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Highlights 

 

• A novel CE-UV-DAD method to analyze quinoa soluble protein extracts is described. 

• CE-UV-DAD fingerprints from different quinoa grain varieties are obtained. 

• Different characteristic components are deconvoluted by MCR-ALS. 

• Quinoa varieties are classified by PLS-DA from their differential protein composition. 

 



Abstract 51 

 52 

Quinoa (Chenopodium quinoa Willd.) is an andean grain with exceptional nutritional 53 

properties that has been progressively introduced in western countries as a protein-rich 54 

super food with a broad amino acid spectrum. Quinoa is consumed as whole grain, but it 55 

is also milled to produce high-value flour, which is susceptible to adulteration. Therefore, 56 

there is a growing interest in developing novel analytical methods to get further 57 

information about quinoa at the chemical level. In this study, we developed a rapid and 58 

simple capillary electrophoresis-ultraviolet absorption diode array detection (CE-UV-59 

DAD) method to obtain characteristic multiwavelength electrophoretic profiles of soluble 60 

protein extracts from different quinoa grain varieties. Then, advanced chemometric 61 

methods (i.e. multivariate curve resolution alternating least squares, MCR-ALS, followed 62 

by principal component analysis, PCA, and partial least squares discriminant analysis, 63 

PLS-DA) were applied to deconvolute the components present in the electropherograms 64 

and classify the quinoa varieties according to their differential protein composition.  65 

 66 

 67 

 68 

 69 

  70 



1. Introduction 71 

 72 

Quinoa (Chenopodium quinoa Willd.) is an andean grain with more than 3,000 ecotypes 73 

recognized for its exceptional nutritional properties and its ability to adapt to very diverse 74 

agroecological conditions (Aloisi et al., 2016; Nowak, Du, & Charrondière, 2016; Pereira 75 

et al., 2019; Rojas, Alandia, Irigoyen, Blajos, & Santivañez, 2011; Vega-Gálvez et al., 76 

2010). Quinoa has been progressively introduced in western countries, where it is sold as 77 

a gluten-free protein-rich super food with a broad amino acid spectrum. Quinoa is 78 

consumed as whole grain, but quinoa flour has been also receiving an increasing attention 79 

as a substitute for wheat flour in the food industry (González-Muñoz, Montero, Enrione, 80 

& Matiacevich, 2016; Laparra & Haros, 2018; Rodríguez, Rolandelli, & Buera, 2019). 81 

This growing interest in quinoa has raised the demand and consequently the prices, 82 

especially if grown organic, being a target for possible adulterations with cheaper cereals 83 

(Rodríguez et al., 2019).  84 

 85 

Nowadays, there is a great interest in developing novel analytical methods for the reliable 86 

characterization of foodstuff as part of quality control, food safety and fraud control 87 

programs (Ojinnaka, 2016). A widespread strategy for this assessment is known as the 88 

fingerprint approach, which is based on obtaining a global profile of certain components 89 

by analytical techniques, such as spectroscopic, spectrometric, chromatographic or 90 

electromigration techniques (Álvarez, Montero, Llorens, Castro-Puyana, & Cifuentes, 91 

2018; Hong et al., 2017; Ropodi, Panagou, & Nychas, 2016). The targeted components 92 

may vary from small bioactive molecules, such as amino acids, organic acids, fatty acids 93 

or polyphenols to large biomolecules, such as proteins (Álvarez et al., 2018). However, 94 



fingerprinting of intact proteins in food is specially challenging because of their size, 95 

structural complexity, wide concentration range and heterogeneity of the sample matrices. 96 

 97 

One of the most widely applied fingerprinting techniques to characterize food ingredients, 98 

including proteins, is liquid chromatography with ultraviolet absorption detection (LC-99 

UV) because of its simplicity, speed and separation performance (Gan et al., 2019; 100 

Jablonski, Moore, & Harnly, 2014; Li Vigni, Baschieri, Marchetti, & Cocchi, 2013; 101 

Rodríguez-Nogales, Cifuentes, García, & Marina, 2007). Protein fingerprinting of 102 

foodstuff by capillary electrophoresis with ultraviolet absorption detection (CE-UV) has 103 

also been demonstrated (Montealegre, García, Del Río, Marina, & García-Ruiz, 2012; 104 

Montealegre, Marina, & García-Ruiz, 2010; Sázelová, Kašička, Leon, Ibáñez, & 105 

Cifuentes, 2012; Vergara-Barberán, Lerma-García, Herrero-Martínez, & Simó-Alfonso, 106 

2014a; Vergara-Barberán, Mompó-Roselló, Lerma-García, Herrero-Martínez, & Simó-107 

Alfonso, 2017), but to a lesser extent, despite its well-known potential for separation of 108 

complex mixtures of polar and charged compounds, such as peptides and proteins 109 

(Štěpánová & Kašička, 2019). CE-UV provides complementary and, very often, better 110 

separations than LC-UV. Additionally, analyses can be performed using smaller amounts 111 

of sample, operates with lower reagent consumption, no organic solvents are necessary, 112 

separation times are considerably low and it offers good repeatabilites (Heiger, 2010).  113 

 114 

So far, in the typical LC-UV and CE-UV methods that have been described for protein 115 

fingerprinting of foodstuff, peak areas from single-wavelength chromatograms or 116 

electropherograms have been considered for characterization and classification purposes 117 

(Gan et al., 2019; Jablonski et al., 2014; Li Vigni et al., 2013; Montealegre et al., 2012, 118 

2010; Rodríguez-Nogales et al., 2007; Vergara-Barberán, Lerma-García, Herrero-119 



Martínez, & Simó-Alfonso, 2014b; Vergara-Barberán et al., 2017). However, the use of 120 

ultraviolet absorption diode array detection (UV-DAD) in combination with LC and CE 121 

allows the acquisition of three-way datasets (samples, elution/migration times and UV-122 

spectra), which have proven to be an enhanced tool in profiling of other type of bioactive 123 

components in food and beverages, such as polyphenols in strawberry, olive oil and beer 124 

by LC-UV-DAD or CE-UV-DAD (Godoy-Caballero, Culzoni, Galeano-Díaz, & Acedo-125 

Valenzuela, 2013; Mas, Fonrodona, Tauler, & Barbosa, 2007; Pérez-Ràfols & Saurina, 126 

2015). There are different data analysis procedures that allow processing of two-, three- 127 

and multi-way data sets (Escandar & Olivieri, 2019; Navarro-Reig, Bedia, Tauler, & 128 

Jaumot, 2018). Among them, multivariate curve resolution alternating least squares 129 

(MCR-ALS) offers several advantages (Jaumot, de Juan, & Tauler, 2015; Jaumot, 130 

Gargallo, de Juan, & Tauler, 2005), as it can resolve overlapped chromatographic or 131 

electrophoretic peaks from the collected data and provide the separation profiles and pure 132 

spectra of the constituents in the analyzed samples. This approach allows overcoming 133 

problems such as elution or migration time shifts, background noise contributions, and 134 

differences in signal-to-noise ratios (S/Ns) among different injections. 135 

 136 

In this study, we describe for the first time a straightforward and simple procedure for 137 

protein fingerprinting of food based on the combination of CE-UV-DAD analysis of 138 

protein extracts and advanced chemometric tools. First, we have developed a CE-UV-139 

DAD method to obtain characteristic multiwavelength electrophoretic profiles of soluble 140 

protein extracts from different quinoa grain varieties. Then, MCR-ALS has been used to 141 

deconvolute the components present in the CE-UV-DAD fingerprints, and unsupervised 142 

and supervised multivariate data analysis methods (i.e. principal component analysis 143 

(PCA) and partial least squares discriminant analysis (PLS-DA), respectively) have been 144 



applied to classify and differentiate the quinoa varieties. The proposed methodology has 145 

allowed classifying the different quinoa varieties and providing a novel insight into their 146 

differential protein composition. 147 

 148 

2. Materials and methods 149 

2.1. Chemicals and samples  150 

 151 

All the chemicals used in the preparation of buffers and solutions were of analytical 152 

reagent grade or better. Sodium hydroxide (≥99.0%, pellets), hydrochloric acid (37% 153 

(v/v)), boric acid (≥99.5%) and sodium dodecyl sulfate (SDS, ≥99.8%) were supplied by 154 

Merck (Darmstadt, Germany). Black (B, 6 samples), red (R, 6 samples) and white (W, 6 155 

samples) quinoa from Peru, as well as royal white (RO, 4 samples) from Bolivia were 156 

acquired in local supermarkets from Barcelona. Water with conductivity lower than 0.05 157 

μS/cm was obtained using a Milli-Q water purification system (Millipore, Molsheim, 158 

France).  159 

 160 

2.2. Background electrolyte solution 161 

 162 

The background electrolyte (BGE) was prepared from a 60 mM H3BO3 solution. The pH 163 

of this solution was adjusted to 9.0 with NaOH. Before the analyses, the BGE was 164 

degassed by sonication and filtered through a 0.20 µm nylon filter (Macherey-Nagel, 165 

Düren, Germany). 166 

 167 

2.3. Apparatus and procedures 168 

 169 



pH measurements were made with a Crison 2002 potentiometer and a Crison electrode 170 

52-03 (Crison Instruments, Barcelona, Spain). Centrifugal filtration at a controlled 171 

temperature (4ºC or 25ºC) was carried out in a cooled Rotanta 460 centrifuge (Hettich 172 

Zentrifugen, Tuttlingen, Germany). Agitation was performed with a Vortex Genius 3 173 

(Ika®, Staufen, Germany). Incubations were carried out in a TS-100 thermoshaker 174 

(Biosan, Riga, Latvian Republic) 175 

 176 

2.3.1. Sample preparation 177 

 178 

Quinoa grains were dried in an air-current oven at 40ºC for 24 h. The dried grains were 179 

ground in a coffee grinder and stored at room temperature in a desiccator. Before protein 180 

extraction, the total crude protein content in the quinoa samples was determined by the 181 

Kjeldahl method following the AOAC official method 2001.11 (conversion factor of N x 182 

6.25) (Nancy J Thiex, Harold Manson, Shirley Anderson, 2002). Protein extraction from 183 

quinoa grain was carried out following a procedure described elsewhere with some 184 

modifications (Aloisi et al., 2016; Giménez, Escudero, Mucciarelli, Luco, & de Arellano, 185 

2004). Briefly, 250 mg of the ground sample were mixed with 1 mL of water and 39 µL 186 

of 1 M NaOH (final pH was 10.0) and then incubated for 1 h at 36ºC with constant shaking 187 

in a vortex. Separation of soluble proteins from the insoluble residue was performed by 188 

centrifugation at 15,000 x g for 20 min at 4ºC. For protein purification, the supernatant 189 

pH was adjusted with 22 µL of 1 M HCl to obtain a final pH value of 5.0. After 190 

centrifugation at 15,000 x g for 20 min at 4ºC, precipitated proteins were resuspended in 191 

1 mL of sodium borate BGE. The supernatant containing the extract of quinoa proteins 192 

was filtered through a 0.20 µm nylon filter before the analysis.  193 

 194 



2.3.2. CE-UV-DAD  195 

 196 

All CE-UV-DAD experiments were performed in a 7100 CE instrument (Agilent 197 

Technologies, Waldbronn, Germany). Separations were performed at 25°C in 58 cm total 198 

length (LT) (49.5 cm effective length, LD) × 50 μm internal diameter (i.d.) × 365 μm outer 199 

diameter (o.d.) fused silica capillaries (Polymicro Technologies, Phoenix, AZ, USA). All 200 

capillary rinses were performed at high pressure (930 mbar). New fused silica capillaries 201 

were flushed with 1 M HCl (20 min), water (20 min), 1 M NaOH (20 min), water (20 202 

min) and BGE (20 min). The capillary was finally equilibrated by applying +25 kV 203 

(normal polarity, cathode in the outlet) for 30 min. Protein extracts were injected at 50 204 

mbar for 10 s. Between runs, capillaries were conditioned by rinsing with 0.5% SDS (m/v) 205 

(2 min), water (3 min), 1 M NaOH (3 min), water (3 min) and BGE (3 min). The UV-206 

spectra were recorded scanning from 190 to 300 nm. Data acquisition was performed with 207 

ChemStation C.01.06 software (Agilent Technologies).  208 

 209 

2.4. Data analysis  210 

 211 

Experimental data were analyzed by a combination of advanced chemometric tools to 212 

deconvolute the CE-UV-DAD fingerprints, perform multivariate analysis and classify the 213 

different quinoa varieties. Figure 1 shows a summary of the data analysis workflow, 214 

which is explained in detail in this section. Data processing and graphical representation 215 

were performed under MATLAB R2016a (The Mathworks Inc., Natick, MA, USA). 216 

MCR-ALS GUI 2.0 (Jaumot et al., 2015) was run under MATLAB environment, and PLS 217 

toolbox (Version 8.1, Eigenvector Research Inc., Wenatchee, WA, USA) was used for 218 

PCA and, PLS-DA.  219 



 220 

2.4.1. MCR-ALS 221 

 222 

First, CE-UV-DAD raw data were converted to comma-separated value (csv) format 223 

using a macro available with the ChemStation software and, then, imported into the 224 

MATLAB environment. The absorbance scale of the imported matrices was normalized 225 

against the maximum absorbance observed between 4 and 7 min at 214 nm, where the 226 

most intense peak corresponding to proteins was observed in all cases (Figure 2). Then, 227 

the normalized matrices were splitted into two submatrices corresponding to the time 228 

regions between 3-11 min and 11-21 min, which presented a differential and characteristic 229 

electrophoretic profile (Figure 2). No other data pre-processing was necessary before 230 

separately applying MCR-ALS to the set of submatrices from both time regions (Figure 231 

1-a and -b).  232 

 233 

MCR-ALS is a decomposition method developed for the deconvolution of overlapping 234 

profiles into the individual contribution of the constituents (Jaumot et al., 2015, 2005). In 235 

case of CE-UV-DAD analysis, the MCR decomposition of a single DAD 236 

electropherogram can be mathematically expressed as follows: 237 

 238 

𝐃 =  𝐂𝐒𝐓  + 𝐄               (Eq. 1)         239 

 240 

where D is the data matrix representing the electrophoretic data (with as many rows as 241 

the number of sampled migration times and as many columns as the measured 242 

wavelengths), while C and ST are the matrices collecting the resolved electrophoretic 243 

profiles, and the pure UV-spectra, respectively, of the components identified in the 244 



mixture. The matrix E contains the residuals, i.e., the fraction of the measured signal not 245 

accounted for by the MCR bilinear model.  246 

 247 

The different samples can be simultaneously analyzed and compared by MCR-ALS using 248 

a column-wise augmented data matrix configuration (see matrix Daug in Eq. 2 and Figure 249 

1-c):  250 

 251 

𝐃𝐚𝐮𝐠  =  [
𝑫𝟏

⫶
𝑫𝟏𝟓

] =  [
𝑪𝟏

⫶
𝑪𝟏𝟓

] 𝐒𝐓 +  [
𝑬𝟏

⫶
𝑬𝟏𝟓

]  =  𝐂𝐚𝐮𝐠𝐒𝐓 +  𝐄𝐚𝐮𝐠    (Eq. 2) 252 

 253 

This approach allows obtaining a common matrix of the pure UV-spectra of the resolved 254 

components (ST) for all the samples, and a set of matrices describing the resolved 255 

electrophoretic profiles (Caug) in every sample. These electrophoretic peaks resolved in 256 

matrix Caug are allowed to vary in position (shifts) and shape among samples because the 257 

only requirement for a proper resolution is that the resolved UV-spectra are the same for 258 

the common constituents in the different samples (Jaumot et al., 2015, 2005). This aspect 259 

is especially useful in the case of CE data where migration shifts among samples occur 260 

and, hence, the alignment of electrophoretic peaks before analysis is not needed. In this 261 

study, an independent Daug data matrix was built for each of the two selected time 262 

windows (Figure 1-c). MCR-ALS analysis was carried out following standard procedures 263 

for the determination of the number of components (singular value decomposition, SVD) 264 

and initial estimates (simple-to-use interactive self-modelling mixture analysis, 265 

SIMPLISMA). ALS optimization was performed under non-negativity constraints for 266 

electrophoretic (Caug) and spectral (ST) profiles, and spectral normalization (equal height) 267 

(Jaumot et al., 2015, 2005). 268 



 269 

2.4.2. Multivariate data analysis 270 

 271 

Once MCR-ALS was performed (Figure 1-c), the areas of the deconvoluted components 272 

and the protein content determined by the Kjeldahl method were considered for 273 

unsupervised and supervised multivariate data analysis, i.e. PCA and PLS-DA, 274 

respectively (Figure 1-d). First, PCA was applied to explore the classes present in the data 275 

and the presence of outliers (Joliffe & Morgan, 1992). PLS-DA was performed later to 276 

maximize class separation and rapidly classify the different samples (Barker & Rayens, 277 

2003), as well as to identify which components were the most significant to discriminate 278 

between these classes taking into account the variable importance in the projection (VIP) 279 

scores of the components in the PLS-DA model (Wold, Sjöström, & Eriksson, 2001). A 280 

(leave-one-out) cross validation of the PLS-DA model was performed during model 281 

optimization (Wold et al., 2001).   282 

 283 

3. Results and discussion 284 

3.1 Analysis of quinoa samples by CE-UV-DAD 285 

 286 

Extraction of the most abundant proteins from quinoa grain was performed adapting a 287 

procedure described by Aloisi et al. (Aloisi et al., 2016). It was basically a protein 288 

solubilization at pH 10.0, followed by isoelectric precipitation at pH 5.0 and redissolution 289 

of the protein precipitate with the sodium borate separation BGE (pH 9.0). Under these 290 

conditions, the protein extract contained albumins and globulins that are the main seed 291 

storage protein fractions in quinoa grain (Aloisi et al., 2016). Specifically, Brinegar et al. 292 

reported that 11S globulin (chenopodin) and 2S albumin polypeptides represent 37 and 293 



35% of total proteins, respectively (Brinegar & Goundan, 1993; Brinegar, Sine, & 294 

Nwokocha, 1996). Quinoa grain contains also a small amount of prolamins (Aloisi et al., 295 

2016), but the concentration in the obtained protein extracts of seed storage proteins from 296 

the alcohol soluble fraction must be extremely low. 297 

 298 

Some preliminary CE experiments were performed using a RO quinoa sample to select 299 

the most appropriate separation conditions to obtain the characteristic multiwavelength 300 

electrophoretic protein extract fingerprints. At first, the protein extract was prepared 301 

redissolving the proteins precipitated at pH 5.0 with a BGE of 60 mM Tris titrated to pH 302 

8.0 with HCl, as suggested by Aloisi et al (Aloisi et al., 2016), but repeatability of the 303 

electrophoretic separation was very low and this BGE was rapidly discarded. The BGE 304 

was changed to sodium borate (pH 9.0) prepared from a 60 mM H3BO3 solution after 305 

adding NaOH. The good performance in CE-UV of BGEs based on borate buffers at pH 306 

values above the pI of the analyzed proteins is well-known (Heiger, 2010). At pH 9.0, 307 

protein adsorption on the bare fused silica inner capillary wall was minimized and buffer 308 

capacity was high because pH was very close to the H3BO3 pKa. Further experiments were 309 

performed with sodium borate (pH 9.0) BGEs prepared from 100 and 150 mM H3BO3 310 

solutions, but total analysis time increased, while the number of electrophoretic peaks 311 

decreased, and peak shape deteriorated. Therefore, the sodium borate (pH 9.0) BGE 312 

prepared from 60 mM H3BO3 solution was selected as the best compromise between the 313 

quality of the electrophoretic profile and the total analysis time applying a voltage of 25 314 

kV. Under these conditions, it was only necessary to add to the typical capillary washing 315 

sequence with 1 M NaOH, water and BGE between consecutive analyses, an extra 316 

cleaning step with 0.5% (m/v) SDS to ensure appropriate separation repeatability. Figure 317 

2-a shows the electropherogram at 214 nm for the protein extract of a RO quinoa sample. 318 



As can be observed, the complex electrophoretic profile contained different overlapped 319 

peaks and total analysis time was approximately 20 minutes. Repeatability was evaluated 320 

from 10 consecutive analyses. The relative standard deviation values (%RSD) for the 321 

three peaks labelled with numbers in the electropherogram of Fig. 2-a (peaks at around 322 

3.5, 7, and 15 min, labelled as 1, 2, and 3, respectively) ranged between 1 and 7% for 323 

migration times, and between 7 and 14% for peak areas.  324 

 325 

All the quinoa samples were analyzed under the selected separation conditions for RO 326 

quinoa. Figure 2 also shows the electropherograms at 214 nm for the protein extracts of 327 

a W, a B and a R quinoa sample. As can be observed, the electrophoretic profiles for the 328 

four quinoa varieties presented similarities and differences. However, protein 329 

fingerprinting from the single-wavelength electropherograms was extremely difficult, 330 

because most of the peaks were overlapped and could not be accurately integrated. As an 331 

alternative, we explored the use of the multiwavelength electropherograms combined 332 

with advanced chemometrics methods for data deconvolution followed by multivariate 333 

data analysis for classification and differentiation of the quinoa varieties. 334 

 335 

3.2. MCR-ALS 336 

 337 

Before deconvolution with MCR-ALS, the raw multiwavelength electropherograms of 338 

the different quinoa samples were simply pre-processed by normalizing the absorbance 339 

scale, and no peak alignment or baseline correction were necessary. In order to minimize 340 

the processing time, while ensuring the good performance of the deconvolution algorithm 341 

and later classification, the normalized matrices were only splitted into two submatrices 342 

corresponding to the time regions between 3-11 min and 11-21 min, which comprised all 343 



the detected peaks (Figure 2). Then, MCR-ALS was applied to two separate column-wise 344 

augmented data matrices containing simultaneously the information of the protein 345 

extracts from the 22 samples (6 B, 6 R, 6 W and 4 RO quinoa) to resolve the 346 

electropherogram profiles and the corresponding pure UV-spectra of the resolved 347 

components in both time regions. The number of components selected was lower than the 348 

number of electrophoretic peaks in each region, minimizing the possibility that some of 349 

the resolved components could be due to contributions such as solvent background or 350 

instrumental noise. In this case, two components in each time region allowed explaining 351 

almost 100% of variance (> 99.0% in both cases). As can be observed in Figure 3-a for a 352 

RO quinoa sample, C1 and C2 components were resolved in the first time window (from 353 

3 to 11 min), whereas C3 and C4 were resolved in the second time window (from 11 to 354 

21 min). Only C1 component appeared as a single electrophoretic peak, while the rest 355 

presented a profile with different electrophoretic peaks at lower intensities in the 356 

considered time regions. The studied time windows could have been divided in shorter 357 

time ranges to improve peak resolution, but at the cost of increasing the processing time 358 

and complicating the deconvolution procedure, which we conceived to be simple and 359 

straightforward. Figure 3-b shows the UV-spectra of the four resolved components in the 360 

wavelength range comprised between 190 and 300 nm. Proteins generally absorb strongly 361 

between 190 and 210 nm due to the peptide bonds. From this point of the UV-spectrum, 362 

absorbance decreases and shoulders can be observed at 230 nm due to the carboxylic acid 363 

moieties and again to the peptide bonds. If present, local absorbance maxima at 254 nm 364 

and 280 nm are due to the aromatic side chains of phenylalanine, tryptophan and tyrosine 365 

(Aitken & Learmonth, 1996; Liu, Avramova, & Park, 2009). As can be observed in Figure 366 

3-b, the four resolved components presented UV-spectra compatible with proteins, and 367 

are similar to those reported by CE-UV for olive proteins by Montealegre et al 368 



(Montealegre et al., 2012, 2010). However, the presence of other UV-absorbing 369 

compounds such as polyphenols and flavonoids in the four components resolved to 370 

characterize the quinoa protein extracts could not be discarded (Aloisi et al., 2016).  371 

 372 

3.3. Multivariate data analysis. PCA and PLS-DA 373 

 374 

After MCR-ALS, multivariate data analysis was performed considering the areas of the 375 

four deconvoluted components (C1, C2, C3 and C4) in the protein extracts from the 22 376 

quinoa samples. The total protein content determined by the Kjeldahl method (Table 1) 377 

was also included as a variable to improve discrimination between the different quinoa 378 

varieties. First, we explored the data with PCA for the unsupervised identification of 379 

trends and clustering of the data, as well as outliers. Two principal components (PCs) 380 

allowed explaining 92.4% of the variance (Supplementary Figure S-1). As can be 381 

observed in this figure, PC1 (69.9% of the explained variance) clearly separated R quinoa 382 

samples from the other varieties. Meanwhile, PC2 (22.5% of the explained variance) 383 

allowed a slight separation between B quinoa and the group formed by W and RO quinoa. 384 

This last grouping suggested that the protein extract of RO quinoa, which is a W quinoa 385 

variety from Bolivia, presented similar composition to the protein extract of W quinoa. 386 

Additionally, PCA allowed detecting two W quinoa samples as outliers (W5 and W6, 387 

Supplementary Figure S-1), which were discarded before applying PLS-DA. 388 

 389 

Once the data were explored and three classes defined (i.e. B, R and white-royal (W-RO) 390 

quinoa) by PCA, PLS-DA was applied to build a refined classification model with 391 

improved class separation and to reveal the importance of the different components for 392 

discrimination between the groups of samples. As can be observed in the scores plot of 393 



Figure 4-a, a PLS-DA model with two latent variables (LVs) allowed a perfect 394 

discrimination between the three quinoa classes (92.5% of X-variance and 47.7% of Y-395 

variance explained). Sensitivity, specificity and classification error in the calibration and 396 

(leave-one-out) cross-validation were excellent. The loadings plot (Figure 4-b) showed 397 

the contribution of the different variables (the four MCR-ALS resolved components and 398 

the total protein content determined by the Kjeldahl method) to the LVs. As can be seen 399 

in this plot, the total protein content was responsible for the separation of B quinoa from 400 

the other quinoa varieties, while the resolved MCR-ALS components allowed the 401 

separation of R quinoa from the other quinoa varieties. In contrast to PCA, the VIP scores 402 

allowed to quantify the influence of the different variables on separation between the 403 

quinoa varieties. The bar plots of Figure 5-a-c show the VIP scores of the different 404 

variables when considering separation of W-RO, B and R quinoa samples from the rest 405 

of classes, respectively. VIP scores estimated the importance of the variables in the 406 

projection and only those with a VIP score over a particular threshold value (usually 1) 407 

were considered important for discrimination (Wold et al., 2001). As can be observed in 408 

the VIP scores plots of Figure 5-a, the total protein content and C3 component (in a minor 409 

extent) were the most important variables for discrimination of W-RO quinoa from B and 410 

R quinoa. The total protein content was also the most important variable to discriminate 411 

B quinoa samples (Figure 5-b). The importance of the total protein content in both cases 412 

could be due to the fact that B and W-RO quinoa samples showed the highest (16.0% 413 

(m/m)) and the lowest (14.8-14.9% (m/m)) total protein content values, respectively 414 

(Table 1). In contrast, the total protein content was not important for discrimination of 415 

red quinoa from the rest of quinoa samples (Figure 5-c). In this case, components C1, C2 416 

and C3 showed to be the most important variables. Therefore, overall it was found that 417 

the component C4, which was a minor component of the protein extracts (see Figures 2 418 



and 3-a), was the only variable non-critical for differentiation. The proposed PLS-DA 419 

model allowed rapidly classifying the quinoa varieties, as well as providing information 420 

about the importance of the different protein compositional variables. 421 

 422 

4. Conclusions 423 

 424 

We have demonstrated that protein fingerprinting by CE-UV-DAD combined with 425 

advanced chemometric methods is an excellent approach to discriminate between 426 

different quinoa varieties, as well as for getting further insight on protein composition. 427 

After a rapid and simple protein extraction method, CE-UV-DAD was applied to obtain 428 

multiwavelength electrophoretic fingerprints of soluble protein extracts from B, R, W and 429 

RO quinoa samples. Deconvolution with MCR-ALS allowed the resolution of the most 430 

relevant components in the electrophoretic profiles, which showed characteristic UV-431 

spectra. The areas of the four resolved components and the total protein content 432 

determined by the Kjeldahl method were considered for PCA and PLS-DA. PCA allowed 433 

detecting two white quinoa outlier samples and defining three sample classes (i.e. B, R 434 

and W-RO quinoa). PLS-DA improved sample classification and revealed that 435 

component C4 was not significant for the discrimination. The proposed methodology 436 

demonstrated its potential to rapidly obtain a reliable classification of quinoa varieties 437 

based on protein fingerprinting, and could be used for a simple and enhanced quality 438 

control of quinoa-containing foodstuff. In the future, the approach could be further 439 

validated with larger sample sets of quinoa varieties or ecotypes, which could be also 440 

grown under different conditions (e.g. ecological, salinity, etc). More widely a similar 441 

approach could find application to protein fingerprinting of other foodstuff, presenting 442 

complex electrophoretic profiles with highly overlapped peaks. 443 
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Figure legends 455 

 456 

Figure 1. Workflow for the analysis and classification of quinoa varieties by CE-UV-457 

DAD in combination with advanced chemometric tools. 458 

 459 

Figure 2. Electropherograms obtained after protein extraction for (a) royal white (RO), 460 

(b) white (W), (c) black (B) and (d) red (R) quinoa samples (at 214 nm). Peaks labelled 461 

as 1, 2 and 3 in (a) were considered for the repeatability studies.   462 

 463 

Figure 3. (a) MCR-ALS resolved concentration profiles obtained for the 4 components 464 

of a royal white (RO) quinoa sample and (b) their corresponding pure UV-spectra.  465 

 466 

Figure 4. (a) Scores plot and (b) loadings plot of the PLS-DA model applied to the 20 467 

selected quinoa samples using the 4 components resolved by MCR-ALS and the total 468 



protein content determined by the Kjeldahl method. (royal white (RO), white (W), black 469 

(B) and red (R) quinoa) 470 

 471 

Figure 5. VIP scores of the different variables when considering the separation of the 472 

different quinoa classes (a) white-royal (W-RO) from black (B) and red (R), (b) B from 473 

W-RO and R and (c) R from W-RO and B.  474 

  475 
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Table 1. Total protein content determined by the Kjeldahl method for all the analyzed 

samples from black (B), red (R), white (W) and royal white (RO) quinoa. 

 

 

*Samples W5 and W6, marked in red, were identified as outliers after PCA, see 

Supplementary Figure 1. Average of total protein content and %RSD values for W 

quinoa without samples W5 and W6 were 14.9% and 4%, respectively. 

 

 

 

 

 

 

 

Variety Code 
Total protein content 

% (m/m )  
Average %RSD 

B 

B1 15.8 

16.0 2 

B2 16.6 

B3 15.9 

B4 15.7 

B5 15.7 

B6 16.0 

R 

R1 15.1 

15.6 4 

R2 15.1 

R3 16.3 

R4 16.3 

R5 15.0 

R6 15.4 

*W 

W1 14.4 

16.0 11 

W2 14.2 

W3 15.4 

W4 15.6 

W5 18.3 

W6 18.3 

RO 

RO1 15.3 

14.8 4 
RO2 14.9 

RO3 14.9 

RO4 14.0 
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Figure S-1. Scores plot of the PCA model applied to the 22 quinoa samples using the 4 

components resolved by MCR-ALS and the protein content determined by the Kjeldahl 

method. Two white (W) quinoa samples (W5 and W6) were identified as outliers and 

were discarded before PLS-DA. 

 

 

 

 

 

 

 

 

 

 

 

 




