
 

 

International Journal of Computer Research; Huttington Tomo 24, N. 2/3, (2017): 173-193. 

© 2017 Nova Science Publishers, Inc. 

 

THE APPRAISAL OF MACHINE LEARNING TECHNIQUES 

FOR TOURISM DEMAND FORECASTING 
 

 

Oscar Claveria1,*, Enric Monte2 and Salvador Torra3 
1AQR-IREA, University of Barcelona, Barcelona, Spain 

2Department of Signal Theory and Communications, Polytechnic University of Catalunya,  

Barcelona, Spain 
3Riskcenter-IREA, University of Barcelona, Barcelona, Spain 

 

 

ABSTRACT 

 

Machine learning (ML) methods are being increasingly used with forecasting purposes. This 

study assesses the predictive performance of several ML models in a multiple-input multiple-

output (MIMO) setting that allows incorporating the cross-correlations between the inputs. We 

compare the forecast accuracy of a Gaussian process regression (GPR) model to that of different 

neural network architectures in a multi-step-ahead time series prediction experiment. We find that 

the radial basis function (RBF) network outperforms the GPR model, especially for long-term 

forecast horizons. As the memory of the models increases, the forecasting performance of the GPR 

improves, suggesting the convenience of designing a model selection criteria in order to estimate 

the optimal number of lags used for concatenation. 
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1. INTRODUCTION 

 

Machine learning (ML) methods are being increasingly used for economic and 

financial forecasting (Aminian et al., 2006; Chen and Leung, 2005; Kock and Teräsvirta, 

2014; Medeiros et al., 2006; Ortega and Khashanah, 2014; Stasinakis et al., 2014; Von 

Spreckelsen et al., 2014). International tourism is becoming one of the most important 

economic activities worldwide, and as result there is an increasing interest in the 

refinement of tourism demand forecasts. A growing body of literature finds evidence in 

favour of a better predictive performance of ML models with respect to traditional 

forecasting methods (Adya and Collopy, 1998; Cho, 2003; Xu et al., 2016). 
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Statistical learning is based on the construction of computer algorithms that learn 

through experience. The complex nature of the data generating process of tourism demand 

explains the increasing use of non-linear approaches such as support vector regression 

(SVR) and neural network (NN) models for tourism forecasting. Akin (2015), Chen and 

Wang (2007), Claveria et al. (2016a) and Hong et al. (2011) all find that SVR models 

outperform autoregressive integrated moving average (ARIMA) models for tourism 

demand forecasting. 

With respect to NN models, the most widely used NN feed-forward topology in 

tourism has been the multi-layer perceptron (MLP) network (Claveria et al., 2015a; Law, 

2000; Lin et al., 2011; Molinet et al., 2015; Padhi and Aggarwal, 2011; Palmer et al., 

2006; Pattie and Snyder, 1996; Teixeira and Fernandes, 2012; Tsaur et al., 2002; Uysal 

and El Roubi, 1999). See Athanasopoulos et al. (2011) and Song and Li (2008) for a 

thorough review of recent tourism demand forecasting studies. 

The Radial Basis Function (RBF) network, is being increasingly used for tourism 

forecasting. Kon and Turner (2005) implemented a RBF NN to forecast arrivals to 

Singapore. More recently, Cang (2014) combined RBF, MLP and SVR forecasts of UK 

inbound tourist arrivals in non-linear models. Subsequently, Çuhadar et al. (2014) 

compared the forecasting accuracy of RBF to that of MLP networks to predict tourist 

demand, finding evidence in favour of RBF NNs. A complete summary on the use of NNs 

with forecasting purposes can be found in Zhang et al. (1998). 

Originally devised for interpolation, the Gaussian Process Regression (GPR) model 

can be regarded as a supervised learning method based on a generalized linear regression 

that locally estimates forecasts by the combination of values in a kernel (Williams and 

Rasmussen, 1996). Gaussian process (GP) models allow to specify Bayesian priors on the 

data and the structure, and therefore the use of kernel analogue for ML. 

Another key advantage of GPs over other statistical learning techniques is that they 

provide full probabilistic predictive distributions, including estimations of the uncertainty 

of the predictions. These features make GPR an ideal tool for forecasting purposes 

(Ahmed et al., 2010; Banerjee et al., 2008; Yang et al., 2013). 

In spite of the fact that GPs are powerful, non-parametric tools for regression in high 

dimensional spaces, there are very few previous studies that use GPR for tourism 

forecasting (Wu et al., 2012; Claveria et al., 2016b). Wu et al. (2012) used a sparse GPR 

model to predict tourism demand to Hong Kong and found that its forecasting capability 

outperformed those of the ARMA and SVR models. Claveria et al. (2016b) compared the 



 

 

forecasting performance of a GPR model to that of a MLP NN, obtaining significantly 

better predictions with the GPR model. For a unifying description of sparse 

approximations for GPR see Quiñonero-Candela and Rasmussen (2005). 

In order to fill this gap, we assess the forecasting performance of several ML models 

in a multiple-input multiple-output (MIMO) setting for multi-step-ahead time series 

prediction. Recently, Ben Taieb et al. (2010) presented a MIMO extension of 

conventional local modelling approaches that allowed to preserve the stochastic 

properties of the training series in multiple-step-ahead prediction. The main aim of this 

study is to design a MIMO framework for multi-step-ahead time series prediction with a 

GPR model. 

To assess the forecasting performance of the presented GPR model we compare it to 

a RBF NN and a MLP NN used as benchmark in a MIMO setting that incorporates the 

cross-correlations between the inputs (international tourist arrivals to all seventeen 

regions of Spain) in order to generate a vector of future values (for all markets). 

The study is organized as follows. The next section reviews the literature and 

describes the data. The third section presents the different ML methods applied in the 

study. Section four describes the experimental settings and reports the results of the 

multiple-step-ahead forecasting comparison. Finally, conclusions are drawn together with 

potential lines for future research. 

 

2. BACKGROUND AND DATA 
 

As a result of the growing importance of tourism as a key driver of socio-economic 

progress, there is an increasing amount of literature about the contribution of tourism to 

economic growth (Balaguer and Cantavella-Jordá, 2002; Chou, 2013; Durbarry, 2004; 

Pérez-Rodríguez et al., 2015; Sánchez et al., 2015; Schubert et al., 2011). However, due 

to the lack of statistical information, most of this research is conducted nationwide. 

Despite the fact that most tourism demand forecasting studies are conducted at the 

national level, some regional studies have been published in recent years. Guizzardi and 

Stacchini (2015) made use of business sentiment indicators form tendency surveys for 

real-time forecasting of hotel arrivals at a regional level, improving the forecasting 

accuracy of structural time series models. 

The complex data generating process of tourism demand explains the increasing use 

of non-linear approaches. As a result, ML methods are experiencing a growing use (Peng 

et al., 2014). Apart from fuzzy time series models (Tsaur and Kuo, 2011; Yu and 



 

 

Schwartz, 2006), SVR and NN models are the most commonly used ML techniques for 

tourism demand forecasting. There is wide evidence in favour of ML methods when 

compared to time series models for tourism demand forecasting (Cho, 2003; Claveria and 

Torra, 2014; Law, 2000). 

Chen and Wang (2007) forecasted tourist arrivals to China with SVR, back 

propagation NN and ARIMA models, obtaining the best forecasting results with SVRs. 

Hong et al. (2011) also obtained more accurate forecasts with SVRs than with ARIMA 

models. Akin (2015) compared the forecasting results of SVR to that of ARIMA and NN 

models to predict international tourist arrivals to Turkey, obtaining the best predictions 

with SVR models when the slope feature was more prominent. 

There are not many studies of tourism demand forecasting at a regional level in Spain, 

and most of them are concentrated in two regions: the Balearic and the Canary Islands. 

Regarding tourism demand forecasting to the Balearic Islands, Rosselló-Nadal (2001) 

forecasted turning points in international visitor arrivals to the Balearic Islands using the 

leading indicator approach, and focusing on the two major source markets, the UK and 

Germany. By means of regression analysis, Rosselló et al. (2004) provided evidence of 

the influence of some economic variables on the seasonal distribution of tourist numbers. 

More recently, Álvarez-Díaz and Rosselló-Nadal (2010) forecasted British tourist arrivals 

using meteorological variables. 

Gil-Alana (2010) analysed the degree of persistence of monthly arrivals in the Canary 

Islands using different time-series approaches. Gil-Alana et al. (2008) employed seasonal 

unit roots and seasonally fractionally integrated models to forecast tourist arrivals to the 

Canary Islands, and found that a simple deterministic model with seasonal dummy 

variables and autoregressive order one disturbances produced better results over short 

horizons. 

The first study that implemented ML techniques for tourism demand forecasting in 

Spain was that of Palmer et al. (2006). The authors designed a MLP NN to forecast 

tourism expenditure in the Balearic Islands, finding that the network provided more 

accurate forecasts when data had been detrended and deseasonalized. This result 

coincides with that of Claveria et al. (2017) for Catalonia, who analysed the effects of 

data pre-processing on the forecasting performance of NN models and found that the 

predictive accuracy of the models improved with seasonal adjusted data. Palmer et al. 

(2006) also found that NNs were especially suitable for long-term forecasting, which is 

in line with previous research by Pattie and Snyder (1996) and Burger et al. (2001). 



 

 

Medeiros et al. (2008) developed an alternative approach to analyse the demand for 

international tourism in the Balearic Islands. By using a NN model that incorporated time-

varying conditional volatility and daily air passenger arrivals to Palma de Mallorca, Ibiza 

and Mahon as a proxy for international tourism demand for the Balearic Islands, the 

authors found that time-varying variances provided useful information regarding the risks 

associated with variations in international tourist arrivals. 

In a recent study, Claveria et al. (2015b) designed a MIMO NN framework to generate 

predictions for all visitor markets to a destination simultaneously. By using monthly data 

of tourist arrivals to Catalonia from 2001 to 2012, the authors generated forecasts for one-

month, three-months and six-months ahead with three different NN topologies and found 

that RBF NNs outperformed the rest of the models. 

Whilst NN models have been widely used in economic modelling and forecasting, 

other ML techniques such as GPR have been barely applied for forecasting purposes 

(Ahmed et al., 2010; Andrawis et al., 2011; Chapados and Bengio, 2007). From a wide 

range of ML methods, Ahmed et al. (2010) found that an MLP NN and the GPR showed 

the best forecasting performance on the monthly M3 time series competition data. In a 

similar exercise, Andrawis et al. (2011) found evidence in favour of a simple average 

combination of NN, GPR and linear models for the NN5 competition. 

GPR models can be regarded as supervised learning methods based on a generalized 

linear regression that locally estimates forecasts by the combination of values in a kernel 

(Williams and Rasmussen, 1996). The works of Smola and Barlett (2001), MacKay 

(2003), and Rasmussen and Williams (2006) have been key in the development of GPR 

models. By expressing the model in a Bayesian framework, the authors extended GPR 

applications beyond spatial interpolation to regression problems. 

Additional refinements have been proposed by Brahim-Belhouari and Bermak (2004) 

and Girard et al. (2003), who respectively proposed using a non-stationary covariance 

function and the knowledge of the variance on inputs in order to improve the forecasting 

performance of the GPR model. However, up until now applications of GPR have been 

mostly restricted to a single-input single-output framework. 

In this study, we attempt to cover this deficit by applying an extension of the GPR 

model for MIMO modelling, and assessing its forecasting performance at the regional 

level. We make use of international tourist arrivals to all seventeen regions of Spain. The 

MIMO GPR allows modelling the connections in tourism demand to all regions and 



 

 

generate a vectorial forecast. This strategy is cost-effective in computational terms, and 

seems particularly indicated for regional forecasting. 

With this aim, we use monthly data on international tourism demand to Spain. Data 

are collected from the Spanish Statistical Office (National Statistics Institute – INE – 

www.ine.es). Our data set for the empirical experiment covers 183 monthly observations 

of of tourist arrivals at a regional level from 1999:01 to 2014:03. In spite of the fact that 

the forecasting performance of NNs improves when using deseasonalized data (Nelson et 

al., 1999), we use the raw data in order to analyse the forecasting accuracy of the models 

without using any pre-processing. In Table 1 we present the mean annual growth rates of 

the different regions. The regions that experience a rate of growth above the average 

(3.7%) are al located in coastal areas of the Mediterranean, showing the asymmetric 

concentration of tourism is Spain. Sarrión-Gavilán et al. (2015) found a high degree of 

concentration of tourism flows in the littoral area, generating a persistent imbalance 

between the littoral and the inland areas. 

 

Table 1. Mean annual growth rate by region (1999:01 to 2014:03) 

Region Mean growth Region Mean growth 

Andalusia 2.0% Valencia (Community) 4.3% 

Aragon 4.3% Extremadura 2.5% 

Asturias 5.1% Galicia 5.4% 

Balearic Islands 1.8% Madrid (Community) 3.9% 

Canary Islands 4.4% Murcia (Region) 5.1% 

Cantabria 3.1% Navarra 5.7% 

Castilla-Leon 2.5% Basque Country 5.7% 

Castilla-La Mancha -0.1% La Rioja 2.9% 

Catalonia 4.8%   

    

 

3. MACHINE LEARNING METHODS 

 

3.1. Gaussian Process Regression (GPR) 

GPR was first developed by Matheron (1973) based on the geostatistic works of Krige 

(1951). The works of MacKay (2003) and Rasmussen and Williams (2006) have been 

crucial in the development of GPR, which can be conceived as a method of interpolation 

for which the interpolated values are modelled by a GP governed by prior covariances. 

By expressing the model in a Bayesian framework, different statistical methods can 

be implemented in GP models. Therefore GPR applications can be extended beyond 

spatial interpolation to regression problems. GPR is used to estimate the weights of 

http://www.ine.es/


 

 

observed values form temporal lags and spatial points using the known covariance 

structures. Detailed information about GPR can be found in Rasmussen and 

Williams(2006). 

The GPR model assumes that the inputs ix  have a joint multivariate Gaussian 

distribution characterized by an analytical model of the structure of the covariance matrix 

(Rasmussen, 1996). The key point of the GPR is the possibility of specifying the 

functional form of the covariance functions, which allows to introduce prior knowledge 

about the problem into the model. The training set       nn yxyxyx ,,,,,, 2211 D is 

assumed to be drawn from the (noisy) process: 

  εxfy ii   with  2,0~  N  (1) 

where ix  is an input vector in dR  and iy is a scalar output in 1R . Therefore we have a 

1RRd   mapping. For notational convenience, we aggregate the inputs and the outputs 

into matrix  nxxx ,,, 21 X  and  nyyy ,,, 21 y  respectively. 

The joint distribution of the variables is the conditional Gaussian distribution: 

    IXX,~X
2,0 KNyp   (2) 

Where I  is the identity matrix, and the covariance matrix  XX,K  is also called the kernel 

matrix with elements  jiij xxK , . The kernel function  xxk ,  is a measure of the distance 

between input vectors. 

For the kernel function, a common choice is the Gaussian, or squared exponential. In 

this study we make use of a radial basis kernel with a linear trend to account for the trend 

component present in most of the time series over the training period: 
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Where 2υ  controls the prior variance, and λ  is a parameter that controls the rate of decay 

of the covariance by determining how far away ix  must be from jx  for if  to be unrelated 

to jf . Alternative sets of kernels are discussed in MacKay (2003). The hyperparameters 

 κγλυ ,,,  are estimated by maximum likelihood in: 

         2log
2

log
2

1

2

1
log 212 n

yyxyp T 


IXX,KIXX,K  (4) 

Given the training samples  ji yx ,  and a set of test points *X , the objective of GPR 

is to find the predictive outputs *f  with probabilistic confidence intervals. By making 

use of the Bayesian inference, the joint posterior distribution is: 
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The joint prior distribution and the independent likelihood probability both follow a 

Gaussian distribution: 
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Where f  and *f  are subscripts of the variables between which the covariance is 

computed. The Gaussian predictive distribution  yfp *  is characterized by mean μ  and 

variance  . 

Therefore the GPR model specification is given by equations: 

     yIXXK
12*,


  XX,K   (8) 

        *,*,**,
12 XXKIXXKXXK


 XX,K  (9) 

Where μ  is the predicted output, and the variance   can be used to estimate confidence 

levels. 

In this study we propose an extension of the model to multiple outputs based on an 

analogy to radial basis functions. We use a set of univariate predictors followed by a 

matrix product that takes into account the cross-dependencies of the outputs in order to 

improve the performance of the GPR. In this case we have a Md RR   mapping, where 

M  is the dimension of the output. This extension is applied by following a two-step 

training. First, we independently train each time series, generating supervised forecasts 

for each output. In the second step, by means of a regularized linear regression (Haykin, 

2008), we generate forecasts for each output taking into account their correlations. This 

procedure is also applied to the NN models. 

 

3.2 Neural Network models 

 

3.2.1 Radial Basis Function (RBF) 

Initially proposed by Broomhead and Lowe (1988), RBF networks are hybrid 

networks that combine both supervised and non-supervised learning. RBF NN are a 

special class of multi-layer feed-forward architecture with several layers of processing. 

First, an input layer, modelled as a feature vector of real numbers. Second, a hidden layer, 

which consists of a set of neurons, each of them computing a symmetric radial function 



 

 

centred each at a centroid j . Finally, an output layer that consists of a set of neurons, 

one for each given output. The output of the network can be expressed as a scalar function 

of the output vector of the hidden layer: 
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Where ty  is the output vector of the NN at time t ; itx   is the input value at time it  , 

where i  stands for the number of lags that are used to introduce the context of the actual 

observation; jg  is the activation function, which usually has a Gaussian shape; j  are 

the weights connecting the output of the neuron j  at the hidden layer with the output 

neuron; j  is the centroid vector for neuron j ; and the spread j  is a scalar that 

measures the width over the input space of the Gaussian function. We denote q  as the 

number of neurons in the hidden layer, which ranges from 5 to 30, increasing for longer 

forecasting horizons. 

 

3.2.2 Multi-layer Perceptron (MLP) 

 

MLP networks consist of multiple layers of computational units interconnected in a feed-

forward way. MLP networks are supervised neural networks that use as a building block 

a simple perceptron model. The topology consists of layers of parallel perceptrons, with 

optimal connections between layers: 
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Where ty  is the output vector at time t ; itx   is the input value at time it  ; j  are the 

weights connecting the output of the neuron j  at the hidden layer with the output neuron;. 

ijw  stand for the weights of neuron j  connecting the input with the hidden layer; and g  

is the non-linear function of the neurons in the hidden layer. The number of neurons in 



 

 

the hidden layer is denoted by q , and determines the network’s capacity to approximate 

a given function. In order to solve the problem of overfitting, the number of neurons is 

estimated by cross-validation. 

 

4. FORECASTING COMPARISON 

 

4.1. Experimental design 

 

For an iterated multi-step-ahead forecasting comparison, the partition between train 

and test sets is done sequentially: as the prediction advances, past forecasts are 

successively incorporated to the training database. As the size of the training set 

increases, for each predicted value in the test database, the first element of the validation 

database is transferred to the training database, and the last predicted value of the test 

database is incorporated to the validation database in a recursive way. Thus, the first 

ninety-six monthly observations are selected as the initial training set, the next 33% as 

the validation set, and the last 15% as the test set. 

Once the topology of the neural networks is decided, the parameters of the networks 

are estimated by means of the Levenberg-Marquardt (LM) algorithm. In order to assure 

a correct performance of the RBF NNs, the number of centroids and the spread of each 

centroid have to be selected before the training phase. In this study, the training is done 

by adding the centroids iteratively with the spread parameter fixed. Then a regularized 

linear regression is estimated to compute the connections between the hidden and the 

output layer. Finally, the performance of the networks is computed on the validation 

data set. This process is repeated until the performance on the validation database ceases 

to decrease. 

To avoid the possibility that the search for the optimum value of the parameters 

finishes in a local minimum, we use a multi-starting technique that initializes the NNs 

several times for different initial random values and returns the best result. All models 

are implemented with Python. 

 

4.2 Experimental results 

 

To assess the performance of the GPR model, we compare its forecast accuracy to 

that of a RBF NN. We estimate the models and generate predictions in a recursive way 



 

 

for different forecast horizons (1, 3, 6 and 12 months) during the out-of-sample period. 

In order to summarise the results of the forecasting comparison, we compute several 

forecast accuracy measures. 

 

First we obtain the Relative Mean Absolute Percentage Error (rMAPE) statistic for 

the GPR and the RBF NN with respect to a MLP NN model used as a benchmark (Table 

2). Next, we run the Diebold-Mariano (DM) test (Diebold and Mariano, 1995) using a 

Newey-West type estimator (Newey and West, 1987) to analyse whether the reductions 

in MAPE between both models are statistically significant (Table 3). Finally, in Table 4 

we compute the proportion of Periods with Lower Absolute Error (PLAE) statistic 

(Claveria et al., 2015b). 

The results of the rMAPE for the GPR and the RBF NN models presented in Table 2 

show that there are no major differences between both models when compared to a MLP 

NN. By regions, in the Balearic Islands, Madrid and the Canary Islands the MLP NN is 

rarely outperformed. Instead, in Cantabria, Castilla-Leon, Castilla-La Mancha, and the 

Basque Country, both the GPR model and the RBF NN outperform the MLP at all forecast 

horizons. 

In order to test whether the differences between the two competing models are 

statistically significant, we calculate the DM test (Table 3). The null hypothesis of the test 

is that the difference between the two competing series is non-significant. A negative sign 

of the statistic implies that the MLP NN model has bigger forecast errors. 

The results of the DM test between the GPR and the RBF NN models presented in 

Table 3 indicate that only in 18% of the cases we find a significant difference between 

the absolute forecast errors of the GPR and the RBF NN. In 58% of the cases, the RBF 

NN shows a significant improvement over the GPR. While in three regions (Cantabria, 

Catalonia and the Basque Country) the forecast errors of the RBF NN are bigger than the 

forecast errors of the GPR model, in the rest of the regions the results are mixed. 

The improvement of the GPR model with respect to the RBF NN becomes more 

prominent for short-term forecast horizons (one and three-months ahead predictions). 

While for six and twelve-months ahead forecasts, the errors of the GPR are bigger than 

the ones of the RBF NN in 9 out of 17 regions (Andalusia, Aragon, the Balearic Islands, 

Castilla-Leon, Castilla-La Mancha, Valencia, Galicia, Murcia and La Rioja). 

 

  



 

 

 

Table 2. Forecast accuracy. rMAPE - GPR and RBF NN vs. MLP NN 

 GPR RBF NN  GPR RBF NN 

Andalusia   Valencia (Community)   

h=1 0.823 0.921 h=1 0.945 1.017 

h=3 1.059 0.918 h=3 0.948 0.924 

h=6 0.971 0.795 h=6 0.966 0.902 

h=12 1.197 0.769 h=12 0.972 0.948 

Aragon   Extremadura   

h=1 0.820 0.935 h=1 0.991 1.106 

h=3 0.911 0.976 h=3 1.228 1.307 

h=6 1.041 0.928 h=6 0.898 0.741 

h=12 0.866 0.850 h=12 0.921 0.961 

Asturias   Galicia   

h=1 0.767 0.863 h=1 0.845 0.931 

h=3 1.072 0.797 h=3 1.068 0.760 

h=6 0.871 0.895 h=6 1.065 1.023 

h=12 0.859 0.758 h=12 1.064 1.006 

Balearic Islands   Madrid (Community)   

h=1 0.746 0.755 h=1 1.289 1.134 

h=3 1.048 0.526 h=3 1.049 1.092 

h=6 1.112 1.507 h=6 1.002 0.917 

h=12 2.359 1.671 h=12 0.983 1.015 

Canary Islands   Murcia (Region)   

h=1 1.148 1.123 h=1 1.061 1.121 

h=3 1.002 1.003 h=3 1.073 1.001 

h=6 0.933 0.957 h=6 0.920 0.845 

h=12 1.055 1.031 h=12 0.919 0.836 

Cantabria   Navarra   

h=1 0.807 0.835 h=1 0.798 0.928 

h=3 0.910 0.715 h=3 1.055 0.952 

h=6 0.792 1.045 h=6 1.080 1.082 

h=12 0.712 0.586 h=12 0.814 0.827 

Castilla-Leon   Basque Country   

h=1 0.761 0.966 h=1 0.871 0.914 

h=3 0.841 0.797 h=3 0.909 0.914 

h=6 0.935 0.933 h=6 0.924 0.945 

h=12 0.913 0.818 h=12 0.894 0.954 

Castilla-La Mancha   La Rioja   

h=1 0.592 0.862 h=1 1.026 1.058 

h=3 0.736 0.838 h=3 0.769 0.613 

h=6 0.916 0.911 h=6 0.976 0.677 

h=12 0.872 0.696 h=12 1.079 0.852 

Catalonia      

h=1 0.794 0.948    

h=3 1.063 0.996    

h=6 1.017 0.968    

h=12 0.816 0.872    

 

 

  



 

 

 

Table 3. DM test statistic - GPR and RBF vs. MLP NN 

Andalusia  Valencia (Community)  

h=1 -2.384 h=1 -1.941 

h=3 0.309 h=3 -0.207 

h=6 1.619 h=6 1.784 

h=12 6.426 h=12 1.138 

Aragon  Extremadura  

h=1 -1.776 h=1 -1.755 

h=3 -1.455 h=3 -1.702 

h=6 2.766 h=6 1.747 

h=12 0.632 h=12 -1.090 

Asturias  Galicia  

h=1 -1.846 h=1 -2.733 

h=3 0.884 h=3 0.864 

h=6 -0.218 h=6 0.666 

h=12 1.670 h=12 0.594 

Balearic Islands  Madrid (Community)  

h=1 -1.941 h=1 2.334 

h=3 0.668 h=3 -1.258 

h=6 1.161 h=6 1.449 

h=12 0.973 h=12 -0.269 

Canary Islands  Murcia (Region)  

h=1 0.485 h=1 -0.214 

h=3 -0.226 h=3 -0.029 

h=6 -1.208 h=6 1.169 

h=12 0.494 h=12 1.586 

Cantabria  Navarra  

h=1 -0.437 h=1 -1.300 

h=3 0.256 h=3 0.852 

h=6 -0.051 h=6 -1.267 

h=12 -0.460 h=12 0.788 

Castilla-Leon  Basque Country  

h=1 -6.729 h=1 -1.626 

h=3 -0.557 h=3 -0.960 

h=6 1.283 h=6 -0.748 

h=12 3.338 h=12 -0.899 

Castilla-La Mancha  La Rioja  

h=1 -2.848 h=1 -0.459 

h=3 -1.792 h=3 -0.325 

h=6 0.660 h=6 3.425 

h=12 2.325 h=12 2.616 

Catalonia    

h=1 -3.758   

h=3 -0.242   

h=6 1.714   

h=12 -0.027   

Note: The 5% level critical value is 2.028 

 

 

  



 

 

 

Finally, to attain a more comprehensive forecasting evaluation, we compute the PLAE 

statistic (Claveria et al., 2015b). The PLAE can be regarded as a variation of the Percent 

Better measure used in the M3-competition to compare the forecast accuracy of the 

models to a random walk (Makridakis and Hibon, 2000). The PLAE is a dimensionless 

measure based on the CJ statistic for testing market efficiency (Cowles and Jones, 1937). 

This accuracy measure allows us to compare the forecasting performance between two 

competing techniques against a benchmark model. In this study we use the MLP NN as a 

benchmark. 

The PLAE statistic is a ratio that gives the proportion of periods in which the model 

under evaluation obtains lower absolute forecast errors than the benchmark model. Let us 

denote ty  as actual value and tŷ  as forecast at period nt ,,1 . Forecast errors can then 

be defined as ttt yye ˆ . Given two competing models A  and B , where A  refers to the 

forecasting model under evaluation and B  stands for benchmark model, we can then 

obtain the proposed statistic as follows: 

n
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n
t t
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


 
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otherwise   0

 if   1 ,, BtAt

t

ee
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Table 4 shows the results of the PLAE statistic for the GPR and the RBF NN 

compared to the MLP NN. We do not find relevant differences between the GPR and the 

RBF NN when compared to the MLP NN. Both the GPR and the RBF NN display higher 

PLAE values than the MLP NN at all forecast horizons except for one-month ahead 

predictions, where the MLP NN shows a higher proportion of out-of-sample periods with 

lower absolute errors in all regions except two (the Balearic Islands and Castilla-La 

Mancha). Special mention should be made to the Canary Islands and the Community of 

Madrid, where neither model outperforms the MLP NN regardless of the forecast horizon. 

These results are in line with those obtained in Table 2. 

 

  



 

 

 

Table 4. Forecast accuracy. PLAE - GPR and RBF NN vs. MLP NN 

 GPR RBF NN  GPR RBF NN 

Andalusia   Valencia (Community)   
h=1 0.364 0.273 h=1 0.182 0.910 

h=3 0.273 0.545 h=3 0.273 0.455 

h=6 0.455 0.545 h=6 0.364 0.455 

h=12 0.818 0.818 h=12 0.636 0.727 

Aragon   Extremadura   
h=1 0.273 0.273 h=1 0.182 0.182 

h=3 0.545 0.727 h=3 0.273 0.727 

h=6 0.727 0.545 h=6 0.727 0.818 

h=12 0.636 0.727 h=12 0.909 0.818 

Asturias   Galicia   
h=1 0.182 0.182 h=1 0.910 0.910 

h=3 0.545 0.909 h=3 0.636 0.818 

h=6 0.818 0.818 h=6 0.818 0.909 

h=12 0.818 0.818 h=12 0.909 0.909 

Balearic Islands   Madrid (Community) .  

h=1 0.545 0.545 h=1 0.000 0.182 

h=3 0.818 0.909 h=3 0.182 0.182 

h=6 0.909 1.000 h=6 0.182 0.273 

h=12 1.000 1.000 h=12 0.000 0.000 

Canary Islands   Murcia (Region)   

h=1 0.000 0.000 h=1 0.910 0.182 

h=3 0.000 0.000 h=3 0.364 0.545 

h=6 0.000 0.000 h=6 0.364 0.455 

h=12 0.000 0.000 h=12 0.636 0.818 

Cantabria   Navarra   

h=1 0.364 0.364 h=1 0.182 0.910 

h=3 0.818 0.909 h=3 0.545 0.818 

h=6 0.818 0.909 h=6 0.636 0.727 

h=12 1.000 0.909 h=12 0.727 0.636 

Castilla-Leon   Basque Country   

h=1 0.545 0.910 h=1 0.182 0.182 

h=3 0.636 0.909 h=3 0.273 0.455 

h=6 0.727 0.818 h=6 0.545 0.455 

h=12 0.909 0.909 h=12 0.910 0.273 

Castilla-La Mancha   La Rioja   

h=1 0.636 0.545 h=1 0.182 0.273 

h=3 0.727 0.909 h=3 0.727 0.909 

h=6 0.818 0.818 h=6 0.727 0.727 

h=12 0.818 0.818 h=12 0.818 0.909 

Catalonia      

h=1 0.273 0.910    

h=3 0.36.4 0.545    

h=6 0.818 0.818    

h=12 0.727 0.727    

Note: The PLAE ratio measures the proportion of out-of-sample periods with lower absolute errors than the benchmark 

model (MLP NN model). Values below 0.5 indicate that the benchmark model displays a higher number of lower absolute 

forecast errors than the model under evaluation for the out-of-sample period. 

 

 

  



 

 

In order to evaluate the effect of the memory on forecast accuracy, we repeat the 

experiment considering different topologies regarding the number of lags used for 

concatenation. In Table 5 we present the results of the rMAPE and the DM test for the 

GPR model comparing a one-period memory to =3. We find that when additional lags 

are incorporated in the feature vector, the rMAPE results show that the forecasting 

performance of the GPR models improves in almost 70% of the cases. 

 

Table 5. Forecast accuracy. rMAPE and DM test statistic - GPR( i =1) vs. GPR( i =3) 

 rMAPE DM  rMAPE DM 

Andalusia   Valencia (Community)   

h=1 1.264 -3.828 h=1 1.162 -1.341 

h=3 1.685 -5.386 h=3 1.231 -2.429 

h=6 1.151 -4.619 h=6 1.123 -3.153 

h=12 1.498 -2.113 h=12 1.084 -2.744 

Aragon   Extremadura   

h=1 0.914 -0.376 h=1 1.048 -0.685 

h=3 1.200 -2.204 h=3 1.374 -1.863 

h=6 1.022 -2.294 h=6 0.930 -2.259 

h=12 1.089 2.192 h=12 0.827 -1.933 

Asturias   Galicia   

h=1 0.805 -1.301 h=1 0.866 -1.536 

h=3 1.569 -2.823 h=3 1.188 -3.409 

h=6 1.149 -2.517 h=6 0.988 -2.314 

h=12 1.108 0.660 h=12 0.759 -0.400 

Balearic Islands   Madrid (Community)   

h=1 0.770 -1.102 h=1 1.206 0.361 

h=3 1.378 -3.404 h=3 1.123 0.325 

h=6 0.529 -3.553 h=6 1.066 0.950 

h=12 0.964 -0.239 h=12 1.023 0.962 

Canary Islands   Murcia (Region)   

h=1 0.960 2.768 h=1 1.208 -0.007 

h=3 0.947 0.891 h=3 1.641 -3.069 

h=6 1.042 0.256 h=6 1.263 -4.365 

h=12 1.092 -0.898 h=12 1.088 -3.397 

Cantabria   Navarra   

h=1 0.944 -2.499 h=1 0.767 -1.395 

h=3 1.396 -3.326 h=3 1.356 -3.052 

h=6 1.062 -3.798 h=6 1.021 -2.534 

h=12 0.940 0.058 h=12 0.843 2.110 

Castilla-Leon   Basque Country   

h=1 0.855 -1.948 h=1 1.049 -2.142 

h=3 1.147 -4.885 h=3 1.160 -1.760 

h=6 0.871 -3.150 h=6 1.066 -1.416 

h=12 0.875 1.040 h=12 1.071 1.008 

Castilla-La Mancha   La Rioja   

h=1 1.006 -2.987 h=1 0.932 -0.533 

h=3 1.250 -4.548 h=3 1.246 -3.585 

h=6 1.165 -3.781 h=6 1.001 -3.221 

h=12 0.859 -2.239 h=12 1.276 -0.046 

Catalonia      

h=1 0.887 -1.635    

h=3 1.372 -2.107    

h=6 1.055 -1.683    

h=12 1.068 2.405    

Note: The 5% level critical value is 2.028 
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In Table 5, we also present the results of the DM test between the GPR with a one-

period memory and the GPR with a three-period memory. We find that in 54% of the 

cases there is a significant difference between the absolute forecasting errors of the GPR 

for =1 and the GPR for =3. In 90% of the cases, incorporating additional lags results 

in a significant improvement. Madrid and the Canary Islands are the only regions where 

there is no significant reduction in forecast errors when increasing the memory of the 

models. The fact that both regions are the ones with the lowest temporal concentration of 

tourism demand suggests that increasing the memory of the models is particularly 

indicated when the series present a marked seasonal component. This evidence is in line 

with the results obtained by Claveria et al. (2016b), who found that GPR models could 

not outperform naïve forecasts in the absence of seasonality regardless of the forecast 

horizon. 

Overall, the empirical experiment shows that the forecasting performance of the 

different techniques improves for longer forecast horizons. For the Balearic Islands, 

Palmer et al. (2006) found that NNs were especially suitable for long-term forecasting, 

which is in line with previous research by Burger et al. (2001), Pattie and Snyder (1996) 

and Teräsvirta et al. (2005). However, we find that the RBF NN generates better 

predictions than the GPR models when compared to a MLP NN, especially for longer-

term forecast horizons. This output suggests that RBF networks are better able to capture 

the seasonal pattern of the series than interpolation methods such as the GPR model. Cang 

(2014), Claveria et al. (2015a) and Çuhadar et al. (2014) also obtained better results with 

RBF networks than with other NN architectures for seasonal forecasting. 

The GPR model only outperformed the RBF NN for short-term forecast horizons. Wu 

et al. (2012) obtained better forecasting results with a sparse GPR model than with ARMA 

and SVR models. Notwithstanding, in this study we apply a MIMO approach and use a 

NN model as a benchmark. Besides, due to the size of the sample, we do not apply any 

sparse approximation to reduce the computational complexity of the GPR model. 

Overall, the forecasting performance of the different techniques improves for longer 

forecast horizons. Ben Taieb et al. (2010) and Claveria et al. (2015b) also found evidence 

that MIMO strategies for ML techniques are particularly suitable for long-term 

forecasting. 
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5. CONCLUSION 

 

In this study we assess the forecasting performance of several ML models in a MIMO 

framework. We compare the out-of-sample predictive accuracy of a GPR model to that 

of two NN architectures (RBF and MLP) in a multiple-step-ahead forecasting 

comparison. The MIMO forecasting strategy allows modelling the interdependencies 

between the inputs in order to generate a vector of future values. By using the cross-

correlations between tourist arrivals to all seventeen regions of Spain we forecast tourist 

demand for all markets simultaneously. 

The forecasting results show that the GPR model only outperforms NN models for 

short-term forecasts. We find that the predictive performance of all techniques improves 

for the longest forecast horizons, which suggests that ML techniques are especially 

suitable for mid and long-term forecasting. 

To evaluate the effect of an increase in the dimensionality of the input on forecast 

accuracy, we repeat the experiment by increasing the temporal context. As we increase 

the number of lags used for concatenation, we find that the forecasting performance of 

MIMO GPR models improves. This finding shows that the increase in the weight matrix 

is compensated by a more complex specification, and highlights the convenience of 

designing a model selection criteria to estimate the optimal number of lags when 

forecasting with ML methods. 

The assessment of alternative kernel functions on the forecasting accuracy of GPR 

models is a question to be addressed in further research. Another question to be 

considered in future research is the effect of different sparse approximations for parameter 

estimation on forecast accuracy. 
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