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Abstract. High future discounting rates favor inaction on present expend-
ing while lower rates advise for a more immediate political action. A possible
approach to this key issue in global economy is to take historical time series for
nominal interest rates and inflation, and to construct then real interest rates and
finally obtaining the resulting discount rate according to a specific stochastic
model. Extended periods of negative real interest rates, in which inflation domi-
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nates over nominal rates, are commonly observed, occurring in many epochs and
in all countries. This feature leads us to choose a well-known model in statistical
physics, the Ornstein–Uhlenbeck model, as a basic dynamical tool in which real
interest rates randomly fluctuate and can become negative, even if they tend
to revert to a positive mean value. By covering 14 countries over hundreds of
years we suggest different scenarios and include an error analysis in order to
consider the impact of statistical uncertainty in our results. We find that only 4
of the countries have positive long-run discount rates while the other ten coun-
tries have negative rates. Even if one rejects the countries where hyperinflation
has occurred, our results support the need to consider low discounting rates.
The results provided by these fourteen countries significantly increase the prior-
ity of confronting global actions such as climate change mitigation. We finally
extend the analysis by first allowing for fluctuations of the mean level in the
Ornstein–Uhlenbeck model and secondly by considering modified versions of the
Feller and lognormal models. In both cases, results remain basically unchanged
thus demonstrating the robustness of the results presented.

Keywords: stochastic processes, models of financial markets, risk measure and
management, quantitative finance
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1. Introduction

Statistical physics have been paying attention to economics and finance by providing
new models and analyzing data available [1–3]. Most of the contributions investigate
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the nature of financial markets based on historical records, even its microstructure (see
e.g. [4, 5]) or alternatively from a rather macroscopic and aggregated level (see e.g.
[6–16]). However, there are still several issues in which an approach from physics can
offer new perspectives and results. This is, for instance, the case of ‘discounting’ which
in economics refers to weighting the future relative to the present [17]. Discounting
constitutes the subject of this paper.

The choice of a discounting function has enormous consequences in many aspects of
the global economy as, for instance, long-run environmental planning and, more specifi-
cally, climate action [18]. In a highly influential report on climate change commissioned
by the UK government, Stern [19] uses a discounting rate of 1.4% while Nordhaus
[20] argues for a discount rate of 4% and at other times [21] has advocated rates as
high as 6%. Both estimates constitute a completely different point of view on how to
address climate change. Indeed, while Stern’s estimate would imply immediate spend-
ing, Nordhaus’s figures indicate that immediate and strong action would be unnecessary.
The choice of discount rate is, therefore, one of the biggest factors influencing the debate
on the urgency of the response to climate change. Although Stern has been widely crit-
icized for using such a low rate [20–25], our estimates are on average much closer to
Stern than to Nordhauss and support more substantial immediate spending on climate
actions. The Calderon report in July 2014 has also claimed that there is a false dilemma
behind the choice between the economy growth and the environmental responsibility
[26, 27].

Economists present a variety of reasons for discounting, including impatience, eco-
nomic growth, and declining marginal utility; these are embedded in the Ramsey for-
mula, which forms the basis for the standard approaches to discounting [28, 29]. Here
we adopt the net present value approach, which treats the real interest rate as the mea-
sure of the trade-off between consumption today and consumption next year, without
delving into the factors influencing the real interest rate.

It is often argued that, based on past trends in economic growth, future technologies
will be so powerful compared with present technologies that it is more cost-effective to
encourage economic growth—or solving other problems such as AIDS or malaria—than
it is to take action against global warming now [25]. Analyses supporting this conclusion
typically study discounting by working with an interest rate that is fixed over time,
ignoring fluctuations about the average. This is mathematically convenient, but it is
also dangerous: in this problem, as in many others, fluctuations play a decisive role.

A proper analysis takes fluctuations in the real interest rate, caused partly by fluctu-
ations in growth, into account [30–32]. When the real interest rate r(t) varies randomly
the discounting function becomes [33]

D(t) = E

[
exp

(
−
∫ t

0

r(t′)dt′
)]

, (1)

where the expectation E[·] is an average over all possible interest rate paths. The fact
that this is an average of exponentials, and not an exponential of an average, implies
that the paths with the lowest interest rates dominate. This has been shown in several
ways. Early papers analyzed an extreme case in which the annual real rate is unknown
today, but starting tomorrow it will be fixed forever at one of a finite number of values
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[30, 31]. Other papers simulate stochastic interest rate processes out to some horizon,
leaving aside the asymptotic behavior of real rates [32, 34–36].

The presence of fluctuations can dramatically alter the functional form of the dis-
counting function. If real interest rates follow a geometric random walk, for example, the
discounting function asymptotically may decay as a power law of the form D(t) = At−1/2

[37] (see section 6). In contrast to the exponential function, this is not integrable on
(0,∞), underscoring how important the effect of persistent fluctuations can be. We
have recently analyzed these issues by considering three of the most popular stochastic
models for the dynamics of interest rates [33]: Ornstein–Uhlenbeck [38], Feller [39], and
lognormal [40] processes, which are also very relevant in statistical physics. The Orn-
stein–Uhlenbeck (OU) model [38] is the only one that allows for negative rates r < 0
and its asymptotic expression has an exponential decay with a long-run rate r∞ that
differs from historical average interest rates by being substantially smaller, zero or even-
tually negative. We here want to go one step further and provide empirical estimates
to such a discount based on historical data of interest rates from Argentina, Australia,
Canada, Chile, Denmark, Germany, Italy, Japan, Netherlands, South Africa, Spain, Swe-
den, United Kingdom, and the United States. Such a diversity of countries, representing
a variety of scenarios, allows us to better explore the intrinsic randomness of the real
interest rates and how they lead to different costs of global economy planning such as
climate action.

2. Building real interest rates with the empirical data available

Real interest rates are nominal rates corrected by inflation so we need first of all to
study nominal rates and inflation separately. The countries in our sample are: Argentina
(ARG, 1864–1960), Australia (AUS, 1861–2012), Canada (CAN, 1913–2012), Chile
(CHL, 1925–2012), Denmark (DNK, 1821–2012), Germany (DEU, 1820–2012), Italy
(ITA, 1861–2012), Japan (JPN, 1921–2012), Netherlands (NLD, 1813–2012), South
Africa (ZAF, 1920–2012), Spain (ESP, 1821–2012), Sweden (SWE, 1868–2012), United
Kingdom (GBR, 1694–2012), and the United States (USA, 1820–2012). The details of
each sample are reported in table 1.

Nominal rates can be obtained through the 10 years Government Bond Yield (see
table 1 for further details). Following the standard procedure provided by the literature
(see, for instance, [41]), we transform the annual rate β(t|T), where T = 10 years, into
logarithmic rates, and denote the resulting nominal rates time series by

n(t) = ln[1 + β(t|T )].
The inflation rate i(t) is estimated through the consumer price index (CPI) C(t) by

i(t) =
1

T

T−1∑
j=0

ln [1 + C(t+ j)] ,

where T is chosen to be 10 years to be consistent with the 10 years nominal rate. We
have, therefore, smoothed inflation rates with a 10 years forward moving average as this
is again the standard procedure in these cases.
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Table 1. Description of the empirical data. Each column represents the data source
from 14 different countries with their time periods and frequencies. The number of
records corresponds to the resulting real interest rate historical time series.

Country Consumer price index Bond yields From To # records

1 Argentina CPARGM IGARGM 12/31/1864 03/31/1960 342
Annual from 12/31/1864 Quarterly
Quarterly from 12/31/1932

2 Australia CPAUSM IGAUS10 12/31/1861 09/30/2012 564
Annual from 12/31/1861 Quarterly
Quarterly 12/31/1991

3 Canada CPCANM IGCAN10 12/31/1913 09/30/2012 357
Quarterly Quarterly

4 Chile CPCHLM IDCHLMa 03/31/1925 09/30/2012 312
Quarterly Quarterly

5 Denmark CPDNKM IGDNK10 12/31/1821 09/30/2012 725
Annual from 12/31/1821 Quarterly
Quarterly from
12/31/1914

6 Germany CPDEUM IGDEU10b 12/31/1820 09/30/2012 729
Annual from 12/31/1820 Quarterly
Quarterly from
12/31/1869

7 Italy CPITAM IGITA10 12/31/1861 09/30/2012 565
Annual from 12/31/1861 Quarterly
Quarterly from 12/31/1919

8 Japan CPJPNM IGJPN10Df 12/31/1921 12/31/2012 325
Quarterly Quarterly

9 Netherlands CPNLDM IGNLD10De 12/31/1813 12/31/2012 189
Annual Annual

10 South Africa CPZAFM IGZAF10 12/31/1920 09/30/2012 329
Quarterly Quarterly

11 Spainc CPESPM IGESP10d 12/31/1821 09/30/2012 709
Annual from 12/31/1821 Quarterly
Quarterly from
12/31/1920

12 Sweden CPSWEM IGSWE10 12/31/1868 09/30/2012 135
Annual Annual

13 United CPGBRM IDGBRDa 12/31/1694 12/31/2012 309
Kingdom Annual Annual

14 United CPUSAM TRUSG10M 12/31/1820 10/30/2012 183
States Annual Annual

aWe have taken the discount (ID) rate since the government bond yield data was not available.
bFrom 06/30/1915 to 03/31/1916 IGDEU is empty and we have repeated the previous record.
cFrom 07/31/1936 to 12/31/1940 no records available.
d07/31/1936 is empty and we have repeated the previous record.
e12/31/1945 is empty and we have repeated the previous record.
fFrom 12/31/1946 to 09/30/1948 is empty and we have repeated the previous record.
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Figure 1. Real interest rates display large fluctuations and negative rates are not
uncommon. We show nominal interest rates (top), inflation (middle), and real inter-
est rates (bottom) for Italy (ITA), United States of America (USA) and South
Africa (ZAF).

Finally, the real interest rate r(t) is defined by

r(t) = n(t)− i(t). (2)

The recording frequency for each country is either annual or quarterly (see table 1).
Some examples of the resulting real interest rates r(t) are plotted in figure 1.

3. Choosing the Ornstein–Uhlenbeck model

A striking feature observed in many epochs for all countries is that real interest rates
frequently become negative, often by substantial amounts and for long periods of time
(see figure 1 and table 2). This rules out most standard financial models, which assume
that interest rates are always positive [41]. We thus focus our attention on one of the
three most popular stochastic models and on the only one that allows for negative rates:
the Ornstein–Uhlenbeck model [38], also known in the financial and economics literature
as the Vasicek model [42] and which is also being used for modeling market volatility
[6, 7, 9, 10]. The model can be written as [33]

dr(t) = −α(r(t)−m)dt+ kdw(t), (3)

https://doi.org/10.1088/1742-5468/ab7a1e 6
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Table 2. Negative rates frequency. ‘Negative RI’ and ‘years’ give respectively the
time ratio and the number of years in which real interest rates are negative. The
last row shows the average over all countries.

Country Negative RI Years

Argentina 0.20 17
Australia 0.23 33
Canada 0.22 20
Chile 0.56 43
Denmark 0.18 33
Germany 0.14 25
Italy 0.28 40
Japan 0.33 26
Netherlands 0.17 33
South Africa 0.43 36
Spain 0.25 45
Sweden 0.28 38
United Kingdom 0.14 45
United States of America 0.19 37

All countries 0.26 34

where r(t) is the real interest rate and w(t) is a Wiener process, a Gaussian process with
zero mean and unit variance. The parameter m is a mean value to which the process
reverts and coincides with the long-term average of the process (3) :

E[r(t)] � m. (4)

The parameter k is expressing the amplitude of the fluctuations and it is related to the
variance which in the long-term limit reads

Var [r(t)] � k2

2α
. (5)

The parameter α is the strength of the reversion to the mean m. The autocorrelation
function in its long-term limit is

K(t− t′) = E [(r(t)−m)(r(t′)−m)] � k2

2α
e−α|t−t′|, (6)

where α−1 is the correlation time τ c as can be seen from the definition

τc ≡
1

K(0)

∫ ∞

0

K(τ)dτ =
1

α
.

Recall that the OU model may attain negative rates. Let us quantify this character-
istic by evaluating the probability P(r < 0, t|r0), for r(t) to be negative. In the long-term
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Figure 2. The probability of negative rates as given in equation (7). In the vicinity
of the bottom right corner the probability of negative rates is around 0.5 while at
the upper left corner this probability is exponentially small and rates are mostly
positive.

limit we denote this probability by P
(−)
s , that is,

P (−)
s = lim

t→∞
P (r < 0, t|r0).

For the OU model we have

P (−)
s =

1

2
Erfc (μ/κ) , (7)

where Erfc(x) is the complementary error function expressed in terms of

μ =
m

α
, κ =

k

α3/2
. (8)

The dimensionless parameters μ and κ are related to the average m and the noise inten-
sity k, respectively. As we will see later, these parameters provide a rather convenient
way of describing important features about the discount function D(t). In figure 2, we

represent equation (7) and show the different values that the function P
(−)
s can attain

in terms of μ and κ.
Using standard asymptotic expressions of Erfc(x) we can also get the behavior of

P
(−)
s in the cases (a) μ < κ and (b) μ > κ.

(a) When the normal rate μ is smaller than the volatility of the rate κ, we can use the
series expansion

Erfc(z) = 1− 2√
π
z +O(z2).
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Hence,

P (−)
s =

1

2
− 1√

π
(μ/κ) +O(μ2/κ2). (9)

For μ/κ sufficiently small, this probability approaches 1/2. In other words, rates
are positive or negative with almost equal probability. Note that this corre-
sponds to a rather stressed situation in which noise κ dominates over the mean
value μ.

(b) When fluctuations around the normal level are smaller than the normal level itself,
κ < μ, we can use the asymptotic approximation

Erfc(z) ∼ e−z2

√
πz

[
1 +O

(
1

z2

)]
,

and

P (−)
s ∼ 1

2
√
π

(
κ

μ

)
e−μ2/κ2 . (10)

Therefore, for mild fluctuations around the mean, the probability of negative rates
is exponentially small .

When κ = μ, the probability of negative rates is P
(−)
s = 0.079. Due to the

ergodic character of the OU process [43], this means that when noise is balanced by
the mean value (that is, κ = μ), one may expect to have negative real rates 7.9%
of the time [33].

4. Discount function and negative rates for the Ornstein–Uhlenbeck model

It is possible to derive the exact expression for the discount function D(t) defined in
equation (1) in the case of the time-dependent OU model. As thoroughly described in
reference [33], we write this expression in the form

lnD(t) = −
(
m− k2

2α2

)
t+

1

α

[
m− r0 −

k2

4α2

(
3− e−αt

)] (
1− e−αt

)
. (11)

The best way to study the discount rate is to work with the dimensionless time
unit τ = αt, for afterward focusing on the long-term limit τ 	 1 since climate action
is primarily interested in this asymptotic value. Thus, as τ →∞, the exact expression
(11) shows at once that the discount function of the OU model decays exponentially7

D(t) � e−r∞t, (12)

where (see equation (8))

r∞ = m− k2/2α2 = α
(
μ− κ2/2

)
. (13)

7Note also that as τ → 0 the short-time expansion of equation (11) leads to D(t) � e−r0t which would correspond to a fixed interest
rates without random fluctuations or deterministic changes.
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Figure 3. The four different scenarios for the discount with the cases of nine coun-
tries. The vertical axis is the dimensionless mean interest rate μ and the horizontal
axis is the dimensionless fluctuation amplitude κ. Points correspond to nine of the
fourteen countries presented and does not include the errors associated (see table 4).
The errors are important as can be seen in table 4. Five countries are not reported
here because they are far out of the range herein provided.

We see from this expression that the long-run discount rate r∞ is always lower than
the average interest rate m, by an amount that depends on the dimensionless noise
parameter κ. The long-run discount rate can therefore be much lower than the mean,
and indeed can correspond to low interest rates that are rarely observed. This clearly
illustrates the imprudence of assuming that the average real interest rate is the correct
long-run discount rate.

The long-run behavior of the discount rate (13) depends on the two dimension-
less parameters μ and κ (see equation (8)). The parameter space can be therefore
divided into four regions, as shown in figure 3. In the region (1), where μ > κ2/2 (or
equivalently m > k2/2α2) and μ > κ, the mean interest rate is large in comparison to
the noise and negative rates are very infrequent. The long-run discounting function
decays exponentially with rate r∞ > 0. In the region (2), albeit small, the long-run
discounting function still decays exponentially with rate r∞ > 0 but negative rates are
more frequent than 7.9%. Region (3) represents the most catastrophic situation since
μ < κ2/2 and thus r∞ < 0, meaning that the discount function D(t) increases exponen-
tially and negative rates are rather frequent. Region (4) also shows r∞ < 0 although,
in this case, it is mostly because the noise component is very intense and not due to
the presence of a relevant frequency of negative return events. Finally, at the boundary
μ = κ2/2, the long-run interest rate r∞ = 0 and the discount function is asymptotically
constant.

https://doi.org/10.1088/1742-5468/ab7a1e 10

https://doi.org/10.1088/1742-5468/ab7a1e


J.S
tat.

M
ech.

(2020)
043210

Statistical analysis and stochastic interest rate modeling for valuing the future with implications in climate change mitigation

Table 3. Maximum likelihood estimation for the Ornstein–Uhlenbeck process
described and the long-run interest rate. Countries have been reordered based on
their estimated r̂∞. m̂ is the estimator of the mean real interest rate in 1/years. α̂
is the estimator related to the characteristic reversion time in 1/year. The squared
root of the estimator of k2 is the volatility of the process and k2 is given in terms of
1/(year)3. These estimators are accompanied with the square root of the variance,
σ’s, of each estimator. r̂∞ is the subsequent estimator of the long-run real interest
rate in 1/year. Negative values of r̂∞ mean the discount function is asymptoti-
cally increasing and its standard error is obtained through error propagation. The
last two rows show separately the average over all countries, the stable countries
with r∞ > 0 and the unstable countries with r∞ < 0. In all three rows standard
error provided corresponds to the standard deviation of the r̂∞ for the different
countries.

Country m̂ σm̂ α̂ σα̂ k̂2 σ
k̂2

r̂∞ σr̂∞

Germany −0.0945 0.6695 0.0071 0.0089 41.72 × 10−4 2.19 × 10−4 −40.94 2.28
Chile −0.0579 0.3146 0.0201 0.0227 31.07 × 10−4 2.49 × 10−4 −3.917 0.442
Japan 0.0502 0.2468 0.0053 0.0114 13.96 × 10−5 1.09 × 10−5 −2.431 0.314
Italy 0.0197 0.1595 0.0056 0.0089 11.46 × 10−5 0.68 × 10−5 −1.778 0.192
Spain 0.0671 0.0692 0.0167 0.0137 23.71 × 10−5 1.26 × 10−5 −0.3578 0.0728
Argentina 0.0315 0.0709 0.0228 0.0231 22.40 × 10−5 1.71 × 10−5 −0.1831 0.0727
Australia 0.0397 0.0450 0.0089 0.0112 2.23 × 10−5 0.13 × 10−5 −0.1029 0.0458
South Africa 0.0269 0.0472 0.0154 0.0193 4.35 × 10−5 0.34 × 10−5 −0.0649 0.0477
Canada 0.0266 0.0391 0.0142 0.0178 2.75 × 10−5 0.21 × 10−5 −0.0415 0.0394
Denmark 0.0410 0.0259 0.0161 0.0133 3.15 × 10−5 0.17 × 10−5 −0.0197 0.0261
Sweden 0.0279 0.0166 0.0676 0.0317 16.92 × 10−5 2.06 × 10−5 0.0095 0.0167
USA 0.0319 0.0123 0.0603 0.0257 10.03 × 10−5 1.05 × 10−5 0.0181 0.0124
UK 0.0342 0.0062 0.1635 0.0326 31.37 × 10−5 2.53 × 10−5 0.0283 0.0062
Netherlands 0.0599 0.0078 0.1648 0.0550 17.97 × 10−5 2.43 × 10−5 0.0566 0.0078

All countries 0.0217 0.1236 0.0420 0.0211 63.45 × 10−5 4.31 × 10−5 −3.552 0.255
Stable 0.0385 0.0107 0.1140 0.0362 19.07 × 10−5 2.02 × 10−5 0.0281 0.0108
Unstable 0.0150 0.1686 0.0132 0.0150 81.20 × 10−5 5.23 × 10−5 −4.984 0.353

5. Estimating the discount function for the Ornstein–Uhlenbeck model

We now estimate the parameters m, k and α together with the dimensionless parameters
μ and κ defined in equation (8). We perform such an estimation for each historical
series (see table 1) by using a well-established maximum likelihood procedure for the

OU model [41]. The resulting estimators m̂, α̂, and k̂2 are listed in table 3 along with
their standard deviation derived from formulas provided in reference [44]. Table 3 shows
that the most inaccurate estimator is α̂, a not surprising fact since the estimation of α
is quite a challenge in any Ornstein–Uhlenbeck process [44]. The last two columns in
table 3 include the long-run interest rate estimator r̂∞ and its error calculated through
error propagation.
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Table 4. Dimensionless mean interest rate and fluctuation amplitude for all coun-
tries. The dimensionless mean interest rate estimator μ̂ is accompanied with its
error obtained through error propagation (see equation (8)) and by considering
the parameters estimated and provided in table 3. The dimensionless fluctuation
amplitude estimator κ̂ is accompanied with its standard error obtained through
error propagation (see equation (8)) and by considering the parameters estimated
and provided in table 3.

Country μ̂ σμ̂ κ̂ σκ̂

Germany −13.22 95.11 106.92 198.75
Chile −2.89 16.01 19.61 33.26
Japan 9.46 50.79 30.59 98.70
Italy 3.49 28.79 25.23 59.94
Spain 4.02 5.30 7.13 8.79
Argentina 1.38 3.40 4.34 6.58
Australia 4.48 7.61 5.67 10.77
South Africa 1.75 3.77 3.45 6.50
Canada 1.88 3.62 3.10 5.83
Denmark 2.55 2.65 2.75 3.41
Sweden 0.41 0.31 0.74 0.52
USA 0.53 0.30 0.68 0.43
UK 0.21 0.06 0.27 0.08
Netherlands 0.36 0.13 0.20 0.10

All countries 1.03 15.56 15.05 30.99
Stable 0.39 0.20 0.47 0.28
Unstable 1.29 21.71 20.89 43.25

We can also observe the position (κ̂, μ̂) of each country in figure 3 by considering
the results presented in table 4. In any case these results need to be understood as
a first-order approximation since the errors behind the estimators (which are evalu-
ated through error propagation) are significant (see table 4). Only four countries show
a positive long-run rate, r∞ > 0, and all of them inside, or very close, to the region
defined by μ < κ in which rates are frequently negative. The other ten countries show
less stable behavior and are all of them in the exponentially increasing region (region
3), which implies they have long-run negative rates, and are widely scattered. In two
cases (Germany and Chile) the average rate m (and its dimensionless version μ) is
negative due to at least one period of runaway inflation while two others (Japan and
Italy) still have a long-run negative rate r∞ mostly due to a very small strength of
the reversion to the mean given by the parameter α (see equation (3)). These four
countries are not plotted in figure 3 because they are out the range of μ and/or κ
axis.

Also note that all fourteen countries but one (Netherlands) are below the identity
line, μ = κ, in figure 3 which indicates that negative real interest rates are common (even
in the stable countries they occur 20% of the time). It is also worth to mention that
only one is above Nordhaus’s 4% discounting rate [20] (5.7%, Netherlands) and only
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Figure 4. The logarithmic discounting rate (in percent) as a function of time (in
years). We have divided the countries in four groups to represent equation (11) with
parameters provided in table 4 and taking r0 = 1%.

two more countries are above the more pessimistic discounting rate (1.4%) provided by
Stern [19] (1.8% and 2.8% from USA and United Kingdom, respectively). And more
generally, it is important to notice that r∞ is very much smaller than m in most of the
cases. All these statements are robust even when considering values of the estimators
with shifts of the size of its standard error (see table 3).

The characteristic (correlation) time (τ c = 1/α) for each country appears to be very
different (see table 3). Some countries must spend more than a century to achieve a
stationary level and thus finally attain the long-run discount rate r∞. Furthermore, this
time horizon might be even larger than the time interval we must consider to make
a response, from an economic point of view, to any climate change catastrophe. For
this reason, it is interesting to investigate how the discount rate defined as −ln(D(t))/t
changes over time (see equation (11)).

Figure 4 shows the discount rates for all countries as a function of time by con-
sidering initial rate r0 = 1% which clearly illustrates the dramatic differences between
countries. In this way we divide the fourteen countries into roughly four groups. There
are two countries (DEU, CHL) that show a very fast and very negative rate. There is a
second group still having a monotonic behavior but with a much slower trend to raise
negative discount rates (JPN, ITA, ESP and ARG). Non-monotonic behavior is indeed
observed in a third group (AUS, ZAF, CAN, DEN). This group is of special interest
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Figure 5. The logarithmic discounting rate (in percent) and its error as a function
of time (in years). We have selected four countries (from each of the four groups
provided in figure 4: United States, Germany, South Africa, and Spain) to repre-
sent equation (11) by taking r0 = 1%. Gray shadow considers a range limited by
minimum and maximum values when adding to each parameter the impact of their
standard error to the value of the discount rate as a function of time. Parameters
and their standard error are both provided in table 3.

since it shows how the rates might first grow by finally becoming negative after 20 or
30 years. Stable countries represented in the first inset on the left of figure 4 also show
that the asymptotic rate r∞ is raised very slowly being the country with the highest rate
(NED) the one that needs more than a century to attain the stationary level. Figure 5
selects four countries (USA, DEU, ZAF and ESP), one from each of the groups men-
tioned above, to observe the impact of uncertainty as a function of time. For different
values of time, the discount function includes a shadow in gray limited by maximum
and minimum values when taking into consideration the standard error of each of the
estimators. In all four countries and at any time, maximum discount rate value is always
below 2.2%. The inclusion of the statistical uncertainty reinforces the robustness of our
results.

Let us finally note that these results are in contrast to other treatments of fluctuating
rates which assume that short term rates are positive and predict that the decrease in
the discounting rate occurs over a much longer timescale, usually measured in hundreds
or thousands of years [30, 32, 34–37, 45].
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6. Considering alternative models

As mentioned above the Ornstein–Uhlenbeck model is the only one among the three
most classic models allowing for negative rates. This is the reason why we have excluded
both the Feller and the lognormal models from our analysis. Let us nonetheless briefly
study what modifications should be carried out in order to use these positive rate models
in our analysis.

6.1. The shifted Feller model

The Feller process [39] (see also [43]) has a very similar structure than the Orn-
stein–Uhlenbeck process except that the noise component depends on the interest rate.
The process also has a mean reverting force that makes the process have an autocor-
relation function that decays in an exponential manner whose characteristic time scale
is 1/αF. Let us however remind that Feller does not allow for negative rates and these
are clearly present in our empirical data. Therefore, to consider the Feller process for
estimating the long-run discount rate r∞ would require to redefine the Feller model that
reads

dy(t) = −αF(y(t)−mF)dt+ kF
√

y(t)dw(t), (14)

where

y = r − rmin (15)

and rmin < 0 is the minimum value observed in the time series. The estimation through
maximum likelihood procedure and its error analysis is also possible [44]. Table 5 com-
pares the Ornstein–Uhlenbeck and the shifted Feller models which have very similar
mathematical expressions for estimating m̂, α̂ and k̂2 parameters. The discount function
now reads (see equations (1)) and (15))

D(t) = E

[
exp

(
−
∫ t

0

(rmin + y(t′)dt′)

)]
= exp (−rmint)E

[
exp

(
−
∫ t

0

y(t′)dt′
)]

.

The asymptotic value of the remaining average shows an exponential decay [33]

E

[
exp

(
−
∫ t

0

y(t′)dt′
)]

� e−yF∞t,

whose long-run discount rate [33] is

yF∞ =
2mF

1 +
√
1 + 2k2

F/α
2
F

,

so that

D(t) = e
−
(
rmin+yF∞

)
t
= e−rF∞t.

We observe that (as in the Ornstein–Uhlenbeck process) the log-run rate is smaller
than the average rate, rF∞ < m. However, the shifted Feller process leads us to obtain
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Table 5. Maximum likelihood estimation for the three different models described
and the long-run interest rate for the case of United States. These estimators are
taking years as a basic time unit and they are all accompanied with the square
root of the variance, σ’s, of each estimator. r̂∞ is the subsequent estimator of the
long-run real interest rate in 1/year. For the Feller and lognormal cases we have
provided a modified version of the model (see equations (14) and (16)). The shifted
Feller and lognormal models takes rmin = −0.0415, which is its minimum value in
the historical time series, and the estimated r̂∞ is corrected by adding rmin but this
has been impossible to be done in the lognormal case since the asymptotic value
goes to a constant.

Ornstein–Uhlenbeck m̂ σm̂ α̂ σα̂ k̂2 σk̂2 r̂∞ σr̂∞

Shifted Feller 0.0319 0.0123 0.0603 0.0257 10.03 × 10−5 1.05 × 10−5 0.0181 0.0124

m̂F σm̂F
α̂F σα̂F

k̂2F σ
k̂2F

r̂F∞ σr̂F∞

Shifted lognormal 0.0864 0.0041 0.0599 0.0057 12.56 × 10−5 1.31 × 10−5 0.0349 0.0072

m̂L σm̂L
k̂2L σk̂2L

m̂L − k̂2L/2 σm̂L−k̂2L/2
Asymp

0.0130 0.0163 0.0309 0.0066 −0.0024 0.0130 Constant

a slightly larger estimation but within the statistical error range (3.49% versus 1.81%,
see table 5). The value is similar than Nordhaus’s 4% discounting rate if one considers
the statistical error and in any case lower than 6% [20, 21].

6.2. The shifted lognormal model

Another alternative to still allow for negative rates is to consider a modified version of
the lognormal process by considering new variable y = r− rmin (where rmin < 0 is the
minimum value observed in the time series) and the following stochastic dynamics:

dy(t) = mLy(t)dt+ kLy(t)dw(t), (16)

whose long-run discount function can lead to three different asymptotic expressions [33]:

E

[
exp

(
−
∫ t

0

y(t′)dt′
)]

∼

⎧⎪⎨
⎪⎩

constant mL < k2
L/2,

e−yL∞t mL > k2
L/2.

t−1/2 mL = k2
L/2,

For the exponential case the long-run discount rate reads

yL∞ =
mL − k2

L/2

ψ
(
2mL/k2

L

)
+ 1/(2mL/k2

L − 1)
,

where ψ(·) is the digamma function. The lognormal process does not show any reversion
trend to a certain level and its average grows (or decreases) in an exponential manner
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E [r(t)|r(0) = r0] = (r0 + rmin)e
mLt − rmin,

a result that it is in contradiction with the times series provided in figure 1. We can
however also estimate the parameters via maximum likelihood procedures. The results
are again provided in table 5 and they show us that the asymptotic discount falls into
the constant case since mL < k2

L/2 although the error analysis warn us that we cannot
discard the exponential case (being not greater 4%–5%) nor the hyperbolic slow decay.

6.3. Extending the Ornstein–Uhlenbeck process

One can argue that the results presented can change under different historical conditions
or periods. To exemplify this issue, we have also estimated these values in the case of
Germany once the World War II was over (from March 1946). Parameters are in that
case μ = 0.62, κ = 0.32 with now a positive long-run rate r∞ = 3.4% which is in any case
smaller than Nordhaus estimates for valuing climate action [21]. Germany certainly is a
quite volatile situation challenging the model which assumes constant (i.e., stationary)
parameters. A possible way out is to extend the model with an additional dimension
under the form of a ‘matrioshka doll’ by considering m as a stochastic process following
an additional Ornstein–Uhlenbeck process [9]8

dr = −α(r −m)dt+ kdw(t)
dm= −α0(m−m0)dt+ k0dw0(t),

(17)

where the Wiener processes w(t) and w0(t) are both zero mean, have unit variance and
are independent from each other implying that E [dw(t)dw0(t)] = 0. We also assume that
α > α0 > 0 thus showing a slower mean reverting force for the subordinated process m0

than for m. A similar extension has been used in other financial contexts to model
stochastic volatility [9] by adding a longer mean reversion process which allows for a
slow decaying memory for the volatility process while still preserving a much shorter
memory for the so-called leverage effect [7, 10] (see also reference [16] for another setting
that could represent an alternative approach to the extended Ornstein–Uhlenbeck model
given by equation (17)). In the long-run, the process reads [9]:

m(t) = m0 + k0

∫ t

−∞
e−α0(t−t′)dw0(t)

r(t) = m0 + k

∫ t

−∞
e−α(t−t′)dw(t) +

k0
α− α0

∫ t

−∞

(
e−α0(t−t′) − e−α(t−t′)

)
dw0(t). (18)

We can easily see that this extended process shows the same average, E [r(t)] = m0, than
the simpler OU version but with greater variance (see equations (4) and (5), respectively)

Var[r(t)] = k2/2α+ k2
0/2α0. (19)

The autocorrelation function now reads [9] (see equation (6)):

8 The model thus consists of two Ornstein–Uhlenbeck processes one inside the other. Hence the name ‘matrioshka doll’.
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K(t− t′) = E [(r(t)−m0)(r(t
′)−m0)]

=

(
k2

2α
− k2

0α

2(α2 − α2
0)

)
e−α|t−t′| +

k2
0α

2

2(α2 − α2
0)α0

e−α0|t−t′|,

where the first term with an exponential decay with 1/α would dominate for short
time difference |t− t′|. In the opposite situation, for longer time difference, the second
exponential decay expressed in terms of 1/α0 would dominate. The extended process
now have five parameters (α, k,α0, k0, and m0), while basic OU process had only three
(α, k, and m).

We can finally look at the effects on the asymptotic discount. It will shown in a
future publication that the process has

rext∞ = m0 −
1

2

(
k2

2α2
+

k2
0

2α2
0

)
. (20)

The result brings rates which are even lower than the one provided by the maximum
likelihood estimation procedure in the simple Ornstein–Uhlenbeck process. As a simple
exercise we can estimate a combination of k0 and α0 with the historical variance of the
whole process (see equation (19)). To estimate α0 is not that simple since our historical
data sets are too short and its estimation becomes too noisy. However, jointly with the
values already obtained for Ornstein–Uhlenbeck maximum likelihood estimation for m
(now equivalent to m0), k, and α, it is possible to observe the effects for different values
of α0:

rext∞ = m0 −
1

2

[
k2

2α2
+

(
Var(r(t))− k2

2α

)
1

α0

]
.

In this case we can see that the long-run rate r∞ for the United States is practically
zero when α0 = α/20.

7. Discussion

Our empirical analysis proves that real interest rates are often negative—roughly a quar-
ter of the time—which implies that one must use a discount model that is compatible
with this property. For this purpose we have proposed the Ornstein–Uhlenbeck model
which has the additional advantage that it can be solved analytically in a relatively
simple way. This model facilitates the understanding of why the long-run discount rate
can be so low. A first reason is that real interest rates are themselves typically low.
As we have showed the average over all countries surveyed is negative, and even the
average over stable countries (those with a positive long-run rate, r∞ > 0) is 2.8%. A
second reason is that the fluctuating part on the right hand side of equation (13), which
depends both on the noise intensity k and the persistence term 1/α, typically lowers
rates for the stable countries by about 7%. In some cases, such as Spain, the effect
is much more dramatic: even though the mean short term rate has the high value of
m = 6.7%, the long-term discounting rate is r∞ = −36% which would imply a great
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increasing discount. The estimation is being done with a maximum likelihood proce-
dure that includes an error analysis that demonstrates the robustness of the results
obtained.

Our analysis here makes several simplifications such as ignoring non-stationarity. We
have here partially address this issue by extending the Ornstein–Uhlenbeck which allows
for slower fluctuations in the normal level and resulting even in lower long-run discount
rates9. Correlations between the environment and the economy have also being ignored
but, in any case, despite the variety of results, the long-run discount rate is always
smaller than Nordhaus estimates by other methods as we have exemplified with the
German case [21]. We have also not considered the market price of risk [42, 46], in other
words, we have assumed that markets are risk neutral and the average in equation (1)
defining the discount function, is evaluated using the empirical probability measure
without any risk adjustment [47, 48]. These issues are under present investigation and
some results are expected soon [49].

In any case the methods that we have introduced here provide a foundation on which
to incorporate more realistic assumptions. We do not mean to imply that it is realistic
to actually use the increasing discounting functions that occur for countries with less
stable interest rate processes. There is some validity to treating hyper-inflation as an
aberration—when it occurs government bonds are widely abandoned in favor of more
stable carriers of wealth such as land and gold, and as a result under such circumstances
the difference between nominal interest and inflation may underestimate the actual real
rate of interest.

Nonetheless, real interest rates are closely related to economic growth, and economic
downturns are a reality. The great depression lasted for 15 years, and the fall of Rome
triggered a depression in western Europe that lasted almost a thousand years. In light
of our results here, arguments that we should wait to act on global warming because
future economic growth will easily solve the problem should be viewed with extreme
skepticism. Our analysis clearly supports Stern over Nordhaus. When we plan for the
future we should always bear in mind that sustained economic downturns may visit us
again, as they had in the past.

Effective responses to this multifaceted problem have been slow to develop, in large
part because many experts have not only underestimated its impact, but also overlooked
the underlying institutional structure, organizational power and financial roots [50, 51].
A growing body of sophisticated research is currently emerging with a large set of
multidisciplinary strategies that wants to exploit socioeconomic tipping points (as in
any complex dynamical system) to magnify the impact of each political intervention
[52] and also integrate science-policy perspectives with public awareness, citizen-led
research and citizen science practices (see for instance [53, 54]). In all cases the final
purpose is to better respond to global challenges such as climate action in a near future,
sooner rather than later.

9Masoliver J, Montero M and Perelló J in preparation.
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