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Abstract 

Instrumental variable methods are an underutilized tool to enhance causal inference in 

Psychology. By way of incorporating predictors of the predictors (called “instruments” in the 

Econometrics literature) into the model, instrumental variable regression (IVR) is able to draw 

causal inferences of a predictor on an outcome. We show that by regressing the outcome y on the 

predictors x and the predictors on the instruments, and modeling correlated disturbance terms 

between the predictor and outcome, causal inferences can be drawn on y on x if the IVR model 

cannot be rejected in a structural equation framework. We provide a tutorial on how to apply this 

model using ML estimation as implemented in structural equation modeling (SEM) software. We 

additionally provide code to identify instruments given a theoretical model, to select the best 

subset of instruments when more than necessary are available, and we guide researchers on how 

to apply this model using SEM. Finally, we demonstrate how the IVR model can be estimated 

using a number of estimators developed in Econometrics (e.g., two-stage least squares 

regression) and point out that the latter is simply a multi-stage SEM estimator of the IVR model. 
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 Estimating causal effects in linear regression models with observational data:  

The Instrumental Variables Regression Model 

Early on, students are often taught that experiments are the gold standard for scientific 

research, as randomization of subjects to conditions ensures that groups will be equal on all non-

treatment related dimensions (probabilistically, over the long run). This ensures protection 

against possible confounders of the relationships under study. Despite the advantages of true 

experimental designs, successful randomization of subjects to groups is not always possible. It 

may be unethical to assign subjects to groups, or a factor of interest may be an immutable, 

naturally occurring phenomenon. Even if random assignment is possible, a researcher may face 

problems of treatment compliance that renders randomization moot. Indeed, developing methods 

to estimate causal effects in the face of non-compliance is a burgeoning area of study (e.g., 

Peugh, Strotman, McGrady, Rausch, & Kashikar-Zuck, 2017; Schochet & Chiang, 2011; Stuart 

& Jo, 2015; Yau & Little, 2001). Moreover, random assignment is not practical when researchers 

are concerned with relationships that involve continuous independent variables. This latter point 

is manifest in several areas of study within psychology, such as life course development. In 

domains that are heavily reliant on observational data, statistical methods to enhance causal 

inference of observed relationships are paramount. A variety of techniques have been proposed 

in the literature to bolster causal inferences in observational data(Morgan & Winship, 2007; 

Rubin, 2006; Vanderweele, 2015). The preponderance of these methods that are used in 

psychology research seek to yield causal inferences by way of estimating effects in the potential 

outcomes framework (e.g., Rubin, 1974), which defines a unit-level causal effect as the 

difference between a subject’s potential outcomes. That is, this approach considers the outcomes 

associated with all possible conditions to which a subject could be assigned rather than only the 
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condition in which that subject was actually observed. By doing so, the researcher is able to 

estimate a counterfactual observation for each individual (i.e., the value of the outcome that 

would have been observed had a subject been in a different condition) such that an average 

causal effect can be estimated across observations in the data. An underutilized method to draw 

causal inferences in Psychology is the use of instrumental variable methods.  

Instrumental variable methods have been used widely in areas outside of Psychology, 

such as Economics or Epidemiology. There is clear benefit in instrumental variable methods, as 

they focus on magnitude of effects sizes in a study (rather than exclusively focusing on statistical 

significance), and they are easy to implement. Though this set of tools has potential to help 

improve causal inferences in our field, barriers have precluded psychology researchers from 

integrating these methods routinely in their work. The purpose of the present study is to remove 

those barriers. 

  Consider a simple regression model, y on x. Empirical support for the inference that x 

causes y can be obtained by bringing in predictors of x into the model (z, called “instruments” in 

Econometrics terminology), and fitting the instrumental variables regression (IVR) model (y on 

x on z with correlated errors between the disturbance terms of y and x). Historically, the most 

widely used estimator for this model has been the two stage least squares estimator (2SLS; Theil, 

1953). The IVR model can be estimated effortlessly within a structural equation modeling (SEM) 

framework using any SEM estimator, such as maximum likelihood (ML), however, as whether 

causal inferences can be drawn depends on the fit of the model rather than the estimator used. 

Researchers familiar with the SEM framework are likely to find fitting the IVR model using this 

framework more intuitive than using the estimators developed in Econometrics. Econometric 

estimators such as 2SLS simply take advantage of the specific structure of the IVR model to 
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estimate its parameters using a multi-stage mean and covariance structure approach with non-

iterative solutions (Maydeu-Olivares, Shi, & Rosseel, 2018)
1
.  

In this paper, we provide a non-technical introduction to instrumental variable regression 

methods for a SEM audience
2
. We begin by discussing causality in regression models within a 

SEM framework. In particular, we address the question of how the IVR model enables a 

researcher to draw causal inferences in regression models with observational data. We then 

discuss how to estimate this model using SEM software and the new modeling avenues this 

provides, as well as demystify competing terminology across disciplines (e.g., “test of exclusion 

constraints” in Econometrics and “chi-square test” in Psychology). Next, we discuss how to 

identify potential instruments (i.e., variables that may serve as instruments in an IVR model) 

under a theoretical model. Finally, we discuss how to select the best subset of potential 

instruments when there are more potential instruments than necessary. We use example data 

throughout the article to illustrate the different concepts discussed. We additionally provide 

supplementary material to this article, which includes software scripts in STATA, SAS, R, and 

Mplus that will enable applied researchers to reproduce the example results reported in this 

article.  

Predicting a company’s market share from its degree of innovation performance 

 To focus concepts, throughout this article we use a small example involving the 

prediction of a company’s market share from its degree of innovation performance. Maydeu-

Olivares and Lado (2003) gathered data on 122 European companies from the insurance sector. 

They recorded their national market share from public records and gathered information from the 

companies’ degree of innovation performance by administering a four-item questionnaire to the 

company’s senior executive and computing the sum of their responses to these items. The items 
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were on a 7-point Likert format and inquired about the success of new products/services (defined 

as improved products, product extensions, or new product lines) introduced by the company. We 

choose this example because an economic variable (in this case measured with a small error) is 

predicted from a psychological variable (in this case with, possibly, considerable measurement 

error).  

Letting i denote company, a structural model can be put forth in the form of a simple 

regression model, i i iy x      involving the log of market share, y, and the self-reported 

innovation performance, x (see Figure 1a). In this equation,  (an error or disturbance term) 

includes all determinants of market share not included in the structural model and measurement 

error of y, that is, the measurement error of market share. In estimating the regression model, we 

obtain ̂ = .11 (.02), R
2
 = 18.3%. Thus, in European insurance companies a one-point increase in 

self-reported innovation performance leads to an 11% increase in market share
3
. This is a tacit 

causal statement; if indeed x causes y, a 95% confidence interval for  is C[.07 ≤ β ≤ .15]=.95.  

 In this example, we cannot claim empirical support for our causal statement. When only y 

and x are available for analysis, a y on x model cannot be distinguished empirically from an x on 

y model, nor from a y with x model; all three models are equivalent in a path analytic framework. 

However, we can provide empirical support for the statement x causes y when predictors of x, 

denoted here as z, are brought into the model, and some other model conditions that we will 

discuss, are met. Neither experimental manipulation nor temporal sequence is needed to 

formulate the causal claim in this context: y, x, and z can be observational variables.   

------------------------------------- 

Insert Figure 1 about here 

------------------------------------- 
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The instrumental variables regression (IVR) model  

 Consider a target structural model (y on x) and its corresponding instrumental variables 

regression model (y on x on z with correlated errors between the disturbances of y and x) 

depicted in Figures 1a and 1b. By fitting the IVR model, causal inferences can be drawn for our 

target model. To formulate a causal inference, we need to show that by fitting the IVR model we 

can overcome any threats to the validity to the causal relationship of interest in the target model. 

There are a number of threats to the validity of causal inferences for y on x including reciprocal 

causation, the presence of omitted variables, measurement error in the predictors x, 

autoregressive errors, spatial effects, etc. Bollen (2012) provides a good overview of these 

threats to validity in regression models. For brevity, we shall focus on just three of the threats 

here, which we depict graphically in Figure 2: reverse causation (x on y¸ Figure 2a), reciprocal 

causation (y on x, and x on y¸ Figure 2b), and the presence of omitted variables (y on z and x, and 

x on z¸ Figure 2c).  

------------------------------------- 

Insert Figure 2 about here 

------------------------------------- 

 These models are a threat to the validity of inferences in our target model y on x because 

if any of these models is the data generating mechanism (DGM) and we fit our target model, we 

will not consistently estimate the true parameter of interest, yx
4
. The general idea behind the use 

of the IVR model is that these threats to the validity of y on x inferences can be addressed if we 

fit a y on x regression with correlated errors between the disturbances of y and x (Figure 2d). In 

so doing, we are able to consistently capture the true value of the yx  parameter. 
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The model depicted in Figure 2d is not identified (i.e., cannot be estimated) if only data 

on y and x is available to the researcher, however. To be able to estimate the model in Figure 2d 

additional variables need to be brought into the model. For instance, predictors of x, labeled z, 

may be incorporated, leading to the IVR model depicted in Figure 1b. It is important to 

emphasize that the role of z in the IVR model is secondary. Our interest lies in drawing 

inferences on the causal effect of x on y. We are not interested in drawing inferences regarding x 

on z. Rather, we simply use z to predict x. Because of their instrumental role, the predictors of x 

are aptly named instrumental variables in the Econometrics literature (Cameron & Trivedi, 2005; 

Greene, 2007; Wooldridge, 2013). We now show that the use of the IVR model overcomes each 

of the three threats to the validity of causal inferences in our target model. 

 Suppose the data generating mechanism is the reverse causation model depicted in Figure 

2a. When instruments for x are brought into the model, we obtain the DGM depicted in Figure 

3a. If we fit the IVR model depicted in Figure 1b to this DGM, we will estimate the population 

parameters presented in Table 1
5
. We see in this table that the IVR model will consistently 

estimate the true slope, 0yx  , if the DGM is the reverse causation model of Figure 3a. 

Moreover, we see that a researcher fitting the IVR model will also consistently estimate the true 

slope no matter whether the DGM is the reciprocal causation model (Figure 3b), the omitted 

variables model (Figure 3c) when only y, x, and z1 and z2 are available for analysis, or a 

reciprocal causation model with omitted variables (Figure 3d)
6
. For an alternative intuition on 

how instrumental variable models provide consistent estimates see Foster and McLanahan 

(1996). 

------------------------------------- 

Insert Figure 3 and Table 1 about here 
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------------------------------------- 

What can we make causal inferences on? The role of model testing 

 The IVR model can be straightforwardly estimated using any structural equations 

modeling program (AMOS: Arbuckle, 2014; EQS: Bentler, 2004; LISREL: Jöreskog & Sörbom, 

2017; Mplus: Muthén & Muthén, 2017; Lavaan: Rosseel, 2012) and its fit evaluated using the 

chi-square test. Provided there is sufficient power, failing to reject the null hypothesis of model 

fit using the chi-square test provides empirical support for inferences drawn on the parameters of 

the IVR model. Moreover, we will be able to make causal inferences on any population 

parameter within the model for which we are able to estimate its true value regardless of what 

the data generating mechanism is. Table 1 reveals that regardless of the data generating 

mechanism, by fitting the IVR model one 

(a) Always recovers the parameters involving the regression of y on x (intercepts and slopes) 

(b) Always recovers the parameters involving the regression of x on z (intercepts and slopes) 

(c) Does not always recover the error variance parameters of y and x.  

Result (a) means that when we fail to reject the IVR model, we can draw causal inferences on the 

intercepts and slopes in a y on x regression. Result (c) indicates that we cannot draw causal 

inferences on the percentage of variance of y accounted for by x ( 2

yxR ). That is, we can estimate 

2

yxR  under the IVR model, but we cannot be certain that the estimate is the actual percentage of 

variance of y explained by x since the value will depend on the unknown data generating 

mechanism. Finally, although result (b) indicates the IVR model will always recover parameters 

involving the regression of x on z, we will not be able to draw causal inferences on the x on z 

intercepts and slopes as the x on z submodel is saturated (i.e., df = 0), such that the chi-square 

statistic of model fit only assesses the validity of inferences between y and z.  



INSTRUMENTAL VARIABLES REGRESSION 10 

Model assumptions and identification 

 As with any overall test statistic, the chi-square statistic tests all model assumptions 

simultaneously. In addition to the assumptions graphically displayed by the path diagram of 

Figure 1b, the IVR model assumes that: (1) All relationships are linear, and (2) All relationships 

are homoscedastic (i.e., constant variance around the regression lines)
7
. These assumptions can 

be assessed graphically by examining the plots of individual observations’ standardized residuals 

(estimated errors) vs. predicted values for the equations in the IVR model: x on z, and y on x̂ . 

These residuals plots should always be inspected, regardless of the outcome of the chi-square 

statistic. If we fail to reject the model, the plots should be examined to determine if the chi-

square statistic lacked power due to small sample size to detect violations of linearity or 

homoscedasticity. If the chi-square statistic rejects the model, the plots should be examined to 

determine whether lack of linearity or homoscedasticity is the source of misfit.  

For the IVR model in Figure 1b to be identified, we must incorporate at least as many 

instrumental variables, z, as there are predictors (x) in our target model (Bollen, 1989). If there 

are as many instrumental variables as predictors, the model is just identified (i.e., df = 0), and it 

cannot be tested using the chi-square statistic. To test the model, we recommend bringing in at 

least one more instrumental variable than predictors are in the model.  

Identifying potential instrumental variables 

Whether a variable is a suitable instrument is established by assessing the fit of the IVR 

model. However, in applications it is necessary to identify variables that potentially may serve as 

instruments. Simply using trial and error to identify variables to serve as instruments is akin to 

failing to account for multiple testing.  
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We can identify variables that may serve as potential instruments by using our theoretical 

knowledge and a full structural model for the relations between y, x, and z (Bollen, 1996b; 

Cameron & Trivedi, 2005). Let us return to our market share and innovation performance 

example. Maydeu-Olivares and Lado (2003) provided a full structural model of the effect of 

innovation performance on market share that is reproduced here as Figure 4, involving a 

company’s market orientation, degree of innovation, and customer loyalty
8
.  

------------------------------------- 

Insert Figure 4 about here  

------------------------------------- 

The two conditions for a variable z to qualify as potential instrument of the y on x 

relationship are that it is (a) correlated with variables in x, and (b) uncorrelated with the 

disturbance of y, y  (Bollen, 1996b, p. 133). The theoretical model displayed in Figure 4a 

reveals immediately two potential instruments: the companies’ market orientation (z1), and 

degree of innovation (z2). There is a direct path between each of these variables and our predictor 

x, innovation performance, such that they satisfy condition (a) to be instruments of innovation 

performance. Also, neither has a correlation with the disturbance of our outcome y, market share 

( y ). Therefore, they satisfy condition (b) to be instruments. Though market orientation has an 

indirect path to market share through innovation and customer loyalty, it is not correlated with 

the disturbance term of market share as the indirect effect is completely mediated through 

customer loyalty. Customer loyalty is also a potential instrument under the theoretical model 

displayed in Figure 4a. It satisfies condition (a) as customer loyalty and innovation performance 

are correlated due to their common dependence on market orientation, and it satisfies condition 

(b) because it is uncorrelated with the disturbance of market share. Note that if the model in 4a is 
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correct, but you are not able to collect data on customer loyalty, the theoretical model needs to 

take into account the effect of customer loyalty on the remaining variables, as depicted in Figure 

4b, and market orientation will no longer meet the condition for a valid instrument, as it would 

be correlated with the disturbance term of the outcome.  

For simple models such as that portrayed in Figure 1, it need not be difficult to identify 

potential instruments. To check condition (b), possible correlations between a potential 

instrument and the outcome’s disturbance should be examined. To check condition (a), the 

model-implied covariance or correlation matrix should be examined. The latter is straightforward 

if data are available for all variables involved. It may not be straightforward to determine 

potential instruments, however, in more complex theoretical models or when data are not 

available for all variables. To facilitate determination, in the Appendix we provide two algebraic 

conditions that may be used to verify whether a variable is a potential instrumental variable for a 

target model within a structural equations framework. We also provide R code in section two of 

the supplementary materials to this article that enables researchers to determine which variables 

are potential instruments for their target model in the absence of data. This code provides 

invaluable information at the planning stages of a research project as it enables applied 

researchers to determine what variables they should gather data on to be used as instruments.  

Estimation of the instrumental variables regression model 

 As indicated earlier, IVR models have historically been estimated using 2SLS
9
. 

Estimation of the model in a SEM framework can be applied in a straightforward manner, 

however, using estimators with which the SEM researcher is familiar (e.g., ML). The IVR model 

is simply y on x on z, with correlated errors between y and x. We let px be the number of 

predictors x, pz be the number of instrumental variables z, and consider the case with a single 
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dependent variable y. The total number of variables is therefore p = px + pz + 1. Letting 

 , ,y   w x z , the covariance structure implied by the IVR model can be partitioned according 

to the partitioning of w as 

 0

yy

xy xx

zy zx zz

  

  

 
 

  
 
 

 . (1) 

 SEM estimation of the IVR model proceeds as for any other structural model. The most 

popular estimation method in SEM applications is maximum likelihood (ML). For normally 

distributed mean centered data, ML estimates are obtained by minimizing 

  1

0 0ln tr lnMLF p    S S , (2) 

where S denotes the ML sample covariance matrix
10

, and 0 ( )    is the population covariance 

structure (1), a function of , the model parameters to be estimated from the data.  

Standard errors and goodness of fit tests can be obtained under normality assumptions, or 

robust to non-normality (Maydeu-Olivares, 2017; Satorra & Bentler, 1994). The most commonly 

used statistic to test a model under normality assumptions is the likelihood ratio (LR) statistic. 

Because the LR test statistic follows a chi-square distribution in large samples, it is most often 

referred to as the chi-square test in the SEM literature. The number of degrees of freedom when 

fitting the IVR model is always pz – px. When data are not normally distributed, robust standard 

errors and goodness of fit tests are obtained using the asymptotically distribution free (ADF) 

assumptions
11

 described in Browne (1982, 1984). Browne also described a goodness of fit 

statistic based on residual covariances that can be used with any estimator under normality or 

ADF assumptions
12

. This statistic follows a chi-square distribution in large samples with the 

same degrees of freedom as the LR statistic, and under normality assumptions, it is 
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asymptotically equivalent to the LR statistic (Satorra & Bentler, 1994). When testing the IVR 

model, Browne’s test statistic is also algebraically equivalent to test statistics used in 2SLS 

estimation (Maydeu-Olivares, Rosseel, & Shi, 2019)
13

. Note, however, that in SEM applications 

the most popular overall goodness of fit statistic reported under ADF assumptions is not 

Browne’s test statistic but rather the LR statistic adjusted by its asymptotic mean, or by its 

asymptotic mean and variance (Satorra & Bentler, 1994)
14

.  

Some remarks on estimating the IVR model  

After suitable potential instrumental variables have been identified and the IVR model 

has been fitted, applied researchers can verify whether a potential instrumental variable satisfies 

conditions to serve as a suitable instrument in the IVR model. Within a SEM framework, the first 

condition, i.e., a lack of correlation between the instrument and the outcome’s disturbance, can 

be verified using the overall chi-square test of model fit. Support for the condition obtained by 

failing to reject the model. A more focused test is obtained by examining the modification index 

(aka as Lagrange or score test statistics, Sörbom, 1989) for the correlated error between the 

outcome’s disturbance and the instrument. 

The second condition, whether the potential instrument z significantly predicts the 

predictor(s) x, can be checked by performing a test for nested models, where the fit of the IVR 

model is compared to a model where the effects of z on x are set to zero. Under normality, such 

model comparisons can be performed using the likelihood ratio statistic (Steiger, Shapiro, & 

Browne, 1985): the difference between the overall goodness of fit test statistics follows a chi-

square distribution with degrees of freedom equal to the difference of degrees of freedom. A test 

for nested models robust to non-normality can be obtained when mean corrections are applied to 

the overall test statistics of each model (Satorra & Bentler, 2001, 2010), and also when mean and 
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variance corrections are employed (Asparouhov & Muthén, 2006). In the special case of a single 

predictor x, the condition can be examined using the z statistic (a Wald test) for the slope x on z.  

Threats to the validity and accuracy of inferences drawn using instrumental variable 

models 

For inferences drawn using instrumental variables to be valid and accurate, the IVR must 

be correctly specified and have adequate power to identify violations of model assumptions. Use 

of the IVR model in the presence of model misspecification or violation of assumptions will lead 

to invalid inferences. Though overall goodness of fit tests will test all assumptions of the IVR 

model simultaneously, they will have differential power to detect different violations of the 

model assumptions.  

 Arguably, the main violation of the IVR model assumptions involves the presence of 

correlations between the y and z error terms. In this case, inferences drawn on the y on x 

relationship using the IVR are biased and invalid. The SEM approach to estimating IVR 

empowers applied researchers to estimate IVR models with correlated residuals between y and z, 

something that is unfeasible using the 2SLS regression approach. To that end, it is arguable that 

fitting IVR models with ML in an SEM framework may be more desirable. 

Even when the IVR model is correctly specified, statistical theory used to draw causal 

inferences in the model is based on large sample theory. In finite samples, estimates may be 

biased and/or show large sampling variability. A large body of research has emerged in the 

Econometrics literature focusing on the drivers of the performance of 2SLS in correctly specified 

models. This research has focused on the impact of the strength of the relationship x on z (i.e., 

whether instrumental variables are ‘weak’ predictors of x) has on the performance of 

instrumental variable methods (Bound, Jaeger, & Baker, 1995; Staiger & Stock, 1997; Stock & 
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Yogo, 2005), indicating that  it does not suffice that the effect of z on x be non-significant; it 

needs to be 'strong'. These findings are, in principle, applicable to any estimator (e.g., ML) used 

to draw causal inferences using the IVR model, as the validity of inferences depends on the 

model and not on the estimator.  

Most of these results are based on normality assumptions, reflecting that “much more is 

known about weak instruments in this case” (Stock, Wright, & Yogo, 2002, p. 518). The use of 

these results is twofold: a) to assess whether the solution obtained using instrumental variables is 

reasonably unbiased; b) to select the best subset of instruments when there is a set of valid 

instruments from which to choose. In this regard, extant research (e.g., Bollen, Kirby, Curran, 

Paxton, & Chen, 2007) suggests that in small samples (N < 200) instrumental variable methods 

are most accurate (less biased) when the number of instruments exceeds by one the number of 

predictors, that is, when pz = px + 1.  

Weak instruments 

Standard practice in the Econometrics literature is to check for weak instruments in IVR 

models, and psychology researchers should follow suit. For a single predictor (x) model, the F 

statistic to predict x from z is used to check the weakness of instruments
15

. Stock and Yogo 

(2005) tabulated critical values for the F statistic to rule out weak instruments. A minimum value 

of F = 10 is recommended to consider the instruments as strong (Stock, Wright, & Yogo, 2002), 

and by extension for instrumental variable inferences to be reliable. When there are multiple 

predictors x, inspection of the individual F statistics is no longer sufficient (e.g., Sanderson & 

Windmeijer, 2016). In this case, under normality assumptions, the strength of the instruments is 

assessed by computing the smallest eigenvalue of the Cragg and Donald (1993) statistic (TCD, see 
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the Appendix). The minimum eigenvalue obtained in an application should be compared to the 

critical values of Table 1 in Stock and Yogo (2005).  

We provide R code in section three of our supplementary materials to compute the F 

statistic when there is a single predictor x, or the minimum eigenvalue of the TCD statistic when 

there are multiple predictors x, for every combination of instruments equal or larger than the 

number of predictors in the model (i.e., pz ≥ px). The optimal subset of instruments is the subset 

of instruments with largest F or largest minimum eigenvalue of the TCD statistic. In addition, 

when the IVR model is fitted by ML using a SEM approach, the model with all potential 

predictors against the model with the subset of predictors with largest F or TCD statistic can be 

compared using a test statistic for nested models. To do so, the slopes for the unselected 

instruments in the optimal model are set to zero.  

Numerical examples 

 We turn now to two empirical examples to further exemplify the use of IVR models in 

applied work. Our first example considers the case of a carefully laid out theoretical model that 

focuses on a single relationship under study, and allows us to describe how one would go about 

choosing potential instruments. Our second example changes focus to a more realistic scenario, 

where a researcher uses a broader theoretical backdrop against which to consider multiple 

relationships under study (that are conditional on other variables in the model). We also used 

standardized parameters in this latter example to demonstrate that inferences can be drawn on 

standardized parameters under the IVR model.  

ML vs. 2SLS estimation of the market share and innovation performance example 

In this example, it is of interest to determine the causal effect of innovation performance 

on the log of market share. To do so, we fitted an IVR model according to the theoretical model 
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underlying the relationships between the observed variables involved (see Figure 4), involving a 

company’s market orientation, degree of innovation, and customer loyalty. Details on sample 

characteristics, and motivation for this study were provided at the beginning of this article. 

Results obtained assuming normality or under ADF assumptions were very similar, and therefore 

we report here only the results under normality. The plot of innovation performance residuals vs. 

expected (fitted) values reveals a linear and homoscedastic relation. The residual plot of 

ln(market share) also suggests a linear and homoscedastic relation (see Figure 5a).  

------------------------------------- 

Insert Figure 5 about here  

------------------------------------- 

The likelihood ratio test statistic (commonly referred to as the chi-square test in the SEM 

literature) when market orientation, innovation degree, and customer loyalty (z1 to z3) are used as 

instruments is X
2
(2) = .97, p = .62. The F statistic when all three potential instruments are used is 

F = 34.16. The effect of customer loyalty on innovation performance was not statistically 

significant however, 
3

ˆ
xz = .06 (SE = .10), p =.59. Therefore, we removed this instrument from 

the model. The F statistic associated with market orientation and degree of innovation as a subset 

of two potential instruments was F = 51.59. These results suggest that the two instruments are 

strong. Though we can compute an F statistic for single instruments (highest F statistic for a 

single instrument was F = 75.27 for innovation degree), recall that only including one instrument 

would prevent us from being able to test the model fit (i.e., df = 0). Full results for the model 

with market orientation and degree of innovation as instruments are provided in Table 2
16

. As we 

can see in this table, ML vs. 2SLS estimates are often equal (with two decimal precision). 

------------------------------------- 



INSTRUMENTAL VARIABLES REGRESSION 19 

Insert Table 2 about here 

------------------------------------- 

ML results were obtained using Mplus (Muthén & Muthén, 2017); for estimation under 

ADF assumptions we used choice MLMV (for details, see Maydeu-Olivares, 2017). We provide 

the data and Mplus code in section one of the supplementary materials to this article. We also 

provide code in the Lavaan (Rosseel, 2012) R package that matches the Mplus results, as well as  

code to obtain the two-stage least squares (2SLS) estimates using Stata (StataCorp, 2017) -

ivregress command, SAS (SAS Institute, 2014) –proc syslin command, and R(R Development 

Core Team, 2015)- ivreg and IVR commands. 

Returning to the results shown on Table 2, we see that after removing customer loyalty as 

an instrument, we obtain X
2
(1) = .01, p = .91. The estimated effect of innovation performance on 

market share is ˆ
yx = .20 (.03). Since the IVR cannot be rejected, this is the causal effect of 

innovation performance on ln(market share) with a 95% confidence interval of: C[.13 ≤ β ≤ .26] 

=.95
17

. This estimate is substantially larger and less precise than the result obtained using 

ordinary regression methods reported earlier, C[.07 ≤ β ≤ .15] =. 95. The percentage of variance 

of market share accounted for by innovation performance according to the IVR model is R
2
 = 

6.1%., which is substantially smaller than the R
2
 obtained by ordinary regression methods, 

18%.We cannot make an empirically supported causal statement about the R
2
 using the IVR 

model as it would require knowing the DGM. A causal statement about the IVR R
2
 can only be 

supported on theoretical grounds. 

These data provide an excellent example of the need to examine model assumptions using 

residual plots. We fitted the IVR model to these data without taking the natural log of market 

share, obtaining X
2
(1) = .30, p = .59. Hence, we cannot reject the model using this test statistic. 
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However, the model is misspecified as can be readily observed by examining a plot of market 

share residuals vs. expected values (Figure 5b). We see in this plot that we if we do not take the 

log of market share, the relationship is clearly heteroscedastic with large outliers. Inferences 

drawn using the IVR model if a log transformation is not applied to market share are 

considerably less accurate than those obtained using ordinary regression methods to the logged 

variable.  

Causal inferences on the standardized effects of problem orientation on catastrophizing 

 Catastrophizing, an irrational belief characterized by evaluation of negative events as 

worse than they should actually be (Ellis, 1962), has proved to be a key variable in the prediction 

of pain-related outcomes (Suso-Ribera et al., 2016). In this example, we use the subset of chronic 

pain patients described in Suso-Ribera et al. (2016) that was measured over time. Only time 1 

data is used. Sample size is 175. We are interested in determining the causal effect (if any) of 

problem orientation (D’Zurilla & Goldfried, 1971) on catastrophizing. Problem orientation is 

defined as the schemas one holds about problems in everyday life and ones assessment of their 

ability to solve them. Problem orientation may be positive (PPO: e.g., seeing problems as 

challenges and opportunities for growth) or negative (NPO: e.g., seeing problems as threats, 

barriers, or obstacles) (D’Zurilla, Nezu, & Maydeu-Olivares, 2004; Maydeu-Olivares & 

D’Zurilla, 1996). 

 We hypothesize that NPO has a causal effect on catastrophizing, and we are unsure as to 

whether PPO also has a causal effect (holding NPO constant) on catastrophizing. Research by 

D’Zurilla et al. (2011) suggests that the Big Five personality factors (e.g., Goldberg, 1993) may 

be suitable instruments (i.e., they may be strong predictors of positive and negative problem 

orientation). Consequently, to find out the causal effect of PPO and NPO on catastrophizing we 
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fitted an IVR model using the Big Five personality factors as instruments: Neuroticism (N), 

Extraversion (E), Openness to Experience (O), Agreeableness (A), and Conscientiousness (C).  

Catastrophizing was measured using the short version of the General Attitudes and 

Beliefs Scale (GABS-SV: Kirkby, Wertheim, & Birch, 2007), problem orientation was measured 

using the short version of the Social Problem Solving Inventory-Revised (SPSI-R: D’Zurilla, 

Nezu, & Maydeu-Olivares, 2002). Finally, the Big Five was measured using the NEO Five 

Factor Inventory (NEO-FFI: Costa & McCrae, 1992). Because the variables being modeled are 

sums of item scores, the unstandardized intercepts and slopes are not of particular interest. In this 

instance, it is common to make inferences on standardized parameters.  

The minimum eigenvalue of the TCD statistic when all five instruments are used is 23.59. 

This is larger than the critical value at the 5% level reported in Stock and Yogo's (2005) Table 1 

for px = 2 and pz = 5, 13.97. Thus, we can infer that our instruments are strong. The largest 

minimum eigenvalue of TCD across all combinations of four instruments was 23.59 for {N, O, A, 

C}, across all combinations of three instruments was 20.02. These results suggest using only {N, 

O, A, C} as instruments. For ML estimation, when all five instruments are used, we obtained X
2
 

= 4.04 (3), p = .26. We used the likelihood ratio test statistic for nested models to compare the fit 

of a IVR model with five instruments against a model in which all slopes for E were set to zero, 

obtaining 2

difX = 1.93 , difdf  = 1, p = .17. We conclude that E can be dropped as an instrument in 

this example. A path diagram of the resulting model is shown in Figure 6. We see in this figure 

that path diagrams of IVR models when there is more than one predictor x appear rather clogged 

and they are not very informative. IVR models are best described in words. The fitted model is 

catastrophizing on {PPO, NPO} on {N, O, A, C}, with correlated errors between catastrophizing 

and {PPO, NPO}, and correlated errors between PPO and NPO. 
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------------------------------------- 

Insert Figure 6 about here 

------------------------------------- 

We provide in Table 3 ML and 2SLS estimates for selected standardized parameters of 

this model, as well as goodness of fit results. Results are reported under normality assumptions, 

as differences with ADF results were negligible. We see in this Table that results do not differ 

much across estimators (ML vs. 2SLS).  

------------------------------------- 

Insert Table 3 about here 

------------------------------------- 

Plots of individual residuals did not suggest any violation of the linearity and 

homoscedastic assumptions; also, the chi square test failed to reject the model (see Table 3). 

Therefore, we can estimate the causal effects of problem orientation on catastrophizing in 

chronic pain patients. The interpretation of these causal effects is similar to that of standardized 

regression coefficients. For instance, we see in Table 3 that the ML standardized effect of 

Negative Problem Orientation (NPO) on catastrophizing (CATAS) is β =1.07 (SE = .17). In 

words, for one standard deviation increase in NPO we expect a 1.07 standard deviation increase 

in catastrophizing, holding Positive Problem Orientation fixed. If we add or remove predictors of 

catastrophizing, we should expect our estimate of the effect of NPO on CATAS to change, just 

as in regression. In addition, if we drop or add instruments, we should expect our estimate of the 

effect of NPO on CATAS to change, hopefully, not by much. Note that we will be able to 

recover our intercept and slopes parameters of interest even in the face of one of the described 
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threats to internal validity illustrated in Figure 2, as the IVR model is robust against these 

influences (see Bollen, 2012 for a complete discussion). 

It is of interest to compare the results obtained using the IVR model with those obtained 

from an ordinary regression analysis (see Table 3). As with the previous example, we see that 

IVR results are larger and less precise than the regression results. For instance, a 95% confidence 

interval for the standardized causal effect of CATAS on NPO is C[.74 ≤ β ≤ 1.41] = .95. In 

contrast, the interval for this effect under the basic regression model is C[.47 ≤ β ≤ .68] = .95. 

Since we have no evidence to reject the IVR model, we are reasonably confident in the causal 

inference drawn using this model. This is twice the size of the effect estimated using ordinary 

regression analysis, in standardized units. The wider confidence interval for the IVR results is 

due to the difference in magnitude of the standard errors estimated by regression (.06) and by the 

IVR model (.17). In our experience, standard errors of standardized parameters are often around 

1 N , where N denotes sample size (.08 in this case). The SEs from the ordinary regression 

model in our example are indeed around this magnitude. The SEs from the IVR model for the 

estimates of the instruments on predictors are around this magnitude. However, the SEs for the 

causal effects from the IVR model, as well as for the SEs for the covariances between predictors 

and the disturbance of the outcome, are twice the expected magnitude. The degree of inflation of 

SEs for the IVR slope estimates depends on the correlations between the instruments and the 

predictors: the larger the correlations, the smaller the SE inflation relative to regression results. 

------------------------------------- 

Insert Figure 6 and Table 3 about here 

------------------------------------- 
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In applications, it may be of interest to test whether the estimates obtained using the IVR 

model equal those obtained using regression. With ML estimation, this can be accomplished by 

fitting the IVR model setting the unstandardized parameters of interest (CATAS on PPO and 

NPO) equal to the regression estimates and performing a test for nested models. Setting CATAS 

on PPO equal to the regression value we obtain X
2
 = 2.79 (1), p = .10, and we conclude that we 

cannot reject the hypothesis that the regression and IVR estimates of CATAS on PPO are equal. 

For NPO, we obtain X
2
 = 9.41 (1), p < .001 and we conclude that the causal estimate of NPO on 

CATAS is larger than the regression estimate. We note that the correlation between NPO and 

catastrophizing disturbances under the IVR model is -.52 (SE = .10). 

The estimated R
2
 when predicting catastrophizing is .09 under the IVR model and .33 

using regression. Recall that we cannot make a causal inference on 2

yxR  under the IVR model. In 

fact, the 2

yxR  may be negative when the IVR model is used and should be reported as 

‘undefined’. The estimated 2

yxR  may be negative because this parameter is simply one minus the 

estimated standardized error variance of the outcome, which may be larger than one.  

Smaller standard errors, and therefore narrower confidence intervals, for the parameters 

of interest may be obtained by using a model more parsimonious than the IVR: correlated errors 

between y and x may be set to zero for some x, or some x on z paths may be set to zero. Fitting 

such models is straightforward using a SEM approach. However, imposing such exclusion 

constraints should always be based on substantive theory. Simply setting to zero non-significant 

parameters capitalizes on chance and should be avoided, unless a cross-validation sample of new 

observations is available to verify the resulting model. For this example, we lack theory to 

suggest which parameters of the IVR model may be set to zero. For illustrative purposes only, 

we set the correlated errors between CATAS and PPO to zero. Using ML, a similar model fit is 
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obtained as this parameter is not statistically significant. However, we obtain a narrower 

confidence interval for the standardized effect CATAS on NPO, C[.74 ≤ β ≤ 1.16] = .95, and a 

much narrower effect CATAS on PPO C[-.03 ≤ β ≤ .28] = .95 vs. C[-0.10 ≤ β ≤ 0.73] = .95 under 

the IVR model. Similarly, setting to zero instead PPO on A, PPO on O, and NPO on O results in 

a model with somewhat narrower confidence intervals for the parameters of interest (CATAS on 

PPO and NPO).  

Discussion 

Regression models are used to predict a quantitative variable from one or more 

predictors.
18

 They lie at the core of much research across all disciplines. Most importantly, 

regression models are often used to represent researchers’ causal assumptions about phenomena; 

that is, they are used as structural models. These assumptions arise from prior studies, the 

research design, and theory. Often, researchers do not explicitly lay out their causal assumptions; 

much less provide empirical support for them. Consider a regression model involving a single 

continuous predictor, x, of an outcome, y. The regression model is generally described by 

providing a justification for x having an impact on y, along with the sign (positive or negative) of 

the effect. Provided the justification is strong enough, this statement can be taken to be a causal 

assumption, even though, using the terminology of Bollen and Pearl (2013), it is a weak causal 

assumption, as it only puts forth a range of values for such an effect. For a regression model to 

be considered a structural model, all causal assumptions must be presented and defended, 

theoretically, empirically, or preferably both. 

In this paper, we have described a model that enables researchers to draw empirical 

support for causal inferences in regression models (y on x), even when data are observational. 

The model involves bringing in predictors (z, aka instruments) of the predictors in the target 
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regression model and fitting y on x, x on z, and y with x (i.e., the errors of y and x are correlated). 

This is the instrumental variables regression (IVR) model. When the IVR model cannot be 

rejected by the overall chi-square test of model fit, empirical support is obtained to draw causal 

inferences on y on x parameters. However, failure to reject the IVR model does not provide 

empirical support to draw causal inferences on x on z parameters, nor on y with x parameters, 

nor on the variance parameters of y nor x. The latter implies that causal inferences cannot be 

drawn on 2

yxR  , the percentage of variance of the outcome of interest explained by our predictors.  

 In technical terms, causal inferences can be drawn on a parameter if it can be consistently 

estimated when the fitted model is misspecified in certain ways. In other words, within a class of 

models, causal inferences can be drawn on a parameter i  if its value can be estimated in large 

samples regardless of the data generating mechanism. Whether or not causal inferences can be 

drawn depends on the data generating mechanism and the fitted model; not on the estimation 

method used. To draw causal inferences for the class of models considered in this paper, applied 

researchers can use either estimation methods that predominate in Econometrics (e.g., 2SLS) or 

simply use familiar estimators in structural equations modeling software programs; see Maydeu-

Olivares, Shi and Rosseel (2019) for a Monte-Carlo comparison of both approaches.  

The ML estimator described in the SEM literature is often referred to as full information 

ML (FIML) estimator in the Econometrics literature. In the case of complete data, and when the 

IVR model involves a single outcome variable y (as in the models considered in the paper), the 

ML/FIML estimator of the IVR model has a closed form solution (Anderson & Rubin, 1949, 

1950) and it is referred to in the Econometrics literature as limited information ML (LIML 

estimator) –see Davidson and MacKinnon(2004) for technical details. Thus, for the models 

considered here, the ML estimator used in SEM is referred to as LIML in Econometrics. Also, in 
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the Econometrics literature, standard errors and goodness of fit statistics obtained under ADF 

assumptions are referred to as robust to heteroscedasticity. In the SEM literature, they are 

referred to as robust to non-normality. ADF standard errors and goodness of fit tests are robust to 

departures from normality and homoscedasticity. Finally, what is referred to in the Econometrics 

literature as ‘tests for exclusion constraints’, or ‘test of overidentifying restrictions’, is the overall 

goodness of fit test statistic in SEM (i.e., the chi-square test).  

  An advantage of using SEM software is that it enables fitting the IVR model with 

correlated errors between y and z (i.e., a model with endogenous instruments) as depicted in 

Figure 7. The correlations between instruments and the errors of the outcome can be fixed to 

different values to perform a sensitivity analysis of the causal inferences. Alternatively, some of 

them can be estimated from data. Causal inferences can be drawn on y on x parameters when the 

IVR model with endogenous predictors is correctly specified. In addition, SEM software 

provides modification indices (e.g., Lagrange or score test statistics) for the correlated errors 

between y and z when the IVR model is fitted. When the IVR model is rejected by the overall 

chi-square test of model fit, these modification indices may be used to determine the source of 

misfit and correlated errors between y and z may be added to the IVR model. However, 

modification indices are uninformative when there is only one degree of freedom available for 

testing
19

. Finally, the use of a SEM framework enables using instrumental variable methods for 

structural equation models including latent variables (Bollen, 1996a, 1996b, 2001, 2018; Bollen, 

Kolenikov, & Bauldry, 2014; Kirby & Bollen, 2009), even when the observed variables are 

discrete (Bollen & Maydeu-Olivares, 2007; Jin & Cao, 2018; Nestler, 2013). 

------------------------------------- 

Insert Figure 7 about here 



INSTRUMENTAL VARIABLES REGRESSION 28 

------------------------------------- 

 The correlation between the errors of y and x plays an important role in the IVR model. If 

its value is zero the IVR parameter estimates will be equal to those obtained using two separate 

regressions (y on x, and x on z, Land, 1973). As the magnitude of the correlations between the 

residuals of y and x increases when fitting an IVR model, the y on x intercepts and slopes will 

depart from those obtained using a y on x regression at the expense of larger SEs. The inflation 

of the IVR SEs relative to those obtained in regression is governed by the magnitude of the 

correlations between the regression predictors, x, and the instruments, z (the larger the better).  

In closing, we believe that instrumental variable methods may be more valuable in 

psychological research that in economic research because relationships between variables in 

psychological research are generally strong. However, these methods have been underused in 

psychological research, perhaps because they were not well understood. We hope that our 

integration of instrumental variable regression methods within a SEM framework will enhance 

their use in psychological research and related fields. We expect and look forward to many more 

applications of these methods in psychological research.  
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Appendix 

Identifying potential instruments in path analysis models 

 Consider a path analysis model with p variables,   y y . We let cov( )  . The 

covariance structure implied by the model is  

    
1 1

0   
    I I . (1) 

Also, since  
1

 


 y I  

  
1

cov( )   


  y I .  (2) 

As a result, given a structural model, potential instruments z can be identified as variables that a) 

have non-zero covariances with x variables in (1), and b) have zero covariances with the 

disturbance of y in (2).  

 For the market share example, let y = {market share, innovation performance, innovation 

degree, customer loyalty, and market orientation}. According to Figure 4,  
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 
 
 











. (3) 

Potential instruments correspond to a) rows with non-zero entries in column 2 (the predictor x) in 

0 , and b) rows with zero entries in column 1 (the error term for the outcome y) in . Under the 

model, all variables are correlated (there are no zero entries in 0 ). Therefore, innovation 

degree, customer loyalty, and market orientation meet condition a). Also, for this model,  
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    
 



              

      

  

  



                   
 
            

       
 
      
 
     

 , (4) 

and innovation degree, customer loyalty, and market orientation (variables 3 to 5) have zero 

entries in column 1. Therefore, these variables also meet condition b) and they are potential 

instrumental variables under the model.  

The instrumental variables regression (IVR) model 

For ease of exposition, we assume that all variables are mean centered so that there is no 

mean structure (all means and intercepts are zero). Letting  , ,y   w x z , the IVR model can be 

written in matrix form as  
1

   


   w w I , and we denote the covariance matrix of the 

disturbances  by .  and  can be partitioned according to the partitioning of w as 

 

yx

xz



 

 
 

  
 
 

0 0

0 0

0 0 0

 , 

yy

xy xx

zz

  



 
 

  
 
 0 0

, (5) 

with implied covariance structure    
1 1

0   
    I I , which can be partitioned according 

to the partitioning of w as (1). There are no exclusion constraints (parameters set to zero) in any 

of the submatrices in (5); that is, the model assumes that all x and y errors are correlated, every x 

is determined by every z, and that all x determine y. 

Weak instruments 

The F statistic to predict x from z to assess the weakness of instruments can be written as 

 
2

2

1

1

xz z

xz z

R N p
F

R p

 



 , (6) 
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and it follows an F(pz, 1zN p  ) distribution. Notice that equation (6) reveals that whether the 

instruments are strong or weak depends on combination of the strength of the relationship 

between x and z (i.e., 2

xzR ), and sample size (N). 

 The Cragg and Donald (1993) statistic is 

 1/2 1/2ˆ ˆˆ ˆ ˆ
CD xx xz zz xz xxT N       . (7) 

Under normality assumptions, the trace of the Cragg and Donald statistic is the Wald statistic for 

testing that there is no relationship between x and z, i.e., for testing xz  0 . The Wald statistic 

follows in large samples a chi-square distribution with degrees of freedom equal to the 

parameters in zv . When there is only a single predictor x, the Wald statistic (7) is related to the 

F statistic (6) as follows: 

 
( 1)z CD

z

N p T
F

p N

 
  . (8) 

Standardized parameters  

The standardized slopes and standardized variance/covariance parameters of the IVR 

model, *  and * , are obtained from the unstandardized parameters using 

 * 1   D D  , * D D , (9) 

where  
1

2

0diag( )D . Using (9), we can verify as we did with the unstandardized parameters 

presented in Table 1 that by fitting the IVR model we obtain the standardized slopes y on x when 

the data mechanism is reverse causation, reciprocal causation, or includes omitted variables. 

Therefore, we can make causal inferences on standardized slopes as well. 
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Footnotes 

1
 The 2SLS estimation procedure and statistical theory to obtain SEs for parameter estimates is in 

many ways analogous to procedures used to estimate polychoric correlations and their SEs (see 

Maydeu-Olivares, 2006).  

2
 All technical materials are provided in the Appendix. Also, the mean structure is not discussed: 

We assume the regression intercepts are not of interest as it improves readability. 

3
 Since 

.11 1.11e  , recall that market share is in logs. The log transformation converts a 

multiplicative model into a linear one. Further details on the rationale, use and interpretation of 

logarithmic transformations in regression models can be found in Wooldridge (2013, pp. 43-44) 

and Jöreskog, Olsson and Wallentin (2016, p. 55) 

4
 Consider for instance that the reverse causation model in Figure 2a is the data generating 

mechanism. Under this DGM, the true parameter of interest, yx , equals zero. However, if we fit 

our target model to data generated using the reverse causation DGM we will not estimate 0yx 

. Rather, we will be estimating 
2

xy yy

yx

xy yy xx

 
 

   

% %

% % %
 , with  varyy y  %  and  varxx xx  % , 

where tildes denote the parameters of the DGM. To see this, we recall that the target model (y on 

x) and the reverse causation model (x on y) are equivalent. Then, we gather the parameters in the 

reverse causation model in the vector  ,xy yy xx    % % % %  , and the parameters of our target model 

in the vector  ,yx yy xx     . We write the covariance structures implied by each model, 

( )   and ( ) % , set them equal, ( ) ( )    % , and solve for   as a function of %. 

 



INSTRUMENTAL VARIABLES REGRESSION 42 

 
5
 As before, we write the covariance structures implied by each model, ( )   and ( ) % , set them 

equal, ( ) ( )    % , and solve for   as a function of %. 

6
 The model in Figure 3a is a special case of the model in Figure 3b. Models in Figures 3a to 3c 

are a special case of the model in Figure 3d. 

7
 We also assume that the y on x relationship is consistent across levels of x (yx does not change 

for different levels of z), and that the x on z relationships are consistent across levels of z. Within 

a frequentist framework, these assumptions are not testable and can only be supported 

theoretically. 

8
 These variables were obtained by summing the responses by each company’s senior executive 

to sets of items measuring these attributes. Therefore, they are also self-reported measures on 

these attributes. 

9
 2SLS estimation of the IVR model is a misnomer, as estimating all the parameters of the model 

requires three stages. In the first stage, one estimates the parameters involved in the x on z 

regression using only the x and z variables. In the second stage, the slopes of y on x are estimated 

from the covariances between z and y, holding the parameters estimated in the first stage fixed. 

Finally, in the third stage, the error variance of y and the covariances between the errors of y and 

x are estimated from the sample variance of y and the sample covariances between x and y, 

respectively, holding the first and second stage estimates fixed. Software implementation of 

2SLS focuses on the second stage estimation results: the y on x estimates. Often, third stage 

results are not reported. Some programs do not report first stage estimates either. Standard errors 

for 2SLS can be obtained under normality assumptions or robust to non-normality (under ADF 

assumptions). The overall goodness of fit of the model can be tested using either Sargan’s (1958) 
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test statistic or the J test proposed by Hansen (1982), under normality or ADF assumptions, 

respectively.  

10
 This is (N – 1)/N times the sample covariance matrix, where N denotes sample size. 

11
 The ADF assumptions are that the observations are independently and identically distributed 

with finite first eight order moments.  

12
 This test statistic is sometimes referred to the literature as TB and should not be confused with 

another test statistic proposed by Browne (1982, 1984) obtained as the minimum of of the 

weighted least squares under ADF assumptions. The latter is only asymptotically chi-square for 

that specific fit function. 

13
 When Browne’s test statistic is used to assess the fit of the IVR model under normality 

assumptions using the 2SLS estimates, it reduces to Sargan’s statistic. When Browne’s statistic is 

computed under ADF assumptions using the 2SLS estimates, it reduces to the J statistic.  

14
 In small samples, the mean and variance correction provides more accurate p-values (Maydeu-

Olivares, 2017).  

15
 Degrees of freedom are pz and N – pz – 1. 

16
 Although the fit of the model when only one instrument is used cannot be tested, since in this 

case we could not reject the IVR model when two instruments were used, we could safely use a 

model with just one instrument. In fact, when only the best instrument (innovation degree) is 

used  (and its SE) equal the values reported in Table 2 (with 2 digit precision).  

17
 Strictly speaking, and as in any other SEM model, if the overall test statistic fails to reject the 

model, and if the residual graphs fail to reveal any model misspecification, all that can be 
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concluded is that we do not have empirical evidence to reject the conclusions drawn using the 

model. This does not necessarily mean that the inferences are correct. 

18
 Dummy variables can also be included as predictors in a regression model. 

19
 When there is only one degree of freedom, modification indices for all free parameters are of 

the same magnitude and similar to the magnitude of the chi-square statistic to assess overall 

model fit. In this case, standardized residual covariances (Maydeu-Olivares & Shi, 2017) are 

more useful than modification indices. Further research is needed on this topic. 



 

Table 1 

IVR population parameters obtained for different data generating mechanisms 

 Data generating mechanisms 

IVR 

parameters 

(Figure 

1b) 

Reverse 

causation 

(Figure 3a) 

Reciprocal 

causation 

(Figure 3b) 

Omitted 

variables 

(Figure 3c) 

 

Omitted variables and reciprocal causation 

(Figure 3d) 

yx  0yx %  
yx%  

yx%  
yx%  

yy  yy%  yy%  2

yz zz yy  % % %  2

yz zz yy  % % %  

1xz  
1xz%  1

1

zv

yx xy



 

%

% %
 

1xz%  1

1

zv

yx xy



 

%

% %
 

2xz  
2xz%  2

1

zv

yx xy



 

%

% %
 

2xz%  2

1

zv

yx xy



 

%

% %
 

yx  
xy yy % %  

1

xy yy

yx xy

 

 

% %

% %
 

yv zv vv  % % %  

2

1

xy yv vv yv zv vv xxy yy

yx xy

       

 

% % % % %% % %

% %
 

xx  2

xy yy xx  % % %  
 

2

2

1

xy yy xx

yx xy

  

 

% % %

% %
 2

zv vv xx  % % %  
 

 

2 2 2

2

2

1

zv vv xx xy yv vv yy xy yv zv vv

yx xy

             

 

% % % % % %% % % % %

% %
 

1 1z z  
1 1z z%  

1 1z z%  
1 1z z%  

1 1z z%  

2 1z z  
2 1z z%  

2 1z z%  
2 1z z%  

2 1z z%  

2 2z z  
2 2z z%  

2 2z z%  
2 2z z%  

2 2z z%  

 

Note: the parameters of the data generating mechanisms of Figure 3 are denoted in this table by 

% and the estimated population IVR parameters by  .   is obtained by setting ( ) ( )    %  and 

solving for  . 
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Table 2 

ML and 2SLS estimates, standard errors, and goodness of fit test for the IVR model applied to 

the market share and innovation performance example 

IVR 

parameters 

(Figure 1b) 

 ML   2SLS  

est NT SE ADF SE est NT SE ADF SE 

yx  0.20 0.03 0.04 0.20 0.03 0.04 

1yz  0.13 0.03 0.04 0.13 0.03 0.04 

2yz  0.77 0.13 0.13 0.78 0.14 0.15 

yy  1.62 0.26 0.37 1.62 0.26 0.37 

yx  -2.38 0.68 0.93 -2.38 0.68 0.93 

xx  14.36 1.84 2.59 14.36 1.84 2.58 

1 1z z  175.66 22.49 22.39 175.66 22.49 22.32 

2 1z z  21.27 3.98 3.64 21.27 3.98 3.62 

2 2z z  8.43 1.08 1.00 8.43 1.08 0.99 

2

yxR   .06 - - .06 - - 

2

xvR  .46 - - .46 - - 

 

Goodness of fit test (df = 1) 

ML 2SLS 

NT ADF NT ADF 

X
2
 p X

2
 p X

2
 p X

2
 p 

.01 .91 .01 .92 .01 .91 .01 .92 

 

Notes: NT = results under normality, ADF = results robust to non-normality and 

heteroscedasticity. The ML X
2
 is the likelihood ratio (LR) statistic (NT) and the mean and 

variance corrected LR statistic (ADF). The 2SLS X
2 

is Sargan’s statistic (NT), and the J statistic 

(ADF). Both are algebraically equal to Browne’s test statistic based on residual covariances. 
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Table 3 

Standardized ML and 2SLS estimates, standard errors, and goodness of fit tests for the IVR 

model applied to the catastrophizing and problem orientation example. Regression estimates 

also provided for comparison 

 
ML 2SLS regression 

est SE est SE est SE 

CATAS  PPO 0.32 0.21 0.28 0.20 <0.01 0.07 

CATAS  NPO 1.07 0.17 1.03 0.16 0.58 0.06 

PPO  N -0.05 0.07 -0.05 0.07   

PPO  O 0.19 0.06 0.18 0.06   

PPO  A -0.01 0.06 -0.01 0.06   

PPO  C 0.48 0.07 0.48 0.07   

NPO  N 0.46 0.06 0.47 0.06   

NPO  O -0.01 0.05 -0.05 0.06   

NPO  A 0.16 0.05 0.17 0.06   

NPO  C -0.27 0.06 -0.24 0.07   

CATAS  PPO -0.19 0.17 -0.13 0.14   

CATAS  NPO -0.52 0.10 -0.36 0.12   

PPO  NPO -0.11 0.08 -0.07 0.05   

R
2
 (CATAS) 0.09 - 0.14 - 0.33 - 

R
2
 (PPO) 0.31 - 0.31 -   

R
2
 (NPO) 0.39 - 0.39 -   

 

Goodness of fit test (df = 2) 

ML 2SLS 

X
2
 p X

2
 p 

2.11 0.35 2.15 0.34 

 

Note: Results under normality. CATAS = catastrophizing, PPO = positive problem orientation, 

NPO = negative problem orientation, N = Neuroticism, O = Openness to experience, A = 

Agreeableness, C = Conscientiousness. The ML X
2
 is the likelihood ratio (LR) statistic (NT). 

The 2SLS X
2
 is Sargan’s statistic (NT), algebraically equal to Browne’s test statistic based on 

residual covariances. 
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Figure 1 

Instrumental variables regression (IVR) model that enables drawing causal inferences on the 

target model 

 

a) Target model 

 

 

b) Instrumental variables regression (IVR) model 
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Figure 2 

Threats to the validity of causal inferences drawn on the target model (competing data generating mechanisms) 

a) Reverse causation b) Reciprocal causation 

  

 

c) Omitted variables 

 

d) Correlated errors 
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Figure 3 

Competing data generating mechanisms to the IVR model obtained by incorporating predictors of x to the models of Figure 2 

a) Reverse causation b) Reciprocal causation 

  

c) Omitted variables d) Reciprocal causation and omitted variables 

  

 

xy
yx

z1

z2

xz2


xz1

1

2

x y

xy

yx

z1

z2

xz2


xz1

yx

1

2

x y

v

v


xv  y

v

yx

z1

z2

xz2


xz1

yx

1

2

x y

v

v


xv  y

v

yx

z1

z2

xz2


xz1

yx

1

2

x y

xy



INSTRUMENTAL VARIABLES REGRESSION 51 

Figure 4 

A theoretical model of the relationship between market share and innovation performance 

 

a) Original model 

 

 

b) Model if customer loyalty is not available for analysis 
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Figure 5 

Residual scatterplots to assess linearity and homoscedasticity 

(a) residual of ln(y) vs. ·ln( )y   (b) residual of y vs. ŷ  
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Figure 6 

An instrumental variables regression model of causal effects of problem solving orientation on 

catastrophizing 

 

 

 

Note: Catas = catastrophizing, PPO = positive problem orientation, NPO = negative problem 

orientation, N = Neuroticism, O = Openness to experience, A = Agreeableness, C = 

Conscientiousness  
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Figure 7 

The instrumental variables regression (IVR) model with endogenous instruments 

 

 

 

 

Note: This model is not identified as df = –1. In general, with px = number of predictors x, pz = 

number of instrumental variables z, at most pz – px correlations between z and y disturbances can 

be estimated. 
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