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Abstract 

The goal of this study is to identify and characterize brain states as a function of the 

motivation with which the task was performed (the presence of avatars and their skill at 

performing the task). To this end, we developed a series of machine learning algorithms 

capable of capturing differences between the EEG data recorded at each condition. We 

used metrics of local activity, such as electrode power, of similarity (correlation between 

electrodes), and of network functional connectivity (co-variance across electrodes) and 

use them to cluster brain states and to identify network connectivity patterns typical of 

each motivated state. 

Studies in the field of computational neuroscience involve the analysis of brain dynamics 

across specific brain areas to study the mechanisms underlying brain activity. This 

particular study aims at discovering how brain activity is affected by social motivation 

by computational means. To this end, we analyzed a dataset of electro-encephalographic 

(EEG) data recorded previously during a reward-driven decision-making experiment 

performed by Parkinson patients. The goal of the experiment was to select and perform 

a reaching movement from an origin cue to one of two possible wide rectangular targets. 

Reward was contingent upon arrival precision. Social motivation was manipulated by 

simulating avatar partners of varying skill with whom our participants played. 

Competition with the avatar was explicitly discouraged. 

Our results show that the presence of different avatars yielded distinct brain states, 

characterized by means of functional connectivity and local activity. Specifically, we 

observed that motivation related states were best identified for the highest frequency 

band (gamma band) of the EEGs. 

In summary, this study has shown that brain states can be characterized by level of 

motivation with a high degree of accuracy, independently of the presence of medication.  
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1. Introduction 

 

Systems’ Neuroscience is the discipline devoted to the study of the physiology of the 

nervous system and their relationship with the principles that govern behavior1. 

Computational neuroscience is the sub-discipline that uses mathematical and analytical 

methods to this end – describing models of interaction capable of processing information 

and reproducing cognitive tasks.2 This methodology has gained an unprecedented 

popularity during the last few decades thanks to the advances in computational power, 

increased popularity of non-invasive imaging technologies (such as fMRI or EEG) and 

remarkable progress of data analysis and machine learning techniques. 

While brain activity remains mostly hidden from us, several technologies allow a partial 

observation and imaging of brain activity: 1) functional magnetic resonance imaging 

(fMRI), which measures changes associated with blood flow to identify functionally 

related brain areas, and 2) electroencephalography (EEG), which records electrical 

activity from the surface of the brain. Each one of these exhibits inherent advantages and 

drawbacks; while fMRI provides high spatial resolution, its temporal resolution is 

constrained to 1s, which lays far from the millisecond level physiological processes; 

furthermore, the cost of fMRI sessions is typically non-negligible. By contrast, EEG is 

inexpensive and offers millisecond level temporal resolution, which is counterbalanced 

by its limited spatial resolution. 

The goal of this study is to identify patterns of brain activity related to specific motivated 

brain states in Parkinson’s disease patients, and of the differential effect caused by their 

(dopaminergic) medication. Specific motivated states were induced during the 

performance of an experiment (see METHODS) in which patients had to perform in the 

presence of simulated partners ---avatars, which exhibited a lesser or better 

performance than theirs. Patients performed two sessions, ON/OFF medication, to be 

able to compare the effect of their medication on their behavior and brain states. To this 

end, we will use EEG segments extending hundreds of milliseconds around specific trial 

events. We used a Philips EGI recording system with 108 EEG electrodes. We developed 

a pipeline to clean the EEG data from artifacts and developed specific machine learning 

algorithms to categorize the brain states. 

With this work, we intend to answer the following questions:  

- Can motivational brain states be identified via machine learning methods from EEG 

recordings?  
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- Does the presence of medication affect brain activity in a similar manner to 

motivational state? Can we detect and quantify these effects with the same machine 

learning methods? 
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2.  Methodology 

2.1 Experiment Description 

Our analyses are based on the recordings performed during performance of a reward-

driven, decision-making task between two reaching movements, in which the participant 

must perform a precision arm reaching to attain reward. Participants were presented 

with a screen showing an origin cue (taking the form of a pale-blue dot with a radius of 

1cm), a pointer which served as a virtual avatar for the participant (pale-blue dot with a 

radius of 1cm), and a delimited area into which the participant was instructed to move 

their virtual avatar (dark-blue square, 10cm side, 1cm depth). A motion tracker was 

attached to the arm of the participant, which allowed the virtual avatar to respond to its 

movements. The participant was rewarded for directing the avatar into the delimited 

target area with as much precision as possible. Maximum reward is attained by reaching 

the center of the target area, decreasing linearly with precision. 

 

Figure 1. Timeline of a trial and error distribution by simulated skill of the virtual partner. 

Three factors were varied throughout the experiment: motivation, biomechanics, and 

requirement of stopping at the target – in some cases, the participant was instructed to 

stop at the target (“Stop-In”); in others, to go through it and stop afterwards (“Punch-

Through”). In order to induce higher states of motivation, a virtual opponent of 

increasing capabilities per desired level of motivation was introduced into the 

simulation. The participant was instructed to ignore the virtual opponent. 

The experiment is divided into two equal sessions, which are themselves composed of 

six blocks containing 108 trials each – blocks 1-6 for session 1, blocks 7-12 for session 2. 

The conditions of the experiment vary by block: blocks 1, 3 and 5 are “Stop-In”, while 2, 
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4 and 6 are “Punch-Through”. Blocks 1 and 2 had the participant playing without 

competition, blocks (3-4; 7-8) introduced a partner of low simulated skills and blocks (5-

6; 9-10) introduced a skilled partner. 

The trial started when the origin cue was displayed on the screen, and time began once 

the participant had placed their finger into the origin cue. 500ms later, two potential 

trajectories were shown on-screen, of which the participant had to choose one. A second 

later, the origin cue disappeared, signaling the participant to begin movement. 

Participants were instructed to make choices in the most unbiased possible manner, and 

to react as fast as possible. 

100ms after entering the target area, the participant is shown the achieved reward, 

dependent on precision, by the size of a green bar scaled from 0 (no reward) to 900 pixels 

(maximum reward). In the case of the presence of a partner, the partner’s score is shown 

in the same manner via an additional, red-colored bar. Additionally, 500ms after the bars 

have been shown, the ranking of the participant versus the simulated partner is shown. 

2.2 Pre-processing of the Experimental Data 

For the data to be fit into the machine learning models, some pre-processing and cleanup 

had to be performed. This consisted mainly in the removal of unwanted sources, such as 

eye movement artifacts– this was most prevalent in the channels corresponding to the 

electrodes closest to the eyes, as ocular movement could very easily get picked up; and 

electrical noise, and faulty channels, which presented abnormal readings, such as long 

silent periods, saturation, or strong movement artifact contamination. 

From the EEG recordings, we are interested in the interval at the beginning of each trial 

starting 1000ms prior to the first stimulus onset (see Task Description). At each trial, we 

will be working with the slice of data starting 1000 milliseconds before and ending 600 

milliseconds after the timestamp. 

 

Figure 2. EEG data pre-processing pipeline. 

Firstly, the data must be pre-processed. We band-pass filtered between 0.5 and 100 Hz 

and notch filtered at the 50, 100 and 150 Hz, those frequencies that carry electrical noise 

and its harmonics. The data is then normalized (subtracted the mean and dividing by the 
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standard deviation or the baseline blocks) and Principal Component Analysis (PCA) is 

then used to project the data onto a space of eigenvectors expressing the highest variance 

of the dataset. This allowed us to remove those electrodes that only recorded noise. The 

next step is to identify those sources that originated in the brain and to remove any other. 

As a first step, we performed Independent Component Analysis (ICA). In brief, ICA 

considers the signal recorded at an individual electrode as the sum of several 

independent source signals. By means of ICA, we de-constructed each channel into 

several independent components (ICs). We visually checked each component, removing 

those which we want to leave out of or analysis, such as eye or muscular movements. The 

remaining data is finally re-composed by performing the inverse process to the ICA. 

Finally, a second visual inspection of the data is performed in order to identify potentially 

erroneous channels to be left out altogether. 

2.3 Classification 

2.3.1 Data Preparation 

Since our intent is to compare both sessions and motivational levels, we’ll be combining 

motivational states and trials to form 6 different classes to be compared against each 

other. Each class corresponds, then, to a motivational level independent of the session it 

originated from. This results in a matrix with the following dimensions: 

128 electrodes × 1600 data points × 108 trials × 6 classes 

After reshaping our matrix, we then discard silent channels (those which present a global 

maximum of 0). This is done as a manner of second proofing in case an erroneous channel 

was left in during the earlier visual inspection. In case not-a-number (NaN) values are 

present, these are replaced by the mean value of the channel, as to not sway the models. 

2.3.2 1-Nearest Neighbor & Logistic Regression Classifiers 

At this point, the data is now suitable to perform our array of analyses on. This part of 

the study was done using Python, with the scikit-learn Python package. Our aim is to 

generate models which can identify the motivation level and medication status of a 

participant, given the EEG recording of a trial. We use two different classifiers to fit the 

models upon which we will perform our analyses: Logistic Regression (MLR) and 1-

Nearest Neighbor (1-NN) classification. The MLR is performed using a L2 penalty to 

avoid overfitting and uses the Limited-Memory BFGS algorithm as solver. In the case of 

the 1-NN classifier, each sample will be assigned the class of its nearest neighbor, 

determined by shortest Euclidean distance between features. 

 



6 
 

2.3.3  Band-pass Filtering & Feature Extraction 

The features chosen for classification were electrode power, covariance and correlation, 

and the classification was performed at three different frequency bands: alpha (8 – 12 

Hz), beta (12.5 – 30 Hz) and gamma (30 – 200 Hz). Electrode power will give us an insight 

into which individual electrodes are responsible for the measured difference in 

motivation, while covariance and correlation will allow us to see which relationships 

between electrodes are established and their participation in motivation. 

The frequency bands at which we’ll measure the data correspond to three of the five 

widely recognized brain waves emitted by the brain. Each frequency has an associated 

brain state during which it is more prevalent. Filtering by frequency band, we aim to 

identify which brain waves the perceived difference in motivation correlates the most 

with. 

Frequency band   Frequency   Brain states 

Gamma (γ)   > 35 Hz   Concentration 

Beta (β)   12–35 Hz   Anxiety, heightened attention 

Alpha (α)   8–12 Hz   Very relaxed, passive attention 

Theta (θ)   4–8 Hz   Deeply relaxed, inward focused 

Delta (δ)   0.5–4 Hz   Sleep 

Figure 3. The five basic brain waves and their associated characteristics4 

At this point, the process is parallelized into 9 independent sub-processes, each handling 

a single combination of feature type and frequency band. This is done to drastically 

reduce computation time, as initial runs of the code could take more than a week to 

complete for a single participant. 

For each combination of feature type and frequency band, the data is first band-pass 

filtered to contain only the frequencies inside the desired range. A different feature 

vector is generated depending on the method. Considering the N of channels of our data, 

in the case of electrode power, this will be a 1-dimensional vector of N size containing 

the squared mean of each channel. In the case of covariance and correlation, this takes 

the form of a N×N triangular matrix where, considering i and j integers between 0 and 

128 representing each the index of an electrode, each position (i, j) contains the 

covariance or correlation between electrode i and j, as calculated below: 

Cov (x, y) = 
∑(𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)

𝑁−1
 

Corr (x, y) = 
∑(𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)

√∑(𝑥𝑖−𝑥̅)
2⋅∑(𝑦𝑖−𝑦̅)

2
 

Figure 4. From top to bottom: covariance (Cov) and correlation (Corr) equations. 
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Recursive Feature Elimination is used to select the most informative features. From the 

128 features we extracted from electrode power, we’ll keep the best 3; in the case of 

covariance and correlation, since we have 1282 features, we’ll keep the best 90. This will 

give us an insight on which features have the highest effect  

2.3.4 Classification 

Labels are assigned to each class. These consist of integers in the range [0, 5], where 0, 1 

and 2 represent the three motivational levels (from lowest to highest motivation) during 

session 1 (off medication), and 3, 4 and 5 represent motivational levels during session 2 

(on medication).  

A sliding window approach is used to train and test the models. Different training and 

testing subsets comprising, respectively, the 80% and 20% of the full dataset are 

generated sequentially 4 times, each with different training and testing sets. The MLR 

and 1-NN models are fit using the training set, and immediately scored based on the 

testing set. A testing set with shuffled (and, therefore, erroneous) labels is also used to 

test the model as control. Each iteration, the results of both testing sets are added to each 

one’s confusion matrix to be analyzed later. 

Once all repetitions are complete, the results are plotted and returned to the main 

process, where they will be further handled. 

2.3.5 Analysis 

At this point we have already obtained all the data we need for our results, and we have 

only left to visualize it. Pearson correlation is calculated among the results yielded by the 

models fit with different training sets across iterations of the sliding window to check 

stability. The results are plotted by frequency band and measurement.  

The most informative features are retrieved and visualized onto a graph of the electrode 

network: in the case of electrode power, the 10 most informative features, equivalent to 

the 10 electrodes exhibiting the most change by motivation level, are shown. For 

covariance and correlation, we show the 20 most informative features – in this case 

equivalent to electrode connections. 

 

Figure 5. From left to right: 
 
- Map showing the most informative 
electrodes (highlighted in red). 
 
- Graph showing the most 
informative electrode connections. 
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3. Results 

Once we have obtained our models’ statistics, we can attempt to evaluate the effects of 

motivation and medication by analysing the accuracy in prediction of each class against 

the rest. As a reminder, we have a total of 6 classes, one for each combination of 

motivation level (“low”, “medium” & “high”) and presence of medication (“off 

medication” & “on medication”). Prediction accuracy gives us an insight on the 

identifiability of each of our classes based on our features. 

We evaluated our results by feature type (electrode power, covariance & correlation) 

and frequency band (alpha, beta & gamma) to determine which features are most 

indicative of the brain states we observe and at which frequency band they are expressed 

most significantly. 

The figures shown ahead correspond to that of a single participant in the study, but, 

unless otherwise stated, the observations extracted from them are consistent across the 

data of all participants. Figures of all participants can be found in the Annex. 

3.1 Stability of Results 

As mentioned, the stability of the results is calculated using Pearson correlation across 

the results provided by training and testing the models with different sub-sections of the 

full dataset using a sliding window approach. 

   

Figure 6. Comparison of the stability of results by feature type across frequency bands. 

We can observe from the figures that stability increases considerably with frequency 

band, being alpha the band which yields the lowest stability ranging from 0.6 – 0.8, while 

beta and gamma show an improved stability in the range 0.8 – 1. 

3.2 Identifiability of Motivated Brain States & Effect of Medication 

The results obtained from out models were conclusive. From the confusion matrices, we 

can observe that the error of prediction is very low, reaching even 0 in several cases. 

These results imply that the identifiability of motivation states based on these features 
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(electrode power, covariance and correlation) is possible and very accurate, meaning 

that there is a measurable difference in brain activity inferred by the level of motivation 

of the person. 

 

Figure 7. Confusion matrix 

across all classes by correlation 

at gamma frequency band. 

 

Labels: 

0 – Off medication, low motivation 

1 – Off medication, medium motivation 

2 – Off medication, high motivation 

3 – On medication, low motivation 

4 – On medication, medium motivation 

5 – On medication, high motivation 

 

 

 

Classes 3, 4 & 5, representing the states during which the participant had been 

administered medication, remained each highly distinguishable from the rest, meaning 

that the brain state of the participant during trials under medication where 

distinguishable from the rest across all levels of motivation. In order to determine which 

feature type, frequency band and algorithm can identify our classes most effectively, 

we’ll examine the accuracy obtained by each. 

3.2.1 Mean Accuracy by Feature Type & Frequency Band 

 

Figure 8. Mean accuracy of all participants by algorithm across feature types and frequency bands. 

By observing the mean accuracy obtained we can identify several patterns. For one, the 

Logistic Regression approach consistently obtains significantly better results than 1-

Nearest Neighbor algorithm. Additionally, electrode power seems to be the feature type 

with which the best accuracy is achieved across frequency types, and each frequency band 

is significantly better than the former. We’ll now look in-depth into each category. 
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3.2.2 Accuracy by Frequency Band 

 

Figure 9. Accuracy of models by frequency band for a single participant. Legend: 
Logistic Regression 
1-Nearest Neighbor 
Logistic Regression (shuffled) 
1-Nearest Neighbor (shuffled) 

Comparing across frequency bands reveals a substantial difference. Accuracy becomes 

progressively higher by increasing frequency: in the case of alpha, we obtain an accuracy 

averaging ~0.8 from the MLR model, and ~0.7 from 1-NN. Beta provides an increase in 

accuracy, bringing the accuracy of both models to an average of ~0.9. The best results 

are obtained when filtering by the gamma frequency band, which slightly increases the 

average accuracy respective to beta, but shows a greatly reduced deviation.  

As expected, tests in which labels had been shuffled showed an accuracy around chance 

level, indicated by the dashed line and corresponding to 1/6. 

 

Figure 10. Confusion matrices by frequency band. 

If we analyze the confusion matrices obtained by frequency band, we can observe how 

accuracy among motivation states during off-medication trials remain mostly the same, 

increasing only slightly by frequency band.  

It is apparent that off-medication states are more distinguishable from each other at 

lower frequency bands, at which trials performed under medication show a much worse 

accuracy in classification. 
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3.2.3 Accuracy by Feature Type 

Figure 11. Accuracy by feature type. From left to right: electrode power, covariance, correlation. 

Logistic Regression 
1-Nearest Neighbor 
Logistic Regression (shuffled) 
1-Nearest Neighbor (shuffled) 

When comparing the accuracy obtained using different feature types, we can observe 

that electrode power stands out as the most accurate. This observation holds true for all 

frequency bands, but, as we increase frequency, the difference in accuracy is greatly 

reduced. This is consistent with the observation we made of Figure 8.  

 

Figure 12. Confusion matrices by feature type. 

By checking the confusion matrices, we can see how, indeed, electrode power is the 

feature type that results in the best classification. We can observe how classes 

corresponding to off-medication and on-medication brain states (classes 0, 1, 2 and 3, 4, 

5 respectively) are almost never erroneously classified as the other, hinting at a strong 

distinction between brain states depending on the presence of medication. 

3.3 Brain Activation by Region & Most Informative Features 

As previously mentioned, through Recursive Feature Elimination we were able to rank 

our features by informativeness and keep the ones most useful to this prediction. This 

way, we can identify which brain areas are determinant of the brain states we observe, 

as well as which connections are established. 
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3.3.1 Activation by Brain Area  

 

Figure 13. Most informative electrodes for a participant (highlighted in red). 
 From left to right: alpha, beta, gamma.  

By analyzing the most informative features in the case of electrode power, we can 

identify which areas of the brain are most indicative of the brain states defined by our 

classes. Unfortunately, observing the results obtained by the RFE across participants, we 

cannot identify any recurring patterns.  

3.3.2 Established Connections 

 

Figure 14.  Most informative covariance relationships for a participant. 
 From left to right: alpha, beta, gamma.  

We can see from the most informative covariance & correlation relationships as obtained 

by RFE that the observations made in the last section hold true – no recurring patterns 

can be established. 

 

Figure 15.  Most informative correlation relationships for a participant. 
 From left to right: alpha, beta, gamma.  
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4. Discussion 

 
With this study, our goal was to identify a relationship between states of motivation and 

physiological brain states which we could identify based on a series of characteristics 

obtained from EEG recordings of cerebral activity. Additionally, we wanted to test if the 

effect of dopaminergic medication could be comparable to that of heightened motivation 

levels on Parkinson’s disease patients.  To this end, an experiment was conducted in 

which the participants were instructed to perform a movement accompanied by a 

simulated virtual partner which they would be scored against in order to induce a sense 

of competition and increase motivation. Throughout the experiment, a 128 electrode 

EEG device recorded brain activity. 

The data was band-pass filtered into the alpha, beta and gamma frequency bands and 

fitted into two independent machine learning algorithms: Logistic Regression (MLR) and 

1-Nearest Neighbor (1-NN). Three different sets of features were used: electrode power, 

covariance between electrodes, and correlation between electrodes. Recursive Feature 

Elimination (RFE) was applied to each feature set in order to select the most informative 

features of each set. We predicted that this, in addition to optimizing the models 

generated by the algorithms, would give us some insight into which brain regions and 

connections between them are affected by motivation and presence of dopaminergic 

medication. 

Both machine learning algorithms generated models which could identify motivational 

states, both on-medication and off-medication, with high accuracy. In particular, the best 

approach was found to be MLR, on the gamma frequency band, using electrode power 

for features. This combination achieved near perfect classification of our testing sets 

across all participants. Electrode power consistently proved better accuracy than its 

counterparts, but this difference was reduced on higher frequency bands, being this 

difference almost unnoticeable on the gamma band. These results reveal that motivation 

state can indeed be identified by brain activity, and the brain states resulting of different 

levels of motivation can be characterized.  

We can observe how on-medication brain states consistently show more error in 

prediction among them at lower frequency bands. Increasing frequency band bring 

about a drastic increase in accuracy. 

Furthermore, we cannot establish a relationship between presence of medication and a 

state of motivation, as on-medication and off-medication states were distinguished from 

each other with almost perfect accuracy. Even in the lesser accurate models (e.g. those 
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fit with covariance on data filtered on the alpha band) error in classification between 

classes of different sessions was extremely rare. 

Analysis of most informative features yielded no conclusive results. The most 

informative electrodes and electrode connections were different across participants, and 

no patterns were apparent. It is possible that this is product of classifying off-medication 

and on-medication states together as a single set of classes, as we found that they hold 

no significant relationship. Defining two separate sets of classes for each session 

independently of the other and running RFE off those might reveal a pattern of most 

informative features for motivation states in each case. 
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6. Appendix 

6.1 Model Stability Across Feature Types by Frequency Band 
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6.2 Model Accuracy by Feature Type and Frequency Band 
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6.3 Confusion Matrices by Feature Type and Frequency Band 
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6.4 Mean Accuracy Across Feature Type and Frequency Band by Participant 
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6.5 Most Informative Correlation Relationships by Frequency Band 
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6.6 Most Informative Covariance Relationships by Frequency Band 
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6.7 Most Informative Electrode Power by Frequency Band 

Alpha 
Beta 
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