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Abstract

Undifferentiated solid tumors with small blue round cell histology and expression of CD99 mostly 

resemble Ewing sarcoma, however, also may include other tumors such as mesenchymal 

chondrosarcoma, synovial sarcoma or small cell osteosarcoma. Definitive classification usually 

requires detection of entity-specific mutations. While this approach identifies the majority of 

Ewing sarcomas, a subset of lesions remains unclassified and, therefore, has been termed “Ewing-

like sarcomas” or small blue round cell tumors not otherwise specified. We developed an approach 

for further characterization of small blue round cell tumors not otherwise specified using an array-

based DNA-methylation profiling approach. Data were analyzed by unsupervised clustering and t-

distributed stochastic neighbor embedding analysis and compared with a reference methylation 

data set of 460 well-characterized prototypical sarcomas encompassing 18 subtypes. Verification 

was performed by additional FISH-analyses, RNA-sequencing from formalin-fixed paraffin-

embedded material or immunohistochemical marker analyses. In a cohort of more than 1,000 

tumors assumed to represent Ewing sarcomas, 30 failed to exhibit the typical EWS translocation. 

These tumors were subjected to methylation profiling and could be assigned to Ewing sarcoma in 

14 (47%), to small blue round cell tumors with CIC alteration in 6 (20%), to small blue round cell 

tumors with BCOR alteration in 4 (13%), to synovial sarcoma and to malignant rhabdoid tumor in 

2 cases each. One single case each was allotted to mesenchymal chondrosarcoma and 

adamantinoma. 12/14 tumors classified as Ewing sarcoma could be verified by demonstrating 

either a canonical EWS translocation evading initial testing, by identifying rare breakpoints or 

fusion partners. The methylation based assignment of the remaining small blue round cell tumors 

not otherwise specified also could be verified by entity-specific molecular alterations in 13/16 

cases. In conclusion, array-based DNA-methylation analysis of undifferentiated tumors with small 

blue round cell histology is a powerful tool for precisely classifying this diagnostically challenging 

tumor group.
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Introduction

Ewing sarcoma is a highly malignant tumor that accounts for approximately 8 % of all bone 

tumors. Although Ewing sarcoma is a rare disease, it represents the second most common 

malignant bone tumor in children and adolescents with a peak incidence in the second 

decade of life (1). Ewing sarcoma is a prototypical example for an undifferentiated sarcoma 

with small blue round cell phenotype, which, however, is shared with several other sarcoma 

entities. Unfortunately, expression of CD99, typical for Ewing sarcoma, is also encountered 

in several morphological mimics. Therefore, it is not sufficient diagnosing Ewing sarcomas 

based on histologic criteria and immunohistochemical marker expression alone (2).

A breakthrough in the diagnostics of Ewing sarcoma was the discovery of two highly 

specific translocations, which both result in a gene fusion between a member of the TET- 

and ETS- gene families. The two most common translocations in Ewing sarcoma either lead 

to a chimeric gene fusion between EWSR1-FLI1 or EWSR1-ERG seen in approximately 

85-90 % and 5-10 % of all cases, respectively (3, 4). Gene fusions with other TET and ETS 
family members and rearrangements of EWSR1 with non-ETS family genes have also been 

described. However, such fusions are exceptionally rare occurring in less than 1 % of Ewing 

sarcomas (5, 6).

Molecular analysis of Ewing sarcomas and mimics sharing histological and clinical features 

by extended FISH analysis and next generation sequencing has separated Ewing sarcomas 

with canonical translocations from so-called “Ewing-like” sarcomas. Subgroups of “Ewing-

like” sarcomas carry a CIC-DUX4 or a BCOR-CCNB3 gene fusion or other specific 

molecular alterations (7-10). However, frequently “Ewing-like” sarcomas remain 

molecularly undefined due to the rarity and/or diversity of the discriminating molecular 

features and the lack of established routine techniques to detect them. These tumors usually 

are placed with a basket category termed small blue round cell tumors not otherwise 

specified (11).

The methylation status of gene promoters is a strong indicator of the differentiation status 

along cell lineages (12, 13). Interestingly, this approach has also been shown very useful in 

distinguishing the tumor cell origin in a lineage dependent manner (14). Moreover, this 

approach allows molecular classification within seemingly morphological homogenous 

entities (15-23). The considerable stability of epigenetic signatures during tumor disease has 

been demonstrated for many tumors (18, 24, 25). Thus, determination of DNA-methylation 

signatures may also be useful for addressing “Ewing-like” sarcomas or small blue round cell 

tumors not otherwise specified.

In the present study we aimed at characterization of 30 sarcomas believed to represent 

Ewing sarcomas but not exhibiting the canonical EWS translocations at initial testing by 

reference pathology.

Koelsche et al. Page 3

Mod Pathol. Author manuscript; available in PMC 2020 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Material and Methods

Sample selection

The 30 samples, all from different patients, were identified from a series of more than 1,000 

patients referenced in the cooperative Ewing’s sarcoma study (CESS) centre in Germany 

(26-28). Clinical characteristics are given in Supplementary Table S1. The CESS reference 

pathology in Muenster tested these samples negative for a translocation between EWSR1 
with either FLI1 or ERG by applying RT-PCR that covered the most common fusion 

breakpoints. The diagnostic repertoire has been expanded to EWSR1- and FUS-break-apart 

FISH since 2014. The reference set for building a framework of methylation groups 

comprised a total of 460 prototypical sarcoma cases from primary manifestations and 

metastases encompassing classic adamantinoma of the tibia with prominent epithelial 

component (n = 6), alveolar soft part sarcoma (n = 22), mesenchymal chondrosarcoma (n = 

9), clear cell sarcoma of the kidney (n = 12), conventional osteosarcoma (n = 82), 

dermatofibrosarcoma protuberans (n = 39), desmoplastic small round cell tumor (n = 28), 

epithelioid sarcoma (n = 17), Ewing sarcoma carrying a gene fusion either between EWSR1-

FLI1 (n = 41), EWSR1-ERG (n = 3) or FUS-ERG (n = 1), or showing an EWSR1 break-

apart signal in the FISH test (n = 12), infantile fibrosarcoma (n = 13), malignant peripheral 

nerve sheath tumor (n = 22), malignant rhabdoid tumor (n = 18), embryonal 

rhabdomyosarcoma (n = 31), alveolar rhabdomyosarcoma (n = 33), small blue round cell 

tumor with BCOR-CCNB3 fusion (n = 8), small blue round cell tumor with an 

rearrangement of CIC (n = 10), solitary fibrous tumor (n = 22) and synovial sarcoma (n = 

31). Reference cases of genetically defined sarcoma subtypes were molecularly confirmed. 

The reference set also includes a control group composed of non-neoplastic reactive soft 

tissue (n = 10). The study was done in concordance with the guidelines set forth by the local 

ethics committee of the University of Heidelberg and Muenster.

Genomic DNA and total RNA extraction

Representative formalin-fixed paraffin-embedded tumor tissue with highest available tumor 

content was chosen for extraction of RNA and DNA. Total cellular RNA was obtained using 

the Maxwell® 16FFPE Plus LEV RNA Kit and genomic DNA using the Maxwell® 16FFPE 

Plus LEV DNA Kit employing the automated Maxwell device (Promega, Madison, WI, 

USA) according to the manufacturer’s instructions. The quality and concentration of RNA 

was determined on an Agilent 2100 Bioanalyzer® (Agilent Technologies, Santa Clara, CA, 

USA). DNA was quantified using the QuantiFast SYBR Green PCR Kit (Qiagen, 

Duesseldorf, NW, Germany).

Methylation Array data generation and pre-procession

The DNA-methylation status was obtained using the Illumina Infinium 

HumanMethylation450 (450k) array or the EPIC array (Illumina, San Diego, CA, USA), 

according to the manufacturer’s instructions at the Genomics and Proteomics Core Facility 

of the DKFZ. DNA input quantity from formalin-fixed paraffin-embedded tumor material 

was 250ng (recommended by manufacturer). Equal data quality was obtained for DNA input 

down to 100ng (24). The turnaround time for the entire workflow starting with sample 

preparation, array processing, scanning and data analysis was approximately five working 
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days. DNA-methylation data were normalized by performing background correction and dye 

bias correction shifting of negative control probe mean intensity to zero and scaling of 

normalization control probe mean intensity to 10,000, respectively. Probes targeting sex 

chromosomes and probes containing single nucleotide polymorphism that not uniquely 

matched were removed. In total, 438,370 probes contained on both, the 450k array and the 

EPIC array, were used for analysis.

Unsupervised clustering, copy number profiling and identification of differentially 
methylated regions

For unsupervised hierarchical clustering, we selected 10,000 probes that showed the highest 

standard deviation across the beta values. Samples were hierarchically clustered using the 

Pearson correlation coefficient as distance measure and average linkage. The CpGs were 

reordered using the Euclidian distance and complete linkage. For unsupervised 2D 

representation of pairwise sample correlations dimensionality reduction by t-distributed 

stochastic neighbor embedding was performed using the 20,000 most variable probes, a 

perplexity of 15 and 3,000 iterations. Copy number profiles were generated using the 

‘conumee’ R package (http://www.bioconductor.org) and assessed manually.

Targeted RT-RNA and total RNA sequencing

The TruSeq RNA Access Library Prep Kit for formalin-fixed paraffin-embedded material 

(Illumina) was applied for total RNA sequencing according to the manufacturer’s 

instructions. RNA libraries were sequenced on a NextSeq sequencer system (Illumina). Gene 

fusion transcripts were called from the RNA sequencing data using both deFuse and TopHat-

Fusion algorithms (29, 30). If automated detection of gene fusions was negative, reads of 

candidate genes and their 3′ and 5′ intergenic neighborhood were manually investigated 

using the Integrative Genomics Viewer (IGV) (31). For targeted RNA sequencing the RNA 

was reverse transcribed and then subjected to PCR amplification using primer pairs covering 

the breakpoints of the common gene fusions of Ewing sarcoma (EWSR1-FLI1, EWSR1-

ERG). BCOR-CCNB3 rearrangements were detected by RT-PCR as well. Primer sequences 

are listed in Supplementary Table S2.

Fluorescent in Situ Hybridisation (FISH)

For interphase FISH, the slides were subjected to hybridization with the ZytoLight ® SPEC 

EWSR1 dual color break apart probe, the ZytoLight ® SPEC FUS dual color break apart 

probe or the ZytoLight ® SPEC SS18 dual color break apart probe (all ZytoVision, 

Bremerhafen, HB, Germany) according to the manufacturer’s instructions. A CIC break 

apart assay was designed and performed using BAC clones RP11-374A11 and RP11-979P13 

(Life Technologies, Carlsbad, CA, USA) essentially following protocols as described before 

(32). Hybridization signals were visualized with a DM5500 fluorescence microscope (Leica, 

Wetzlar, HE, Germany), and images were captured on a CCD camera.

Gene panel next generation sequencing

A customized SureSelect XT technology (Agilent) panel covering the coding regions of 130 

genes, including BCOR and CIC, was applied to fusion negative cases where DNA-
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methylation profiling indicated a BCOR or CIC alteration. Library preparation, quality 

control, sequencing on a NextSeq sequencer (Illumina) and data processing were exactly 

performed as previously described (33). Reads were aligned against the reference genome 

hg19. Reads covering the BCOR locus (NM_001123383) were visualized in IGV and 

assessed manually for alterations.

Immunohistochemistry

A representative block was chosen for immunohistochemistry. 4-micron paraffin sections 

were dried at 80 °C for 15min and stained on a Ventana BenchMark XT immunostainer 

(Ventana Medical Systems, Tucson, AZ, USA) using standard techniques (Supplementary 

Table S3).

Results

Clinical features of the study cohort

30 CESS trial patients with the diagnosis of small blue round cell tumor not otherwise 

specified after histological and molecular evaluation by an expert panel of pathologists were 

subjected to DNA-methylation profiling. 26 cases were from the primary tumor, three from a 

metastatic tumor manifestation and one case from a recurrence. 18 patients were male, 12 

were female. The median age at diagnosis was 17 (range 0 - 55) years. The primary 

manifestation site was skeletal in all but two cases. The majority of cases originated at the 

lower extremity (12/30), thoracic wall (6/30), pelvis (6/30), the upper extremity (4/30) and 

head and neck (2/30). Clinical data are compiled in Supplementary Table 1.

Epigenetic profiling assigned small blue round cell tumors not otherwise specified to 
distinct sarcoma subtypes

Genome-wide DNA-methylation profiles were generated of these 30 small blue round cell 

tumors not otherwise specified. Unsupervised clustering and t-distributed stochastic 

neighbor embedding analysis (Figure 1) together with 460 sarcomas from the reference 

series allotted the 30 small blue round cell tumors not otherwise specified to different 

methylation classes corresponding to sarcomas with a defined histology and characteristic 

molecular hallmarks: 14 (47 %) assigned to Ewing sarcoma, six (20 %) to small blue round 

cell tumors with CIC alteration, four (13 %) to small blue round cell tumors with BCOR 
alteration, which is a methylation group composed of small blue round cell tumors with 

BCOR-CCNB3 fusion and clear cell sarcoma of the kidney with BCOR internal tandem 

duplication, two (7 %) to synovial sarcomas, two (7 %) to malignant rhabdoid tumors and 

one (3 %) to mesenchymal chondrosarcomas. Interestingly, one small blue round cell tumor 

not otherwise specified (3 %) clustered together with classic adamantinomas. Similar results 

were obtained when varying the number of CpGs used for the analysis (data not shown).

Genetic analyses validate the predicted sarcoma subtypes in most cases

To further validate the 30 small blue round cell tumors not otherwise specified, which by the 

DNA-methylation profiles were assigned to defined sarcoma subtypes, we analyzed these 

samples for molecular hallmark alterations. The results are compiled in Table 1. Cases 

falling into the Ewing sarcoma methylation class were tested by FISH, RT-PCR and total 
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RNA sequencing. By applying this procedure, six of 14 tumors harbored a gene fusion 

between EWSR1 and FLI1. The EWSR1-FEV fusion was detected once and so was the 

EWSR1-ETV1 fusion. Four cases presented with a break-apart signal in the FISH analysis, 

three cases in EWSR1 and one case in FUS. The gene fusion partner could not be further 

determined due to lack of sufficient tissue. In two cases, where material was only sufficient 

for FISH analysis, one case was negative for a break-apart signal in EWSR1 or FUS and the 

other case was non-determinable.

Cases falling into the small blue round cell tumors with CIC alteration methylation class 

were tested by FISH and total RNA sequencing. Four of six tumors showed a CIC break-

apart signal in the FISH analysis, indicating a rearrangement of the CIC locus. A CIC-

DUX4 fusion was revealed by RNA sequencing in two of them. Furthermore, RNA 

sequencing indicated a CIC-DUX4 fusion in one of the two cases without a CIC break-apart 

signal.

Cases assigning to the methylation class small blue round cell tumors with BCOR alteration 

were tested by RT-PCR, total RNA sequencing and panel sequencing of the entire coding 

region if RNA-based methods were negative. Three of four tumors carried the BCOR-

CCNB3 fusion. In the fusion-negative case, a BCOR internal tandem duplication spanning 

66 bases in exon 15 was detected (Figure 2).

Two tumors clustered with the methylation class for synovial sarcomas and were rearranged 

in the SS18 locus. Histological re-evaluation lead to classification as poorly differentiated 

synovial sarcoma (Figure 3 A, B).

Two tumors clustered with the methylation class for malignant rhabdoid tumor and could be 

demonstrated to be SMARCB1 deficient by copy number analysis and by INI-1 

immunohistochemistry (Figure 3 C, D).

One tumor clustered with mesenchymal chondrosarcomas. Molecular testing by RNA 

sequencing did not reveal the HEY1-NCOA2 fusion being expected in these malignancies. 

Cartilaginous areas or staghorn-shaped blood vessels, both frequent findings in 

mesenchymal chondrosarcomas, were absent in this case. Furthermore, the tumor was 

almost negative for S100 and CD99 expression (Figure 4).

One round cell tumor, which clustered together with adamantinomas, carried an EWSR1-

NFATC2 gene fusion. CD99 expression was faint, but yet recognizable positive. The copy 

number profile, which was calculated from the methylation array data, indicated a complex 

alteration on chromosome 22q (Figure 5). A very similar chromosome 22q alteration was 

found in one of the six classic adamantinomas. The histology of this particular case was 

unique compared with the other adamantinomas (Supplementary Figure S1). Unfortunately, 

the EWSR1 break-apart FISH analysis failed in this case.

Discussion

The designations “Ewing-like” sarcoma or small blue round cell tumor not otherwise 

specified are highly unsatisfactory because they are employed in diagnostic settings having 

Koelsche et al. Page 7

Mod Pathol. Author manuscript; available in PMC 2020 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



failed to produce unequivocal evidence for genetically defined sarcoma entities. Here, we 

demonstrated that methylation analysis is a powerful method, which assigns tumors 

currently named “Ewing-like” sarcoma and small blue round cell tumor not otherwise 

specified to well-defined diagnostic categories.

Validation analysis clearly supported the methylation based diagnostic assignment in 25 of 

30 cases. In these, the detection of characteristic alterations was supportive for the prediction 

of the DNA-methylation-based analysis. It is noteworthy that methylation based assignment 

also correctly recognized sarcoma subtypes carrying exceedingly rare mutations, e.g. in 

Ewing sarcomas.

In only four cases, no characteristic alteration could be detected, probably due to the 

limitations of the applied methods. These four cases allotted to the methylation class Ewing 

sarcoma (n = 2), to small blue round cell tumors with CIC alteration (n = 1) and to 

mesenchymal chondrosarcoma (n = 1). In the latter case, the diagnosis could not be 

molecularly validated since it lacked the typical HEY1-NCOA2 fusion described as a 

recurrent event in most, albeit not in all mesenchymal chondrosarcomas (34). Given the 

distinctive DNA-methylation signature in mesenchymal chondrosarcoma, we re-classified 

this case as mesenchymal chondrosarcoma with predominant small round cell component. In 

the two cases that assigned to the methylation class Ewing sarcoma, molecular validation 

was restricted to FISH analysis. The case matching with the methylation class small blue 

round cell tumors with CIC alteration had segmental copy number gains on chromosome 

arm 19q involving the CIC locus, which may have had an adverse effect on the FISH 

analysis (data not shown). Therefore, we consider it likely that DNA-methylation based 

prediction is also correct for those cases lacking the expected molecular alterations.

However, one outlier, which clustered in close proximity with classic adamantinomas of the 

tibia, surprisingly contained an EWSR1-NFATC2 gene fusion. This uncommon fusion, first 

described in 2009, has yet been detected only in single bone tumors presenting with a 

phenotype similar to Ewing sarcoma (5, 11). Interestingly, the EWSR1-NFATC2 gene fusion 

has also been described in one case with a hemangioma of the bone, although the breakpoint 

in EWSR1 was more distal compared to the Ewing sarcoma-like cases (35). In the present 

case, the EWSR1-NFATC2 breakpoint was matching with the one observed in Ewing 

sarcoma-like cases. The copy number profile of this tumor showed an unusual copy number 

alteration on chromosome 22q, which was also detected in one reference case classified as 

classic adamantinoma of the tibia. The histologic pattern of this reference case was well 

compatible with the histological features described in small blue round cell tumors carrying 

the EWSR1-NFATC2 fusion (5, 11, 36). All of this makes not only the initial diagnosis of 

this particular reference case questionable, but also raise the question of the close epigenetic 

relation between EWSR1-NFATC2 fused small blue round cell tumors and classic 

adamantinomas. The unusual “dot-like” cytokeratin expression pattern in EWSR1-NFATC2 
fused small blue round cell tumors might at least be suggestive of an epithelial 

differentiation similar to classic adamantinoma, which is characterized by a prominent 

epithelial cell component (36). However, we also cannot exclude a clustering artifact with 

absolute certainty. Thus, this case remained unsolved.
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Methylation based diagnostic assignment predicted four small blue round cell tumors with 

BCOR alteration. This methylation class is composed of different tumor subtypes sharing 

the molecular background of BCOR alteration either by rearrangement, internal tandem 

duplication or mutation. Small blue round cell tumors with BCOR-CCNB3, a sarcoma 

subtype probably being independent from the group of Ewing sarcoma, belongs to this 

methylation class (37). Accordingly, the BCOR-CCNB3 fusion was detected in three cases 

(8, 10). The fourth case, an infant patient with a small blue round cell tumor in the skull, 

carried a BCOR internal tandem duplication. This case was re-classified as undifferentiated 

round cell sarcoma of infancy, in which the BCOR internal tandem duplication has been 

described as a highly recurrent event (38).

BCOR alterations have been recognized in a growing number of tumor subtypes affecting 

the soft tissue, the kidney or the central nervous system (22, 38, 39). Recent studies 

comparing the molecular and histologic phenotype in these BCOR altered tumors found 

overlapping features, especially between soft tissue and kidney tumors (38, 40, 41). At the 

level of DNA-methylation, we observed a great overlap in tumors from soft tissue and the 

kidney carrying BCOR alteration. Furthermore, using an extended set of tumor subtypes for 

DNA-methylation profiling (data not shown), also central nervous system high-grade 

neuroepithelial tumors with BCOR alteration fall into this methylation class (22). This is in 

line with the previously suggested concept that these tumors might constitute a family of 

tumors sharing BCOR alterations.

Overall, DNA-methylation profiling might potentially have clinical implications in the 

molecular diagnostics of small blue round cell tumors, as already seen in central nervous 

system tumors (22, 25). Four recently published studies observed misleading results of 

molecular tests widely used in the diagnostics of small blue round cell tumors. A deletion of 

the SMARCB1 locus on chromosome arm 22q, which located juxtaposed to the EWSR1 
locus, can result in a false-positive EWSR1 break-apart FISH signal, although the gene 

integrity is retained (42). Decision-making might further be impeded by false negative 

results in the molecular testing of small blue round cell tumors with CIC alteration (9, 

43-45). Two recent articles focused on the performance of molecular tests in small blue 

round cell tumors with CIC rearrangement observed an overall low performance of break-

apart FISH and total RNA sequencing in these tumors (46, 47). Their results reflect our 

experience with molecular testing in small blue round cell tumors with CIC alteration. We 

could demonstrate a CIC rearrangement in four of six cases by break-apart FISH analysis. 

Copy number profiling of the two break-apart negative cases revealed complex alterations 

involving the CIC locus on chromosome 19q, which may have had an adverse effect on the 

FISH analysis (data not shown). Furthermore, two different automated algorithms for fusion 

discovery from RNA data did not detect the underlying gene fusion in any of these six cases. 

This may come down to the highly repetitive DNA sequences juxtaposing the breakpoint in 

CIC. In three cases, the underlying CIC-DUX4 fusion could only be detected by manually 

reviewing the reads of these genes in IGV.

A more practicable method might be using a surrogate marker. Gene expression profiling 

revealed an up-regulation of ETS transcription factors (ETV1 on chromosome 7p, ETV4 on 

chromosome 17q, ETV5 on chromosome 3q) in small blue round cell tumors with CIC-
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DUX4 fusion (47-50). Likewise, BCOR overexpression has been proposed as a potential 

biomarker for diagnosing small blue round cell tumors with BCOR alteration, although 

diagnostic pitfalls have already been recognized (37, 51).

In conclusion, array-based DNA-methylation molecular profiling is a robust method that 

proved extraordinary powerful for clarifying the diagnoses of a cohort of tumors initially 

deemed small blue round cell tumor not otherwise specified. Although it remains to be seen 

whether DNA-methylation may delineate sarcoma subtypes not investigated in this study, 

this approach already now can be highly useful in the diagnosis of Ewing sarcoma and 

mimics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Assignment of 30 small blue round cell tumors not otherwise specified to methylation 
groups of reference sarcoma sets.
(A) - unsupervised hierarchical clustering analysis, and (B) - t-distributed stochastic 

neighbor embedding using the 10,000 most variable DNA-methylation probes of array-

generated DNA-methylation profiles from the Illumina Infinium HumanMethylation450 or 

EPIC BeadChip (Illumina, San Diego, USA). Black bars/circles indicate the positions of the 

30 small blue round cell tumors not otherwise specified.

Abbreviations: Ada = adamantinoma (* suspect); ASPS = alveolar soft part sarcoma; mCS = 

mesenchymal chondrosarcoma; CCSK = clear cell sarcoma of the kidney; CT = control 

tissue of non-neoplastic inflammatory origin; OS = conventional osteosarcoma; DFSP - 

dermatofibrosarcoma protuberans ; DSRCT = desmoplastic small round cell tumor; ES = 

epithelioid sarcoma; EwS = Ewing sarcoma; IFS = infantile fibrosarcoma; MPNST = 

malignant peripheral nerve sheath tumor; MRT = malignant rhabdoid tumor; eRMS = 

embryonal rhabdomyosarcoma; aRMS = alveolar rhabdomyosarcoma; SBRCT (BCOR) = 

small blue round cell tumor with BCOR alteration (BCOR-CCNB3 fusion = yellow; internal 

tandem duplication = yellow with greyish contour); SBRCT (CIC) = small blue round cell 

tumor with CIC alteration; SFT = solitary fibrous tumor; SySa = synovial sarcoma
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Figure 2. BCOR internal tandem duplication in a skull tumor of an infant.
The genomic footprint of BCOR is depicted (A). The duplicated 66 bp sequence in Exon 15, 

which encodes for the PCGF Ub-like fold discriminator (PUFD) domain at the C-terminus 

of BCOR, is recognizable by a sharply demarcated doubling of the coverage rate. The tumor 

cells focally present with a vacuolated cytoplasm (B). Rosette formations are prominent in 

some areas (C).
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Figure 3. Histologic phenotypes of two representative Ewing-like sarcomas.
Case 83172 (A-C) represents a poorly differentiated synovial sarcoma exhibiting a small 

blue round cell phenotype (A). FISH analysis revealed a SS18 break-apart signal indicated 

by two separated green and red signals (B). Interestingly, some tumor cells express CD99 

(C). Case 94172 (D, E) exhibits an epithelioid to rhabdoid phenotype (D). Nuclear INI-1 

expression is lost (D; inlet). Copy number analysis demonstrated a loss on chromosome arm 

19q involving the SMARCB1 locus (E).
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Figure 4. Histological phenotype of an unusual mesenchymal chondrosarcoma.
Case 95322 shows an organoid growth pattern at low-power view (A). The small round 

tumor cells are arranged in sheets (B). In less cellular parts the tumor shows a vague 

reticulated growth pattern (C). The tumor is almost negative for S100 (D) and CD99 (E). A 

copy number analysis demonstrates several whole-chromosome gains (F).
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Figure 5. Histologic phenotype of case with an EWSR1-NFATC2 gene fusion.
Case 97480 is a highly cellular round cell tumor with an indistinctive growth pattern (A). 

The tumor cells faintly express CD99 (B). A copy number analysis demonstrates complex 

chromosomal alterations, e.g. on chromosome 22, on an otherwise relatively balanced 

background (C).
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Table 1.

DNA-methylation based prediction and genetic validation.

Case Methylation
class

Validation
results

Method

83218 EwS EWSR1-FLI1 (E7-E7) FISH (ND), RT-PCR (neg), NGS (pos)

94168 EwS EWSR1-FLI1 (E7-E7) FISH (NA), RT-PCR (NA), NGS (pos)

94170 EwS EWSR1-FLI1 (E7-E7) FISH (NA), RT-PCR (NA), NGS (pos)

97476 EwS FLI1-EWSR1 (E7-E8) FISH (neg), RT-PCR (NA, NGS (pos)

95332 EwS EWSR1-FEV (E7-E2) FISH (ND), RT-PCR (neg), NGS (pos)

83240 EwS EWSR1-ETV1 (E16-E9) FISH (ND), RT-PCR (neg), NGS (pos)

94186 EwS EWSR1-FLI1 FISH (ND), RT-PCR (neg), NGS (pos)

97474 EwS EWSR1-FLI1 FISH (ND), RT-PCR (neg), NGS (pos)

83224 EwS EWSR1 break-apart FISH (pos), RT-PCR (neg), NGS (neg)

83226 EwS EWSR1 break-apart FISH (pos), RT-PCR (neg), NGS (neg)

83232 EwS EWSR1 break-apart FISH (pos), RT-PCR (neg), NGS (neg)

94178 EwS FUS break-apart FISH (pos), RT-PCR (neg), NGS (neg)

94182 EwS no finding FISH (NA), RT-PCR (NA), NGS (neg)

94192 EwS non-determinable FISH (ND), RT-PCR (neg), NGS (ND)

83220 SBRCT (CIC) CIC-DUX4 FISH (pos), NGS (pos)

95324 SBRCT (CIC) CIC-DUX4 FISH (pos), NGS (pos)

97478 SBRCT (CIC) CIC-DUX4 FISH (neg), NGS (pos)

83172 SBRCT (CIC) CIC break-apart FISH (pos), NGS (neg)

95310 SBRCT (CIC) CIC break-apart FISH (pos), NGS (neg)

94194 SBRCT (CIC) no finding FISH (NA), NGS (neg)

85094 SBRCT (BCOR) BCOR-CCNB3 (E15-E5) RT-PCR (pos), NGS (pos)

85096 SBRCT (BCOR) BCOR-CCNB3 (E15-E5) RT-PCR (pos), NGS (pos)

95330 SBRCT (BCOR) BCOR-CCNB3 (E15-E5) RT-PCR (pos), NGS (pos)

96930 SBRCT (BCOR) BCOR ITD RT-PCR (neg), NGS (neg), NGS-P (pos)

83174 SySa SS18 break-apart FISH (pos)

95328 SySa SS18 break-apart FISH (pos)

94172 MRT SMARCB1 deficiency CNP, IHC

95326 MRT SMARCB1 deficiency CNP, IHC

97480 Ada (−/+) EWSR1-NFATC2 (E8-E3) FISH (pos), RT-PCR (neg), NGS (pos)

95322 mCS (−/+) no finding FISH (neg), RT-PCR (neg), NGS (neg)

Abbreviations: EwS = Ewing sarcoma; SBRCT (CIC) = small blue round cell tumor with CIC alteration; SBRCT (BCOR) = small blue round cell 
tumor with BCOR alteration; SySa = synovial sarcoma; MRT = malignant rhabdoid tumor; mCS = mesenchymal chondrosarcoma; Ada = 
adamantinoma; NGS = total RNA next generation sequencing; CNP = copy number profile; IHC = immunohistochemistry
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