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1 Introduction

Groundwater is one of the essential life resources not only for humans, but for the whole ecosystem
in general. Water running underground constitutes 98% of world’s fresh water, supplying with
drinking water half of the world’s needs [19]. Moreover, groundwater is also used for irrigation of
the crops (sumps up to 43% of the total irrigation water use [3]), for consumption in urban areas
(for example, as drinking water) or serves as an important component of some industrial processes.
As for the ecosystem, groundwater recharges lakes, rivers and wetlands, providing water to flora
and fauna of the area.

However, the growing population and expansive industrial activities increased the pressure on
water quantity and quality. As a result of excessive withdrawals of water, the problem of water
scarcity arose together with the problem of degradation of water quality.

As stated in Esteban and Albiac (2011) [8], water scarcity has become widespread in most
arid and semiarid regions around the world: for instance, from groundwater depletion suffer In-
dus–Ganges (India, Pakistan, Bangladesh, Nepal) basins and the Ogallala aquifer in the North
America, as well as aquifers in Northern China plain and Europe (Spain, France and Portugal, as
examples).

Access to the groundwater is usually limited to owners of the land overlying aquifers, therefore
the groundwater is exploited in a common property regime, as explained in Roseta-Palma (2003)
[20]. The problem with common pool resources is that it is quite difficult to establish clear property
rights. Hence, access to the resource by competing users creates some externalities, as cost and
strategic externalities, which lead to the inefficiency in exploitation. The cost externality arises
because pumping by on user lowers the water table and, therefore, increases the cost of extraction
for all other users of the aquifer. The strategic externality is a result of competition for the limited
resource among farmers, since, as mentioned above, the property rights are not well defined (see
Rubio and Casino [22]).

This study particularly tries to investigate if cooperation of the groundwater users can be ben-
eficial for the environment (in terms of groundwater stock) as well as for the users themselves (in
terms of welfare), when agents differ in their water demand and time preferences, and how these
differences influence the stock, extractions and welfare of the agents.

One of the main studies on the groundwater management for irrigation use was published in 1980
by Gisser and Sanchez [12]. In this classic paper authors compared optimal control solution (socially
optimal with one player making a decision, as for example a social planner) with the competitive
solution (free market, no-control) in terms of stock and water extractions. The latter solution
comes from a static optimisation problem, where agents are considered to behave myopically, that
is making a decision over a short period of time without taking into account the impact of other
agents’ decision on the stock of the aquifer. The authors concluded that when the area of the aquifer
is big enough the use of control is not justified. This effect is known as Gisser-Sanchez Effect (GSE),
and it has been discussed and challenged in subsequent works (see, for example, Esteban and Albiac
(2011) [8]).

Using a differential game of several farmers, further studies were comparing the open loop
solution and the feedback solution with the socially optimal one, when a manager of an aquifer
chooses the extraction program, which maximises the present value of profits of all farmers (for
example, Negri (1989) [17] or Rubio and Casino (2011) [22]). Note that open loop solution is said
to capture only the pumping (cost) externality, whereas the feedback solution supposedly captures
both cost and strategic externalities. Authors showed that when agents are identical, taking into
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account strategic externality increases the inefficiency of the solution, i.e. the feedback solution
is more inefficient than the open loop solution, when comparing with the socially optimal water
allocation.

Introduction of asymmetries allows to obtain models that can better describe real world sit-
uations. For example, Roseta-Palma and Brasão (2004) [21] considered asymmetries in demand
and costs, and Erdlenbruch et al. (2007) [7] focused on asymmetry in opportunity costs of re-
source harvesting. Only quite recently the idea of the comparison between the non-cooperative
and cooperative solutions for agents with asymmetric time-preferences have been introduced in
works of Maŕın-Solano and Shevkoplyas (2011) [16], de-Paz et al. (2013) [18] and Ekeland et al.
(2013) [5], as examples. The problem is that once we depart from the assumption of unique and
constant discount rates, the problem of time-inconsistency appears, as mentioned in Strotz (1955)
[23]. Therefore, standard dynamic optimization techniques fail to obtain an optimal time-consistent
solution. It means that the solution computed at time t is no longer optimal for t′ > t, and modi-
fied dynamic programming equations are required. The study of de Frutos Cachorro et al. (2020)
[11], the most similar to this work, analysed both demand and discount rate asymmetries in the
context of groundwater use for different purposes, comparing cooperation versus non-cooperation
equilibria. The results of this study showed that cooperation is more efficient in terms of stock than
non-cooperative solutions, but that in terms of personal welfare the cooperation is not always prof-
itable. Moreover, authors find that higher asymmetry does not necessarily mean higher inefficiency
(actually, higher asymmetry of discount rates leads to lower inefficiency).

The contribution of the study can be summarised in two points. First, in this study agents are
supposed to have different water demand as opposed to the classical studies of Gisser and Sanchez
(1980) [12], Rubio and Casino (2001) [22], and Esteban and Albiac (2011) [8], where agents were
considered to be identical in their demand for the water resource. Also unlike Roseta-Palma and
Brasão [21] and de Frutos Cachorro et al. (2020) [11], who have already considered the asymmetry
in water demand for different uses (farming and public supply), the agents in this study are using
the groundwater for the same purpose - irrigation of crops - and have the same elasticity of demand
(both agents are farmers and they differ in the land size - hence the difference in the amount of
water in demand, but not in demand elasticity). Second, as the size of land of two farmers (a small
farmer and a big farmer) is not the same there is no reason to assume that the future discount rates
will be the same, as well stated in de-Paz et al [18]. So, here we also depart from classical studies
in assuming different discount rates of agents. Moreover, in contrast to de Frutos Cachorro et al.
(2020) [11], who considered different discount rates of agents before the occurrence of a regime
shift in the aquifer (change of the natural recharge rate), in this paper different discount rates are
applied to the infinite planning horizon.

To find an answer to the research question stated in the beginning of this section, firstly, the
model with two asymmetries has been resolved analytically for the non-cooperative and cooperative
cases. Both cases were solved using the dynamic optimization techniques, as opposed to optimal
control techniques (Pontryagin Maximum Principle), used in Negri (1989) [17], Rubio and Casino
(2001) [22], or Esteban and Albiac (2011) [8]. Second, the results in terms of stock, extractions
and individual and group welfare were compared between two solutions to be able to make some
comments on potential inefficiency of the non-cooperative one. Finally, the theoretical model was
applied to real data on the aquifer situated in Spain (Western La Mancha aquifer). Using numerical
simulations, the influence of two asymmetries on the stock, extractions and welfare was considered
(separately as well as jointly).

The work is organised as follows: in Section 2 the model is introduced, in Section 3 the model

3



Groundwater extraction for irrigation purposes Valeriia Chukaeva

is solved using the non-cooperation and cooperation frameworks, in Section 4 the results of the
numerical application are presented, and in the Section 5 the main results and conclusions are
stated.

2 Description of the model

In this work, the model of Rubio and Casino (2001) [22] is adapted to the case of asymmetric
players. The assumption of farmers being identical made in this classical study is challenged in this
work. Indeed, it is quite natural to assume that farmers using the water of the same aquifer for
irrigation of their crops (that are not necessarily the same) may posses lands of different sizes and,
therefore, have different demand for water. The model is carefully described below.

2.1 Revenues, costs and aquifer dynamics

In this model two types of users are considered: a big farmer (farmer owing a big plot of land)
and a small farmer (farmer owing a small plot of land), denoted as i ∈ {b, s}, respectively. A big
farmer may represent a big landowner as well as a big company, producing some agricultural goods.
Similarly, a small farmer may refer to a small landowner or a small agricultural business. Let us
assume that both farmers use the groundwater for the same purpose, particularly for irrigation. In
this sense, this work follows the lead of most papers that analyze the groundwater over-exploitation
problems, as Gisser and Sanchez (1980) [12] or Rubio and Casino (2001) [22].

For simplicity, let us also assume that these farmers produce the same type of crop. Moreover,
farmers compete in a competitive market, so that the price of the crop (p) equals its marginal cost,
which, in turn, is associated with the market price of the input. Taking into account no other
expenses of the crop creation, the price of water equals its marginal product and is, therefore,
identified with p.

Let the demand function for the big farmer be a negatively sloped linear function, as in previous
literature: gb = a − bp, where a, b > 0, and p is a price of water. Then, the revenue function of a
big farmer obtained by integrating the inverse demand function is given by:∫

gb

p(x)dx =

∫
gb

a− x
b

dx =
a

b
gb −

1

2b
g2b

In this study, let us assume that the demand for water from the small farmer is represented by
a fraction of the demand of the big farmer: gs = θ(a− bp), with 0 < θ ≤ 1.

The revenue function in this case will be:∫
gs

p(x)dx =

∫
gs

a− x
θ

b
dx =

a

b
gs −

1

2θb
g2s

In the study the value of θ can vary between 0 and 1, however, no previous assumptions on the
exact value of this parameter are made. There are no limits on how different the land possessions
and, therefore, the water demand can be. However, when proceeding to numerical applications for
a particular aquifer, some reasonable guesses can be made, according to the available data on the
land ownership structure of the aquifer territory.

Following the previous literature, in this study we assume that the marginal cost of water
extraction is linear function in the stock of the aquifer G (or the amount of water that can be
stored). Total costs of extraction of farmer i ∈ {b, s} depend on the quantity of the water extracted:
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Ci = (z − cG)gi, z, c > 0,

where z is a fixed cost and the maximum marginal cost of extraction, and c is the slope of the
marginal pumping cost function (see, for example, Gisser and Sanchez (1980) [12], Negri (1989)
[17], Rubio and Casino (2001) [22]). In this study it seems reasonable to suggest that the fixed
costs of extraction and the marginal pumping costs are the same for both agents as a result of
competition in the industry of well installation (in case they use different wells) or as a result of
using the same well.

The dynamics of the aquifer (or of the stock of the aquifer) is given by a differential equation:

Ġ = r − (1− γ)
∑
i

gi, i ∈ {b, s},

where r is a natural recharge rate and γ is the return flow coefficient, γ ∈ [0, 1).
A natural recharge is basically water that moves from the land surface to the aquifer (with rain

or melted snow, for example). The return flow coefficient, in turn, describes the proportion of water
returned to the aquifer from the cultivated area, which depends on the quality and the type of the
soil. In this work, it is assumed that both players have their fields with the soil that have the same
properties.

2.2 Different discount rates

It is a common knowledge that future gains should be discounted, as humans tend to enjoy the
goods better sooner than later (but suffer mischances later than sooner). Arising from the financial
literature, basic models suggest that the discount rate is constant through time and that the discount
factor should be of the exponential form e−δt. In this work, for simplicity, the idea of constant over
the whole planning horizon discount rates is maintained, even though there are studies showing
that it is not necessarily the case, and economic agents might discount nearest future harder than
the far-horizon future (see Loewenstein et al. (2002) [15]).

In this study it is considered, however, that two agents have different discount rates, as opposed
to the standard assumption of the unique discount rate for both players as in Rubio and Casino
(2001) [22], and Gisser and Sanchez (1980) [12]. It seems reasonable to assume that big farmers have
advantages in terms of financial facilities with generally higher turn over, and that the probability of
survival for this type of producer is higher. Therefore, the agricultural business for big landowners
appears to be more stable, and hence they are more patient and secure about the future. These
facts translate in the use of a lower discount rate of time preference by the big landowner (ρb) in
comparison with a small farmer (ρs), so that ρb ≤ ρs. Another important feature of this study is
that the discount rates are set to be different during the infinite planning horizon, unlike in the
work of de Frutos Cachorro et al. (2020) [11], where different discount rates were used until the
occurrence of a shock.

2.3 Problem statement

The optimization problem of user i ∈ {b, s} is to maximize his individual welfare i.e. the present
value of his future profits in the infinite planning horizon. Therefore, if ρi is a discount rate of user
i we must solve
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max
gi(.)

∫ ∞
0

Fi(G, gi)e
−ρitdt, (1)

where

Fb(G, gb) =
a

b
gb −

1

2b
g2b − (z − cG)gb, (2)

Fs(G, gs) =
a

b
gs −

1

2θb
g2s − (z − cG)gs, (3)

subject to

Ġ = r − (1− γ)
∑
i

gi, (4)

with G(0) = G0 given and

gi ≥ 0, G ≥ 0, i = b, s (5)

3 Model resolution

The objective is to solve the model under cooperation and non-cooperation by computing the
corresponding subgame perfect solutions and compare the results in terms of extraction levels,
stock and welfare. It is important for the further resolution of the model to assume that both
agents can observe the level of the water table during the whole planning horizon.

The game in consideration has two asymmetries: first, the asymmetry in demand, expressed
through θ ∈ (0, 1], and the second asymmetry in discounts, expressed through the relationship
ρb ≤ ρs (for the case of complete symmetry ρb = ρs). Demand asymmetry has already been
considered in the work of de Frutos Cachorro et al. (2020) [11], though in that work the aquifer
exploitation for different purposes was considered, and demand functions also differed in other
parameters (apart from the amount of demand per se), such as the demand-price elasticity. In this
study we suppose that the elasticity of demand for both farmers is the same, no matter the size
of the land in possession. Moreover, in the same study different discount rates were allowed for,
but only within the finite time frame. Conversely, this study analyses the case of different discount
rates on the infinite planning horizon.

3.1 Subgame perfect non-cooperative equilibrium

In this section we will calculate a non-cooperative solution (also known as a feedback solution),
under which the agents maximise their own future profits. To be able to calculate the subgame
perfect Nash equilibrium (Markov perfect equilibrium), it is important to make an assumption
about the agents being able to track the level of the resource, so that the agent could make a
decision on the extracted amount according to the current level of the water table. In the setting
of this study it can be done by using some groundwater monitoring systems.

For calculating the subgame perfect non-cooperative Nash equilibria (SPNE), standard dynamic
programming techniques are used, which are described in more detail in Dockner et al. (2000) [4].

The dynamic programming equation to solve by each user i ∈ {b, s} is:
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ρiV
NC
i (G) = max

gi

{
Fi(G, gi) + V NCi (G)′(r − (1− γ)(gi + φNCj (G))

}
(6)

In (6) φNCj (G) denotes the strategy of player j, for j 6= i. In this work the focus will be made

on stationary linear (affine) strategies in this linear-quadratic differential game, so that φNCj (G) =

αNCj G+ βNCj and V NCj (G) = ANCj G2 +BNCj G+ CNCj .

Step 1. By plugging into (6) an expression for player’s optimal strategy φNCi (G) and his value
function V NCi (G) for every i ∈ {b, s}, and arranging terms on the right hand side separately for
G2, G and a free term, parameters of the value functions V NCb and V NCs can be expressed using
parameters αNCb , βNCb , αNCs and βNCs . See equations (20)-(25) in Appendix A.

Step 2. Following the procedure described in Appendix A, we conclude that parameters of
the stationary extraction strategies αNCb , αNCs , βNCb and βNCs should solve the following system of
nonlinear equations:

ρb
2(1− γ)

(
c− αNCb

b

)
= − (αNCb )2

2b
+ cαNCb − (αNCs + αNCb )

(
c− αNCb

b

)
(7)

ρs
2(1− γ)

(
c− αNCs

θb

)
= − (αNCs )2

2θb
+ cαNCs − (αNCs + αNCb )

(
c− αNCs

θb

)
(8)

whereas given αNCb and αNCs , βNCb and βNCs should satisfy the system of linear equations:

1

b

(
ρb

1− γ
+ αNCb + αNCs

)
βNCb +

(
αNCb
b
− c
)
βNCs =

(a
b
− z
)( ρb

1− γ
+ αNCs

)
+

r

1− γ

(
αNCb
b
− c
)

(9)

1

θb

(
ρs

1− γ
+ αNCb + αNCs

)
βNCs +

(
αNCs
θb
− c
)
βNCb =

(a
b
− z
)( ρs

1− γ
+ αNCb

)
+

r

1− γ

(
αNCs
θb
− c
)

(10)

To describe the equilibrium we have to calculate a steady state level of the stock (GNC∞ ) of the
aquifer, which in this case is a solution to Ġ = 0 or, taking into consideration the affine structure of
the SPNE for the extraction, to r− (1−γ)(αNCb +αNCs )GNC∞ − (1−γ)(βNCb +βNCs ) = 0. Therefore,

GNC∞ =
r − (1− γ)(βNCb + βNCs )

(1− γ)(αNCb + αNCs )
(11)

It is more interesting, in practical terms and in terms of further policy implications, to focus on
solutions that converge to a steady state, as it characterises the stable state of the system. Therefore,
we must impose a condition αNCb + αNCs > 0. Additionally, looking for an interior solution and
assuming that G(t) > 0 for all t, it is natural to impose a condition r ≥ (1−γ)(βNCb +βNCs ), which
basically means that the water resource will not be exhausted in finite time (see de Frutos Cachorro
et al. (2020) [11]).

The system of equations (7)-(8) can be simplified to a fourth degree equation, which can have up
to four different roots. These linear quadratic differential games with two players in principle can
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have multiple equilibria (up to three), as Engwerda (2005) [6] showed in Theorem 8.10. However,
in this model, if condition αNCb + αNCs > 0 is imposed, there exists at most one equilibrium. And
if the recharge rate is too small i.e. r < (1− γ)(βNCb + βNCs ) for the unique solution to the system
(7)-(10), satisfying the condition αNCb + αNCs > 0, then no interior equilibrium exists.

Proposition 1. In Problem (1)-(5), there exists at most one stationary linear subgame perfect
non-cooperative equilibrium. If it exists, it is given by the unique solution to the system (7)-(10),
satisfying the condition αNCb + αNCs > 0.

Proof : See Appendix A.

3.2 Subgame perfect cooperative solution

If instead of maximizing their own profit, farmers decide to cooperate i.e. maximize their collective
payoff, the result will be different. In this case a coalition of players will have to take into account
their own future decisions, based on their preferences.

Moreover, as the time-preferences of two agents (big and small farmer) are set to be different,
the joint preferences will be time-inconsistent. Therefore, when finding subgame perfect cooperative
equilibria, we should use a non-standard technique that gives us a time-consistent solutions (Markov
subgame perfect equilibria), otherwise players will have to continuously modify their calculated
choices of future extractions. The equations we are using in this study were described in Maŕın-
Solano and Shevkoplyas (2010) [16], de-Paz et al. (2013) [18] and Ekeland et al. (2013) [5].

In this case we have to solve a non-standard dynamic optimisation problem. The dynamic
programming equation is:

ρbV
C
b (G) + ρsV

C
s (G) = max

gb,gs

{
Fb(G, gb) + Fs(G, gs) +

(
V Cb (G)′ + V Cs (G)′

)
(r − (1− γ)(gb + gs))

}
,

(12)
where as in the non-cooperative case the value function is quadratic V Ci (G) = ACi G

2 +BCi G+CCi
and the optimal extraction strategy is an affine function gCi = φCi (G) = αCi G+ βCi for each player
i ∈ {b, s}.

First step in solving the problem (12) is maximising the right hand side with respect to gb and
gs, respectively.

Therefore, the First Order Conditions are:

a

b
− 1

b
gb − (z − cG)− (2ACb G+BCb + 2ACs G+BCs )(1− γ) = 0

a

b
− 1

θb
gs − (z − cG)− (2ACb G+BCb + 2ACs G+BCs )(1− γ) = 0

Which leads us to the following optimal extraction strategies of the players:

φCb (G) = a− b(z + (1− γ)(BCb +BCs )) + b(c− 2(1− γ)(ACb +ACs ))G (13)

φCs (G) = θa− θb(z + (1− γ)(BCb +BCs )) + θb(c− 2(1− γ)(ACb +ACs ))G (14)

Knowing that the optimal extraction strategies have a linear form φCi (G) = αCi G + βCi for
i ∈ {b, c}, we can express αCb , α

C
s , β

C
b and βCs in terms of ACb , A

C
s , B

C
b and BCs .
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αCb = b
(
c− 2(1− γ)(ACb +ACs )

)
, αCs = θb

(
c− 2(1− γ)(ACb +ACs )

)
(15)

and

βCb = a− zb− b(1− γ)(BCb +BCs ), βCs = θ
(
a− zb− b(1− γ)(BCb +BCs )

)
(16)

These expressions differ from those obtained for the non-cooperative case (see Step 2 in Appendix
A) because the maximisation problem is not the same. We see that parameters of the optimal
extraction function in case of cooperation do not only depend on the parameters of the value
function of the player himself, but also on the parameters of the value function of the other player.

Further, for calculating the coefficients ACi , B
C
i , C

C
i for i ∈ {b, s}, we have to solve the system

of six equations with six unknowns, obtained by arranging the terms of G2, G and a free term in
the following equation:

ρi(A
C
i G

2 +BCi G+ CCi ) = Fi(G,φ
C
i (G)) +

[
2ACi G+BCi

] [
r − (1− γ)(φCb (G) + φCs (G))

]
(17)

More detailed equations for each player are presented in Appendix B.
For example, to calculate ACb and ACs we have to solve the following system of non-linear

equations:

ρbA
C
b = 4b(1− γ)2(1 + θ)ACb (ACb +ACs )− 2bc(1− γ)(ACb +ACs )− 2b(1− γ)2(ACb +ACs )2

ρsA
C
s = 4b(1− γ)2(1 + θ)ACs (ACb +ACs )− 2θbc(1− γ)(ACb +ACs )− 2θb(1− γ)2(ACb +ACs )2

The full system of six equations is given in Appendix B (equations (44)-(49)). This system is
quite cumbersome to solve analytically, that is why it will be solved only numerically when applying
the real data on the aquifer to the theoretical model in the next section.

It remains to say a few words about the number of possible solutions and their convergence
to a steady state. The equations (45) and (44) are quadratic and depend only on ACb and ACs ,
therefore we can be sure that there will be no more than 4 solutions for the pair (ACb , A

C
s ). Hence,

there will be maximum 4 possible solutions for BCb and BCs as the expressions (46) and (47) depend
linearly on ACb and ACs . Furthermore, CCb and CCs depend linearly on BCb and BCs , so there will be
maximum 4 solutions for these terms as well.

However, as previously described for the non-cooperative case, we are interested only in the
solutions that converge to a steady state. This means that, according to the structure of the
functions φCb (G) and φCs (G), αCb + αCs > 0. From (13) and (14), it is evident that the necessary
inequality corresponds to:

b(c− 2(1− γ)(ACb +ACs )) + θb(c− 2(1− γ)(ACb +ACs )) > 0 (18)

If we denote AC = ACb + ACs and rearrange the terms in (18), we can obtain the condition for
convergence of the optimal solutions for the extraction rates in cooperative game:

AC <
c

2(1− γ)
(19)

We will check this condition, when numerically solve the model, for choosing among all possible
solutions those that converge.
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4 Numerical analysis: case of Western La Mancha Aquifer

In this section, the theoretical model described previously is applied to data of the Western La
Mancha aquifer in the Upper Guadiana River Basin. Western La Mancha aquifer is situated in
central-south Spain, it occupies around 5000 square kilometers in provinces Ciudad Real (80%),
Albacete and Cuenca [1], where dry periods are frequent. Unfortunately, this aquifer has suffered
from several droughts and gross mismanagement in the last decades of the 20th century, which
led to a decrease in the water tables impacting dramatically the wetlands in the Mancha Húmeda
Biosphere Reserve [14]. Taking into account that up to 92% [2] of water extracted goes for irrigation
purposes, this study is very important in terms of environmental policy implication on the possible
benefits of cooperation as opposed to non-cooperation.

Parameters necessary for the simulations, previously mentioned in Esteban and Albiac (2011)
[8], Esteban and Dinar (2016) [9], and de Frutos Cachorro et al. (2019) [10] are presented in the
Table 1.

Table 1: Values of parameters for Western La Mancha aquifer

Parameter Description Units Value

a Water demand intercept Million cubic meters / year 4403.73

b Water demand slope (Million cubic meters /
year)2Euro−1

0.097

c Pumping cost slope Euros / Million cubic
meters2

3.162

z Pumping cost intercept Euros / Million cubic meters 266000

G0 Initial stock level (in volume) Million cubic meters 80960

r Natural recharge rate Million cubic meters / year 360

γ Return flow coefficient unitless 0.2

θ Small farmer demand
proportion

unitless θ ∈ (0, 1]

ρb Big farmer discount rate Year−1 0.05

ρs Small farmer discount rate Year−1 ρs ∈ [0.05, 0.09]

As mentioned before there are two asymmetries in the model: demand asymmetry expressed by
θ and time-preference asymmetry expressed through different discount rates ρb and ρs.

However, a benchmark case should reflect a complete symmetry, therefore θ = 1 and ρb = ρs =
0.05 will be used. The value of 0.05 for a discount rate is just a frequently used assumption. In the
subsequent section discount rates will be manipulated to estimate the time-preference asymmetry .

Moreover, the value of θ will be also changed, firstly holding the discount rates constant for
disentangling the effect of the demand asymmetry, and then varying both θ and ρb and ρs for
capturing both asymmetries at once. As a reminder, θ captures the proportion of the water demand
of the small farmer with respect to the big farmer’s demand. It can be easily assumed, that sizes of
the land may vary notably between the farmers. So, we will do the simulations for three different
values of θ: θ = 1, θ = 1

3 , θ = 1
6 .

Actually, these assumptions were built on the basis of the work of Guijarro and Sánchez (2013)
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[13] on Western la Mancha aquifer. In this work authors present estimations for the incomes of
regional authorities, in charge of water management, obtained through the water consumption
tariffs. Breaking down to communities of water users, authors provide information on the land
size of these communities that can differ in size in 3, 6 or even 10 times and can be seen as a
parallel to the farmer definition used before. For example, in the Table 22, it is stated that The
Union of Villarta de San Juan occupies 3000 hectares, the union San Clemente has 8780 hectares
in possession and the union Socuéllamos has a 18000 hectares land plot. Therefore, the previous
assumptions made on the values of θ seem quite reasonable and realistic.

4.1 Results: stock and extractions under different types of asymmetries

In this section numerical simulations are computed and the results for the evolution of stock and
extraction rates are compared between the cooperative and non-cooperative case. First, the demand
asymmetry effect is analysed, which is represented by variation in the parameter θ. After, the
time-preference asymmetry effect is described, which is achieved by changing the parameter ρs,
keeping the parameters ρb and θ constant. Finally, both effects are analysed together, and welfare
comparisons are provided in order to study the efficiency of different behavioral strategies. The
results are represented in Figures 1 1, 2 and 3 and in Tables 2, 3, 4, 5, 6 and 7.

4.1.1 Demand asymmetry

In this section the effect of different levels of demand asymmetry is analysed, represented by the
parameter θ i.e. proportion of the water demanded by the small farmer with respect to the demand
of the big one. As a reminder, the lower the value of θ, the higher the asymmetry between the
players.

The difference in stock and extraction rates between different game structures (cooperative and
non-cooperative) during the planning horizon of 100 years can be seen in the Figure 1.

The baseline case is a complete symmetry i.e. θ = 1 with equal discount rates (ρb = ρs = 0.05).
Two other values of θ (θ = 1

3 and θ = 1
6 ) are considered in the Table 2, holding discount rates

constant and equal to be able to disentangle the demand asymmetry effect.

Table 2: Stock volume (in million cubic meters) and extraction rates (in million cubic meters /
year) at the steady state for different values of θ.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

GNC∞ GC∞ (2)-(1) gNCb gNCs gCb gCs (4)+(5) (6)+(7)

θ = 1 71278.20 77661.10 6382.90 225.00 225.00 225.00 225.00 450.00 450.00

θ = 1
3 72364.20 78029.20 5665.00 261.99 188.01 337.50 112.50 450.00 450.00

θ = 1
6 73446.40 78186.90 4740.50 296.68 153.32 385.71 64.29 450.00 450.00

1In the figures of this section the following colour scheme is applied. First, on the left the evolution of the
stock is depicted (grey colour) and on the right side the evolution of the extraction rates both for the big (red) and
small (blue) farmer is represented. Dashed lines correspond to the cooperative case, whereas solid lines refer to the
non-cooperative case.
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Figure 1: Simulations for the different values of θ of stock in Mm3 (on the left) and extraction rate
in Mm3/year (on the right) (see Footnote 1 for the colours code).

(a) θ = 1, ρb = 0.05, ρs = 0.05 (b) θ = 1, ρb = 0.05, ρs = 0.05

(c) θ = 1
3
, ρb = 0.05, ρs = 0.05 (d) θ = 1

3
, ρb = 0.05, ρs = 0.05

(e) θ = 1
6
, ρb = 0.05, ρs = 0.05 (f) θ = 1

6
, ρb = 0.05, ρs = 0.05
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Table 3: Total extraction within the 20-year period for different values of θ and for ρb = ρs = 0.05.

(2) (3) (4) (5) (6) (7)

TgCb TgCs TgNCb TgNCs (2)+(3) (4)+(5)

θ = 1 6418.63 6418.63 10544.40 10544.40 12837.26 21088.80

θ = 1
3 9161.85 3053.95 12361.50 7212.36 12215.80 19573.86

θ = 1
6 10258.60 1709.77 12874.10 5124.46 11968.37 17998.56

Stock
As we can see, the steady state stock of the aquifer in cooperative case is always higher than in

the non-cooperative case (values in column (3) are always greater than zero), which suggests that
the cooperative behavior is beneficial for the environment in terms of stock. Moreover, the higher
the asymmetry between the players is, the lower the inefficiency of the non-cooperative solution2 is
(or the lower the efficiency of the cooperative solution is) (see column (3)). The idea behind this
result is that the more heterogeneous the agents are (in terms of demand), the more difficult it is
to cooperate (and less sense it makes), and hence, the less effective the cooperation is, or in other
words, the less ineffective the non-cooperative behavior is. Moreover, as the asymmetry increases,
the total demand decreases, hence there is more water available in the aquifer. So, probably the
problem of water scarcity does not appear to be as crucial as before, and the non-cooperative
solution gives results that are more and more similar to the cooperative case.

It is interesting, that in the study of de Frutos Cachorro et al. (2020) [11] authors found the
opposite result (higher the demand asymmetry, higher the inefficiency), but in their case increase
in the demand asymmetry was associated to a change in the elasticity of the demand-price function
for urban use with respect to agricultural use. In this work, however, the demand asymmetry is
associated with the share of demand, and higher the asymmetry is, the lower the parameter θ is.

Extraction rates
It is quite logical, that the higher the demand asymmetry is, the higher the difference of ex-

traction rates between the players is (both for the non-cooperative and cooperative cases). The
difference between extraction rates of the farmers is higher in the cooperative case, which can be
a consequence of the voluntary giving up the consumption of some ”unnecessary water” from the
part of the small farmer in favor of the big farmer owing a bigger plot of land.

Total extractions
Now, to quantify more precisely the behavior of agents within a visible time period (20 years3),

total extractions 4 of the resource are computed. The results can be seen in the Table 3.
It is obvious that both players in the sum extract less when they cooperate rather than when they

do not (compare columns (6) and (7) in Table 3), which is consistent with the previous literature
(e.g. Rubio and Casino (2001) [22]). Moreover, the higher is the demand asymmetry, the lower
is the inefficiency of the non-cooperative case in terms of total extractions (compare columns (6)

2Inefficiency of the non-cooperative behavior is defined as the difference in terms of stock between cooperation
and non-cooperation at the steady state

3The time period of 20 years was chosen simply as an example of foreseeable future, enough to see the results of
optimisation on extractions within the finite planning horizon.

4Total extractions are calculated as an integral of the optimal extraction function for each player between the
time period t = 0 and t = 20.

13



Groundwater extraction for irrigation purposes Valeriia Chukaeva

and (7)). Here we understand inefficiency in terms of total extractions as an equivalent to the
inefficiency in terms of stock in a short-run (as opposed to analysing the steady state (long-term)
level of stock). And as we see, the influence of the asymmetry on the inefficiency in terms of stock
in the short-run is akin to the long-term result.

4.1.2 Time-preference asymmetry

In this section the effect of the change in time preferences of the groundwater users is analysed. To
isolate the time-preference asymmetry effect, the demand will be maintained equal for both players
i.e. the baseline case with θ = 1 will be used. We will start the analysis with the case of equal
discount rates, and after will start varying values of the discount rate of the small farmer, keeping
in mind that ρb < ρs. Therefore, we assume that the small farmer is always more impatient than
the big one, because the situation of his ”small business” is less stable and he is less secure about
the future.

In Figure 2 three 5 simulations are represented. As soon as the demand functions are imposed
to be equal (θ = 1), there is a very small difference between the extraction rates of the small and big
farmers (right side of the graph), and even the difference between cooperative and non-cooperative
extraction is not that obvious. Nevertheless, the difference between the stock of the aquifer (left
side of the graph) for cooperative and non-cooperative case is noticeable.

Stock
From the top three rows in Table 4 (correspond to θ = 1), we can see that the higher the

discount rate for the small farmer is (the more impatient he is), the lower the steady state level of
the stock is both for cooperative and non-cooperative case (see column (2) and (3), Table 4). It can
be explained by the fact that impatience of the small farmer pushes him to extract more, lowering
the amount of the water available in the aquifer.

The effect of the discount asymmetry on the inefficiency of the non-cooperative solution in
terms of stock is the same as for the demand asymmetry: the higher the asymmetry is, the lower
the inefficiency is (see column (3)). The intuition behind is slightly different though. The idea
that it is harder to cooperate when the agents are more heterogeneous still applies, only here
the heterogeneity refers to the difference in time preferences. Plus, as the small farmer is more
impatient, he would like to extract more than the big farmer, what he actually does in the non-
cooperation case (compare columns (5) and (6)). The cooperation, however, ”enforces” him to
extract less than he would have preferred to satisfy his needs (compare columns (6) and (8)), hence
the decreasing efficiency of the cooperative solutions in comparison with the non-cooperative one.

Extraction rates
For the non-cooperative case the extraction is always higher for the more impatient agent (small

farmer). In other words, the player with a higher discount extracts more, and leaves less to the
consumption of the other: and this effect is bigger, the higher the ρs is (see column (5) and (6)).

For the cooperative case the steady state extraction is the same for both players and for all
values of ρb and ρs. Therefore, we can claim that there is no time-preference asymmetry effect on
the steady state level of extraction for the cooperative case. One of the possible explanations might
be that in cooperation what matters is the proportion of the demand going to players, and not the
time preference, because initially, the purpose of cooperation is to ”make up” for the impatience of
one players with the patience of others.

5A few additional simulations for different values of ρs were computed and are available upon request.
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Figure 2: Simulations for the different values of ρs and for θ = 1 of stock in Mm3 (on the left) and
extraction rate in Mm3/year (on the right).

(a) θ = 1, ρb = 0.05, ρs = 0.05 (b) θ = 1, ρb = 0.05, ρs = 0.05

(c) θ = 1, ρb = 0.05, ρs = 0.07 (d) θ = 1, ρb = 0.05, ρs = 0.07

(e) θ = 1, ρb = 0.05, ρs = 0.09 (f) θ = 1, ρb = 0.05, ρs = 0.09
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Table 5: Total extraction within the 20-year period for different values of ρs and for different θ:
θ = 1 for three upper rows and θ = 1

6 for three lower rows.

(2) (3) (4) (5) (6) (7)

Parameters TgCb TgCs TgNCb TgNCs (2)+(3) (4)+(5)

θ = 1

ρb = 0.05, ρs = 0.05 6418.63 6418.63 10544.40 10544.40 12837.26 21088.80

ρb = 0.05, ρs = 0.07 7123.57 7123.57 10448.40 10689.80 14247.14 21138.20

ρb = 0.05, ρs = 0.09 7607.74 7607.74 10362.90 10818.70 15215.48 21181.60

θ = 1
6

ρb = 0.05, ρs = 0.05 10258.60 1709.77 12874.10 5124.46 11968.37 17998.56

ρb = 0.05, ρs = 0.07 10599.70 1766.62 12859.60 5178.71 12366.32 18038.31

ρb = 0.05, ρs = 0.09 10858.90 1809.82 12847.50 5224.12 12668.72 18071.62

Total extractions
The total extractions within the period of 20 years are represented in the Table 5 (three upper

rows).
For the non-cooperative case (columns (4) and (5)), when ρb 6= ρs the total extractions are higher

for the smaller farmer, because taking into account equal demand (θ = 1), the more impatient agent
extracts more.

For the cooperative case the total extractions of both players are equal, though the higher the
discount asymmetry, the higher are total extractions for both of agents (columns (2) and (3)). It can
be easily proved theoretically that when there is no demand asymmetry, i.e. θ = 1, the extractions
of the agents result in being the same.

Finally, the higher the discount asymmetry is, the lower the inefficiency of the non-cooperative
solution is (compare columns (6) and (7)) in terms of total extractions (equivalent to stock in the
short-run), which is coherent with the result for the steady state level of stock described earlier in
this subsection.

4.1.3 Considering both asymmetries at once

In this section a brief analysis of the impact of both effects, demand symmetry and time-preference
asymmetry effects, on the results of the simulations is presented. That is, we will vary the discount
rate of the small farmer and assume θ = 1

6 instead of θ = 1. The results can be seen in Figure 3.
Here we can definitely see the difference with Figure 2. Due to the demand asymmetry involved,
the evolution of extractions with time is no longer the same for both players, with smaller agent
extracting less both under cooperation and non-cooperation.

As soon as both asymmetries have the same influence on the inefficiency both in terms of stock
and total extractions, it is not surprising that considering both of them at the same time leads to
decrease in the inefficiency of the non-cooperative solution (see column (3) in Table 4 for the stock
inefficiency, and columns (6) and (7) in Table 5, three lower rows, for the inefficiency in terms of
total extractions).

Interestingly, now the extractions for the big and the small farmer differ under cooperation
(columns (7) and (8) of Table 4, last three rows), even though changes in the discount rates do not
make them alter, which proves again that for the cooperation it is the demand asymmetry that
matters more.
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Figure 3: Simulations for the different values ρs and for θ = 1
6 of stock in Mm3 (on the left) and

extraction rate in Mm3/year (on the right)

(a) θ = 1
6
, ρb = 0.05, ρs = 0.05 (b) θ = 1

6
, ρb = 0.05, ρs = 0.05

(c) θ = 1
6
, ρb = 0.05, ρs = 0.07 (d) θ = 1

6
, ρb = 0.05, ρs = 0.07

(e) θ = 1
6
, ρb = 0.05, ρs = 0.09 (f) θ = 1

6
, ρb = 0.05, ρs = 0.09
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4.2 Agents’ welfare: cooperation vs. non-cooperation

In order to study the economic efficiency of different types of behavior for every agent and solution,
individual and group welfare (as a sum of agents’ individual welfare) over the infinite planning
horizon are computed. The welfare here is calculated as a present value of all the future profits of
the agent 6. The results are shown in Tables 6 and 7.

Demand asymmetry
Concerning the group welfare, the inefficiency of the non-cooperative solution tend to decrease

with the increase in demand asymmetry (the difference between the joint cooperative and non-
cooperative solutions decreases, see column (10) Table 6). From the first sight, it differs from the
results obtained in de Frutos Cachorro et al. (2020) [11]. However, in that paper the demand
asymmetry was represented by another parameter, the price elasticity, which was increasing grad-
ually from 1 to 2, whereas in this study we decrease the parameter θ from 1 to 1

6 to increase the
asymmetry. So, we might expect the same result when changing the direction of asymmetry 7.

Concerning the individual welfare, we can see that when the asymmetry increases the prof-
itability of the cooperation for the small farmer decreases, and becomes negative when θ reaches
the value of 1

6 . On the contrary, for the bigger agent it is always profitable to cooperate as his
welfare in this case is always higher in comparison with the non-cooperative case, and the highest
profits are achieved when θ = 1

6 . So, it might be the case that because of the big asymmetry,
when cooperating, the big farmer ”pulls” the extraction rates towards his own needs, and the small
farmer does not gain what he could have in case of non-cooperation.

Table 6: Welfare analysis (in thousand euros) for different values of θ and with ρb = ρs = 0.05

(2) (3) (4) (5) (6) (7) (8) (9) (10)

Parameters V Cb V Cs V NCb V NCs (2)-(4) (3)-(5) (2)+(3) (4)+(5) (8)-(9)

θ = 1 162448 162448 104380 104380 58068 58068 324896 208760 116136

θ = 1
3 236640 78880 159901 72275 76739 6605 315520 232176 83344

θ = 1
6 267258 44543 198145 54855 69113 -10312 311801 253000 58801

Time-preference asymmetry
For the individual welfare, the higher the discount rate ρs is, the lower the welfare is both for

the cooperative and non-cooperative case for both agents (see columns (2)-(5) in Table 7, first three
rows). It means that high impatience of just one agent is not beneficial neither for the environment
(see Table 5, higher discounts lead to higher extractions) nor for the personal welfare of both agents.

Consequently, the group welfare decreases as the discount asymmetry rises - the sign of decreas-
ing inefficiency of the non-cooperative solution, as already discussed previously.

Considering both asymmetries at once
Finally, when considering both demand asymmetry and time-preference asymmetry effects (Ta-

ble 7 last three rows), cooperation becomes not profitable at all for the small farmer (see column

6The welfare for each player is calculated basing on the equation (1), i.e. using the optimal solutions for extraction
and stock volume as functions of time and integrating the expression from zero to infinity.

7For example, instead of assuming θ as a share of the big farmer’s demand that goes to the small farmer, think
of it as of a a multiplicative term, that multiplies the small farmer demand to characterise the one of the big
agriculturalist.
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(7) last three rows). It means that when the demand is highly asymmetric, it is the small farmer
who bares the losses under the cooperation, and the higher is the discount asymmetry the higher
are the losses. It might be the case that when the agent is very impatient, the cooperation imposes
restrictions on the extraction, making it lower in comparison with the amount the agent would have
extracted were he allowed, and thus lowering his welfare.

As for the group welfare, the effect of both asymmetries taken into account simultaneously is not
clear, even though separately both effects show negative influence on the inefficiency (inefficiency
decreases with an increase in asymmetry).

4.3 Additional simulations

In this section a robustness analysis was performed in order to verify if the results stay the same,
when the baseline case is changed. Here we consider a case with θ = 1 and ρb = ρs = 0.03 as a
baseline case. Hence, we assume that the big farmer is more patient during the whole planning
horizon.

It is actually the case, that the main results concerning the inefficiency stay the same. An
increase in the demand asymmetry, as well as in discount asymmetry leads to a decrease in the
inefficiency of the non-cooperative solution in terms of stock and total extractions, which validates
the robustness of the theoretical model.

It is interesting, however, that as the big farmer is more patient now, group total extractions
are lower and, hence, the steady state level of the stock is higher in comparison with the case, when
ρb was set equal 0.05. In fact the steady state level of the stock is higher than the initial level G0,
when considering both the demand asymmetry and time-preference asymmetry effects (see Figure
4 in Appendix C).

We can observe the reverse pattern 8 of the stock as well as extractions of both players for the
cooperation case.

A possible explanation is that when the players are patient enough and confident about their
future, i.e. they have quite low values of the future discount rates, the resource is ”saved” for the
future, and the initial extractions are actually smaller than the future ones in the case of cooperation
(and the natural recharge is higher than extraction rates). And because initially the users do not
overexploit the resource, the stock of the aquifer increases with respect to its initial level. It makes
the cooperation in this case beneficial from the environmental point of view.

In terms of welfare, it is still not worthwhile for the small player to cooperate when the demand
and discount asymmetries are combined together (see column (7) last four rows in Table 8 in
Appendix C). However, due to the higher patience of the big farmer, the cooperation brings more
welfare to the community in general, i.e. together to the big and small farmers (compare column
(8) in Table 8 and Table 7). Even non-cooperative behavior is more profitable when at least one
of the agents is considered to be more patient. It proves once again that the rates with which the
players discount the future are very important for an effective water management, beneficial for the
environment in terms of stock (though benefits for the agents are not that straightforward because
even if collective welfare increases with higher patience of agents, there are still some players who
are not willing to cooperate).

8Revers in the sense that GC
∞ > G0, whereas before GC

∞ < G0 was true.
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5 Conclusions

This study shows how different types of asymmetries between groundwater users affect the ex-
ploitation of the natural resource in cooperative (subgame perfect cooperative solution) and non-
cooperative (subgame perfect non-cooperative solution) cases. Particularly, two types of asymme-
tries are considered: an asymmetry of demand and an asymmetry of time-preferences.

The model was solved using the dynamic programming techniques. For the non-cooperative
case, both the steady state level of water stock and extractions for both players were computed,
whereas for the cooperative case due to cumbersome equations, these expressions were only com-
puted numerically. The model then was applied to the real data on the Western La Mancha aquifer,
which has suffered from the mismanagement and several droughts during the last decades.

First, the effects of two asymmetries were analysed separately, and then together. The main re-
sults show that the higher the asymmetry (demand or time-preferences), the smaller the inefficiency
of the non-cooperative solution in terms of stock and total extractions. It differs from the results
of the study of de Frutos Cachorro et al (2020) [11], because of some distinctions in asymmetries
considered there.

Another important conclusion is that under the cooperation the time-preference asymmetry has
no influence on the steady state extraction rates: they are equivalent for both players in the long-
run. It means that in cooperation it does not matter how impatient the agents are, what matters
is the proportion in which the water should be allocated to different farmers according to their
demand requirements (defined by the size of the land).

We also have seen that even though for the environment the cooperation is always beneficial
(the stock of the aquifer is always higher under cooperation), it is not so in terms of welfare, because
higher the asymmetry, the less profitable it is for the smaller farmer to cooperate.

A result, which mostly contributes to the field literature, is the observed ”pattern inversion” of
the volume of the stock and extractions for the cooperative case, when the discount rate of the big
farmer is set to be relatively low (ρb = 0.03). It is interesting how lowering the impatience of the
bigger agent (at the same time keeping the natural recharge rate constant) can radically influence
the outcomes. It actually results in stock of the aquifer being higher than the initial level, thus
helping the natural resource to ”recover”. It is hard to overestimate the importance of this results
for the environment.

The users’ discount rates do matter when talking about water management, they reflect the
situation of stability and certainty about the future, which depends on the general state of the
economy. It means that the authorities should assure a stable general economic situation for
farmers to be more confident and secure about the future, and hence to be more patient with water
usage. Therefore, the government should think carefully not only about the agricultural policies
per se in order to maintain proper functioning of the aquifer, but foresee the general consequences
of implementation of new financial instruments and other economic policies, and their influence on
producers of agricultural goods.

Another important policy implication following from this study is that, apart from introducing
quotas on consumption to reduce the level of extraction (the morality of which can be argued as
water is one of the life essential resources), the government should also promote the cooperation of
the groundwater users, especially when the asymmetry between users is small. As we have seen, in
this case the cooperation is beneficial not only for the environment in terms of stock, but for the
agents’ welfare as well.

One possible extension to this work includes analysing an open-loop equilibrium, which is an-
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other type of non-cooperative solution to compare the results with a subgame perfect Nash equi-
librium (feedback equilibrium). The difference is that in this case agents predetermine future
extractions from the beginning, and do not change their behavior according to the current state of
the system. Moreover, as stated in Negri (1989) [17] and Rubio an Casino (2001) [22], the open
loop solution takes into account only a cost externality, whereas the feedback solution takes into
account both cost and strategic externalities. So, comparing these two solutions will help to evalu-
ate the impact of strategic externality on the stock and extraction rates, when having asymmetric
players. Another useful thing would be to include environmental externality in the cost function as
in Esteban and Albiac (2011) [8], to account for the possible ecosystem damage caused by excessive
extractions. Last but not least, it would be very useful to implement the theoretical results on the
aquifer data from some developing country, as for example Venezuela, where the problem of general
water management (not only of the optimal extraction) is quite critical [24].

Appendix

A Subgame Perfect Non-cooperative Equilibrium

Step 1.The value functions of the agents are V NCb (G) = ANCb G2 +BNCb G+CNCb and V NCs (G) =
ANCs G2 + BNCs G + CNCs , where the coefficients ANCb , BNCb , CNCb and ANCs , BNCs , CNCs are given
by:

ANCb =
− (αNC

b )2

2b + cαNCb
ρb + 2(1− γ)(αNCb + αNCs )

(20)

BNCb =

(
a
b − z

)
αNCb − αNC

b βNC
b

b + cβNCb + 2ANCb
(
r − (1− γ)(βNCb + βNCs )

)
ρb + (1− γ)(αNCb + αNCs )

(21)

CNCb =
− 1

2b (β
NC
b )2 +

(
a
b − z

)
βNCb +BNCb

(
r − (1− γ)(βNCb + βNCs )

)
ρb

(22)

ANCs =
− (αNC

s )2

2θb + cαNCs
ρs + 2(1− γ)(αNCb + αNCs )

(23)

BNCs =

(
a
b − z

)
αNCs − αNC

s βNC
s

b + cβNCs + 2ANCs
(
r − (1− γ)(βNCb + βNCs )

)
ρs + (1− γ)(αNCb + αNCs )

(24)

CNCs =
− 1

2θb (β
NC
s )2 +

(
a
b − z

)
βNCs +BNCs

(
r − (1− γ)(βNCb + βNCs )

)
ρs

(25)

Step 2. From the First Order Conditions of a maximum in the right hand side of (6) we obtain
respectively:

1

b
φNCb =

(
c− 2ANCb (1− γ)

)
G+

a

b
− z −BNCb (1− γ)

and

23



Groundwater extraction for irrigation purposes Valeriia Chukaeva

1

θb
φNCs =

(
c− 2ANCs (1− γ)

)
G+

a

b
− z −BNCs (1− γ)

Knowing the structure of the functions φNCj (G) we get:

αNCb = b
(
c− 2(1− γ)ANCb

)
, αNCs = θb

(
c− 2(1− γ)ANCs

)
(26)

and

βNCb = a− zb− b(1− γ)BNCb , βNCs = θ
(
a− zb− b(1− γ)BNCs

)
(27)

From (26) and (27) we obtain:

ANCb =
1

2(1− γ)

(
c− αNCb

b

)
, ANCs =

1

2(1− γ)

(
c− αNCs

θb

)
BNCb =

1

b(1− γ)

(
a− bz − βNCb

)
, BNCs =

1

bθ(1− γ)

(
aθ − bθz − βNCs

)
The results for αNCb and αNCs are obtained by substituting the above expressions for ANCb and

ANCs in (20) and (23), respectively. The results for βNCb and βNCs are obtained by substituting the
above expressions for BNCb and BNCs in (21) and (24) and arranging terms.

Proof Proposition 1. Consider a simplification of (7) and (8) with γ = 0 and θ = 1. Then
(7) and (8) can be rewritten as:

ρb(bc− αNCb ) = −(αNCb )2 + 2bcαNCb − 2(αNCb + αNCs )(bc− αNCb )

ρs(bc− αNCs ) = −(αNCs )2 + 2bcαNCs − 2(αNCb + αNCs )(bc− αNCs )

Now, denote x = αNCb − bc and y = αNCs − bc, then the previous equations can be rewritten as:

−ρbx = −(x2 + 2bcx+ b2c2) + 2bc(x+ bc) + 2(x+ y + 2bc)x

−ρsy = −(y2 + 2bcy + b2c2) + 2bc(y + bc) + 2(x+ y + 2bc)y

And rearranging the terms:

x2 + (4bc+ ρb)x+ 2xy + b2c2 = 0 (28)

y2 + (4bc+ ρs)y + 2xy + b2c2 = 0 (29)

and following the definition of x and y, the condition for convergence will be x+ y + 2bc > 0.
Denote zb = x+ y + 2bc+ ρb

2 and zs = x+ y + 2bc+ ρs
2 . Then y and x can be expressed from

the definitions of zb and zs, respectively:

y = zb − x− 2bc− ρb
2

(30)

x = zs − y − 2bc− ρs
2

(31)
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By plugging (30) and (??) into (28) and (29), respectively:

x2 − 2zbx− b2c2 = 0 (32)

y2 − 2zsy − b2c2 = 0 (33)

So, the solution to this system of equations will be:

x = zb ±
√
z2b + b2c2, y = zs ±

√
z2s + b2c2 (34)

So, there are 4 potential solutions that it is necessary to check for the convergence i.e. check
their stationarity.

Case 1. x = zb +
√
z2b + b2c2 and y = zs +

√
z2s + b2c2.

Then, taking into account that zb = x+ y + 2bc+ ρb
2 and zs = x+ y + 2bc+ ρs

2 , and arranging
the terms, the expression for x+ y + 2bc can be obtained:

x+ y + 2bc = −2bc− ρb
2
− ρs

2
−
√
z2b + b2c2 −

√
z2s + b2c2

This expression cannot possibly be positive (as the condition for convergence requires), because
all the terms on the right hand side are negative, taking into account that b, c > 0 as well as
ρb, ρs > 0. Hence, this solution will not converge.

Case 2. x = zb −
√
z2b + b2c2 and y = zs +

√
z2s + b2c2.

Following the same procedure as above, it is easily obtained:

x+ y + 2bc = −2bc− ρb
2
− ρs

2
+
√
z2b + b2c2 −

√
z2s + b2c2

However,
√
z2b + b2c2 −

√
z2s + b2c2 < 0, because zs > zb as soon as ρs > ρb by assumption.

Therefore, as before, it is not possible for the expression x + y + 2bc to be greater than 0, so this
solution will not converge.

Case 3. x = zb +
√
z2b + b2c2 and y = zs −

√
z2s + b2c2.

As in two cases above, following the similar steps, it is easily obtained:

x+ y + 2bc = −2bc− ρb
2
− ρs

2
−
√
z2b + b2c2 +

√
z2s + b2c2

In this case it is not obvious what sign the right hand side will have. So, let us check the sign
of the part of the right hand side expression, precisely −2bc− ρs

2 +
√
z2s + b2c2.

Considering the definition of zs it is possible to write that

z2s + b2c2 =
(
x+ y + 2bc+

ρs
2

)2
+ b2c2

For convergence it is required that x+ y + 2bc > 0, and as ρs > 0 by definition, it is quite easy
to see that x+ y + 2bc+ ρs

2 > 0. Then, we can use a property that sum of squares is smaller than
the square of the sum. More precisely:(

x+ y + 2bc+
ρs
2

)2
+ (bc)2 <

(
x+ y + 2bc+

ρs
2

+ bc
)2
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Therefore, z2s+b2c2 < (x+y+2bc+ ρs
2 +bc)2 and, consequently,

√
z2s + b2c2 < x+y+2bc+ ρs

2 +bc
It means that:

x+ y + 2bc < −2bc− ρb
2
− ρs

2
−
√
z2b + b2c2 + x+ y + 2bc+

ρs
2

+ bc

Which leads to

bc < −ρb
2
−
√
z2b + b2c2,

which is not possible because both parameters b and c are positive. Hence, this solution neither
will converge.

There is one case left for consideration x = zb−
√
z2b + b2c2 and y = zs−

√
z2s + b2c2, which means

that if the condition x+ y+ 2bc > 0 is fulfilled there will be at most one solution converging to the
steady state, otherwise there is no stationary linear subgame perfect non-cooperative equilibrium.

Now consider a more general case, where without loss of generality γ = 0 is assumed. Then (7)
and (8) can be rewritten as:

ρb(bc− αNCb ) = −(αNCb )2 + 2bcαNCb − 2(αNCb + αNCs )(bc− αNCb )

ρs(bc− αNCs ) = −(αNCs )2 + 2θbcαNCs − 2(αNCb + αNCs )(θbc− αNCs )

Now, denote x = αNCb − bc and y = αNCs − θbc, then the previous equations can be rewritten
as:

−ρbx = −(x2 + 2bcx+ b2c2) + 2bc(x+ bc) + 2 (x+ y + 2bc(1 + θ))x

−ρsy = −(y2 + 2θbcy + θ2b2c2) + 2θbc(y + θbc) + 2 (x+ y + 2bc(1 + θ)) y

And rearranging the terms:

x2 + (2bc(1 + θ) + ρb)x+ 2xy + b2c2 = 0 (35)

y2 + (2bc(1 + θ) + ρs) y + 2xy + θ2b2c2 = 0 (36)

and following the definition of x and y, the condition for convergence will be x+ y+ bc(1 + θ) > 0.
Now, denote zb = x+ y + (1 + θ)bc+ ρb

2 and zs = x+ y + (1 + θ)bc+ ρs
2 . Then y and x can be

expressed from the definitions of zb and zs, respectively:

y = zb − x− (1 + θ)bc− ρb
2

(37)

x = zs − y − (1 + θ)bc− ρs
2

(38)

By plugging (37) and (38) into (35) and (36), respectively:

x2 − 2zbx− b2c2 = 0 (39)

y2 − 2zsy − θ2b2c2 = 0 (40)
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So, the solution to this system of equations will be:

x = zb ±
√
z2b + b2c2, y = zs ±

√
z2s + θ2b2c2 (41)

So, there are 4 potential solutions that it is necessary to check for the convergence i.e. check
their stationarity.

Case 1. x = zb +
√
z2b + b2c2 and y = zs +

√
z2s + θ2b2c2.

Then, taking into account that zb = x+ y+ (1 + θ)bc+ ρb
2 and zs = x+ y+ (1 + θ)bc+ ρs

2 , and
arranging the terms, the expression for x+ y + (1 + θ)bc can be obtained:

x+ y + (1 + θ)bc = −(1 + θ)bc− ρb
2
− ρs

2
−
√
z2b + b2c2 −

√
z2s + θ2b2c2

This expression cannot possibly be positive (as the condition for convergence requires), because
all the terms on the right hand side are negative, taking into account that b, c > 0 as well as
ρb, ρs > 0. Hence, this solution will not converge.

Case 2. x = zb +
√
z2b + b2c2 and y = zs −

√
z2s + θ2b2c2.

Following the same procedure as above, it is easily obtained:

x+ y + (1 + θ)bc = −(1 + θ)bc− ρb
2
− ρs

2
−
√
z2b + b2c2 +

√
z2s + θ2b2c2

In this case it is not obvious what sign the right hand side will have because zs > zb, but at the
same time θ ≤ 1.

Considering the definition of zs it is possible to write that

z2s + θ2b2c2 =
(
x+ y + (1 + θ)bc+

ρs
2

)2
+ θ2b2c2

For convergence it is required that x+ y+ (1 + θ)bc > 0, and as ρs > 0 by definition, it is quite
easy to see that x+ y + (1 + θ)bc+ ρs

2 > 0. Then, as in the simplified case, we can use a property
that sum of squares is smaller than the square of the sum. More precisely:(

x+ y + (1 + θ)bc+
ρs
2

)2
+ (θbc)2 <

(
x+ y + (1 + θ)bc+

ρs
2

+ θbc
)2

Therefore, z2s + θ2b2c2 <
(
x+ y + (1 + θ)bc+ ρs

2 + θbc
)2

and, consequently,
√
z2s + θ2b2c2 <

x+ y + (1 + θ)bc+ ρs
2 + θbc

It means that:

x+ y + (1 + θ)bc < −(1 + θ)bc− ρb
2
− ρs

2
−
√
z2b + b2c2 + x+ y + (1 + θ)bc+

ρs
2

+ θbc

Which leads to

bc < −ρb
2
−
√
z2b + b2c2,

which is not possible because both parameters b and c are positive. Hence, this solution neither
will converge.
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Case 3. x = zb −
√
z2b + b2c2 and y = zs +

√
z2s + b2c2.

As in two cases above, following the similar steps, it is easily obtained:

x+ y + (1 + θ)bc = −(1 + θ)bc− ρb
2
− ρs

2
+
√
z2b + b2c2 −

√
z2s + θ2b2c2

If θ = 1, then for sure
√
z2s + θ2b2c2 >

√
z2b + b2c2, and so the right hand side of the expression

above is negative, and it is impossible for the solution to converge to the steady state.
If 0 < θ < 1, then the situation is not that obvious. However, we ca n consider z2b + b2c2 =(

x+ y + (1 + θ)bc+ ρb
2

)2
+ b2c2. Then, because x+ y + (1 + θ)bc+ ρb

2 > 0, we can write:(
x+ y + (1 + θ)bc+

ρb
2

)2
+ (bc)2 <

(
x+ y + (1 + θ)bc+

ρb
2

+ bc
)2

Therefore, z2b + b2c2 <
(
x+ y + (1 + θ)bc+ ρb

2 + bc
)2

and, consequently,
√
z2b + b2c2 < x+ y +

(1 + θ)bc+ ρb
2 + bc

It means that:

x+ y + (1 + θ)bc < −(1 + θ)bc− ρb
2
− ρs

2
−
√
z2s + θ2b2c2 + x+ y + (1 + θ)bc+

ρb
2

+ bc

Which leads to

θbc < −ρs
2
−
√
z2s + θ2b2c2,

which is not possible because all parameters θ, b and c are positive. Hence, this solution neither
will converge.

There is one case left for consideration x = zb −
√
z2b + b2c2 and y = zs −

√
z2s + θ2b2c2,

which means that if the condition x + y + (1 + θ)bc > 0 is fulfilled there will be at most one
solution converging to the steady state, otherwise there is no stationary linear subgame perfect
non-cooperative equilibrium.

B Subgame Perfect Cooperative Equilibrium

Plugging the expressions for optimal extractions (13) and (14) into (12) and writing down the
equation separately for each player, we obtain:

ρb(A
C
b G

2 +BCb G+ CCb ) =[2ACb G+BCb ][r − (1− γ)(1 + θ){a+ b(z + (1− γ)(BCb +BCs ))+

+ b(c− 2(1− γ)(ACb +ACs ))G}]+
+ [a− b(z + (1− γ)(BCb +BCs )) + b(c− 2(1− γ)(ACb +ACs ))G]

[
a

b
− (z − cG)− 1

2b
{a− b(z + (1− γ)(BCb +BCs ))+

+ b(c− 2(1− γ)(ACb +ACs ))G}]

(42)
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ρs(A
C
s G

2 +BCs G+ CCs ) =[2ACs G+BCs ][r − (1− γ)(1 + θ){a+ b(z + (1− γ)(BCb +BCs ))+

+ b(c− 2(1− γ)(ACb +ACs ))G}]+
+ [θa− θb(z + (1− γ)(BCb +BCs )) + θb(c− 2(1− γ)(ACb +ACs ))G]

[
a

b
− (z − cG)− 1

2θb
{θa− θb(z + (1− γ)(BCb +BCs ))+

+ θb(c− 2(1− γ)(ACb +ACs ))G}]
(43)

From these cumbersome expressions we can derive a system of 6 equations that we will have to
solve in order to define ACb , A

C
s , B

C
b , B

C
s , C

C
b and CCs .

ρbA
C
b = 4b(1− γ)2(1 + θ)ACb (ACb +ACs )− 2bc(1− γ)(ACb +ACs )− 2b(1− γ)2(ACb +ACs )2 (44)

ρsA
C
s = 4b(1− γ)2(1 + θ)ACs (ACb +ACs )− 2θbc(1− γ)(ACb +ACs )− 2θb(1− γ)2(ACb +ACs )2 (45)

ρbB
C
b =2ACb [r − (1− γ)(1 + θ){a+ b(z + (1− γ)(BCb +BCs )) + bc}]+

+ 2BCb b(1− γ)2(1 + θ)(ACb +ACs )+

[a− b(z + (1− γ)(BCb +BCs )) + bc](c+ (1− γ)(ACb +ACs ))−

− 2b(1− γ)(ACb +ACs )[
a

2b
− z +

1

2
(z + (1− γ)(BCb +BCs ))− 1

2
c]

(46)

ρsB
C
s =2ACs [r − (1− γ)(1 + θ){a+ b(z + (1− γ)(BCb +BCs )) + bc}]+

+ 2BCs b(1− γ)2(1 + θ)(ACb +ACs )+

θ[a− b(z + (1− γ)(BCb +BCs )) + bc](c+ (1− γ)(ACb +ACs ))−

− 2θb(1− γ)(ACb +ACs )[
a

2b
− z +

1

2
(z + (1− γ)(BCb +BCs ))− 1

2
c]

(47)

ρbC
C
b =BCb [r − (1− γ)(1 + θ){a+ b(z + (1− γ)(BCb +BCs )) + bc}]+

+ [a− b(z + (1− γ)(BCb +BCs )) + bc]

[
a

2b
− z +

1

2
(z + (1− γ)(BCb +BCs ))− 1

2
c]

(48)

ρsC
C
s =BCs [r − (1− γ)(1 + θ){a+ b(z + (1− γ)(BCb +BCs )) + bc}]+

+ θ[a− b(z + (1− γ)(BCb +BCs )) + bc]

[
a

2b
− z +

1

2
(z + (1− γ)(BCb +BCs ))− 1

2
c]

(49)
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C Additional simulations

Figure 4: Simulations for the different values of ρb and ρs, and for θ = 1
6 of stock in Mm3 (on the

left) and extraction rate in Mm3/year (on the right) (with the alternative baseline case)

(a) θ = 1
6
, ρb = 0.03, ρs = 0.03 (b) θ = 1

6
, ρb = 0.03, ρs = 0.03

(c) θ = 1
6
, ρb = 0.03, ρs = 0.05 (d) θ = 1

6
, ρb = 0.03, ρs = 0.05

(e) θ = 1
6
, ρb = 0.03, ρs = 0.07 (f) θ = 1

6
, ρb = 0.03, ρs = 0.07

(g) θ = 1
6
, ρb = 0.03, ρs = 0.09 (h) θ = 1

6
, ρb = 0.03, ρs = 0.09
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