxysmal movement disorders were effectively 

treated, as well as cognitive function, according to the caretakers and the examining 

neurologist. Compliance with the diet was good, and no severe side effects were 

observed. Lipid profile slightly increased after 3 months on the MAD, but it maintained 

stable after 6 months and 12 months. Authors concluded that due to compliance is 

especially difficult for this ranged age, the MAD should be considered as a good and 

feasible alternative to the classic KD. 

Atypical GLUT1DS manifestations have been also demonstrated to respond positively 

to KD. Friedman et al. (65) informed that a classic KD ameliorated motor function of a 

10-year-old boy, who predominantly suffered from movement disorders consisting of 

ataxia, dystonia and choreoathetosis but, unlike most GLUT1DS patients, he was 

normocephalic and no clear evidence for seizure activity was noticed. Within one 

month after KD initiation, β-OHB levels in serum were stood between 2.86 and 3.12 

mmol/L, and an enhancement in motor performance was reached. 

Studies comprising larger numbers of individuals have been performed. It is the case 

of the study by Pong et al. (66) that compiled data from 87 patients with GLUT1DS  

from August 1989 to December 2010. Seventy-eight (90%) of total patients were 

confirmed to have epilepsy. A classic KD was used to attain a β-OHB concentration in 

blood of 4–5 mmol/L whenever possible. Of the 61 patients with active convulsions at 

KD initiation, 67% achieved and continued seizure-free with KD, and 83% got seizure 

freedom with KD alone after withdrawing their pre-existing anti-epileptic drugs. The 

convulsions resolved within 1 week of initiation of the diet, or within 1 month, although 

it is worth mentioning that compliance difficulties were reported by 13 of 78 families, 

and that lower ketogenic ratios were applied to four patients with epilepsy. 

With a different method of collecting data, Kass et al. (67) published the experience 

of 92 patients with GLUT1DS. Information was obtained from the surveys distributed 

and then collected at the July 2015 GLUT1 Deficiency Foundation biannual parent 
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conference. The attendant families were primarily from United States, United 

Kingdom, Italy, Germany, Australia or Japan. In total, ninety-two families completed 

the survey. GLUT1DS subjects had an age ranging from 1 to 24 years. Diverse types of 

KD were used: 59 patients were treated classic KD, 29 with MAD, 4 with MCT diet and 

2 with LGIT. The diet duration ranged from 1 month to 20 years. Of those patients with 

seizures, 80% had more than 90% of seizure reduction. The percentage obtained of 

seizure-free children receiving a KD or an MCT was similar to the percentage from 

seizure-free cases treated with a MAD or a LGIT.  

Table 4. Published studies associating the KDs with GLUT1DS 

As triheptanoin is likely to be effective in some patients with GLUT1DS who are 

refractory to KD, nowadays two active studies explore the compatibility of triheptanoin 

with KD on subjects diagnosed with GLUT1DS. In one of them (68), patients who 

tolerate supplies over 50% of calories from fat, have to replace 45% of their daily 

caloric intake with triheptanoin for 24 hours, dosaged in 4 times. In the other study 

(69), researchers seek a goal intake of 35% total calories provided by triheptanoin 

(maximum 100 millilitres of oil/day). 

Published studies associating the KDs with GLUT1DS 

Ref. 
Number of 

subjects 

Type of 

KD 
Main outcomes 

(15) 4 infants 
Ketogenic 

formula 
Disappearance of seizures  

(60) 1 MAD 
Decrease of ataxia and paroxysmal loss of 

consciousness  

(61) 6 MAD 

Reduced seizures and paroxysmal events 

Improved motivation, cognitive function and 

motor abnormalities in most individuals 

(62) 1 MAD 

Disappearance of convulsions  

Enhancement in intellectual quotient, ataxia 

and muscle hypotonia, yet not in speech 

problems and motor dysfunction  

(63) 1 MAD 
Reduced oxidative damage in the brain 

Improved energy reserve capacity  

(64) 4 MAD 
Effectively treated paroxysmal movement 

disorders and cognitive defects 

(65) 1 Classic KD Enhancement in motor function  

(66) 87 Various Mostly, resolution of the seizures  

(67) 92 Various 
More than 90% of seizure reduction in 80% of 

patients with seizures  
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4.3.2.  Studies associating the ketogenic diets with Alzheimer's 

disease 

Relatively few studies on the involvement of KD in AD have been done. With this 

disease, the main studies carried out are both preclinical and clinical trials. 

 Preclinical trials 

Kashiwaya et al. (70) showed that the addition of D-β-OHB protected cultured 

hippocampal neurons against the toxic effects of Aβ1-42, a fragment of amyloid protein. 

Concretely, in this study, cultured cells were exposed to 5 micromole/L of Aβ1-42 for 

14h, and there was a decrease in neuronal number. However, the addition of 4 mmol/L 

of D-β-OHB doubled their surviving. 

Other studies made on mice models of AD have tested the effects of the KD or ketone 

bodies. In a study by Van der Auwera et al. (71), two groups of 8 female transgenic 

mice each were fed either a standard diet or a KD for 43 days. The mice were carrying 

the “London” APP mutation, that drives to produce significant levels of soluble Aβ in 

the brain and exhibit further plaque deposition, representing a model of early-onset 

AD. At all times, animals had totally access to the diet. During the first seven days, 

many of the 8 mice following KD were reluctant to eat the diet and lost weight, so the 

standard diet was mixed to KD since day 16 until day 27. During this period, KD-fed 

mice gained weight. After day 28, these mice were returned to KD only. At all time, 

β-OHB levels in blood maintained higher in the KD group in comparison to the standard 

diet group, yet mixed diet on days 16-28, led to a reduction of ketone bodies. Cognitive 

performance was also examined, resulting in no differences between the groups. At 

day 43, levels of soluble Aβ were measured. The KD group were found to have 

significantly lower levels. Another study carried out in symptomatic mice models of AD 

by Yin et al. (57) revealed an improvement in cognitive function. These mice were 

overexpressing human APP. After acute exposure to exogenous oligo-Aβ42, mice had 

increased levels of Aβ42, stronger oxidative stress, and mitochondrial dysfunction. 

However, a ketone bodies delivery through subcutaneous injections blocked oligo-Aβ42 

entry, therefore achieving a reduction in the number of plaques. Mitochondrial 

dysfunction, oxidative damage and cognitive decline were reversed. 

Studzinski et al. (72) described positive effects in brain energy metabolism of aged 

dogs after short-term administration of MCTs. The animals were fed a 2 g/kilogram/day 

dose of MCTs for 2 months, and presented ameliorated mitochondrial function, due to 

a decrease in oxidative stress. APP levels also diminished with ketosis induced by MCTs.  

Nevertheless, KD seems unlikely to improve cognition performance according 

Brownlow et al. (73), who indicated that within 4 months, a KD rich in MCTs did not 

reverse cognition failure but did enhanced motor function in two transgenic mouse 

lines, APP/PS1 or Tg4510, models of amyloid and tau deposition, respectively. 

Moreover, amyloid and tau markers showed no differences between animals fed the 
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control diet or the KD. In KD-fed mice, ketosis was effectively reached (>1mmol/L 

ketone body levels) and stood throughout the experiment, whereas plasma glucose 

levels remained significantly low and body weight, unchanged. Another study, by 

Beckett et al. (74), drew the same conclusions. After 1 month of daily KD 

administration, mice carrying APP had a better motor performance and no changes in 

cerebral or muscle Aβ deposition. This diet also elevated ketone bodies levels to 

1mmol/L. Furthermore, this study investigated KD effects on oxidative stress, resulting 

in no effect on it.  

In an attempt to assess whether supplementing a 4:1-ratio KD with triheptanoin would 

boost the effectiveness of the diet, Aso et al. (75), tested the treatment in APP/PS1 

transgenic mice for 3 months. The outcomes indicated that this intervention led to a 

reduction in memory impairment and in the expression of the pro-inflammatory 

cytokine interferon gamma, as well as an upregulation of genes encoding ROS 

detoxification. However, Aβ production and deposition remained unaltered. Authors 

concluded that triheptanoin-rich KDs might be helpful for AD.  

Table 5. Preclinical studies associating the KDs with AD 

Studies evaluating the effects of ketone esters on AD have also been developed. 

Kashiwaya et al. (76) studied the therapeutic benefits of supplementing a synthetic 

ketone ester on AD, concretely, (R)-3-β-OHB-(R)-1,3-butanediol monoester. Two 

groups of mice models of AD were fed either a diet containing this ketone ester (21.5 

% of energy from ketone ester and 43.5%, from carbohydrates) or an isocaloric 

Preclinical studies associating the KDs with AD 

Ref. Model Main outcomes 

(70) 
Cultured 

neurons 

The addition of 4 mM D-β-OHB doubled the surviving of 

cultured neurons exposed to Aβ 

(71) 
 Transgenic 

mice 

No difference in cognitive performance between the KD-

fed mice and the standard diet-fed mice 

Lower Aβ levels in the KD-fed mice 

(57) 
Transgenic 

mice 

Better mitochondrial and cognitive function, whilst 

reduced oxidative damaged and number of Aβ plaques 

(72) Aged dogs 
Ameliorated mitochondrial function due to a reduction of 

oxidative stress, in addition to diminished APP levels 

(73) 

(74) 

Transgenic 

mice  

Improvement in motor abilities and energy metabolism 

No effects on cognition failure and Aβ deposition 

(75) Mice 

Decrease in memory impairment and pro-inflammatory 

cytokines. Upregulation of genes encoding ROS 

detoxification. No changes Aβ production and deposition  

(76) Mice  
Boosted learning and memory ability and diminished Aβ 

and tau deposition  
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carbohydrate diet (with 64,9% of energy from carbohydrates). During the treatment, 

mice fed the ketone ester diet lost weight and had greater β-OHB levels in blood. The 

results of behavioural tests carried out at 4 and 7 months after diet initiation, displayed 

boosted learning and memory ability on the mice fed the ketone ester, in addition to 

diminished Aβ and tau deposition, compared with the mice fed the other diet. 

Clinical trials 

Evidence of KDs or ketosis-inducing treatments in patients with AD is very preliminary, 

holding the treatments with MCTs, the most evidence. 

The first randomized controlled trial in humans was published in 2004 by Reger et al. 

(77). On different days, 20 older adults with MCI or AD consumed a drink containing 

either emulsified MCTs or placebo. After 90 minutes of MCTs ingestion, β-OHB levels 

in serum elevated, and correlated with an improvement in the Alzheimer’s Disease 

Assessment Scale-Cognitive Subscale (ADAS-Cog) scores but only in subjects without 

the APOE ε4 allele. 

In line with these findings, other 2 studies were performed using MCT oil. On one hand, 

Henderson et al. (78) performed a large trial including 152 individuals with mild-to-

moderate AD. They were offered daily either 20 g caprylic triglyceride (referred to as 

AC-12020) treatment or placebo for 3 months. Two hours after AC-1202 administration, 

β-OHB levels in serum showed a higher elevation compared to placebo, which was 

associated positively with better ADAS-Cog scores on day 45 and day 90, in relation to 

the baseline. However again, no such effect was observed in subjects with APOE ε4. 

Adverse effects were described more frequently in patients receiving AC-1202, 

although they were principally mild-to-moderate in severity and limited to 

gastrointestinal problems. On the other hand, in the study published by Rebello et al. 

(79), six subjects with MCI were approached to participate in a randomized double-

blind controlled trial for 24 weeks. However, two participants dropped out of the 

study. Thus, half of the remaining subjects received 56 g/day of MCT oil (one carrying 

APOE ε4 and the other not), whereas the other half, the placebo. Subjects easily 

incorporated the treatment into their diet and did not experience weight loss. MCT oil 

intake led to an increase in ketone bodies levels in serum and enhanced memory. At 

the end of the study, placebo-treated subjects had no changes in memory or overall 

ADAS-Cog scores, whilst the two individuals receiving the MCT oil, had better scores in 

word recall, word recognition and remembering test instruction. It should be noted 

that the APOE ε4 non-carrier had an improvement in the overall ADAS-Cog scores, 

whereas the APOE ε4 carrier had a decline due to a failure in orientation.  

Lately, Croteau et al. (80) investigated the effects of two MCT supplements on 15 

patients with mild-to-moderate AD. Participants sequentially consumed 30 g/day of 

the supplements, both for one month: a mixture of caprylic and capric acids, followed 

by a wash-out and then tricarprylin. Brain acetoacetate and glucose uptake were 

quantified by PET before and after each MCT intervention. Finally, eleven participants 
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completed the protocol, and results indicated no variation in cerebral glucose levels, 

but doubled brain ketone uptake on both supplements, which in turn, correlated with 

plasma ketone bodies concentrations. Thus, it was demonstrated that both MCT 

supplements boosted total brain energy metabolism by increasing ketone bodies supply 

without affecting cerebral glucose uptake.  

Very few investigations concerning the KDs have been performed in people with MCI or 

AD. In a randomized controlled trial by Krikorian et al. (81), 23 older adults with MCI 

followed either a high-carbohydrate (50% of energy from carbohydrates) or a very low-

carbohydrate diet (5-10%) for 6 weeks. The low-carbohydrate diet provoked an 

increment in ketone bodies levels, that positively correlated with better verbal 

memory scores from baseline to the sixth week. Despite this diet had a lower caloric 

value (1000 kcal) compared to the high-carbohydrate diet (1600 kcal), the 

carbohydrate-restricted subjects lost more weight. In this study, the authors suggested 

that other mechanisms such as reduced inflammation and enhanced energy metabolism 

also may have helped to improve cognitive abilities. 

More recently, Brandt et al. (82) investigated the feasibility of using a MAD to induce 

ketosis in patients with MCI or early-onset AD, and the effect of this dietary therapy 

on memory and other clinical outcomes. In the study, 27 participants were randomly 

assigned for 12 weeks to either the National Institute on Aging (NIA) recommended diet 

for seniors (a low-fat, high-carbohydrate diet), or a MAD. In the end, 9 patients 

following the MAD and 5 with the other diet completed the trial. At week 6, MAD-

adherent subjects showed better memory scores, whilst on the contrary the non-

adherent subjects, a decline. Regardless adherence influence, within this period, MAD 

participants increased their energy levels. At 12 weeks, none of the 14 completing 

participants had a significant enhancement in memory scores. Simultaneously, in a 

single-arm pilot trial by Taylor et al. (83), 15 patients with mild-moderate AD 

maintained an MCT-supplemented ≥ 1:1 ratio KD for 3 months. The diet consisted of 

70% of energy as fats (including the MCT oil), 20% energy as proteins and less than 10% 

of energy as carbohydrates, and was characterized by a high intake of non-starchy 

vegetables, butter, eggs, olive oil, avocados, nuts and seeds. MCT oil contained a 

mixture of two fatty acids (caprylic and capric acids) and represented approximately 

10% of energy from fats during the first week. This proportion raised each consecutive 

week until 40%. 9 out of 10 compliant patients that completed the treatment and 

achieved ketosis, obtained higher ADAS-Cog scores. However, after a 1-month 

suspension of the diet, the mean ADAS-Cog score returned to the baseline. 

To date, evidence for treatment of AD with supplementation of a ketone ester has only 

been reported in one-case study published in 2015 by Newport et al. (84). After a 

prolonged oral administration of a ketone monoester, a 63-year-old AD patient carrying 

the APOE ε4 allele improved significantly his mood and demeanour, as well as his ability 

to perform daily activities. The ketone monoester was well tolerated throughout the 

20 months of treatment. 
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Table 6. Clinical studies associating the KDs with AD 

 

Clinical studies associating the KDs with AD 

Ref. Type of study Protocol Main outcomes 

(77) 

Double-blind 

placebo-

controlled trial 

20 patients with MCI or AD 

consumed a drink with MCTs 

Improvement in memory 

and cognition function but 

only in subjects without 

the APOE ε4 allele 

(78) 

Randomized, 

double-blind, 

placebo-

controlled 

multicenter 

trial 

152 subjects with mild-to-                   

moderate AD took AC-1202 

over 90 days 

Enhancement in ADAS-Cog 

scores. Reduced response 

to AC-1202 in subjects 

with APOE ε4 

(79) 

Randomized, 

double-blind 

placebo-

controlled 

parallel trial 

6 patients with MCI consumed 

56 g/day of MCTs over 24 

weeks  

Improved ADAS-Cog scores 

in the APOE ε4 non-carrier 

 

(80) 

Randomized, 

placebo-

controlled 

parallel trial 

15 subjects with mild-to-

moderate AD sequentially took 

2 MCT supplements 

Boosted total brain energy 

metabolism by increasing 

ketone bodies supply, with 

no effects on cerebral 

glucose uptake 

(81) 

Randomized, 

placebo-

controlled trial 

23 patients with MCI were 

given a high carbohydrate or 

very low carbohydrate diet 

over 6 weeks 

Enhanced verbal memory 

scores, probably through 

reduced inflammation and 

higher energy metabolism 

(82) 

Randomized, 

placebo-

controlled 

parallel trial 

27 patients with mild AD or MCI 

consumed either a MAD or the 

NIA recommended diet for 

seniors 

Increased energy levels 

but no significant changes 

in memory scores 

(83) 
Single-arm pilot 

trial 

15 patients with mild-to-

moderate AD maintained an 

MCT-supplemented ≥ 1:1 ratio 

KD for 3 months 

Greater ADAS-Cog scores 

(84) 
Single-patient 

case study 

One APOE ε4 carrier with 

early-onset AD was 

supplemented with a ketone 

ester over 20 months 

Better mood, demeanour 

and ability to perform 

daily activities 
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 Ongoing trials 

Several registered trials assessing the efficacy of KD on MCI or AD patients, sponsored 

by distinct universities, are underway. The findings will contribute to obtain a wider 

knowledge of ketogenic therapies in AD.  

For example, a study sponsored by University of Kansas (85), still recruiting,  

investigates the adherence of 80 participants with AD, for 3 months to either a 1:1 KD 

(approximately 70% fat, less than 10% carbohydrate, and 20% protein as energy) or a 

“Therapeutic Lifestyles Changes diet” (20-35% fat, 50-60% carbohydrate, and 15% 

protein as energy). Moreover, with the KD treatment, 4 or more servings of non-starchy 

vegetables and ½ cup of berries must be provided daily. The researchers want to 

measure the changes in cognition performance, brain metabolism, and mitochondrial 

function. 

Another example is a study sponsored by Wake Forest University. The aim of the 

researchers is examining the effects of a 4-month “Modified Mediterranean KD (MMKD)” 

in adults with MCI (86). The study is designed to randomly assign 120 people with MCI 

to receive either the MMKD or a low fat/high carbohydrate diet. The MMKD has a 

restriction of carbohydrates of less than 20 g/day, and contains plentiful fish, lean 

meats and nutrient-dense foods. Also, it is supplied with extra virgin olive oil and a 

multivitamin product. Researchers want to measure concentrations in CSF, cognition 

performance and cerebral blood flow.  

 

5. Discussion 

Since the first description of KD in the beginnings of 1920s, the clinical outcomes 

derived from a ketogenic therapy have been widely reported and evaluated, especially 

in the last few decades.  

Although the most extended KD use is for drug-resistant epilepsy, the study of the 

different mechanisms by which it exerts its antiseizure effects (which are not yet fully 

understood) has allowed the approach of its use as a potential therapy for other 

diseases. In this work, some neuroprotective effects of KD have been described in order 

to relate them to the two diseases treated, GLUT1DS and AD, both of which are 

characteristic of the neurological system. However, other non-neurological illnesses 

could benefit from KD. For instance, with its anti-inflammatory properties, KD could 

reduce the risk of cardiovascular diseases or complement their treatment, since they 

are characterized precisely by a chronic low-grade inflammation. 

The effectiveness of the KD has been proved globally on many occasions, in both 

children and adults, as it is evidenced in the studies reviewed. This effectiveness 

appears to be associated with reaching an appropriate ketosis state, which is usually 

measured by β-OHB levels, and is usually achieved with whatever type of KD is used. 
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Given that KD emerged to treat epilepsy, it makes sense that KD would be the first-

choice treatment for the GLUT1DS, since the latter is often characterized by seizures. 

In both epilepsy and GLUT1DS, KD represents an alternative fuel for the brain. The 

most studied effects of KD on GLUT1DS are anticonvulsants. However, there are cases 

of GLUT1DS where seizures do not occur, like the one reported in the study by 

Friedman et al. (65), but still, KD enhances motor function. These cases reinforce the 

idea that KD can exert beneficial effects beyond seizure control. 

In general, KD variants have been efficiently applied in both GLUT1DS and AD. Whilst 

in GLUT1DS mainly the classic KD and MAD have been implemented, MCT 

supplementation predominate in MCI or AD studies. I could intuit that since GLUT1DS 

affects mostly young patients, it is easier for them to follow a strict diet as the classic 

KD is, than patients with AD, typically older people. For patients with AD, 

supplementation with MCTs would be more advisable and feasible, since they are more 

susceptible to malnutrition, chewing and swallowing problems, and low compliance. 

In fact, for adolescent or adult patients with GLUT1, where compliance poses 

challenging, it seems more feasible to use MAD instead of classic KD. 

The diverse studies concerning on GLUT1DS, exemplify the wide range of 

manifestations and the diagnostic methods described, as well as the protocol followed 

in the application of KD. The wide spectrum of presentations of GLUT1DS should be 

known by physicians in order to facilitate both early diagnosis and treatment, keys to 

improve the long-term neurological outcome. According to the cases explained by Ito 

et al. (60,61) and Haberlandt et al. (62), the diagnosis of GLUT1DS is confirmed when 

the mutation of the SLC2A1 gene is detected. In terms of KD protocol, patients usually 

need dietary supplementation, and it is likely that starting KD without fasting is equally 

effective at the end. Also, the side effects appeared in patients with GLUT1DS are 

similar to those observed in the treatment of epilepsy. Examples of it are the kidney 

stones informed by Klepper et al. (15), the gastrointestinal problems, hyperlipidemia 

and hyperuricemia from the study of Ito et al. (61), and the lipid increase and later 

stabilization reported by Leen et al. (64). As children with GLUT1DS must continue the 

KD therapy until adolescence, the long-term effects of the diet, such as growth 

impairment and atherosclerosis, would be of more concern. Additionally, the 

neuroprotective ability of KD on GLUT1DS is demonstrated in the study by Kitamura et 

al. (63) by lowering oxidative stress and increasing the patient’s energy reserves. 

Seeing that most of the studies linking KD to GLUT1DS are reports or case series, it 

seems logical to me that they are of this type -unlike the studies about MCI or AD-, 

since GLUT1DS mainly affects children. Many of the published studies involve very few 

patients, making the results difficult to interpret. However, the studies that collect a 

larger number of cases (66,67), allow to reinforce the idea that ketogenic therapies 

are effective in GLUT1DS.  

It may appear that the two disorders treated in this project have nothing more in 

common than the beneficial effects of KD. However, they share the impairment of the 
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GLUT1 transporter, leading to a deficient metabolism of glucose in the brain and 

subsequently a failure in the nourishment of brain cells. Therefore, the KD would serve 

as an effective alternative fuel in both diseases. Besides, some researchers have 

investigated the compatibility of supplementing a KD with triheptanoin. The two about 

GLUT1DS are still active, but the described study concerning AD have shown positive 

outcomes. As it is a molecule that provides more intermediaries to replenish the TCA 

cycle, I think it can be beneficial in both disorders. 

The 4 neuroprotective effects explained of the KD are consistent with some of the 

hallmarks of AD (mitochondrial dysfunction, oxidative damage and inflammation) as it 

is demonstrated in several of the studies presented. Since these features seem to 

develop before clinical manifestations, one strategy could be supplementation with 

MCTs in the preclinical phase of AD for people with a family background of AD.  

The study carried out by Kashiwaya et al. (70) in cultured neurons and the studies in 

mice models of AD focus almost exclusively on the role of ketogenic therapies in Aβ 

pathology and changes in cognition function. Some aspects are worth commenting on. 

On the one hand, the lack of effect on cognitive function observed by Van der Auwera 

et al. (71) could be due to the reduction in the level of ketosis from day 16 to day 27 

after mixing KD with the standard diet to mitigate the level of weight loss in mice fed 

KD. On the other hand, the positive results of KD reported by Studzinski et al. (72) on 

cognitive functioning, mitochondrial function, oxidative damage and plaque formation 

in aged canines, are reinforced by those informed by Yin et al. (57) in mice, taking 

into account that the experiments were performed not only on different models of AD, 

but also using distinct routes of administration -oral route or subcutaneous injection-. 

However, cognitive improvement is not demonstrated in the studies by other studies 

(73,74). It is possible that no changes in Aβ were detected because of the selected 

neuronal populations or the use of different mice models. 

Trials in humans that investigate the role of ketogenic therapies on MCI or AD are 

mostly placebo-controlled clinical trials. Therefore, the protocol to be followed is that 

of the study rather than the KD protocol explained in this project. Besides, these 

clinical studies focus on determining the effects on cognitive performance, measuring 

it mainly through ADAS-cog scores. Carriers of the APOE ε4 allele have an increased 

risk to develop AD. This correlates with the outcomes obtained in the Reger, Henderson 

and Rebello et al. (77–79) studies, in which people with MCI or AD who do not carry 

this allele had a better cognitive performance, unlike carriers. Therefore, the APOE4 

genotype influences the response to ketogenic therapies. 

Few studies test the use of a KD in patients with MCI or AD. The three studies described 

demonstrate a cognitive enhancement, and also show how not all participants 

complete the study, mostly owing to lack of compliance. In addition, the study by 

Taylor et al. (83) exemplifies the type of foods consumed in a KD: non-starchy 

vegetables, butter, eggs, olive oil, avocados, nuts and seeds.  
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Even though the exact physiopathology of AD has not been totally elucidated and there 

are no current treatments that stop AD course, the encouraging outcomes of KD 

derived from preclinical and clinical trials exemplify the constant interest in searching 

new effective therapies for such an incident disorder, that causes heavy burdens for 

affected people and their families or caregivers. In fact, the studies by Kashiwaya et 

al. (76) and Newport et al. (84) establish the ketone esters as a promising ketogenic 

therapy. Furthermore, the patient from the second study is an APOE ε4 carrier, which 

prompts to suggest that a ketone ester could be useful in patients carrying such allele.  

To sum up, it is likely that there is more evidence from the implication of KD in 

GLUT1DS than in MCI or AD. The main studies in humans done about GLUT1DS are case 

reports, whereas clinical trials controlled by placebo are predominant in patients with 

MCI or AD. Moreover, it should be noted that GLUT1DS is the principal target of KD, 

apart from refractory epilepsy. Nevertheless, all preclinical or clinical trials carried 

out assessing the impact of KD in MCI or AD, and those that are ongoing, collectively, 

help to establish more evidence for the potential role of KDs in this disorder. 

 

6.  Conclusions 

The objectives of the project have been consolidated. The KD effectively causes the 

typical ketosis observed after prolonged fasting. Its implementation involves following 

a strict clinical protocol to monitor the effectiveness of the diet, as well as its 

tolerance and compliance, because dealing with the possible appearance of side 

effects can be challenging. Over the past years, the beneficial effects of KD proved 

and their diffusion through organisms like the Charlie Foundation have contributed to 

expand the clinical use of KD. 

As a consequence of the increasing knowledge of the implicated mechanisms of action 

of the KD-derived ketone bodies, that appear to go beyond seizure control, several 

disorders seem to be potential targets of a therapy with KD. Multiple cases of GLUT1DS 

have reported positive effects of KD on the wide spectrum of manifestations -not only 

on seizure resolution-. In addition, the ketone bodies exert a collection of 

neuroprotective effects that could benefit some defects existing in AD. Both animal 

model studies and human trials with AD present ketogenic therapies as promising 

alternatives for such an incident disease in our population and without a current cure.  

As it has been discussed, more and more, the role of KDs in different diseases is being 

investigated. Additionally, there is an increasing interest in some ketosis-inducing 

supplements such as triheptanoin and ketone esters as potential alternatives to the 

restrictive KDs. Further research will help to a better understanding of the mechanisms 

through which ketogenic therapies exert on various diseases. 
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