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Abstract: In recent years, different deep learning techniques were applied to segment aerial and
satellite images. Nevertheless, state of the art techniques for land cover segmentation does not
provide accurate results to be used in real applications. This is a problem faced by institutions and
companies that want to replace time-consuming and exhausting human work with AI technology.
In this work, we propose a method that combines deep learning with a human-in-the-loop strategy to
achieve expert-level results at a low cost. We use a neural network to segment the images. In parallel,
another network is used to measure uncertainty for predicted pixels. Finally, we combine these
neural networks with a human-in-the-loop approach to produce correct predictions as if developed
by human photointerpreters. Applying this methodology shows that we can increase the accuracy of
land cover segmentation tasks while decreasing human intervention.

Keywords: deep learning; human-in-the-loop; land cover segmentation

1. Introduction

Public cartographic institutions such as the Cartographic and Geological Institute of Catalonia
explore how to substitute their strenuous and time-consuming manual tasks for automated
processes. To do so, current accuracy in automatic land cover segmentation requires to be improved.
These institutions work with images provided by sensors mounted on airplanes, helicopters,
and satellite images, which we deal with in this paper.

Since 1959, when the US Explorer 6 made the first satellite image of the earth, many other satellites
were placed into orbit to photograph our planet, allowing us to study natural disasters, the evolution
of climate change, water resources, or land surfaces. Current satellites, such as Sentinel-2, use sensors
to provide large images with a resolution of up to 10 m and different spectral bands. For example,
a Sentinel-2 image from Spain (505,990 km2) would be, roughly, 70,000 × 70,000 pixels for each of its
13 bands. As sensors technology improves over time, images are becoming better in spectral quality
and resolution.

Land covers are used in different realms such as forestry for inventory area estimates [1],
hydrology regarding microclimatic variables [2], agriculture to improve irrigation [3] or geology in
geological hazard, risk identification, and assessment [4], among others.These land covers are provided
by institutions that invest time and human resources to fulfill the costly task of producing them.
Therefore, knowledge and updated data about land dynamics are essential for territory management
with different purposes and multiple fields. Land covers and land classification is one of the main uses
of satellite images and the focus of this work.

In cartographic institutions, due to the legal and administrative consequences of their evaluations,
land classification is still done manually employing photointerpretation techniques, entailing very
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high costs in terms of time and human resources. Therefore, cartographic institutes are endeavoring to
transit from manual land classification to automation. The transformation towards an automatic
solution tends to face a critical point: the low availability of high-resolution land images.
However, the new Sentinel-1 and Sentinel-2 missions of the European Spatial Agency, under the
Copernicus project, brought about a new paradigm. In the case of multi-spectral sensors, the 2A and
2B satellites provide up to 10-meter pixel resolution every five days. The availability of this detailed
information generates the option to explore different artificial intelligence techniques and to exploit all
these data.

Deep learning [5] was widely applied to classify aerial and satellite images at the pixel level [6].
In this regard, the results corresponding to different kinds of architectures are diverse in terms of
accuracy. The acceptable accuracy for this kind of land cover segmentation applications was set by
the Cartographic and Geological Institute of Catalonia at a minimum of 90%. Therefore, the work we
present aimed to improve the accuracy of the state of the art results to reach the requested standards.

In this paper, we propose to combine deep learning techniques with human expertise to have
an acceptable land cover segmentation, reducing the amount of human time dramatically. To do so,
we combined two parallel neural networks, the first one used to classify each pixel, and the second
one to determine the confidence of each pixel classification. Next, a committee of experts will decide
which amount of the uncertain pixels will be sent to the human photointerpreters who will establish
the accuracy/human effort trade-off. Therefore our methodology incorporates a human-in-the-loop
approach , where depending on the threshold in the clustering operation, we will reach a different level
of accuracy in the final prediction (see Figure 1). This research’s main contribution is the development
of a combined method of Deep Learning techniques for land cover segmentation and human in the
loop, which improves the state of the art accuracy. Furthermore, the method reduces the time and
human resources required to carry out this task.
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Uncertainty Clusters To human Final
prediction

UNET

Confid
NET

Different threshold

Figure 1. Overview of the proposed method.

2. Related Work

Most aerial and satellite imagery datasets are designed to evaluate the classification problem [7],
where each image, or patch, is labeled only with one class. Therefore, segmentation-based datasets,
where a class represents each pixel, are scarce. An analysis of related work on semantic segmentation
for aerial [8] and satellite [9] images show two key features: small datasets with few classes or big
datasets without reliable labeling.

These datasets are usually formed by compiling a set of images from a minimal area, such as a
university campus (Pavia University dataset), a small area from an agricultural region in California
(Salinas Valley dataset) or a zone in North-western Indiana containing agricultural and forest territories
(Indian Pines dataset).

The three datasets mentioned above are the most used for hyperspectral segmentation. In Table 1,
we summarized the best scores obtained from different authors [10] for those particular datasets.
At first glance, results show high accuracy, although a more in-depth analysis reveals two key aspects:
there are few classes, and the scene is tiny.
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Table 1. Benchmark for classical datasets for hyperspectral segmentation.

Dataset Size (Pixels) Classes Average Accuracy (%)

Salinas Valley 512 × 217 16 99.33
Pavia Centre 1096 × 1096 9 99.61
Indian Pines 145 × 145 16 98.46

We are not aware of bigger datasets except for the SEN12MS dataset, which consists of
180, 662 patches with Sentinel-1 and Sentinel-2 data. The labeling of this dataset is based on MODIS
(Moderate Resolution Imaging Spectroradiometer, an on-board sensor of the Terra satellite, which
provides automatic land cover labeling. Although ground truth is not based on human labeling,
it is revised frequently and assures an accuracy higher than 81% for land uses). In this study,
average accuracy peaked at 43.6% [11], showing a clear difference concerning smaller datasets.

Drawing upon an analysis of related work, we argue that small datasets are relevant from
an academic point of view, but if we want to apply new techniques to legal binding land cover
classification, state of the art results have to be improved. To reach better results on segmentation,
we propose developing a new deep learning methodology with a human-in-the-loop approach.

3. Proposed Method

Current segmentation accuracy for real applications using automatic techniques, as shown in
the previous section, is not acceptable for a cartographic institution to produce their land covers.
We address this issue by proposing a methodology that can be useful to improve segmentation
accuracy in large datasets.

3.1. Segmentation

One of the most used networks in segmentation tasks is the UNET deep network. This architecture
consists of a contracting path to capture contact and a symmetric expanding path that enables precise
localization [12]. The internal part of the UNET consists of an encoder-shaped Resnet18 and a
decoder-shaped symmetric Resnet18, which allows an increase of the number of inner layers without
losing prediction performance [13]. In its origin, it was designed to work with RGB images (3 channels),
but, in our case, we should adapt the input of the encoder to as many channels as our sensors
provide [14].

We propose to measure our model’s performance using the cross-entropy loss function [15],
comparing our predictions with the labeled segmentation. For this purpose, Adam optimizer [16] was
used to update the weights of the model.

The representation of the complete model is illustrated in Figure 2, where we can see the input
image (ten spectral channels from Sentinel-2) entering the encoder, passing through the bottleneck to
then being expanded again into the decoder. All the intermediate connections are used to preserve
the resolution of the original image. Finally, the softmax function will return the most probable class,
which will be compared with the ground truth to update the model’s weights in the training process.
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Figure 2. UNET architecture with Sentinel-2 10 bands as input.
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3.2. Uncertainty Detection

Corbière et al. [17] pointed out that correct and incorrect predictions correlate in terms of
uncertainty when using softmax, meaning that many of the incorrectly predicted images were
misclassified with high confidence values. To redirect that issue, they propose to use a confidence
network, ConfidNet. In Figure 3 we reproduced this behavior for our dataset. As we can see,
wrong predictions decreased in high confident samples.
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Figure 2. UNET architecture with Sentinel-2 10 bands as input.
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Figure 3. Output confidence using softmax (left) and using ConfidNet (right). In the second scenario,
wrong predictions with high confidence are minimized.

Fig. 4 shows the change in the intersection area of wrong and correct predictions. Top 60% certain
pixels using ConfidNet are better classified than the top 60% using softmax.

ConfidNet takes as input the last decoder layer of the UNET (just before the softmax function),
applies a convolutional neural network, and finally, a sigmoid function. The objective is to output an
image with values between 0 and 1, where small values mean high uncertainty and vice versa. This
convolutional neural network comprises five layers with kernel size at 3 × 3 and 400, 120, 64, 64, 1 as
output layers.

If we want to do a robust human-in-the-loop procedure, we cannot rely on the largest softmax
probability because we would misclassify many examples with high confidence. In that case, we will
use ConfidNet, which will be used together with the UNET to provide us with the uncertainty for each
classified pixel.

To train the confidence network, we first compute the segmentation output of the UNET prediction
and label as one those that were correctly predicted and as zero those that were incorrectly predicted.
Then, binary cross-entropy loss [15] is used to train the confidence network. It is important to remark
that we should freeze the encoder, bottleneck, and decoder layers of the UNET because we want
the predictions to remain the same, as our purpose is to improve is the confidence of the model. A
simplified scheme of this architecture can be found in Fig. 5.

3.3. Human-in-the-loop

Once the model is trained, and segmentation of an image tested, two outputs are predicted: One,
a segmented image where each pixel labeled with its most probable class (a value between 0 and the
total number of classes minus 1). Two, an image where each pixel will have a value between 0 and 1

Figure 3. Output confidence using softmax (left) and using ConfidNet (right). In the second scenario,
wrong predictions with high confidence are minimized.

Confidnet is a neural network built on top of a UNET neural network, benefiting from its latent
features. We do not intend to improve the model’s accuracy; what we want to do is to score the
predictions with a confidence value.

Figure 4 shows the change in the intersection area of wrong and correct predictions. Top 60%
certain pixels using ConfidNet are better classified than the top 60% using softmax.

ConfidNet takes as input the last decoder layer of the UNET (just before the softmax function),
applies a convolutional neural network, and finally, a sigmoid function. The objective is to output
an image with values between 0 and 1, where small values mean high uncertainty and vice versa.
This convolutional neural network comprises five layers with kernel size at 3 × 3 and 400, 120, 64, 64,
1 as output layers.

If we want to do a robust human-in-the-loop procedure, we cannot rely on the largest softmax
probability because we would misclassify many examples with high confidence. In that case, we will
use ConfidNet, which will be used together with the UNET to provide us with the uncertainty for each
classified pixel.

To train the confidence network, we first compute the segmentation output of the UNET prediction
and label as one those that were correctly predicted and as zero those that were incorrectly predicted.
Then, binary cross-entropy loss [15] is used to train the confidence network. It is important to remark
that we should freeze the encoder, bottleneck, and decoder layers of the UNET because we want
the predictions to remain the same, as our purpose is to improve is the confidence of the model.
A simplified scheme of this architecture can be found in Figure 5.
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Sentinel2 Groundtruth

Accuracy: 0.73%

Prediction Uncertainty

Accuracy: 0.80%

Human Correction

Accuracy: 0.47% Accuracy: 0.75%

Accuracy: 0.73% Accuracy: 0.79%

Accuracy: 0.49% Accuracy: 0.64%

Accuracy: 0.31% Accuracy: 0.88%

Figure 4. Intersection in confidence between wrong and correct predictions using softmax and
ConfidNet (the lower, the better).
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Figure 5. ConfidNet architecture.

3.3. Human-in-the-Loop

Once the model is trained, and segmentation of an image tested, two outputs are predicted:
One, a segmented image where each pixel labeled with its most probable class (a value between 0 and
the total number of classes minus 1). Two, an image where each pixel will have a value between 0 and
1 (high and low uncertainty). At this point, we propose to incorporate a human-in-the-loop approach
to boost the results.

This approach requires an expert committee to analyze the prediction of the neuronal network.
After the evaluation, the experts will decide the uncertainty threshold. To do so, they will have to
assume the trade-off between the accuracy and the human resources allocated and spent on the task.
Once the threshold is set, the complete map predicted by the UNET, with the uncertainty zones below
the threshold highlighted, will be sent to the photo interpreters to be revised and corrected if needed.
For instance, if the required human effort is set as a 10% of work that would be needed to produce
the land cover without automatic methods, 10% of the most uncertain pixels will be sent to the photo
interpreters, and 90% will remain as predicted by the network. We propose having a final segmented
image done between the presented neural network (UNET) and the photo interpreters.

4. Experimental Results

4.1. Data

The experiments draw upon images obtained by the MSI sensor from the Sentinel-2A and 2B
satellites in April 2019. The images obtained from the European Commission Copernicus program
were atmospherically corrected using the ESA sen2cor v2.8 software [18] using a 10 m gridded DEM
(Digital Elevation Model) generated by Cartographic and Geological Institute of Catalonia from
photogrammetric aerial imagery. We cropped a total area of 30,000 × 30,000 pixels that contains
the region of Catalonia (Spain). We worked with the following Sentinel-2 bands: 2,3,4 for RGB
region; 5,6,7 for the vegetation red edge region; 8,8A for the near-infrared region and 11,12 for the
short-wave infrared. Bands 1, 9 and 10 were rejected as they do not provide spectral information for
our purpose. All bands were equally converted to the same resolution of 10 m (30 m bands were
bilinearly interpolated at 10 m resolution). These images are divided into smaller patches of size
224 × 224 pixels. Sentinel-2 data was scaled down by a factor of 10,000, and clipped between 0 and 1,
being 0 the minimal reflectivity and 1 the maximum. All data is normalized between 0 and 1.
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The ground truth dataset (This dataset, provided by the ICGC, can be found by using the following
Web Map Service address: https://geoserveis.icgc.cat/servei/catalunya/cobertes-sol/wms?) contains
41 different classes, such as herbaceous crops, deciduous forests or lakes and lagoons. Two of those
(beach and sea) were deleted due to the small representation in the dataset. The 39 classes to classify
can be found in Table 2. It is relevant to note that classes are highly unbalanced. Some classes are
over-represented such as “herbaceous crops”, while others such as “crops in transformation” are scarce.
We decided not to do weighted training because, in segmented-based cases, it is complicated to achieve
an accurate weight calibration.

Table 2. 39 Possible classes for the ICGC land cover dataset. The color tag allows class identification in
the figures of this paper.

Agricultural Area Urban Area
0 Herbaceous crops 19 Urban area

1 Orchard 20 "Eixample"

2 Vineyards 21 Lax urban areas

3 Olive groves 22 Isolated buildings

4 Other woody crops 23 Isolated residential areas

5 Crops in transformation 24 Green areas

Forestal area 25 Industrial or commercial
6 Dense coniferous forests 26 Sports and leisure areas

7 Dense deciduous forests 27 Mining or landfills

8 Dense forests of sclerophylls 28 Areas in transformation

9 Scrub 29 Road network
10 Coniferous forests 30 Urban bare floor
11 Deciduous forests 31 Airport areas

12 Forests of sclerophylls 32 Rail network

13 Meadows and grasslands Water mass

14 Shore forest 33 Reservoirs
15 Bare forest soil 34 Lakes and lagoons

16 Burned areas 35 Water courses
17 Rocky 36 Rafts

18 Wet areas 37 Artificial channels
38 Sea

4.2. Evaluation Metrics

We trained the UNET model with 10 channels from Sentinel-2 as input for 250 epochs with a
batch size of 64 images for training and 32 images for validation. After predicting the segmentation for
all territory in a test region, we obtain the confusion matrix shown in Figure 6. Most of the confusions
are among classes of the same four super-classes. Next, we froze all UNET weights, connected the
ConfidNet, and trained it for 20 epochs with a batch size of 64 images.

To evaluate the results, we calculate the global accuracy concerning the fraction of pixels sent to the
photo interpreters (Figure 7). To do so, we calculate how many pixels are in each range of uncertainty
and how global accuracy improves as long as we send more pixels to the photo interpreters. In our
case, sending half of the pixels to the photo interpreters assures a global accuracy of 90%. To simulate
the experts’ labeling, we assume that the labels reviewed are correct (i.e., the same as the label in the
ground truth). This assumption is made of the staff’s inputs that work on land covers production as
this is a collaborative research. The experiments presented are based on a database of 900 million pixels
(surface of Catalonia, Spain). Considering the database we work with, it was out of the project’s scope
in which this paper is based on using humans to evaluate the performance. Human validation would

https://geoserveis.icgc.cat/servei/catalunya/cobertes-sol/wms?


Remote Sens. 2020, 12, 3836 8 of 14

require months of photointerpreters devoted to labeling the image’s polygons, and even incorporating
the expert’s variability would not provide an exact measure for the method. Thus, we decided to
validate the technique based on a data set verified by quality controls, and therefore it can be considered
a good approximation to reality.
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Figure 6. Confusion matrix of the validation set for the ICGC dataset, normalized over the true labels.
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Figure 7. Global accuracy evolution depending on the number of pixels sent to the photointerpreter.

Figure 8 provides an example with all inputs and outputs, where we can see the satellite
image, the ground truth, the prediction, the uncertainty by the CondidNet and the softmax output
(where red color indicates high uncertainty). If we compare the ConfidNet uncertainty with the
softmax output of the UNET network for each class in a qualitative manner, the ConfidNet provides
a more detailed uncertainty illustration. Softmax generates a blurred image that makes it harder
to differentiate uncertain zones. Paying attention to the outputs of the ConfidNet, a clear example
of incorrect classification is the road at the top of the image, which appears as highly uncertain.
This is the kind of zone that will be sent to the photo interpreters to be corrected, incorporating a
human-in-the-loop approach.
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Sentinel2 Groundtruth Prediction Uncertainty Softmax

Figure 8. Uncertainty and softmax qualitative comparison.

Figure 9 reports the accuracy evolution for each class in the ConfidNet and the softmax.
The 39 classes are located in the axis Y, and the axis X indicates the number of pixels sent to the
photo interpreters. The color bar indicates the accuracy for each class; dark means low accuracy and
light high accuracy. To obtain similar accuracy values in both cases, we have to send more pixels to the
photointerpreter using softmax than using ConfidNet. For instance, in the case of class 35 more than
50% of total pixels are required to be sent for the softmax, while for ConfidNet a 40%.
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Figure 9. Uncertainty and softmax quantitative comparison per class. Red line indicates all classes
with an accuracy of at least 90%.
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4.3. Qualitative Results

To generate a more realistic product for the photointerpreters work, a polygon mask was created
from uncertainty outputs (Figure 10). Please note that these outputs provide pixel-by-pixel information
about the prediction quality, which would be very difficult to analyze by photo interpreters. For this
reason, an external algorithm was applied to transform pixel-by-pixel information into polygons,
since they are more useful in terms of interpretation. For this purpose, all pixels under a certain
threshold were selected (those pixels with low prediction quality) and were grouped in different
clusters, applying the DBSCAN clustering method [19], which takes into account a maximum distance
between neighbor points and the minimum points required to build up a polygon.

Threshold Clusterize Convex hull

Figure 10. Creation of the polygon mask for the photo interpreters.

Our method makes the photo interpreters work easier by transforming isolated low-quality pixels
into a set of polygons.

Overall, the complete human-in-the-loop process is illustrated in Figure 11. First, the original
Sentinel-2 image. Next, the prediction made by the UNET neural network. In third place, the uncertainty
output made by the ConfidNet and post-produced to obtain the convex clusters. Finally, the prediction
corrected by a human photointerpreter considering uncertain regions lower than 20%. We also present
the results when the global accuracy has to be of the order of 90% using an uncertainty threshold of
0.45, as can be seen in Figure 12.
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Sentinel2 Groundtruth

Accuracy: 0.73%

Prediction Uncertainty

Accuracy: 0.80%

Human Correction

Accuracy: 0.47% Accuracy: 0.75%

Accuracy: 0.73% Accuracy: 0.79%

Accuracy: 0.49% Accuracy: 0.64%

Accuracy: 0.31% Accuracy: 0.88%

Figure 11. Some results of our human-in-the-loop methodology to segment satellite images. RGB
bands represent Sentinel-2 images in the first column.
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Sentinel2 Groundtruth

Accuracy: 0.64%

Prediction Uncertainty

Accuracy: 0.90%

Human Correction

Accuracy: 0.77% Accuracy: 0.93%

Accuracy: 0.40% Accuracy: 0.90%

Accuracy: 0.84% Accuracy: 0.93%

Accuracy: 0.80% Accuracy: 0.93%

Figure 12. Our human-in-the-loop methodology assumes an uncertainty threshold of 0.45 to reach an
accuracy of 90%.

5. Conclusions

We present a human-in-the-loop deep learning methodology to outfit the results in satellite cover
land segmentation, aiming to improve current techniques that are not reaching acceptable results for
real-world applications in large datasets. We propose to combine artificial intelligence and photo
interpreters’ work. Two neural networks in parallel are used: a UNET that predicts each pixel and
a ConfidNet that outputs the prediction confidence. Following our methodology, areas with low
confidence are sent to the photo interpreters to be reviewed and corrected if needed, and areas with
high confidence will remain with the UNET prediction.
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The proposed methodology reaches a 90% accuracy, reduces to half the human effort, and establishes
a methodology for land cover segmentation. Our code will be opened to the scientific community.
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