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A Model for Human Islet Transplantation
to Immunodeficient Streptozotocin-
Induced Diabetic Mice
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Abstract
Streptozotocin (STZ) is a cytotoxic glucose analogue that causes beta cell death and is widely used to induce experimental
diabetes in rodents. The sensitivity of beta cells to STZ is species-specific and human beta cells are resistant to STZ. In
experimental islet transplantation to rodents, STZ-diabetes must be induced before transplantation to avoid destruction of
grafted islets by STZ. In human islet transplantation, injection of STZ before transplantation is inconvenient and costly, since
human islet availability depends on organ donation and frail STZ-diabetic mice must be kept for unpredictable lapses of time
until a human islet preparation is available. Based on the high resistance of human beta cells to STZ, we have tested a new
model for STZ-diabetes induction in which STZ is injected after human islet transplantation. Human and mouse islets were
transplanted under the kidney capsule of athymic nude mice, and 10–14 days after transplantation mice were intraperitoneally
injected with five consecutive daily doses of STZ or vehicle. Beta-cell death increased and beta-cell mass was reduced in mouse
islet grafts after STZ injection. In contrast, in human islet grafts beta cell death and mass did not change after STZ injection.
Mice transplanted with rodent islets developed hyperglycemia after STZ-injection. Mice transplanted with human islets
remained normoglycemic and developed hyperglycemia when the graft was harvested. STZ had no detectable toxic effects on
beta cell death, mass and function of human transplanted islets. We provide a new, more convenient and cost-saving model for
human islet transplantation to STZ-diabetic recipients in which STZ is injected after islet transplantation.
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Introduction

Streptozotocin (STZ, 2-deoxy-2-(3-(methyl-3-nitrosour-

eido)-D-glucopyranose) is a glucosamine-nitrosurea com-

pound that selectively destroys pancreatic beta cells. The

beta cell selectivity is conferred by the glucose moiety that

allows the intracellular uptake in cells expressing the glucose

transporter GLUT-21–5, and the toxicity is dependent upon

the DNA-alkylating activity of its methylnitrosourea

moiety6–8. Thus, cells that do not express GLUT-2 are resis-

tant to STZ5,9. Rodent pancreatic beta cells have GLUT-2 as

the main glucose transporter and are highly sensitive to STZ

damage. However, GLUT-2 expression is very low in human

beta cells, and GLUT-1, that has very low or no affinity for

STZ, is the predominant glucose transporter5,10,11. Thus,

human beta cells are highly resistant to the toxic effects of

STZ12–14. The resistance, however, is not complete and STZ

is used in oncology as a chemotherapeutic agent to treat

metastatic insulinomas15–18.

Reversal of diabetes after human islet transplantation to

STZ-diabetic mice is considered the gold-standard method

to assess the quality of human islet preparations, as it has

shown the best correlation with graft function after islet

transplantation to diabetic patients19,20. The model has been

also used to evaluate the degree of maturation and function
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of insulin-producing cells differentiated from human stem

cells21–23. In experimental islet transplantation to rodents,

STZ-diabetes must be induced before islet transplantation

to avoid the concomitant destruction of grafted islets. Thus,

STZ is first injected and once diabetes is confirmed several

days later, islet transplantation is performed24–26. The avail-

ability of rodent islet donors is at the discretion of the inves-

tigator, and islet isolation and transplantation can be planned

well in advance and conveniently performed once diabetes

has been confirmed in the recipient. In contrast, human islet

isolation and transplantation can’t be planned ahead of time

since pancreas availability depends on organ donation. Thus,

prospective STZ-diabetic recipients of human islet trans-

plantation, usually frail immunodeficient mice requiring

more intensive care, including daily treatment with insulin,

must be kept in the animal facility for unpredictable lapses of

time, until a human islet preparation is available. Based on

the well-known resistance of human beta cells to STZ toxi-

city, we have investigated a new model for experimental

human islet transplantation in which islets are transplanted

to healthy recipients, and STZ is injected several days later,

after the islets’ engraftment. The model reduces the burden

and cost of the procedure and increases the animal welfare.

Materials and Methods

Animals

Male athymic Nude-Foxn1nu mice (Harlan Laboratories,

Horst, The Netherlands) housed under specific pathogen-

free conditions were used as recipients of human and mouse

islet transplantation. Male inbred C57Bl/6 mice (Harlan

France SARL, Gannat, France) were used as donors of

mouse islets for transplantation. Mice were maintained in

the animal facility of Institut d’Investigació Biomèdica de

Bellvitge (IDIBELL) (Association for Assessment and

Accreditation of Laboratory Animal Care International

accreditation number 1155). Experimental procedures were

approved by the Ethical Committee for Animal Experimen-

tation of IDIBELL.

Experimental Design

Athymic Nude-Foxn1nu mice were transplanted with 2000 (n

¼ 14) or 800 (n¼ 9) human islets, or with 100–200 C57Bl/6

mouse islets (n ¼ 15) and treated with STZ or vehicle 10–14

days later (Figure 1). Two thousand human islets are

required to restore normoglycemia when transplanted to

already diabetic, STZ-injected, mice27, and 800 islets are a

clearly insufficient beta cell mass in this model28,29. The

2000 human islet and the mouse islet grafts were harvested

6 h after the last injection of STZ or vehicle. The 800 human

islet grafts were not harvested after STZ injection, and blood

glucose was monitored for an additional week to determine

whether they could maintain normoglycemia. A group of

non-transplanted mice treated with STZ (n ¼ 9) was

included in the study as controls for blood glucose.

Streptozotocin (Sigma Immunochemicals, St Louis, MO,

USA), freshly dissolved in citrate buffer (pH ¼ 4.5), was

injected intraperitoneally in five consecutive daily doses

(70 mg/kg body weight, total dose 350 mg/kg). Blood was

obtained between 9:00 and 11:00 a.m., in non-fasting con-

ditions from the snipped tail and glucose was measured with

a portable meter (Glucocard Memory, A. Menarini Diagnos-

tics, Barcelona, Spain). Body weight was simultaneously

determined. Animals were considered hyperglycemic when

blood glucose values were >11.1 mmol/l on two consecutive

measurements.

Human and Mouse Islet Isolation and Transplantation

Human pancreatic islets were isolated from six adult cada-

veric organ donors, age 58 + 6.6 years, by collagenase

digestion (Collagenase NB1 Premium Grade with Neutral

Protease NB, Serva Electrophoresis GmbH, Heidelberg,

Germany) using the Ricordi method, purified on a refriger-

ated COBE 2991 cell processor (COBE BCT, Laekwood,

Colorado, USA), and transplanted, as previously

described30. Use of human islets was approved by the Ethics

Committee of Hospital of Bellvitge, and written, signed con-

sent was obtained from donor relatives. Mouse islets were

isolated by collagenase (Collagenase P; Roche diagnostics,

Mannheim, Germany) digestion of the pancreas26.

Islets were transplanted under the kidney capsule. To

harvest the graft, the kidney capsule surrounding the graft

was incised and removed with the graft. Grafts were imme-

diately immersed in 4% paraformaldehyde-PBS, and after

the removal of any excess paraformaldehyde by capillary

action, weighed and processed for paraffin embedding26.

Immunohistochemical Studies

Beta cell death. Graft sections were double-stained for apop-

totic nuclei using the TUNEL technique (In Situ Cell Death

Detection Kit, ApopTag; Millipore, Temecula, CA, USA),

Figure 1. Experimental design. Human and mouse islets were
transplanted under the kidney capsule of athymic nude mice (Tx).
Ten to 14 days after transplantation, mice were intraperitoneally
injected with five consecutive daily doses of either STZ (70 mg/kg
body weight) or vehicle (citrate). Grafts were harvested on the last
day of STZ injection to determine beta cell death, mass and vascular
density or followed for seven additional days to assess the meta-
bolic evolution.
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and for insulin with a rabbit polyclonal anti-insulin antibody

(Santa Cruz Biotechnology Inc., Dallas, TX, USA) (final

dilution 1:100). For insulin labeling, the secondary antibody

was a donkey anti-rabbit IgG conjugated with Alexa Fluor

555 (Life Technologies, Eugene, OR, USA; final dilution

1:400). Nuclei were stained with 300 nM DAPI (Life Tech-

nologies). TUNEL-positive beta cells were assessed using a

Leica DM4000B microscope connected to a digital camera

(Leica DFC310 FX) (Wetzlar, Germany) with a color mon-

itor. Necrotic areas were excluded. Beta cell death was

expressed as percentage of TUNEL-positive beta cells. A

minimum of 1200 cells per sample were counted.

Beta cell mass and endocrine non-beta cell mass. Beta cell and

endocrine non-beta cell mass was measured by point-

counting morphometry on sections double-stained for

insulin with a chicken anti-human antibody (Abcam, Cam-

bridge, UK) (final dilution 1:1000) and for the endocrine

non-beta cell mass with a cocktail of antibodies including

rabbit anti-human glucagon (Cell Signaling Technology,

Inc, Beverly, MA, USA) (final dilution 1:100), rabbit

anti-human somatostatin (Dako, Carpinteria, CA, USA)

(final dilution 1:500) and rabbit anti-human pancreatic

polypeptide (ChemiconInternational, Inc., Temecula, CA,

USA) (final dilution 1:2000)31. Insulin and endocrine non-

beta cells were visualized with Alexa Fluor 488 and 555

(final dilution 1:400) under a fluorescent microscope.

Nuclei were stained with 300 nM DAPI (Life Technolo-

gies). Beta cell mass and endocrine non-beta cell mass was

obtained by multiplying the weight of the graft by the rela-

tive beta or endocrine non-beta cell volume respectively31.

Beta cell vascular density. Graft sections were double-stained

for endothelial cells with a CD31 antibody and for beta cells

with an insulin antibody. CD31 staining was performed

using a mouse monoclonal anti-human antibody (DAKO,

Carpinteria, CA, USA) for human grafts, and a rabbit poly-

clonal anti-mouse antibody (Abcam, Cambridge, UK) for

mouse grafts, and visualized with the EnVisionþ System-

HRP (DAKO, Carpinteria, CA, USA). For insulin double-

staining, sections stained for CD31 were incubated with a

rabbit polyclonal anti-insulin antibody (Santa Cruz Biotech-

nology, Inc., Dallas, TX, USA) and visualized with the

EnVisionþ System-HRP. Vascular density was determined

by point counting morphometry, dividing the number of

intercepts over CD31-positive endothelial cells located in

the insulin-positive beta-cell area by the number of inter-

cepts over the whole beta-cell area32.

Statistical Analysis

Results were expressed as means + SEM. Statistics were

performed using SPSS 14.0 (Chicago, IL, USA) for Win-

dows or GraphPad Prism 4 software (La Jolla, CA, USA),

and differences between means were evaluated using the

Student’s t-test or the one-way analysis of variance

(ANOVA) combined with Tukey’s test for post-hoc analysis,

as appropriate. A p value of less than 0.05 was considered

significant.

Results

Metabolic Outcome

Human islets induced a mild reduction in blood glucose after

transplantation into normoglycemic mice, in agreement with

Figure 2. Metabolic evolution in mice transplanted with human
and mouse islets, and treated with STZ. (a) Human islet transplan-
tation. Green: Transplanted with 2000 islets, STZ treated (n ¼ 8).
Blue: Transplanted with 800 islets, STZ treated (n ¼ 9). Red: Non-
transplanted, STZ treated (n¼ 9). Orange: Transplanted with islets,
vehicle treated (n ¼ 6). Values are means + SEM. ANOVA, p <
0.0001, with post-hoc Tukey’s test for multiple comparisons, *p <
0.05 v. STZ-treated and transplanted, and vehicle-treated and
transplanted groups. (b) Mouse islet transplantation. Green: Trans-
planted, STZ treated (n ¼ 8). Red: Non-transplanted, STZ treated
(n ¼ 9). Orange: Transplanted, vehicle treated (n ¼ 7). Values are
means + SEM. ANOVA, p < 0.0001, with post-hoc Tukey’s test for
multiple comparisons, *p < 0.05 v. STZ-treated and transplanted,
and vehicle-treated and transplanted groups; yp < 0.001 v. vehicle-
treated and transplanted group. Tx: transplantation day; STZ:
streptozotocin; Arrows: STZ injection. Bold arrow: removal of the
graft in transplanted (2000 islets) and treated with either STZ
(green) or vehicle (orange) groups.
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the different range of normal glucose values in humans and

rodents33. All animals transplanted with human islets

remained normoglycemic after STZ injection, even when

they were transplanted with only 800 human islets, and

maintained blood glucose values similar to those of the

vehicle-treated group (Figure 2(a)). When human islet grafts

were harvested after last STZ injection, all animals devel-

oped acute and severe hyperglycemia, confirming that trans-

planted human islets were responsible for the maintenance of

normoglycemia after STZ injection. Accordingly, the pan-

creases of transplanted and STZ-treated groups showed only

a few insulin-positive beta cells at the end of follow up,

consistent with STZ-induced death of most beta cells (sup-

plementary Figure 1). All non-transplanted animals, and

87% of recipients transplanted with mouse islets, developed

diabetes before graft removal (Figure 2(b)).

Beta Cell Death and Mass in Human and Mouse Islet
Grafts

In transplanted mouse islets, beta cell death was increased

(Figure 3) and beta cell mass was reduced (Figure 4(a))

after STZ injection. The 40% reduction in beta cell mass

in mouse islet grafts after the fifth STZ injection is consis-

tent with the previously reported islet loss in the endogen-

ous pancreas in the multiple low-dose STZ model34. In

contrast, beta cell death and mass in transplanted human

islets was similar after STZ or vehicle injection. Similar to

differences in initially transplanted islet mass in human and

mouse grafts, beta cell mass was 10 times higher in human

grafts harvested from both STZ- and vehicle-injected mice

(0.91+0.13 mg and 0.73+0.081 mg respectively) than in

mouse grafts transplanted to vehicle-injected recipients

(0.080+0.017 mg), suggesting a comparable survival of

human and mouse beta cells after transplantation. In mouse

and human islet grafts, the endocrine non-beta cell mass

was similar in STZ- and vehicle-injected mice (mouse islet

graft: 0.017+0.0033 mg and 0.018+0.0043 mg); (human

islet graft: 0.43+0.087 mg and 0.44+0.105 mg) (Figure

4(b)), confirming the beta cell selectivity of STZ toxicity.

Beta Cell Vascular Density in Islet Grafts

Beta cell vascular density was determined in islet grafts

harvested 6 h after the last STZ injection to ensure that they

were revascularized when STZ was injected. Vascular den-

sity was similar in STZ- and vehicle-injected groups, both in

human and mouse islet grafts (Figure 5). Vascular density

was lower in human compared to mouse islet grafts.

Discussion

In this study, we describe a model for experimental human

islet transplantation into STZ-diabetic mice in which, taking

advantage of the well-known resistance of human beta cells

to STZ damage12–14, STZ injection was performed after

transplantation when islets were already engrafted and vas-

cularized. We found no detectable toxic effects of STZ on

transplanted human islets, as indicated by the maintenance

of normal fed blood glucose and the absence of changes in

beta cell death and mass in islet grafts after STZ injection.

The model is more convenient, cost-saving, and increases

the welfare of the animals.

Figure 3. Beta cell death in human and mouse islet grafts. (a) Representative images of mouse and human islet grafts from vehicle- and STZ-
treated groups double stained for insulin (red) and TUNEL (green). (b) Quantification of beta cell death in human and mouse islet grafts after
vehicle (n ¼ 6 and 8 respectively, white bars) or STZ (n ¼ 7 in each group, black bars) injection. Values are means + SEM. Student’s t-test
*p < 0.001.
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Differences in beta cell susceptibility to STZ damage

between humans and rodents, as well as among different

rodent strains, are well known13,14,35. Rodent beta cells are

very sensitive to the toxic effects on STZ, while human beta

cells are highly resistant to STZ. The resistance of human

transplanted islets to high doses of STZ was reported by

Yang et al.14 that showed sustained normoglycemia and

maintained beta granulation in islet grafts after STZ injec-

tion. However, they did not quantify beta cell death nor

mass in the grafts, and recurrence of hyperglycemia after

graft harvesting was not confirmed, an essential step to

prove that transplanted islets were responsible for the main-

tenance of normoglycemia after STZ injection. In experi-

mental human islet transplantation this assessment is

particularly important because it has been reported that

insulin treatment prevents the diabetogenic action of STZ

in rodents, probably by a combination of decreased cellular

activity of beta cells and reduced expression of GLUT-2 in

insulin treated animals36. Thus, the insulin secreted by

human transplanted islets, which induces a mild reduction

in blood glucose, could provide some protection to the

endogenous beta cells of recipient mice when STZ is

injected. In our model, the development of hyperglycemia

in all STZ-injected animals after graft harvesting confirmed

that the endogenous pancreatic beta cells have been

severely damaged by STZ injection, and that normoglyce-

mia was maintained by the preserved beta cell function of

transplanted human islets. Moreover, we show that trans-

planted beta cell death was not increased and beta cell mass

was preserved after STZ injection. As expected, animals

transplanted with mouse islets showed increased beta cell

death and reduced beta cell mass in the graft, and developed

severe hyperglycemia after STZ injection.

Graft vascularization was determined to confirm that

injected STZ could reach the islet grafts, and that preserva-

tion of transplanted beta cell function and survival was not

due to lack of exposure to STZ. We show that islet grafts

were already vascularized when STZ was injected, and that

vascular density was similar in STZ- and vehicle-treated

animals in both mice and human grafts, indicating that STZ

did not modify the islet-graft vasculature. Vascular density

Figure 4. Beta cell mass and endocrine non-beta cell mass in
human and mouse islet grafts. (a) Beta cell mass in human and
mouse islet grafts after vehicle (white bar) or STZ (black bar)
injection. (b) Endocrine non-beta cell mass in human and mouse
islet grafts after vehicle (white bar) or STZ (black bar) injection.
Values are means + SEM. Student’s t-test *p < 0.02.

Figure 5. Beta cell vascular density in human and mouse islet
grafts. Quantification of beta cell vascular density in human and
mouse islet grafts after vehicle (white bar) or STZ (black bar)
injection. Values are means + SEM.
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was lower in human islet grafts, in agreement with known

data about vascularization of human and mouse islets in the

endogenous pancreas37. The results provide additional indi-

rect support to the concept that the absence of deleterious

effects of STZ injection in islet grafts was due to the resis-

tance of human beta cells to STZ toxicity.

The model that we describe has several advantages. First,

it is not necessary to maintain a pool of chronically hyper-

glycemic immunodeficient recipients for undetermined peri-

ods of time, waiting for a human islet preparation to become

available. These animals require additional care, including

daily treatment with insulin, and they increase the burden

and cost of the experiments. Second, the model reduces the

number of human islets that must be transplanted. It is well

established that restoration of normoglycemia in STZ-

diabetic recipients requires the transplantation of a higher

islet number than that needed to maintain normoglyce-

mia38–40. In our model normoglycemia was maintained with

the transplantation of just 800 human islets, a clearly insuf-

ficient islet mass to restore normoglycemia when trans-

planted to STZ-diabetic recipients28,29. Third, the model

can also reduce the number of animals used in the experi-

ments. The recipients of human islet transplantation are usu-

ally frail immunodeficient mice. After STZ injection, and

despite insulin treatment, their condition often deteriorates,

and mortality is increased41. Thus, the survival, and also the

welfare, of the animals is increased in the current model.

Moreover, the number of animals to be injected with STZ

is precisely known, since they have already been trans-

planted, and this may additionally reduce the use of animals.

Fourth, the model is closer to the usual practice in clinical

islet transplantation, where normoglycemia is maintained

before and after the procedure to avoid the deleterious

effects of hyperglycemia on beta cells. In brief, the proce-

dure is convenient, reduces the workload of animal care-

takers and investigators, reduces the number of islets and

of animals required for transplantation, and it increases the

comfort of the animals.

In summary, we have shown that the administration of

STZ after human islet transplantation does not damage the

grafted beta cells and is a more convenient and affordable

model for pre-clinical human islet transplantation. The

model may also be valuable to assess the function of

insulin-producing cells differentiated from human embryo-

nic stem cells or other human cell types.
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