
ar
X

iv
:2

00
3.

03
16

5v
3 

 [
m

at
h.

C
A

] 
 8

 O
ct

 2
02

0

AN ENHANCED UNCERTAINTY PRINCIPLE FOR

THE VASERSTEIN DISTANCE

TOM CARROLL, XAVIER MASSANEDA, AND JOAQUIM ORTEGA-CERDÀ

Abstract. We improve some recent results of Sagiv and Steiner-
berger that quantify the following uncertainty principle: for a func-
tion f with mean zero, either the size of the zero set of the function
or the cost of transporting the mass of the positive part of f to its
negative part must be big. We also provide a sharp upper estimate
of the transport cost of the positive part of an eigenfunction of the
Laplacian. This proves a conjecture of Steinerberger and provides
a lower bound of the size of the nodal set of the eigenfunction.

Introduction

For a continuous function with mean zero, the Vaserstein distance be-
tween the measures corresponding to the positive and the negative
parts of the function indicates how oscillatory the function is. If this
Vaserstein distance is small then the work required to move the positive
mass to the negative mass is small and so we expect the positive and
the negative parts of the function to be close together. Consequently,
we would expect the function to oscillate significantly.

Our main result is an improvement of an uncertainty principle due
to Sagiv and Steinerberger [11] showing that the the zero set of a mean
zero, continuous function and the Vaserstein distance between the posi-
tive and negative parts of the function cannot both be small at the same
time. We prove this result for a function defined in the unit cube of
R

d. It extends to functions defined on a smooth, compact Riemannian
manifold M of dimension d.

Finally, we obtain an upper estimate for this Vaserstein distance in
the case of high frequency eigenfunctions of the Laplacian in M – by
the previous uncertainty principle, this indicates that the nodal sets of
these eigenfunctions should be large.

A continuous function f on the unit cube Q = [0, 1]d in R
d that has

zero mean is decomposed into its positive part f+ = max{f, 0} and its
negative part f− = max{−f, 0}. The interface between the supports
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of these two functions is the zero set

Z(f) = {x ∈ Q : f(x) = 0}.

Thinking of f+ as earth that is to be moved and of −f− as holes that
need to be filled, then the earth-moving work that is required to fill the
holes is the Vaserstein distance between the measures with densities
f+ and f−. As mentioned earlier, if the earth mover’s distance is small
then any earth to be moved f+ must be close to a hole that needs to be
filled f−, and so the interface between the two must be large. This is
the intuition behind the following quantitative result of Steinerberger
[12, Theorem 2] in dimension 2. With a minor abuse of notation, we
write W1(f

+, f−) for the Vaserstein distance between the measures on
Q with densities f+ and f− respectively relative to Lebesgue measure.
We write Hd−1(Z(f)) for the (d−1)-dimensional Hausdorff measure of
the zero set of f . Then, in dimension d = 2,

(1) W1(f
+, f−)H1(Z(f)) ‖f‖∞ & ‖f‖21.

The Vaserstein distance between probability measures µ and ν on Q is
defined by

(2) W1(µ, ν) = inf
ρ

∫

Q×Q

|x− y| dρ(x, y)

where the infimum is over all admissible transport plans, that is over
all probability measures ρ on Q × Q with marginals µ and ν. Such
probability measures ρ are also referred to as couplings of µ and ν.
The monograph Optimal Transport, Old and New by Cedric Villani
[15] has become a classic reference on optimal transport and includes
a detailed exposition of the Vaserstein distance, also known as the
‘earth-mover’s distance’.

The p-Vaserstein distanceWp(µ, ν) is defined similarly but taking the
p-norm of |x−y|. The 1-Vaserstein distance has at least two advantages.
One is that it has an equivalent Monge-Kantorovich dual formulation
as

(3) W1(µ, ν) = sup
h∈Lip1,1(Q)

∣∣∣∣
∫

Q

h dµ−
∫

Q

h dν

∣∣∣∣.

Here Lip1,1(Q) =
{
h : Q → R : |h(x)− h(y)| ≤ |x− y|, x, y ∈ Q

}
.

The other, and more important, advantage is that the definition
doesn’t change if in (2) dρ is replaced by d|ρ| and ρ is allowed to be a
signed measure or transport plan on Q×Q with marginals µ and ν (see
[5]). This extra freedom allows us to construct transport plans that lead
to better estimates, specifically in the course of proving Theorem 3.

The method of proof that Steinerberger uses to obtain the estimate
(1) does not extend to higher dimensions in any obvious way. Using a
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different method, Sagiv and Steinerberger [11] prove that

W1(f
+, f−)Hd−1(Z(f))

(‖f‖∞
‖f‖1

)4−1/d

& ‖f‖1

in dimension d ≥ 3. By a modification of the ‘balanced/unbalanced
cubes’ method of Sagiv and Steinerberger, we can reduce the power
from 4− 1/d to 2− 1/d.

Theorem 1. Let f : Q → R be a continuous function with zero mean.

Let Z(f) be the nodal set Z(f) = {x ∈ Q : f(x) = 0}. Let Hd−1(Z(f))
denote the (d− 1)-dimensional Hausdorff measure of Z(f). Then

(4) W1(f
+, f−)Hd−1(Z(f))

(‖f‖∞
‖f‖1

)2−1/d

& ‖f‖1.

The proof is based on a decomposition of the original cube Q into
smaller cubes Q at different scales where either the mass of |f | is irrel-
evant or

∫
Q
f+ is much larger than

∫
Q
f− (or the other way around).

This proof extends to a somewhat more general setting. Let (M, g)
be a d-dimensional, smooth, compact Riemannian manifold without
boundary and let dV denote the volume form associated with g. A
function f : M → R has zero mean if

∫
M
f dV = 0.

In this setting, the Vaserstein distance between two probability mea-
sures µ and ν on M is then

W1(µ, ν) = inf
ρ

∫

M×M

d(x, y) dρ(x, y)

= sup
h∈Lip1,1(M)

∣∣∣∣
∫

M

h dµ−
∫

M

h dν

∣∣∣∣,

where the infimum is over all admissible transport plans ρ from µ to
ν. Here d(x, y) stands for the distance induced by the metric g and
Lip1,1(M) =

{
h : M → R : |h(x)− h(y)| ≤ d(x, y), x, y ∈ M

}
.

Theorem 2. Let (M, g) be a smooth, compact Riemannian manifold

without boundary. Let f : M → R be a continuous function with zero

mean and let Z(f) = {x ∈ M : f(x) = 0}. Then

(5) W1(f
+, f−)Hd−1(Z(f))

(‖f‖L∞(M)

‖f‖L1(M)

)2−1/d

&(M,g) ‖f‖L1(M).

We state this result for M compact without boundary because of the
application we have in mind (see Theorem 3 below), but it will be clear
from the proof that the statement holds equally well for M compact
with smooth boundary.

We also show by means of an example (see Proposition 5) that the
power 2 − 1/d in (4) cannot be replaced by any power smaller than
1. In particular, Steinerberger’s estimate (1) in dimension 2 is best
possible in this sense.
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The uncertainty principle in Theorem 2 demonstrates that an up-
per estimate for the Vaserstein distance W1(f

+, f−) implies a lower
estimate on the size of the nodal set. In this context, we establish
one direction of a conjecture of Steinerberger on the Vaserstein dis-
tance between the positive and negative parts of eigenfunctions of the
Laplacian. Steinerberger in [14] posed the following conjecture:

Conjecture. Let (M, g) be a smooth, compact Riemannian manifold

without boundary. Is it true that if φ is an L2-normalised eigenfunction

of the Laplacian with eigenvalue L, so that −∆φ = Lφ on (M, g), then

Wp(φ
+, φ−) ≃ p, (M,g)

1√
L

‖φ‖1/pL1(M)?

Steinerberger proves that

W1(φ
+, φ−) . (M,g)

√
logL

L
‖φ‖L1(M).

We obtain the conjectured upper bound for the case p = 1 and for all
linear combinations of eigenfunctions with high frequencies. This for-
malises the intuition that for high frequency eigenfunctions it is “cheap”
to move from the positive to the negative part.

Theorem 3. Let (M, g) be a smooth, compact Riemannian manifold

without boundary. Let {φ0, φ1, . . .} be an orthonormal basis of L2(M)
consisting of eigenfunctions −∆φi = λiφi and ordered in such a way

that 0 = λ0 < λ1 ≤ λ2 ≤ · · · . Let f =
∑

k:λk≥L

akφk ∈ L2(M), ak ∈ R.

Then

W1(f
+, f−) . (M,g)

1√
L
‖f‖L1(M).

The improvement by the factor
√
logL follows from the construction

of a (signed) transport plan that is well concentrated on the diagonal.
There is nothing special about the Laplacian in the context of The-

orem 3, in that the result holds for any elliptic operator with smooth
coefficients in the manifold M . We only need certain estimates on a
Bochner-Riesz type kernel that are known to hold for general elliptic
operators, see [9].

Together, Theorem 2 and Theorem 3 show that when φ is a linear
combination of eigenfunctions of the Laplacian with eigenvalues bigger
than L,

Hd−1(Z(φ)) &
√
L

( ‖φ‖L1(M)

‖φ‖L∞(M)

)2−1/d

.

This is a several variables generalization of Sturm’s theorem on zeros
of linear combinations of eigenfunctions, see [1].

As such, it goes in the direction of Yau’s conjecture that, in a smooth
compact Riemannian manifold without boundary and for an eigenfunc-
tion φ of the Laplacian with eigenvalue L, we have Hd−1(Z(φ)) ≃

√
L .
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The full lower bound in Yau’s conjecture, without terms involving L∞

and L1 norms of φ, that is Hd−1(Z(φ)) &
√
L , has already been proved

by Logunov in [4].
We finally remark that our method seems to provide information

only for the Vaserstein distance W1. As mentioned, the definition of
W1(µ, ν) does not change if the transport plan dρ is replaced by d|ρ|,
where ρ is a signed transport plan. This fails dramatically for p > 1.

Proposition 1. Let p > 1 and let µ, ν be two probability measures in

the interval I = [0, 1]. We define

W̃ p
p (µ, ν) = inf

ρ

∫

I×I

|x− y|p d|ρ|(x, y),

where the infimum is taken over all admissible signed transport plans,

that is over all signed measures ρ on I × I with marginals µ and ν.

Then W̃p(µ, ν) = 0.

Proof. Consider first the case µ = δ0 and ν = δ1. Then we consider
the sequence of transport plans ρn, which consist of n negative Dirac
deltas and n + 1 positive Dirac deltas located in points of I × I as in
the figure:

❢

✈ ❢

✈ ❢

❢

❢

❢

❢

✈

✈

✈

✈

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
��

0 1

1

On the white dots we place a positive Dirac delta and on the black
dots a negative Dirac delta. More precisely we take ρn to be

ρn = δ(0,0) +
n∑

j=1

δ(j/n,1/(2n)+(j−1)/n) −
n∑

j=1

δ((j−1)/n,1/(2n)+(j−1)/n).

Clearly the marginals of ρn are δ0 and δ1. For any of the Dirac deltas,
whether positive or negative and located at a point (x, y), we have that
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|x− y| = 1/(2n), except for the Dirac delta at (0, 0). Thus,
∫

I×I

|x− y|p d|ρn|(x, y) =
n∑

j=1

2

(
1

2n

)p

= (2n)1−p.

Thus,

W̃ p
p (δ0, δ1) ≤ lim inf

n

∫

I×I

|x− y|p d|ρn|(x, y) = 0.

This argument can be easily adapted to prove that W̃p(δx, δy) = 0
for any pair x, y ∈ [0, 1]. Since linear combinations of Dirac deltas
are weak*-dense in the space of probability measures, it follows that

W̃p(µ, ν) = 0 for any probability measures µ, ν. �

Acknowledgements. We are very thankful to Benjamin Jaye for let-
ting us know that there was a gap in an earlier version of the proof of
Theorem 1 and for finding the nice fix that he generously lets us use
here. The construction of the Qj in that proof is due to him. We are
also thankful to Gian Maria Dall’Ara for helpful discussions and to the
referee for a careful reading of the manuscript and for many thought-
provoking suggestions that have resulted in a significant improvement
of the text.

Proof of Theorem 1

Note that in general f+ dV and f− dV , where dV is Lebesgue mea-
sure in R

d, are not probability measures, which is the usual setting
for the Vaserstein distance. However, the distance is well defined for
measures with the same total mass. Alternatively, notice that the zero
mean condition implies that 2f+/‖f‖1 dV and 2f−/‖f‖1 dV are prob-
ability measures, so we can define

W1(f
+, f−) :=

‖f‖1
2

W1

(2f+dV

‖f‖1
,
2f−dV

‖f‖1

)
.

In any case, replacing f by f/‖f‖1 if necessary, we may assume without
loss of generality that ‖f‖1 = 1 and proceed to prove that there is a
constant Cd > 0 such that

W1(f
+, f−)Hd−1(Z(f)) ‖f‖2−1/d

∞ ≥ Cd.

If Hd−1(Z(f)) = ∞ the inequality (4) is trivially true, so we may
assume that Hd−1(Z(f)) < ∞.

For convenience, we extend the function f to a function defined in all
R

d, extending it to be 0 outside Q. We continue to denote this function
by f . We shall use a decomposition of the cubeQ into cubes at different
scales defined through a continuous stopping time argument.

The argument draws on constructions used by Steinerberger [13] and
Sagiv and Steinerberger [11]. We need some definitions to describe this
decomposition.
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For any measurable set A we denote its volume by V (A). The side
length of a cube Q is denoted by l(Q), so V (Q) = l(Q)d. We write

V +
f (Q) = V (Q ∩ {f > 0}) and V −

f (Q) = V (Q ∩ {f < 0})

and note that, since Hd−1(Z(f)) < ∞, V (Q ∩ Q) = V +
f (Q) + V −

f (Q).

Definition 1. We say that a cube Q is unbalanced if either

(6) V +
f (Q) ≥ 100× 5d ‖f‖∞V −

f (Q)

or

(7) V −
f (Q) ≥ 100× 5d ‖f‖∞V +

f (Q).

If

(8)
1

100× 5d ‖f‖∞
≤

V +
f (Q)

V −
f (Q)

≤ 100× 5d ‖f‖∞,

we say that the cube is balanced.

Since
∫
Q
f+ =

∫
Q
f− = 1/2, the cube Q is balanced with

(9)
1

2‖f‖∞
≤

V +
f (Q)

V −
f (Q)

≤ 2‖f‖∞.

Definition 2. We say that a cube Q is full whenever
∫

Q

|f | ≥ 5−d

10
V (Q ∩ Q).

The empty cubes are those cubes Q for which
∫

Q

|f | < 5−d

10
V (Q ∩Q).

For every x ∈ Q such that f(x) 6= 0, there exists l(x) > 0 such
that the open cube Qx centred at x and of side length l(x) = l(Qx) is
simultaneously balanced and unbalanced. That is, either

(10) V +
f (Qx) = 100× 5d ‖f‖∞V −

f (Qx)

or

(11) V −
f (Qx) = 100× 5d ‖f‖∞V +

f (Qx).

This can be achieved by continuity, since for l very small the cube
centred at x and of side length l is infinitely unbalanced, while for side
length l = 2 it is balanced, by (9). Then there must be an intermediate
side length l(x) that makes the cube both balanced and unbalanced.

These cubes Qx cover Q (up to at most a zero-measure set). By the
Besicovitch covering theorem [2] , one can find finitely many sequences



8 T. CARROLL, X. MASSANEDA, AND J. ORTEGA-CERDÀ

(xi,j)i≥1, j = 1 . . . 5d, such that the cubes (Qxi,j
)i≥1 are disjoint for each

j, and together they still cover Q. That is,

Q ⊂
5d⋃

j=1

⋃

i≥1

Qxi,j

Since
∫
Q
|f | = 1, there is at least one family of cubes (Qxi,j

)i≥1 (which,
by relabelling, we may assume corresponds to j = 1) such that

∑

i≥1

∫

Qxi,1

|f | ≥ 5−d.

From this particular sequence of cubes we select those that are full,
and further relabel the centres of the cubes of this subfamily as (xi)i≥1

and the cubes themselves as Qxi
= Qi. These cubes are disjoint and

carry most of the mass.

Proposition 2. There is a constant c > 0 depending only on the di-

mension d such that ∑

i

∫

Qi

|f | ≥ c.

Proof. First let us note that the mass of f in the cubes Qxi,1
that are

empty cannot be very big:

∑

i: Qxi,1
empty

∫

Qxi,1

|f | ≤ 5−d

10

∑

i: Qxi,1
empty

V (Qxi,1
∩ Q) ≤ 5−d

10
.

Thus the integral over the full cubes satisfies

∑

i: Qxi,1
full

∫

Qxi,1

|f | ≥ 5−d 9

10
. �

Denote by F+ the set of indices of the cubes Qi that are full, bal-
anced, and that are unbalanced in the sense that V +

f (Qi) dominates

V −
f (Qi) ((10) holds). Similarly, we denote by F− the indices corre-

sponding to those cubes Qi that are full, balanced, and that are unbal-
anced in the sense that V −

f (Qi) dominates V +
f (Qi) ((11) holds).

Lemma 1. For i ∈ F+, each of the following estimates holds:

(12)

∫

Qi

f− ≤ 1

9

∫

Qi

f+,

(13)

∫

Qi

f+ ≥ 9

10

∫

Qi

|f |.

Analogous estimates hold for i ∈ F−.
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Proof. If i ∈ F+ then, by (6),
∫

Qi

f− ≤ ‖f‖∞V −
f (Qi) ≤

5−d

100
V +
f (Qi) ≤

5−d

100
V (Qi ∩ Q).

Since Qi is full we then have
∫

Qi

f+ =

∫

Qi

|f | −
∫

Qi

f−

≥ 5−d

10
V (Qi ∩Q)− 5−d

100
V (Qi ∩ Q)

=
9× 5−d

100
V (Qi ∩Q).

These estimates together imply (12). Finally,
∫

Qi

f+ =

∫

Qi

|f | −
∫

Qi

f− ≥
∫

Qi

|f | − 1

9

∫

Qi

f+,

which leads to (13). �

We are now ready to bound from below both the Hausdorff measure
of the zero set and the Vaserstein distance between f+ and f−. That
the Hausdorff measure of the zero set cannot be small comes from the
fact that the cubes Qi are balanced. That the Vaserstein distance
between f+ and f− cannot be small comes from the fact that they are
unbalanced. We first estimate from below the Hausdorff measure of
Z(f) in Q.

Proposition 3. We have:

(14) Hd−1(Z(f) ∩Q) &
1

‖f‖(d−1)/d
∞

∑

i

l(Qi)
d−1.

Proof. We start the proof by considering only the cubes Qi that are
contained in Q. We will deal later with the cubes that intersect the
boundary of Q.

We recall the following relative isoperimetric inequality (see [6–8]):
for an open cube Q in R

d and K ⊂ Q,

(15) Hd−1
(
∂K ∩Q

)
&d

(
min{V (K), V (Q \K)}

)d−1

d .

Observe that since Qi is balanced the volumes in Qi separated by
Z(f) are comparable, up to a factor ‖f‖∞. In fact, if

V −
f (Qi) = 100× 5d ‖f‖∞V +

f (Qi),

since ‖f‖∞ ≥ 1, we deduce from V (Qi) = V +
f (Qi) + V −

f (Qi) that

V +
f (Qi) ≥

V (Qi)

(1 + 100× 5d) ‖f‖∞
≈ l(Qi)

d

‖f‖∞
.
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Similarly, if V +
f (Qi) = 100× 5d ‖f‖∞V −

f (Qi), we find that

V −
f (Qi) ≥

V (Qi)

(1 + 100× 5d) ‖f‖∞
≈ l(Qi)

d

‖f‖∞
.

Then, by the relative isoperimetric inequality (15),

Hd−1
(
Z(f) ∩Qi

)
& min

{
[V +

f (Qi)]
(d−1)/d, [V −

f (Qi)]
(d−1)/d

}

&
l(Qi)

d−1

‖f‖(d−1)/d
∞

.

Since the cubes Qi are disjoint,

∑

i : Qi⊂Q

l(Qi)
d−1

‖f‖(d−1)/d
∞

.
∑

i : Qi⊂Q

Hd−1
(
Z(f) ∩Qi

)
≤ Hd−1(Z(f) ∩ Q).

This last estimate holds only for cubes Qi that are fully inside Q.
There may be others that touch the boundary, but for these we have

∑

i : Qi∩∂Q6=∅

l(Qi)
d−1

‖f‖(d−1)/d
∞

≤ l(Q)d−1

‖f‖(d−1)/d
∞

. Hd−1(Z(f) ∩Q).

The first inequality holds because the cubes are disjoint and all intersect
∂Q, and the last one because of the relative isoperimetric inequality
applied to Q (see (9)). The estimate (14) now follows. �

Now we are going to estimate the transport realized in each of the
full cubes Qi making use of the fact that they are unbalanced.

Proposition 4. We have the following estimate of the Vaserstein dis-

tance between f+ and f−:

W1(f
+, f−) &

1

‖f‖∞
∑

i

( ∫
Qi

|f |
)2

l(Qi)d−1
.

Proof. By definition

W1(f
+, f−) = inf

ρ

∫

Q×Q

|x− y| dρ(x, y),

where ρ is a transport plan between f+ and f−, that is ρ is a measure
supported on Q×Q such that for any measurable set A ⊂ Q,

∫

A×Q

dρ(x, y) =

∫

A

f+,

∫

Q×A

dρ(x, y) =

∫

A

f−.
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We need a uniform lower bound on the transport required for a general
plan ρ. We have,

W1(f
+, f−) ≥ inf

ρ

∑

i

∫

Qi×Q

|x− y| dρ(x, y)

≥ inf
ρ

∑

i

∫

Qi×Qc
i

|x− y| dρ(x, y)

≥ inf
ρ

∑

i

∫

Qi×Qc
i

d(x, ∂Qi) dρ(x, y).

Here, d(x, ∂Qi) is the distance from x ∈ Qi to the boundary of the
cube Qi.

We now estimate the transport for each Qi. Assume i ∈ F+, the
case i ∈ F− being completely analogous. Given any transport plan ρ,
write

(16)

∫

Qi×Qc
i

d(x, ∂Qi) dρ(x, y) =

∫

Qi

d(x, ∂Qi) dν(x),

where ν = νρ,i is the measure in Qi defined by ν(A) = ρ(A × Qc
i) =∫

A×Qc
i

dρ(x, y), for A ⊂ Qi. By definition ν(A) ≤ ρ(A × Q) =
∫
A
f+,

so ν ≤ χQi
f+dV . In particular

(17) ν(Qi) ≤
∫

Qi

f+.

On the other hand

ν(Qi) = ρ(Qi ×Qc
i) = ρ(Qi ×Q)− ρ(Qi ×Qi)

=

∫

Qi

f+ − ρ(Qi ×Qi).

Since, by (12),

ρ(Qi ×Qi) ≤ ρ(Q×Qi) =

∫

Qi

f− ≤ 1

9

∫

Qi

f+

we deduce, using (13), that

(18) ν(Qi) ≥
8

9

∫

Qi

f+ ≥ 4

5

∫

Qi

|f |.

Next, writing the integral in terms of the distribution function,
∫

Qi

d(x, ∂Qi) dν(x) =

∫ l(Qi)

0

ν({x ∈ Qi : d(x, ∂Qi) ≥ t}) dt

= l(Qi)ν(Qi)−
∫ l(Qi)

0

ν({x ∈ Qi : d(x, ∂Qi) < t}) dt.(19)
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Since ν ≤ f+χQi
dV and f+ is bounded, we have that

ν({x ∈ Qi : d(x, ∂Qi) < t}) ≤
∫

f+ χQi∩{d(x,∂Qi)<t}

≤ ‖f‖∞V (Qi ∩ {d(x, ∂Qi) < t})
≤ C‖f‖∞ t l(Qi)

d−1,

for some constant C (depending on the dimension). Then, by (17),

ν({x ∈ Qi : d(x, ∂Qi) < t}) ≤ min
{
ν(Qi), C‖f‖∞ t l(Qi)

d−1
}
.

The crossover point where ν(Qi) dominates being when

t = ti =
ν(Qi)

C‖f‖∞ l(Qi)d−1
,

we have by (19) that

∫

Qi

d(x, ∂Qi)dν(x) ≥ l(Qi)ν(Qi)−
∫ ti

0

‖f‖∞ t l(Qi)
d−1 dt−

∫ l(Qi)

ti

ν(Qi) dt

= ν(Qi) ti −
∫ ti

0

‖f‖∞ t l(Qi)
d−1 dt

=
1

2

ν(Qi)
2

C‖f‖∞ l(Qi)d−1
.

Going back to (16) and using the estimate (18) gives the estimate
∫

Qi×Qc
i

d(x, ∂Qi) dρ(x, y) =

∫

Qi

d(x, ∂Qi)dν(x)

&
ν(Qi)

2

‖f‖∞ l(Qi)d−1
&

(∫
Qi

|f |
)2

‖f‖∞ l(Qi)d−1
,

which finishes the proof of Proposition 4. �

Finally, to conclude the proof of Theorem 1, we use first Proposition 4
and (14) to obtain:

W1(f
+, f−)Hd−1(Z(f) ∩ Q) &

1

‖f‖2−1/d
∞

∑

i

(∫
Qi

|f |
)2

l(Qi)d−1

∑

i

l(Qi)
d−1

By the Cauchy-Schwarz inequality for sums, applied in the opposite
direction to usual, and by Proposition 2 the result follows:

W1(f
+, f−)Hd−1(Z(f) ∩Q) &

1

‖f‖2−1/d
∞

(
∑

i

∫

Qi

|f |
)2

&
1

‖f‖2−1/d
∞

.
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Proof of Theorem 2 (Sketch)

Let d be the dimension of the manifold M and let ρ be the injectivity
radius of (M, g), that is, the supremum of the values r > 0 such that
the exponential map defines a global diffeomorphism from the ball with
centre 0 and radius r in R

d onto its image in M . For x ∈ M and r > 0
let B(x, r) denote the ball of centre x and radius r in the distance
induced by the metric g.

Assume, as before, that ‖f‖L1(M) = 1 and fix r0 ≤ 3ρ. We start by
choosing a ball in M with a substantial part of the L1-norm of f : there
exist ǫ = ǫ(M) and x0 ∈ M such that

∫

B(x0,r0)

|f | ≥ ǫ.

Denote B = B(x0, r0). To adapt the scheme of the previous proof
from Q to B we consider f restricted to 2B = B(x0, 2r0) and extend it
outside by 0. We still denote this function by f .

Assume first that B is such that

(20)
ǫ

2‖f‖∞
≤

V +
f (B)

V −
f (B) ≤ 2‖f‖∞

ǫ
.

This plays the role of (9) in this proof. The factor ǫ everywhere is just
(the bound of) the L1-norm of f on B.

Here we call a ball B = B(x, r) balanced if

ǫ

100× 5d ‖f‖∞
≤

V +
f (B)

V −
f (B)

≤ 100× 5d ‖f‖∞
ǫ

,

and full if ∫

B

|f | ≥ ǫ
5−d

10
V (B ∩ 2B).

For every x ∈ B, let Bx = B(x, r(x)) be the ball centered a x and
with radius r(x) chosen so that either

V +
f (Bx) =

100

ǫ
× 5d ‖f‖∞V −

f (Bx)

or

V −
f (Bx) =

100

ǫ
× 5d ‖f‖∞V +

f (Bx).

Such a radius r(x) exists and is smaller than the injectivity radius,
because f vanishes outside 2B.

As in the cube case, by the Besicovitch covering theorem there are
finitely many families of disjoint balls (Bxi,j

)i≥1 that cover B. We can
then select a family, called (Bxi,1

)i≥1, such that

∑

i≥1

∫

Bxi,1

|f | ≥ 5−d

∫

B

|f | ≥ ǫ 5−d.
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From these balls we select those that are full, and we relabel them as
(Bi)i≥1. With this family of balls, which plays the role of the family
(Qi)i in the case of the cube, we can repeat, mutatis mutandis, the
arguments that prove the equivalents of Propositions 2, 3 and 4, and
therefore the inequality in Theorem 2. In the proof of Proposition 3
we separate the balls Bi inside 2B, which are dealt with as before,
and those that intersect the boundary of 2B. For these ones we use
that

∑
i r

d−1
i . Hd−1(∂B), since the centres of the disjoint balls Bi are

always in B.
In case B does not satisfy (20) the desired estimate is straightforward.

On the one hand, the argument of Proposition 4 applied just to the
ball B yields

W1(f
+, f−) &

1

‖f‖∞

(∫
B
|f |
)2

rd−1
0

≥ 1

‖f‖∞
ǫ2

rd−1
0

.

On the other hand, the relative isoperimetric inequality applied to any
ball B(x, r0) with x ∈ Z(f) yields

Hd−1(Z(f)) & r
d−1

d

0 .

Together these lead to

W1(f
+, f−)Hd−1(Z(f))‖f‖∞ &(M,g) ‖f‖2L1(M).

An example

Next we show that the exponent 2 − 1/d in Theorem 1 cannot be
replaced by any power smaller than 1. In particular, Steinerberger’s
uncertainty principle (1) in dimension 2 is best possible in this sense.

Proposition 5. Let ε > 0. There is a continuous function fε : Q0 → R

such that

(i) ‖fε‖∞ ≃ ε−1 and ‖fε‖1 ≃ 1,
(ii) Z(fε) = {x ∈ [0, 1]d : xd = 1/2}; hence Hd−1(Z(fε)) = 1,
(iii) W1(f

+
ε , f

−
ε ) ≃ ε.

Thus, the inequality

W1(f
+
ε , f

−
ε )Hd−1(Z(fε))

(‖fε‖∞
‖fε‖1

)α

& ‖fε‖1,

does not hold in general for any exponent α < 1.

Proof. The construction is as follows. Write x ∈ R
d as x = (xd−1, xd)

where xd−1 ∈ R
d−1. Take the function fε(x) = hε(xd) where the graph

of hε is as in the picture:
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0.5
0 ε2

1/ε

−1/ε

1−ε2
0.5 + ε0.5− ε

x
xdx̃

Properties (i) and (ii) of the function fε are then immediate.
The function hε is symmetric about xd = 0.5, so that hε(1 − xd) =

−hε(xd), xd ∈ [0, 1]. For x = (xd−1, xd) ∈ Q0 we write x̃ = x̃(x) for
the point (xd−1, 1 − xd) ∈ Q0, the reflection of x in the hyperplane
xd = 1/2. Observe that |x− x̃| = |1− 2xd|. Then, f+

ε (x̃) = f−
ε (x).

To prove the upper bound in (iii), consider the following transport
plan

ρ(x, y) = f+
ε (x) δx̃(y).

Notice that it has the correct marginals:
∫

y∈Q0

dρ(x, y) = f+
ε (x)

∫

y∈Q0

δx̃(y) = f+
ε (x),

∫

x∈Q0

dρ(x, y) =

∫

x∈Q0

f+
ε (x) δx̃(y) = f+

ε (ỹ) = f−
ε (y).

Therefore,

W1(f
+
ε , f

−
ε ) ≤

∫∫

Q0×Q0

|x− y| dρ(x, y)

=

∫

x∈Q0

f+
ε (x)

∫

y∈Q0

|x− y| δx̃(y)

=

∫

x∈Q0

f+
ε (x) |x− x̃| dV (x)

= 2

∫

x∈Q0

(
xd − 1

2

)
f+
ε (x) dV (x) . ε.

For the lower bound we use the Monge-Kantorovich duality lemma
(see (3) or [15, Formula (6.3)]):

W1(µ, ν) = sup
g∈Lip1,1(Q0)

∣∣∣∣
∫

Q0

g (dµ− dν)

∣∣∣∣ .
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Taking g(x) = xd − 1
2
we have

W1(f
+
ε , f

−
ε ) ≥

∫

Q0

(xd − 1
2
) (f+

ε (x)− f−
ε (x)) dV (x)

=

∫

Q0

(xd − 1
2
) fε(x) dV (x) & ε. �

With a similar example one can check that in dimension 2, the in-
equality (1), that is W1(f

+, f−)H1(Z(f)) ‖f‖∞ ≥ C‖f‖21, cannot hold
with a constant C greater than 1. It is an interesting problem to de-
termine the best constant in the equality (1).

Proof of Theorem 3 on eigenfunctions of the Laplacian

Let d be the dimension of M and denote by V the volume form on
M associated to g and normalised so that V (M) = 1.

In order to construct a transport plan between f+ and f− we consider
an auxiliary kernel. Let a : [0, 1] → R be a smooth decreasing function
such that a(t) ≡ 1 in [0, 1/4] and a(t) ≡ 0 in [3/4, 1].

Observe that φ0(x) = 1 and therefore

(21)

∫

M

φi(x) dV (x) = 〈φi, φ0〉 = 0, i ≥ 1.

For any L > 0, we write

BL(x, y) =
∑

λi<L

a(λi/L)φi(x)φi(y), x, y ∈ M.

This is a kernel of Bochner-Riesz type. It is a smoothed out version of
the Bergman kernel that gives the orthogonal projection from L2(M)
to the span generated by the first eigenvector of the Laplacian, in the
same spirit as the Riesz kernels are a smoothed version of the Dirichlet
kernel on trigonometric sums. See [9,10] for the basic properties of the
kernel.

It is proved in [9, Lemma 2.1] that the following pointwise estimates
hold: for any N > 0 there exists CN > 0 such that

(22) |BL(x, y)| ≤ CN
Ld/2

[
1 +

√
Ld(x, y)

]N , x, y ∈ M

Now we use a slightly different definition of the Vaserstein distance
(see [5, Formula (43)]):

W1(µ, ν) = inf
ρ

∫∫

M×M

d(x, y) d|ρ|(x, y),

where ρ are now signed measures onM×M with marginals ρ(·,M) = µ,
ρ(M, ·) = ν. This follows from the estimate of the Vaserstein distance
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using the dual expression (3):

W1(µ, ν) = sup
h∈Lip1,1(M)

∣∣∣∣
∫

M

h(w)
(
dµ(w) dV (w)− dν(w) dV (w)

)∣∣∣∣ .

A direct estimate yields, for any signed measure ρ with marginals µ
and ν,

W1(µ, ν) = sup
h∈Lip1,1(M)

∣∣∣∣
∫

M

h(w)
[∫

y∈M

dρ(w, y)−
∫

x∈M

dρ(x, w)
]∣∣∣∣

≤ sup
h∈Lip1,1(M)

∫

M

∫

M

|h(x)− h(y)| d|ρ|(x, y)

≤
∫∫

M×M

d(x, y) d|ρ|(x, y).

The other inequality is trivial.
Let σ be the pushforward of the measure f− dV by the diagonal map

F : M → M ×M defined as F (x) = (x, x), that is σ = F∗(f
−dV ). The

measure σ is supported on the diagonal D = {(x, y) ∈ M×M : x = y}.
Define a signed measure on M ×M by

ρL(x, y) = BL(x, y) f(x) dV (x) dV (y) + σ(x, y).

We compute the marginals of ρL. It is straightforward that both
marginals of σ are f−dV , so we are left with the computation of the
marginals of the first term in ρL. Clearly∫

y∈M

BL(x, y) f(x) dV (x) dV (y) = f(x) dV (x)

∫

M

BL(x, y) dV (y)

and, by definition and by (21),
∫

M

BL(x, y) dV (y) =
∑

λi<L

a

(
λi

L

)
φi(x)

∫

M

φi(y) dV (y)

= φ0(x) V (M) = 1.

Hence, the marginal of the first term in ρL with respect to y ∈ M is
f(x) dV (x), and therefore

∫

y∈M

dρL(x, y) = f(x) dV (x) + f−(x) dV (x) = f+(x) dV (x).

For the other marginal we use the orthogonality of f to all φi, λi < L,
(since it is a linear combination of eigenfunctions of −∆ with eigenval-
ues λk ≥ L). Thus,
∫

x∈M

BL(x, y) f(x) dV (x) dV (y)

=
∑

λi<L

a

(
λi

L

)
φi(y) dV (y)

∫

M

φi(x) f(x) dV (x) = 0,
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and the second marginal of ρL reduces to that of σ, which is f−(y) dV (y).
Now that we have checked that ρL has the correct marginals let us

prove the inequality in the statement of Theorem 3.
Since σ is supported on the diagonal, it does not contribute to this

last integral. Using (22), we are led to:

W1(f
+, f−) .

∫

M

∫

M

|f(x)| Ld/2d(x, y)
[
1 +

√
Ld(x, y)

]N dV (x) dV (y)

≤ ‖f‖1√
L

sup
x∈M

∫

M

Ld/2
√
Ld(x, y)

[
1 +

√
Ld(x, y)

]N dV (y)

≤ ‖f‖1√
L

sup
x∈M

∫

M

Ld/2

[
1 +

√
Ld(x, y)

]N−1
dV (y).

We are still free to choose N . We pick N > d+1 (the choice N = d+2
works fine) and complete the proof of Theorem 3 by showing that there
is a finite constant C independent of L such that

(23) sup
x∈M

∫

M

Ld/2

[
1 +

√
Ld(x, y)

]N−1
dV (y) ≤ C.

Writing the integral in terms of the distribution function and substi-

tuting t =
(
1 +

√
Ls
)−N+1

we obtain
∫

M

Ld/2

[
1 +

√
Ld(x, y)

]N−1
dV (y)

= Ld/2

∫ 1

0

V
({

y :
[
1 +

√
L d(x, y)

]−N+1
> t
})

dt

= (N − 1)Ld/2

∫ ∞

0

V
(
{y : d(x, y) < s}

) √
Lds

(
1 +

√
Ls
)N .

Since M is compact, the volume of a geodesic ball {y : d(x, y) < s} is
at most a (global) constant times sd. We deduce, finally, that

∫

M

Ld/2

[
1 +

√
Ld(x, y)

]N−1
dV (y) . Ld/2

∫ ∞

0

sd
√
Lds

(
1 +

√
Ls
)N

=

∫ ∞

0

ud du

(1 + u)N
. 1,

which proves (23) and completes the proof of Theorem 3.
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