
Master’s thesis to obtain the degree
Master in pure and applied logic

Interpretability logics and generalized
Veltman semantics in Agda

Jan Mas Rovira

Supervised by Joost J. Joosten
and Luka Mikec

Facultat de Filosofia de Barcelona and
Facultat de Matemàtiques de Barcelona

November 2020

Abstract
Sufficiently strong arithmetical theories such as PA can formalize their interpretability pred-

icate. This predicate expresses the concept of relativized interpretability between finite ex-
tensions of the theory. Interpretability logics study the provable structural behaviour of the
interpretability predicate.

Interpretability logics extend the provability logic GL. As such, interpretability logics inherit
a number of similarities from GL. For instance, the possibility to give relational semantics. In
this thesis we focus on the study of two variations of relational semantics à la Kripke known as
ordinary Veltman semantics and generalized Veltman semantics.

In the literature we find various definitions of generalized Veltman semantics. In particular,
there are several conditions of quasi-transitivity, a property that generalized frames must satisfy.
We study the interrelations between all of these conditions and discuss their adequacy.

In this thesis we compare the expressiveness of ordinary and generalized Veltman seman-
tics. Furthermore, we give procedures that under some assumptions transform, while preserving
modal theoremhood, ordinary models to generalized models and vice versa.

We study the frame conditions of various relevant interpretability principles present in the
literature. Moreover, we provide novel frame conditions for the the principle R1 and the Rn

series of principles from [16] with respect to generalized Veltman semantics.
We have formalized our findings in Agda, which is a state-of-the-art proof assistant based on

an intuitionistic theory which features dependent types. Apart from giving a solid base to our
claims, we hope that our Agda library will provide a rallying point for researchers willing to
formalize theorems in the field of interpretability logics, or at least, to encourage more research
in that direction. Our work is, to our knowledge, the first attempt at formalizing interpretability
logics in any proof assistant.

Resum
Teories aritmètiques suficientment fortes tals com PA poden formalitzar el seu predicat d’inter-

pretabilitat. Aquest predicat expressa el concepte d’interpretabilitat relativitzada entre exten-
sions finites de la teoria. Les lògiques d’interpretabilitat estudien el comportament estructural
demostrable del predicat d’interpretabilitat.

Les lògiques d’interpretabilitat estenen la lògica de demostrabilitat GL. Com a tals, hereten
algunes semblances de GL. Per exemple, la possibilitat de definir una semàntica relacional. En
aquesta tesi ens centrem en l’estudi de dues variacions de semàntiques relacionals a l’estil Kripke
que es coneixen com semàntica ordinària Veltman i semàntica generalitzada Veltman.

En la literatura trobem vàries definicions de semàntica generalitzada Veltman. En particular,
hi ha diverses condicions de quasi-transitivitat, una propietat que els marcs generalitzats de
Veltman han de satisfer. Estudiem les interrelacions entre aquestes condicions i comentem la
seva pertinència.

En aquesta tesi comparem l’expressivitat de les semàntiques Veltman ordinàries i general-
itzades. A més, descrivim procediments que sota certes hipòtesis transformen, preservant els
teoremes modals, models ordinaris Veltman a models generalitzats Veltman i viceversa.

Estudiem les condicions de marc per diversos principis d’interpretabilitat que es troben a la
literatura. A més, donem noves condicions de marc pel principi R1 i la sèrie de principis Rn

presentats en [16] respecte semàntica generalitzada Veltman.
Hem formalitzat les nostres aportacions en Agda, que és un assistent de demostració modern

basat en una lògica intuïcionista amb tipus dependents. A banda de donar solidesa als nostres
avenços, esperem que la nostra llibreria d’Agda pugui ser un punt de trobada pels investigadors
que desitgin formalitzar teoremes en el camp de les lògiques d’interpretabilitat, o si més no, que
encoratgi més investigació en aquesta direcció. La nostra llibreria és, que sapiguem, el primer
intent de formalitzar lògiques d’interpretabilitat en algun assistent de la demostració.

Acknowledgments
We want to express our gratitude to Nicola Olivetti, Rineke Verbrugge and the rest of the

organizing committee of Advances in Modal Logic 2020 (Helsinki) for allowing us to present
there an extended abstract of this thesis. We want to extend our gratitude to all the reviewers
who gave valuable feedback.

We want to express our gratitude to Rineke Verbrugge. She kindly agreed to publish a
manuscript by hers, which has significant historical and mathematical value in the field of
interpretability logics, as an appendix of this thesis.

I want to thank my supervisors Joost and Luka. Their incredible work ethic and vast knowl-
edge on the field have been a source of inspiration throughout this thesis. I am ever grateful for
their patience and valuable corrections.

I want to thank Esperanza Buitrago for proof-reading the thesis and providing helpful feed-
back.

I would like to thank all the teachers in the Master in Pure and Applied logic from the
University of Barcelona, with a special thanks to Ramon Jansana. I feel privileged for having
been part of this master.

I want to share the joy that I am feeling at the time of finishing this thesis with my very good
friends from the master Martín and Stefano. I really hope that we can meet again somewhere
in Raval rather sooner than later.

Contents

I. Introduction 9

1. Overview of interpretability logics 10

2. Original contributions 14

3. Notation 16
3.1. Text . 16
3.2. Diagrams . 16

4. The language of modal interpretability 18

5. Logic IL 19

6. Veltman Semantics 22
6.1. Ordinary Veltman semantics . 22
6.2. Generalized Veltman semantics . 24

7. Quasi-transitivity 28

8. Monotonicity 31

II. Generalized vs ordinary models 33

9. From ordinary to generalized 35

10.From generalized to ordinary 36

11.From generalized to ordinary (a simpler approach) 40

12.A proof in need of repair 41
12.1. The details . 41

III. Frame conditions 43

13.Introduction to principles and frame conditions 44

14.The principle M 46
14.1. Ordinary semantics . 46
14.2. Generalized semantics . 47

15.The principle M0 48
15.1. Ordinary semantics . 48
15.2. Generalized semantics . 49

5

16.The principle P0 50
16.1. Ordinary semantics . 50
16.2. Generalized semantics . 51

17.The principle R 53
17.1. Ordinary semantics . 53
17.2. Generalized semantics . 54

18.The principle R1 56
18.1. Ordinary semantics . 56
18.2. Generalized semantics . 56

19.The principle R1 58
19.1. Generalized semantics . 58

20.The series of principles Rn 59
20.1. Ordinary semantics . 59
20.2. Generalized semantics . 59

21.Generic frame condition 61

IV. The logic of Agda 62

22.Introduction to types 64
22.1. The origins of types . 64
22.2. Untyped lambda calculus . 65
22.3. Simply typed lambda calculus . 66
22.4. Dependently typed lambda calculus . 68

23.Martin Löf’s logical framework 69
23.1. Basic definitions . 69
23.2. Rules for types and terms . 72
23.3. Families of types . 74
23.4. Introducing sets . 76

23.4.1. Function set . 77
23.4.2. Top set . 79
23.4.3. Bottom set . 79
23.4.4. Disjoint unions set . 80
23.4.5. Pairs set . 81
23.4.6. Dependent functions set . 82
23.4.7. Σ Pairs set . 83
23.4.8. Natural numbers set . 83
23.4.9. Identity set . 84

23.5. Main differences with Agda’s type system . 86

24.Basic Agda 87
24.1. Contexts, and typing rules . 90
24.2. Normalization . 92
24.3. Totality . 94

25.Agda tutorial 95
25.1. BHK interpretation of propositional logic . 95

6

25.2. Booleans and case analysis . 100
25.3. Naturals and induction . 101
25.4. Universe hierarchy . 103
25.5. BHK interpretation of first order logic . 104
25.6. Equality . 106
25.7. Predicates as mathematical sets . 108
25.8. Extensionality . 109
25.9. Positivity . 109

V. Agda in the thesis 110

26.Modal formulas 112

27.Noetherian relations 113

28.Ordinary Veltman semantics 114

29.Generalized Veltman semantics 118
29.1. A guided Agda proof . 120

30.Logic IL and syntactic proofs 122

31.An eDSL for syntactic proofs 124

VI. Glossary and bibliography 127

Glossary 128

Bibliography 129

VII.Appendix 132

A. Official Agda reference 133
A.1. Function definitions and pattern matching . 133
A.2. Absurd patterns . 134
A.3. Implicit arguments and automatic inference . 134
A.4. datatype definitions and constructors . 136
A.5. Function types . 137
A.6. Record types . 138
A.7. Universes . 138

A.7.1. Universe example . 138
A.7.2. Universe polymorphism . 139
A.7.3. Level arithmetic . 140

B. Agda library code 141
B.1. All . 141
B.2. Base . 142
B.3. Classical . 143
B.4. Formula . 147
B.5. GeneralizedFrame/Properties . 149
B.6. GeneralizedFrame . 156

7

B.7. GeneralizedVeltmanSemantics/Properties/GenericFrameCond 160
B.8. GeneralizedVeltmanSemantics/Properties/Luka 163
B.9. GeneralizedVeltmanSemantics/Properties/M . 166
B.10.GeneralizedVeltmanSemantics/Properties/M0 . 168
B.11.GeneralizedVeltmanSemantics/Properties/P0 . 170
B.12.GeneralizedVeltmanSemantics/Properties/R . 172
B.13.GeneralizedVeltmanSemantics/Properties/R1 . 175
B.14.GeneralizedVeltmanSemantics/Properties/R2 . 179
B.15.GeneralizedVeltmanSemantics/Properties/Rn . 182
B.16.GeneralizedVeltmanSemantics/Properties/R1 . 188
B.17.GeneralizedVeltmanSemantics/Properties/Verbrugge 193
B.18.GeneralizedVeltmanSemantics/Properties/Vukovic 203
B.19.GeneralizedVeltmanSemantics/Properties . 210
B.20.GeneralizedVeltmanSemantics . 219
B.21.IL . 221
B.22.IL/Edsl . 222
B.23.IL/Properties . 229
B.24.OrdinaryFrame . 236
B.25.OrdinaryVeltmanSemantics/Finite . 236
B.26.OrdinaryVeltmanSemantics/Properties/M . 242
B.27.OrdinaryVeltmanSemantics/Properties/M0 . 245
B.28.OrdinaryVeltmanSemantics/Properties/P0 . 247
B.29.OrdinaryVeltmanSemantics/Properties/R . 249
B.30.OrdinaryVeltmanSemantics/Properties . 251
B.31.OrdinaryVeltmanSemantics . 257
B.32.Principles . 259

C. Coq library code 261

D. Manuscript by Verbrugge: Set Veltman frames and models 272

8

Part I.

Introduction

9

1. Overview of interpretability logics
This thesis studies interpretability logics. These logics were originally conceived ([19, 38]) to
study the provably structural behaviour of formalized relative interpretability. In this overview
we will give some context and definitions to understand what this means.

We begin by giving a short introduction on provability logics. For more information refer to
[37]. The reason to start here is that interpretability logics extend provability logics. Further-
more the ecosystem of interpretability logics is similar to the one of provability logics, albeit
more complex, thus it will help establish an idea of the problems that we will tackle further in
the thesis.

Since Gödel’s incompleteness theorems, we have been interested in studying how much arith-
metical theories like Peano Arithmetic can say about themselves, more precisely, about their
provability capacity. As we know, sufficiently strong arithmetical theories like PA can represent,
by means of a clever syntactical encoding, their provability predicate, Prov𝑇 (𝐴), which states
“formula 𝐴 is provable in 𝑇 ”. A landmark result on this predicate is Gödel’s second incom-
pleteness theorem ([13, 30]) and Löb’s theorem ([21, 37]). Gödel second incompleteness theorem
states that consistent and sufficiently strong theories like PA cannot proof their own consistency.
Löb’s theorem, states that PA proves Prov𝑇 (⌜𝐴⌝) → 𝐴 only if PA proves 𝐴. Löb’s theorem can
be formalized in the language of PA thus:

PA ⊢ ProvPA(⌜ProvPA(⌜𝐴⌝) → 𝐴⌝) → ProvPA(⌜𝐴⌝).

This result sparked an interest in studying provability logic from a modal point of view which
yielded the axiomatization of the propositional provability logic GL, named after Gödel and Löb.
The logic GL extends propositional classical logic and its language consists of the language of
propositional logic ⟨→, ⊥⟩ plus the modal operator □, which stands for the provability predicate.
In this language Löb’s theorem reads as

□(□𝐴 → 𝐴) → □𝐴.

The above principle is in fact one of the axioms of GL. The importance of GL depends on the
arithmetical soundness and completeness theorems that we will present shortly, but first we need
to introduce the concept of arithmetical realization. An arithmetical realization ∗ is a map from
modal formulas in the language of GL to arithmetical sentences of 𝑇 such that it satisfies the
following:

𝑝∗ is a 𝑇 -sentence;
⊥∗ = (0 = 1);

(𝐴 → 𝐵)∗ = 𝐴∗ → 𝐵∗;
(□𝐴)∗ = Prov𝑇 (⌜𝐴⌝).

Note that specifying how an arithmetical realization ∗ acts on propositional variables fixes the
behaviour of ∗ on all modal formulas.

The arithmetical soundness theorem states that if GL ⊢ 𝐴 then PA ⊢ 𝐴∗ for any realization ∗.
Solovay proved ([32]) that arithmetical completeness, which is the converse of soundness, also
holds.

Provability logics have Kripke (relational) semantics. As a reminder, a Kripke model is a
tuple ⟨𝑊, 𝑅, 𝑉 ⟩ where 𝑊 is a non-empty set of worlds, 𝑅 is a binary relation on worlds and

10

𝑉 ⊆ 𝑊 × Var is a valuation. Then we define a forcing relation ⊩ that relates worlds and modal
formulas. We write 𝑤 ⊩ 𝐴 to say that world 𝑤 forces 𝐴:

1. 𝑤 ⊮ ⊥;

2. if 𝑝 is a propositional variable, then 𝑤 ⊩ 𝑝 iff: ⟨𝑤, 𝑝⟩ ∈ 𝑉 ;

3. if 𝐴 and 𝐵 are formulas, then 𝑤 ⊩ 𝐴 → 𝐵 iff: if 𝑤 ⊩ 𝐴 then 𝑤 ⊩ 𝐵;

4. if 𝐴 is a formula, then 𝑤 ⊩ □𝐴 iff: if for any world 𝑢 such that 𝑤𝑅𝑢 then 𝑢 ⊩ 𝐴.

In order to state a powerful modal soundness and completeness theorem we ought to restrict the
class of frames that we consider. We say that a frame ⟨𝑊, 𝑅⟩ is a GL-frame if 𝑅 is transitive
and conversely well-founded, that is, there are no infinite ascending chains 𝑤0𝑅𝑤1𝑅…. Then we
have that

GL ⊢ 𝐴 ⇔ (⟨𝑊, 𝑅, 𝑉 ⟩ ⊩ 𝐴 for any GL-frame ⟨𝑊, 𝑅⟩ and valuation 𝑉).

With this we conclude the introduction to provability logics and continue with interpretability
logics.

We introduce the concept of interpretation as a first step towards understanding interpretabil-
ity logics. Given two theories 𝑉 and 𝑈 , an interpretation of 𝑉 into 𝑈 is a translation 𝑓 from
𝑉 -formulas to 𝑈 -formulas such that if 𝑉 ⊢ 𝐴 then 𝑈 ⊢ 𝑓(𝐴). As such, we work with the notion
of theorem’s interpretability. Moreover, we will allow for domain relativization. In the history
of mathematics we find numerous examples ([38]) of theorems that use interpretations as a cor-
nerstone in their proofs. For instance, we have that Gödel’s interpretation of ZF plus the axiom
of constructibility (𝑉 = 𝐿) in ZF serves as a proof of relative consistency of the continuum
hypothesis with respect to ZF.

Interpretability logics, as the name foretells, studies the behaviour of interpretations. There
are a number of things that we need to specify. We do not study the behaviour of interpre-
tations between two arbitrary theories. Instead, we fix a base theory 𝑇 and we only consider
interpretability between finite extensions of such a theory. Thus when we say that 𝑇 + 𝐴 inter-
prets 𝑇 + 𝐵 we assume that 𝐴 and 𝐵 are sentences. In interpretability logics we only consider
first order arithmetical theories which are recursively enumerable and are sequential1. Moreover,
we are only concerned with the provable, within 𝑇 , interpretability properties. In other words,
we study the behaviour of the binary formalized interpretability predicate Int𝑇 (., .). Naturally,
the predicate Int𝑇 (⌜𝐴⌝, ⌜𝐵⌝) precisely holds when we can 𝑇 + 𝐴 interprets 𝑇 + 𝐵. For a theory
𝑇 , we denote the logic that describes the behaviour of the interpretability predicate of 𝑇 as
IL(𝑇). The language of IL(𝑇) extends the language of GL with the binary modal operator ▷,
thus the language becomes ⟨⊥, →, □, ▷⟩. In order to give a more detailed definition of IL(𝑇) we
first extend the definition of arithmetical realization with an extra clause for the ▷ case. An
arithmetical realization ∗ is a map from formulas in IL(𝑇) to sentences in the language of 𝑇 .
Moreover, it must satisfy the following constraints:

𝑝∗ is a 𝑇 -sentence;
⊥∗ = (0 = 1);

(𝐴 → 𝐵)∗ = 𝐴∗ → 𝐵∗;
(□𝐴)∗ = Prov𝑇 (⌜𝐴⌝);

(𝐴 ▷ 𝐵)∗ = Int𝑇 (⌜𝐴⌝, ⌜𝐵⌝).

Then we define the interpretability logic of a theory 𝑇 in the following way:

IL(𝑇) ≔ {𝐴 | 𝑇 ⊢ 𝐴∗ for any realization ∗ }.
1A sequential theory is an arithmetical which can code and decode sequences of elements.

11

There is an important difference with respect to provability logics that we need to highlight
here. In provability logics we have that GL is an axiomatization of the provability logics for
all sufficiently strong consistent arithmetical theories. However, we do not have an equivalent
Swiss army knife that works for all theories in interpretability logics. In other words, we do not
have a single axiomatization of IL(𝑇). Instead, we define different logics for various classes of
theories. There is a basic logic which we call IL that serves as the base for all these variants. We
define these variants as extensions of IL by adding axiom schemas to it as we will see later in
this overview. The logic IL extends the GL logic with five new axiom schemas. We will precisely
define the logic IL and comment on the significance of the new axiom schemas in Chapter 5.

The logic IL has two relational semantics, which are the main topic of this thesis, known as
ordinary Veltman semantics (introduced by Frank Veltman in [17]) and generalized Veltman
semantics (introduced by Rineke Verbrugge in [36]). Ordinary Veltman semantics are defined
in much the same spirit as Kripke semantics for GL. However, ordinary Veltman frames have
an additional family of relations indexed by each of the worlds2: {𝑆𝑤 ∶ 𝑤 ∈ 𝑊}. Each of the
𝑆𝑤 is a binary relation which relates two worlds. The family of relations 𝑆 is used to model the
behaviour of the binary modal operator ▷.

In generalized Veltman semantics each of the 𝑆𝑤 relations, instead of relating two individual
worlds, relates an individual world to a set of worlds. This type of definition seems to be inspired
by the neighborhood semantics that exist for other modal logics with unary modal operators.
Neighborhood semantics have not been studied yet for interpretability logics. Both kinds of
Veltman semantics are suitable for IL as we have soundness (which we present in this thesis)
and completeness proofs ([17]).

As we have already mentioned, IL is just the logic that we use as a base in interpretability
logics, thus, each time we extend it with an axiom scheme (or principle, as we call them) we will
need to find new semantics for it. Given a collection of principles, we get the semantics for the
extension of IL with these principles by finding their frame condition. More precisely, a frame
condition for a principle X is a first (or higher) order formula 𝒞X such that for every Veltman
frame 𝐹 we have

𝐹 ⊨ 𝒞X ⇔ ⟨𝐹, 𝑉 ⟩ ⊩ X for any valuation 𝑉 and instance of X.

To give an example, let us put our focus on the interpretability logic of PA. It happens ([5, 31])
that the axiomatization of IL(PA) is given by adding the so called principle M to the logic IL.
We denote this new logic as ILM. The principle M is defined as follows:

M ≔ (𝐴 ▷ 𝐵) → ((𝐴 ∧ □𝐶) ▷ (𝐵 ∧ □𝐶)).

Then, consider the following condition:

𝐶M ≔ if 𝑥𝑆𝑤𝑦 and 𝑦𝑅𝑧 then 𝑥𝑅𝑧.

Now, if we consider the class of Veltman frames that satisfy condition 𝐶M, we have soundness
and completeness of ILM and thus the presented condition is a suitable frame condition for
M.There are plenty of principles similar to M in the literature. In this thesis we list a number of
interpretability principles, including M, and we present their frame condition for both ordinary
and generalized Veltman semantics. The language of frame conditions is usually taken to be
the language of first or higher order formulas, where we have the 𝑅 and 𝑆 relations as primitive
symbols.

Some principles, like M, are useful because they allow us to axiomatize the interpretability
logic for certain classes of theories. However, there are other principles which are interesting
because they are arithmetically valid in a large number of theories. These principles play a

2Alternatively, we may refer to 𝑆 as a ternary relation, where the first component corresponds to the index of
the family.

12

crucial role in the search of an axiomatization for the theory IL(All). The theory IL(All) is
defined to be the intersection of the interpretability logics of all reasonable arithmetical theories
([39, 40]). Finding an axiomatization of this logic, as already hinted, remains an open problem,
however a lot of progress has been made in the form of finding lower bounds for this logic ([16,
18, 20]). In this thesis we study the frame conditions for two series of principles: Rn and Rn,
which appear in the current best known lower bound of IL(All).

13

2. Original contributions
This thesis includes the following original contributions:

1. We have found a generalized frame condition for R1 (in collaboration with Mikec). See
Theorem 18.2.

2. We have found a generalized frame condition for Rn. See Theorem 20.2.

3. We performed a detailed analysis of the quasi-transitivity conditions available in the lit-
erature for generalized semantics. See Chapter 7.

4. We analyzed how a monotonicity condition for generalized semantics that is often assumed
or taken as part of the definition for generalized frames interacts with the quasi-transitivity
conditions present in the literature. Furthermore, we justify why in a sense assuming such
condition if it is not required by the definition is harmless. See Chapter 8.

5. We discovered a proof in a published article which needs to be repaired. See Chapter 12.

6. We compare the expressiveness of ordinary and generalized Veltman models. As part of
this, we worked out all the details of a proof in an unpublished manuscript by Verbrugge
([36]). We attach this manuscript in Appendix D.

7. We present the implementation of a verified language to write Hilbert style proofs (for the
logic IL) in Agda with paper-like syntax. See Chapter 31.

8. We give details for an embedding of propositional intuitionistic logic into Martin Löf’s
logical framework. This result is expected. Our contribution has been to provide detailed
definitions and proofs, which we were unable to find somewhere else. The detailed proof
that 𝑛 + 0 = 𝑛 in Martin Löf’s logical framework is also original. See Section 23.4.

9. During the development of this thesis we have coauthored two publications:
• An overview of Generalised Veltman Semantics ([19]). In this publication we give an

up-to-date overview of interpretability logics with a focus on generalized semantics.
• Generalised Veltman Semantics in Agda ([25]). In this publication we focus on the

frame conditions for generalized Semantics for the principle R1 and the series Rn. We
also comment on the Agda formalization. This extended abstract was presented in
August in the peer-reviewed AiML2020 conference in Helsinki (online).

10. We have implemented an Agda library for interpretability logics which includes every
theorem and proof marked with that is presented in this thesis. It is worth pointing out
that we started from scratch since there was no previous published work of interpretability
logics in Agda, or in any other proof assistant. The library comprises ~5000 lines of code
and is freely available online:

gitlab.com/janmasrovira/interpretability-logics

We also provide the Agda code in the annex of this thesis. See Appendix B.
Note: Throughout this thesis we present the proofs (in English) of all the lemmas and
theorems listed. Often we skip details or we only present part of the proofs. It is important

14

https://gitlab.com/janmasrovira/interpretability-logics

that we emphasize that when we mark a proof with the symbol it means that the whole
proof (not only the commented part) has been formalized down to the definitions in Agda.

11. We have reimplemented a small portion of the Agda library in the Coq proof assistant
([33]). This portion includes the definitions of the theorems and proofs marked with

. Namely this subset is composed of the definition of ordinary Veltman semantics, the
axiomatization of the logic IL and its proof of soundness. The library comprises ~500 lines
of code and is available online:

gitlab.com/janmasrovira/coq-interpretability-logics

We also provide the Coq code in the annex of this thesis. See Appendix C.

15

https://gitlab.com/janmasrovira/coq-interpretability-logics

3. Notation
In this chapter we will fix notation that is used throughout the thesis. Of course, it makes most
sense to skip the section at first and come back to it while reading the remainder of the thesis.

3.1. Text
Here we list a number of notational conventions that we use in the text of the thesis:

1. If 𝑅 and 𝑅′ are binary relations, then 𝑤𝑅𝑢𝑅′𝑣 means 𝑤𝑅𝑢 and 𝑢𝑅′𝑣. For instance
𝑤𝑅𝑢𝑆𝑥𝑣 means 𝑤𝑅𝑢 and 𝑢𝑆𝑥𝑣. Another example: 𝑤𝑅𝑢 ⊩ 𝐴 means 𝑤𝑅𝑢 and 𝑢 ⊩ 𝐴.

2. 𝑌 ⊩ 𝐴 iff for all 𝑦 ∈ 𝑌 we have 𝑦 ⊩ 𝐴.

3. 𝑌 ⊮ 𝐴 iff there is some 𝑦 ∈ 𝑌 such that 𝑦 ⊮ 𝐴;

4. ⟦𝐴⟧ ≔ {𝑤 ∶ 𝑤 ⊩ 𝐴}.

5. When we write a dot after the quantification of some variables, the scope of the variables
extends to the rightmost part of what follows, of course, without escaping parentheses.
Hence the formula ∀𝑥∃𝑦.𝑃𝑥𝑦 ∧ ∀𝑧.𝑃𝑦𝑧 is equivalent to ∀𝑥∃𝑦(𝑃𝑥𝑦 ∧ ∀𝑧(𝑃𝑦𝑧)).

6. We use commas to denote conjunction, so ∀𝑥.𝐴(𝑥), 𝐵(𝑥) should be read as for all 𝑥 we
have 𝐴(𝑥) and 𝐵(𝑥).

7. If X is a principle (or axiom schema), we denote by ILX the logic which consists in adding
the axiom schema X to the logic IL. We will write ILXY to denote that we add principles
X and Y to the IL, and so on.

8. In lambda calculus and Martin Löf’s logical framework (Part IV), we write 𝑒[𝑥 ↦ 𝑎] to
say that all free occurrences of 𝑥 in 𝑒 are replaced by 𝑎. We write 𝑒[𝑥1 ↦ 𝑎1, …, 𝑥n ↦ 𝑎n]
instead of (…(𝑒[𝑥1 ↦ 𝑎1])…)[𝑥n ↦ 𝑎n].

3.2. Diagrams
Throughout the thesis we present some diagrams to represent ordinary and generalized Veltman
frames. We believe that diagrams can help the reader have a better understanding of the
underlying formula. However, diagrams are not meant to be a replacement as they cannot
unambiguously convey all the information in the formula. Here we list some conventions that
we use to help the reader understand the presented diagrams.

• Straight arrows: We use straight arrows to represent the 𝑅 relation. For instance we
represent 𝑥𝑅𝑦 thus:

• Curvy arrows: We use curvy arrows to represent the 𝑆 relation. For instance, if we have
𝑥𝑆𝑤𝑦 we will draw a curvy line from 𝑥 to 𝑦 with label 𝑆𝑤 as drawn below. In the case

16

that we are drawing a generalized Veltman frame then 𝑌 is a set of worlds which we draw
as a circle.

• Circles and frames: Circles denote sets of worlds in generalized Veltman frames. As
expected, we will draw inner circles to denote subsets and intersected circles to denote that
the intersection is nonempty. For instance, to denote that we have 𝑉 ′ ⊆ 𝑉 we will draw
the left picture. If we want to express that 𝑉 ∩ 𝑉 ′ ≠ ∅ we will draw the right picture.

We will use framed variables to denote singleton sets. We will represent the singleton set
{𝑦} as 𝑦 in a diagram.

• Quantfier annotations: When a variable that represents a world or a set of worlds in
the formula, we may tag that variable with the corresponding quantifier. We only follow
this convention in cases when we think it improves the readability of the diagram. For
instance, if we want to express the condition ∀𝑦(∀𝑥(𝑥𝑅𝑦) ⇒ ∃𝑧(𝑦𝑅𝑧)) we will draw the
picture below. As a rule of thumb we do not annotate the quantification of variables which
are universally quantified for the whole formula or which are free.

• Red and black ink: We use black ink for conditions which appear in a negative posi-
tion (assumptions) and red ink for conditions which appear in a positive position (conse-
quences). Thus, the intended meaning of color is that “if everything drawn in black holds,
then what is drawn in red must hold”. For instance, in order to represent the transitivity
condition 𝑥𝑅𝑦𝑅𝑧 ⇒ 𝑥𝑅𝑧 we would draw the following:

17

4. The language of modal interpretability
The symbols of interpretability logics are ⊥, →, ▷.

Definition 4.1. Modal formula The set of well-formed modal formulas, which we
denote with Fm, is defined recursively as usual:

1. Variable. If 𝑥 is a variable, then 𝑥 is a formula. We assume that we have an infinite
countable set of variables. In particular we shall define Var ≔ ℕ. However, we use non-
capital letters to refer to variables.

2. Bottom. The constant ⊥ is a formula.

3. Implication. If 𝐴 and 𝐵 are formulas, then (𝐴 → 𝐵) is a formula.

4. Interprets. If 𝐴 and 𝐵 are formulas, then (𝐴 ▷ 𝐵) is a formula.

We will often omit outer parentheses.

Definition 4.2. Convenience operators We define the usual operators and constants
in the following way:

1. ¬𝐴 ≔ (𝐴 → ⊥);

2. ⊤ ≔ ¬⊥;

3. 𝐴 ∨ 𝐵 ≔ ((¬𝐴) → 𝐵);

4. 𝐴 ∧ 𝐵 ≔ ¬(𝐴 → ¬𝐵);

5. 𝐴 ↔ 𝐵 ≔ (𝐴 → 𝐵) ∧ (𝐵 → 𝐴);

6. □𝐴 ≔ ((¬𝐴) ▷ ⊥);

7. ♢𝐴 ≔ ¬□¬𝐴.

The precedence from higher to lower of the operators is in the following order:

∧, ∨, ▷, →

The scope of unary symbols □, ♢, ¬ is as small as possible. Thus □𝐴 ∧ ¬¬𝐵 is the same as
(□𝐴) ∧ (¬¬𝐵). Also, → has right associativity.

As an example consider:
𝐴 ▷ 𝐵 → 𝐴 ∧ □𝐶 ▷ 𝐵 ∧ □𝐶

It should be read as:
(𝐴 ▷ 𝐵) → ((𝐴 ∧ □𝐶) ▷ (𝐵 ∧ □𝐶))

Even though the notation with no parenthesis is acceptable with the rules that we have given,
we will often add parentheses to facilitate reading non-trivial formulas.

18

5. Logic IL
As explained in the overview (Chapter 1), the logic IL is the logic that we use as the base for
other interpretability logics. The logic IL extends GL with five new axiom schemas denoted by
J1–J5. These new axioms reflect some facts about formalized interpretability.

After the definition of IL we proceed by showing a number of theorems related to it. All of
these theorems have been verified by a computer using the proof-assistant Agda. In Part IV
we will explain how Agda works and what it means for a proof to be formally verified in Agda.
In Part V we will explain how we have formalized the presented theorems and their respective
proofs in Agda. The Agda proofs of the theorems presented in this section can be found in
Appendix B.23.

Definition 5.1. In this definition we present the Hilbert Calculus for the logic IL. We
write Π ⊢IL 𝐴 to denote that the formula 𝐴 follows from the set of assumptions Π. If Π is empty
we simply write ⊢IL 𝐴.

Let us now define the relation ⊢IL ⊆ 𝒫(Fm) × Fm inductively:

• Axiom. If 𝐴 is an instantiation of any of the IL axiom schemas, then 𝐴 is a theorem of IL,
which we denote with ⊢IL 𝐴. We list all IL axiom schemas just below.

• Modus ponens: if Π ⊢IL 𝐴 → 𝐵 and Π ⊢IL 𝐴 then Π ⊢IL 𝐵.

• Necessitation: if ⊢IL 𝐴 then Π ⊢IL □𝐴. Notice that the necessitation rule requires 𝐴 to be
provable from an empty set of assumptions. In the consequence of the rule (Π ⊢IL □𝐴) we
allow an arbitrary context Π.

• Identity: If 𝐴 ∈ Π then Π ⊢IL 𝐴.

The axioms of IL. The logic IL encompasses all classical theorems in the new language (given
by C1, C2 and C3), all theorems of GL in the new language (given by L and K) plus some new
axiom schemas:

• C1: 𝐴 → (𝐵 → 𝐴);
• C2: (𝐴 → (𝐵 → 𝐶)) → ((𝐴 → 𝐵) → (𝐴 → 𝐶));
• C3: (¬𝐴 → ¬𝐵) → (𝐵 → 𝐴);
• K: □(𝐴 → 𝐵) → □𝐴 → □𝐵;

This provability principle is known as the distribution axiom and implies that if we can
prove that 𝐴 implies 𝐵, then we can prove 𝐵 from a proof of 𝐴.

• L: □(□𝐴 → 𝐴) → □𝐴.
This provability principle corresponds to Löbs theorem.

• J1: □(𝐴 → 𝐵) → 𝐴 ▷ 𝐵.
This interpretability principle expresses the fact that if a theory 𝑇 can prove that 𝐴 is at
least as strong as 𝐵, then 𝑇 + 𝐴 interprets 𝑇 + 𝐵 using the identity interpretation.

• J2: (𝐴 ▷ 𝐵) ∧ (𝐵 ▷ 𝐶) → 𝐴 ▷ 𝐶.
This interpretability principle gives us transitivity for interpretations.

19

• J3: ((𝐴 ▷ 𝐶) ∧ (𝐵 ▷ 𝐶)) → (𝐴 ∨ 𝐵) ▷ 𝐶.
This interpretability principle allows us to build interpretations by cases.

• J4: 𝐴 ▷ 𝐵 → (♢𝐴 → ♢𝐵).
This interpretability principle reflects the fact that relative interpretability gives us a proof
of relative consistency.

• J5: (♢𝐴) ▷ 𝐴.
The last interpretability principle expresses the property that from a consistency proof
of 𝐴 we can build an interpretation of 𝐴 itself. This reflects the fact that the Henkin
construction can be formalized.

Remark 5.2. While it is acceptable to have an infinite set of assumptions Π, when verifying
properties in Agda we have restricted ourselves to finite sets and thus we assume that Π is finite
in the Agda proof.

Theorem 5.3. Weakening If Π ⊢IL 𝐴 then 𝐵, Π ⊢IL 𝐴.

Proof. The proof is by induction on the proof. In Agda it is done by an induction on the proof.
We only need to take care of shifting one position the references to assumptions.

Theorem 5.4. Deduction Π ⊢IL 𝐴 → 𝐵 iff 𝐴, Π ⊢IL 𝐵.

Proof. The ⇒ direction is trivial. For the other direction we proceed by induction on the proof
𝐴, Π ⊢IL 𝐵. We need to show that if 𝐴, Π ⊢IL 𝐵 then Π ⊢IL 𝐴 → 𝐵. If 𝐵 is an instance of any
of the axioms, we can show that 𝐴 → 𝐵 follows from MP, C1 and the corresponding axiom. If
𝐵 = □𝐵′ follows from the necessitation rule then by definition of the necessitation rule we have
⊢IL 𝐵′ and thus by necessitation, C1 and MP we can prove Π ⊢IL 𝐴 → □𝐵′. If 𝐵 follows from
an assumption we have two cases. If 𝐵 = 𝐴 then we show ⊢IL 𝐴 → 𝐴 as we do in classical logic.
If 𝐵 ∈ Π we proceed as before using MP, C1. Finally, if 𝐵 is the result of a MP application
then we have that 𝐴, Π ⊢IL 𝐶 → 𝐵 and 𝐴, Π ⊢IL 𝐶 by the IH we have Π ⊢IL 𝐴 → (𝐶 → 𝐵) and
Π ⊢IL 𝐴 → 𝐶, thus we can show Π ⊢IL 𝐴 → 𝐵 by the C2 axiom and two applications of MP.

Theorem 5.5. Cut If Π ⊢IL 𝐵 and 𝐵, Π ⊢IL 𝐴 then Π ⊢IL 𝐴.

Proof. It follows by an easy induction on the proof Π ⊢IL 𝐵.

Theorem 5.6. Structurality If Π ⊢IL 𝐴 and 𝜎 is a substitution then 𝜎[Π] ⊢IL 𝜎(𝐴).

Proof. It follows by an easy induction on the proof Π ⊢IL 𝐴.

Theorem 5.7. Conjunction Π ⊢IL 𝐴 ∧ 𝐵 iff Π ⊢IL 𝐴 and Π ⊢IL 𝐵.

Proof. The key part is to show that Π ⊢IL 𝐴 → 𝐵 → (𝐴 ∧ 𝐵), Π ⊢IL 𝐴 ∧ 𝐵 → 𝐴 and Π ⊢IL
𝐴 ∧ 𝐵 → 𝐵 as we do in classical logic.

Theorem 5.8. The following formulas are theorems of IL:

1. ⊢IL 𝐴 → 𝐴;

2. ⊢IL 𝐴 ▷ 𝐴;

3. ⊢IL (𝐴 → 𝐵) → (𝐵 → 𝐶) → 𝐴 → 𝐶;

4. ⊢IL 𝐴 → ¬¬𝐴;

20

5. ⊢IL (¬¬𝐴) → 𝐴;

6. ⊢IL (𝐴 → 𝐵) → ¬𝐵 → ¬𝐴;

7. ⊢IL 𝐴 → ⊤;

8. ⊢IL ⊥ → 𝐴;

9. ⊢IL ¬𝐴 → 𝐴 → 𝐵;

10. ⊢IL 𝐴 ∧ 𝐵 → 𝐴;

11. ⊢IL 𝐴 ∧ 𝐵 → 𝐵;

12. ⊢IL (𝐴 → 𝐵 → 𝐶) → 𝐵 → 𝐴 → 𝐶;

13. ⊢IL 𝐴 → 𝐵 → 𝐴 ∧ 𝐵;

14. ⊢IL 𝐴 → 𝐴 ∨ 𝐵;

15. ⊢IL 𝐵 → 𝐴 ∨ 𝐵;

16. ⊢IL 𝐴 ▷ (𝐴 ∨ ♢𝐴);
17. ⊢IL (𝐴 ∨ ♢𝐴) ▷ 𝐴;

18. ⊢IL 𝐴 → 𝐵 ⇒ ⊢IL □𝐴 → □𝐵;

19. ⊢IL 𝐴 ↔ 𝐵 ⇒ ⊢IL □𝐴 ↔ □𝐵;

20. ⊢IL □(𝐴 ∧ 𝐵) ↔ (□𝐴 ∧ □𝐵);
21. ⊢IL 𝐴 → 𝐵 ⇒ ⊢IL ♢𝐴 → ♢𝐵;

22. ⊢IL 𝐴 ↔ 𝐵 ⇒ ⊢IL ♢𝐴 ↔ ♢𝐵;

23. ⊢IL ¬(𝐴 ∧ 𝐵) ↔ ¬𝐴 ∨ ¬𝐵;

24. ⊢IL (𝐴 ∨ ¬𝐵) → (𝐴 ∧ 𝐵 ∨ ¬𝐵).
Proof. All proofs have been formalized in Agda. Here we only show two examples. Consider
theorems 16 and 17, namely 𝐴 ▷ (𝐴 ∨ ♢𝐴) and (𝐴 ∨ ♢𝐴) ▷ 𝐴. To prove 16 we assume that we
have already showed theorem 14, that is, ⊢IL 𝐴 → 𝐴 ∨ 𝐵.

1. 𝐴 → 𝐴 ∨ ♢𝐴 by 𝐴 → 𝐴 ∨ 𝐵
2. □(𝐴 → 𝐴 ∨ ♢𝐴) by Nec
3. □(𝐴 → 𝐴 ∨ ♢𝐴) → 𝐴 ▷ (𝐴 ∨ ♢𝐴) by J1
4. 𝐴 ▷ (𝐴 ∨ ♢𝐴) by MP on 2, 3

To prove 17 we assume we have already showed theorem 2, that is, ⊢IL 𝐴 ▷ 𝐴.

1. 𝐴 ▷ 𝐴
2. (♢𝐴 ▷ 𝐴) by J5
3. (𝐴 ▷ 𝐴) ∧ (♢𝐴 ▷ 𝐴) Conjunction, Theorem 5.7
4. (𝐴 ▷ 𝐴) ∧ (♢𝐴 ▷ 𝐴) → ((𝐴 ∨ ♢𝐴) ▷ 𝐴) by J3
5. (𝐴 ∨ ♢𝐴) ▷ 𝐴 by MP 3, 4

In Chapter 31 we will present a verified language to write verified Hilbert style proofs using
a computer with paper-like syntax.

21

6. Veltman Semantics
In this thesis we consider two variants of relational semantics for interpretability logics similar
to Kripke semantics for other modal logics.

6.1. Ordinary Veltman semantics
Ordinary Veltman semantics were the first relational semantics for interpretability logics and
were introduced by Frank Veltman ([17]).

All the definitions in this section have been formalized in Agda and can be found in Appen-
dices B.24 and B.31. Later in Chapter 28 we will comment on the Agda implementation of
ordinary Veltman semantics.

Definition 6.1. An ordinary Veltman frame 𝐹 = ⟨𝑊, 𝑅, 𝑆⟩ is a structure constituted by
a non-empty set of worlds 𝑊 , a binary relation 𝑅 ⊆ 𝑊 2 and a ternary relation 𝑆 ⊆ 𝑊 ×𝑊 ×𝑊 .
We write 𝑤𝑅𝑢 instead of ⟨𝑤, 𝑢⟩ ∈ 𝑅 and 𝑢𝑆𝑤𝑣 instead of ⟨𝑤, 𝑢, 𝑣⟩ ∈ 𝑆. The structure must
satisfy the following conditions:

OF-1: 𝑅 is transitive;

OF-2: 𝑅 is conversely well-founded. That is, there is no infinite ascending chain 𝑤1𝑅𝑤2𝑅…;

OF-3: if 𝑢𝑆𝑤𝑣 then 𝑤𝑅𝑢 and 𝑤𝑅𝑣;

OF-4: if 𝑤𝑅𝑢 then 𝑢𝑆𝑤𝑢;

OF-5: if 𝑤𝑅𝑢 and 𝑢𝑅𝑣 then 𝑢𝑆𝑤𝑣;

22

OF-6: for every 𝑤, 𝑆𝑤 is transitive.

The Agda definition can be found in Appendix B.24.

As usual, we can build a model by attaching a valuation to a frame. The valuation will tell
us which propositional variables are true in each world.

Definition 6.2. An ordinary Veltman model 𝑀 = ⟨𝐹, 𝑉 ⟩ is a structure constituted by
an ordinary Veltman frame 𝐹 and a valuation 𝑉 ⊆ 𝑊 × Var. If 𝐹 = ⟨𝑊, 𝑅, 𝑆⟩ we will write
𝑀 = ⟨𝑊, 𝑅, 𝑆, 𝑉 ⟩ instead of 𝑀 = ⟨⟨𝑊, 𝑅, 𝑆⟩, 𝑉 ⟩.

The Agda definition can be found in Appendix B.31.

We will proceed by defining a forcing relation. The forcing relation tells us what formulas are
forced (hold) in each world.

Definition 6.3. Given a model 𝑀 , we define a forcing relation ⊩𝑜𝑟𝑑
𝑀 ⊆ 𝑊 × Fm. We

write 𝑀, 𝑤 ⊩ 𝐴 instead of ⟨𝑤, 𝐴⟩ ∈ ⊩𝑜𝑟𝑑
𝑀 or simply 𝑤 ⊩ 𝐴 when the model is clear from the

context. We write 𝑤 ⊮ 𝐴 when ⟨𝑤, 𝐴⟩ ∉⊩𝑀 .

1. 𝑤 ⊮ ⊥;

2. if 𝑝 ∈ Var, then 𝑤 ⊩ 𝑝 iff ⟨𝑤, 𝑝⟩ ∈ 𝑉 ;

3. if 𝐴, 𝐵 ∈ Fm, then 𝑤 ⊩ 𝐴 → 𝐵 iff if 𝑤 ⊩ 𝐴 then 𝑤 ⊩ 𝐵;

4. if 𝐴, 𝐵 ∈ Fm, then 𝑤 ⊩ 𝐴 ▷ 𝐵 iff if 𝑤𝑅𝑢 and 𝑢 ⊩ 𝐴 then there exists some 𝑣 such that
𝑣 ⊩ 𝐵 and 𝑢𝑆𝑤𝑣. Below we draw the condition for a world 𝑤 to force 𝐴 ▷ 𝐵.

The Agda definition can be found in Appendix B.31.

If 𝑀 is an ordinary Veltman model and 𝐴 a formula, we write 𝑀 ⊩ 𝐴 to denote that for every
world 𝑤 we have 𝑀, 𝑤 ⊩ 𝐴. Similarly, if 𝐹 is an ordinary Veltman frame and 𝐴 a formula, we
write 𝐹 ⊩ 𝐴 to denote that for every valuation 𝑉 we have ⟨𝐹 , 𝑉 ⟩ ⊩ 𝐴.

Lemma 6.4. Let 𝑀 be an ordinary Veltman model and let 𝑤 be a world in 𝑀 . It can
be shown that:

1. If 𝐴, 𝐵 ∈ Fm, then 𝑤 ⊩ 𝐴 ∧ 𝐵 iff 𝑤 ⊩ 𝐴 and 𝑤 ⊩ 𝐵;

2. If 𝐴, 𝐵 ∈ Fm, then 𝑤 ⊩ 𝐴 ∨ 𝐵 iff 𝑤 ⊩ 𝐴 or 𝑤 ⊩ 𝐵;

3. if 𝐴 ∈ Fm, then 𝑤 ⊩ ¬𝐴 iff 𝑤 ⊮ 𝐴;

4. if 𝐴 ∈ Fm, then 𝑤 ⊩ □𝐴 iff for every 𝑢 such that 𝑤𝑅𝑢 we have 𝑢 ⊩ 𝐴;

5. if 𝐴 ∈ Fm, then 𝑤 ⊩ ♢𝐴 iff there exists 𝑢 such that 𝑤𝑅𝑢 and 𝑢 ⊩ 𝐴.

23

Proof. Here we show the case for 𝑤 ⊩ □𝐴. Assume 𝑤 ⊩ □𝐴 and let 𝑢 be a world such that
𝑤𝑅𝑢. If 𝑢 ⊩ 𝐴 we are done, otherwise we have 𝑢 ⊩ ¬𝐴. As described before 𝑤 ⊩ □𝐴 is notation
for 𝑤 ⊩ (¬𝐴) ▷ ⊥, thus there exists 𝑧 such that 𝑢𝑆𝑤𝑧 ⊩ ⊥, but this is a contradiction.

For the other direction assume that we have a world 𝑤 and for every 𝑢 such that 𝑤𝑅𝑢 we
have 𝑢 ⊩ 𝐴. We see that 𝑤 ⊩ (¬𝐴) ▷ ⊥ clearly holds as there is no 𝑢 such that 𝑤𝑅𝑢 ⊩ ¬𝐴.

The Agda proof can be found in Appendix B.30.

Theorem 6.5. Decidability This theorem must be understood in the context of a proof
assistant. In our case, Agda. If 𝑊 is finite and 𝑅, 𝑆, 𝑉 are decidable Agda relations, then the
forcing relation associated with the model 𝑀 ≔ ⟨𝑊, 𝑅, 𝑆, 𝑉 ⟩ is decidable.

Proof. We have implemented a verified algorithm that given the mentioned conditions, a world
𝑤 and a formula 𝐴, constructs either a proof of 𝑀, 𝑤 ⊩ 𝐴 or a proof of 𝑀, 𝑤 ⊮ 𝐴. The
implementation of this algorithm can be found in Appendix B.25. We give details of our Agda
formalization in Part V.

Theorem 6.6. Local soundness for ordinary semantics If Π ⊢IL 𝐴 and 𝑀 is an
ordinary model with a world 𝑤 such that 𝑤 ⊩ Π, then 𝑤 ⊩ 𝐴.

Proof. The proof is by induction on the proof Π ⊢IL 𝐴. The cases for necessitation and modus
ponens follow immediately from the IH. If 𝐴 is an instance of C1, C2 or C3 then it is routine to
check that all of these axioms hold in 𝑤. For axioms L and K we proceed as we do for GL and
Kripke semantics. In Section 29.1 we show how we proved soundness for L in Agda. Finally we
need to check soundness for axioms J1–J5.

• J1: □(𝐴 → 𝐵) → 𝐴 ▷ 𝐵. Assume 𝑤 ⊩ □(𝐴 → 𝐵) and 𝑤𝑅𝑢 ⊩ 𝐴, then it follows that
𝑢 ⊩ 𝐵 and by condition 4 of ordinary frames we get 𝑢𝑆𝑤𝑢 ⊩ 𝐵.

• J2: 𝐴▷𝐵 ∧ 𝐵 ▷ 𝐶 → 𝐴 ▷𝐶. Assume 𝑤 ⊩ 𝐴▷ 𝐵 and 𝑤 ⊩ 𝐵 ▷𝐶 and 𝑤𝑅𝑢 ⊩ 𝐴. It follows
that there exists 𝑣 such that 𝑢𝑆𝑤𝑣 ⊩ 𝐵, then we have 𝑤𝑅𝑣 from definition of ordinary
frame and thus there exists 𝑧 such that 𝑣𝑆𝑤𝑧 ⊩ 𝐶. Finally by transitivity of 𝑆𝑤 we get
𝑢𝑆𝑤𝑧 ⊩ 𝐶.

• J3: (𝐴▷𝐶 ∧𝐵▷𝐶) → (𝐴∨𝐵)▷𝐶. Assume 𝑤 ⊩ 𝐴▷𝐶 and 𝑤 ⊩ 𝐵▷𝐶 and 𝑤𝑅𝑢 ⊩ 𝐴∨𝐵.
If 𝑢 ⊩ 𝐴 then since 𝑤 ⊩ 𝐴 ▷ 𝐶 we have that there exists 𝑣 such that 𝑢𝑆𝑤𝑣 ⊩ 𝐶. On the
other hand if 𝑢 ⊩ 𝐵 we proceed analogously.

• J4: 𝐴 ▷ 𝐵 → ♢𝐴 → ♢𝐵. Assume 𝑤 ⊩ 𝐴 ▷ 𝐵 and 𝑤 ⊩ ♢𝐴. Then there exists 𝑢 such that
𝑤𝑅𝑢 ⊩ 𝐴. Since 𝑤 ⊩ 𝐴 ▷ 𝐵 it follows that there exists 𝑣 such that 𝑢𝑆𝑤𝑣 ⊩ 𝐵. Finally by
OF-3 of ordinary frames we have 𝑤𝑅𝑣 and thus 𝑤 ⊩ ♢𝐵.

• J5: ♢𝐴 ▷ 𝐴. Assume that there exists 𝑢 such that 𝑤𝑅𝑢 ⊩ ♢𝐴. Then there exists 𝑣 such
that 𝑢𝑅𝑣 ⊩ 𝐴. By OF-5 of ordinary frames we have 𝑢𝑆𝑤𝑣 ⊩ 𝐴.

The Agda proof can be found in Appendix B.23.

6.2. Generalized Veltman semantics
Generalized Veltman semantics were introduced by Verbrugge in an unpublished manuscript
([36]). We were given permission by the author herself to include the manuscript in Appendix D,
where we also include some comments about the authorship of some handwritten notes in the
document.

Generalized semantics generalize ordinary Veltman semantics in the sense that each 𝑆𝑤 relates
worlds to sets of worlds. Thanks to this change, generalized Veltman semantics turn out to be

24

more convenient and necessary in some cases. For instance, the logic ILP0 (we will define
principle P0 in Chapter 16) is complete with respect to its characteristic class of generalized
Veltman frames but incomplete with respect to ordinary Veltman semantics.

In Chapter 29 we will comment on the Agda implementation of generalized Veltman semantics.

Definition 6.7. A generalized Veltman frame 𝐹 = ⟨𝑊, 𝑅, 𝑆⟩ is a structure constituted by
a non-empty set of worlds 𝑊 , a binary relation 𝑅 ⊆ 𝑊 2 and a ternary relation 𝑆 ⊆ 𝑊 × 𝑊 ×
(𝒫(𝑊) ∖ {∅}). We write 𝑤𝑅𝑢 instead of ⟨𝑤, 𝑢⟩ ∈ 𝑅 and 𝑢𝑆𝑤𝑌 instead of ⟨𝑤, 𝑢, 𝑌 ⟩ ∈ 𝑆. The
structure must satisfy the following conditions:

GF-1: 𝑅 is transitive;

GF-2: 𝑅 is conversely well-founded. That is, there is no infinite ascending chain 𝑤1𝑅𝑤2𝑅…;

GF-3: if 𝑢𝑆𝑤𝑌 , then 𝑤𝑅𝑢 and for all 𝑦 ∈ 𝑌 we have 𝑤𝑅𝑦;

GF-4: quasi-reflexivity: if 𝑤𝑅𝑢 then 𝑢𝑆𝑤{𝑢};

GF-5: if 𝑤𝑅𝑢 and 𝑢𝑅𝑣 then 𝑢𝑆𝑤{𝑣};

• quasi-transitivity: if 𝑢𝑆𝑥𝑌 and 𝑦𝑆𝑥𝑍𝑦 for all 𝑦 ∈ 𝑌 , then 𝑢𝑆𝑥 (⋃𝑦∈𝑌 𝑍𝑦).

25

Notice that we did not label the last condition GF-6. The reason is that the above condition
is a particular (the standard) condition of quasi-transitivity. However, throughout this
thesis we explore a total of eight notions, see Chapter 7. Because of that, we will refer to
those as quasi-transitivity Condition 𝑗 for 1 ≤ 𝑗 ≤ 8. If it is clear by the context we may
simply say Condition 𝑖.

The Agda definition can be found in Appendix B.6.

As we did for ordinary semantics, we may endow a generalized frame with a valuation to
obtain a generalized model.

Definition 6.8. A generalized Veltman model 𝑀 = ⟨𝐹, 𝑉 ⟩ is a structure constituted by a
generalized Veltman frame 𝐹 and a valuation 𝑉 ⊆ 𝑊 × Var.

The Agda definition can be found in Appendix B.20.

We define the forcing relation in a similarly to ordinary semantics, the only difference being
in the case for the operator ▷.

Definition 6.9. Given a model 𝑀 , we define a forcing relation ⊩𝑔𝑒𝑛
𝑀 ⊆ 𝑊 × Fm. We use

the same notational conventions as in the ordinary semantics.

1. 𝑤 ⊮ ⊥;

2. if 𝑝 ∈ Var, then 𝑤 ⊩ 𝑝 iff ⟨𝑤, 𝑝⟩ ∈ 𝑉 ;

3. if 𝐴, 𝐵 ∈ Fm, then 𝑤 ⊩ 𝐴 → 𝐵 iff if 𝑤 ⊩ 𝐴 then 𝑤 ⊩ 𝐵;

4. if 𝐴, 𝐵 ∈ Fm, then 𝑤 ⊩ 𝐴 ▷ 𝐵 iff if 𝑤𝑅𝑢 and 𝑢 ⊩ 𝐴 then there exists some 𝑌 such that
𝑌 ⊩ 𝐵 and 𝑢𝑆𝑤𝑌 . When we write 𝑌 ⊩ 𝐵 we mean that for all 𝑦 ∈ 𝑌 we have 𝑦 ⊩ 𝐵.
Below we draw the condition for a world 𝑤 to force 𝐴 ▷ 𝐵.

The Agda definition can be found in Appendix B.20.

We have the same notation conventions that we have for ordinary semantics: If 𝑀 is a
generalized Veltman model and 𝐴 a formula, we write 𝑀 ⊩ 𝐴 to denote that for every world 𝑤
we have 𝑀, 𝑤 ⊩ 𝐴. Similarly, if 𝐹 is a generalized Veltman frame and 𝐴 a formula, we write
𝐹 ⊩ 𝐴 to denote that for every valuation 𝑉 we have ⟨𝐹 , 𝑉 ⟩ ⊩ 𝐴.

Lemma 6.10. We can show the same results presented in Lemma 6.4 for generalized
semantics:

1. If 𝐴, 𝐵 ∈ Fm, then 𝑤 ⊩ 𝐴 ∧ 𝐵 iff 𝑤 ⊩ 𝐴 and 𝑤 ⊩ 𝐵;

2. If 𝐴, 𝐵 ∈ Fm, then 𝑤 ⊩ 𝐴 ∨ 𝐵 iff 𝑤 ⊩ 𝐴 or 𝑤 ⊩ 𝐵;

3. If 𝐴 ∈ Fm, then 𝑤 ⊩ ¬𝐴 iff 𝑤 ⊮ 𝐴;

4. If 𝐴 ∈ Fm, then 𝑤 ⊩ □𝐴 iff for every 𝑢 such that 𝑤𝑅𝑢 we have 𝑢 ⊩ 𝐴;

26

5. If 𝐴 ∈ Fm, then 𝑤 ⊩ ♢𝐴 iff there exists 𝑢 such that 𝑤𝑅𝑢 and 𝑢 ⊩ 𝐴.

Proof. Here we show the case for 𝑤 ⊩ □𝐴. The proof goes in a very similar way to ordinary
semantics. Assume 𝑤 ⊩ □𝐴 and let 𝑢 be a world such that 𝑤𝑅𝑢. If 𝑢 ⊩ 𝐴 we are done,
otherwise we have 𝑢 ⊩ ¬𝐴. Since 𝑤 ⊩ □𝐴 is notation for 𝑤 ⊩ (¬𝐴) ▷ ⊥, there exists 𝑍 such
that 𝑢𝑆𝑤𝑍 ⊩ ⊥. Since 𝑍 is nonempty we have a contradiction.

For the other direction assume that we have a world 𝑤 and for every 𝑢 such that 𝑤𝑅𝑢 we
have 𝑢 ⊩ 𝐴. We see that 𝑤 ⊩ (¬𝐴) ▷ ⊥ clearly holds as there is no 𝑢 such that 𝑤𝑅𝑢 ⊩ ¬𝐴.

The Agda formalization can be found in Appendix B.19.

Theorem 6.11. Local soundness for generalized semantics If Π ⊢IL 𝐴 and 𝑀 is a
generalized Veltman model with a world 𝑤 such that 𝑤 ⊩ Π, then 𝑤 ⊩ 𝐴.

Proof. We only show the case where 𝐴 is an instance of the J2 (𝐴 ▷ 𝐵 ∧ 𝐵 ▷ 𝐶 → 𝐴 ▷ 𝐶)
axiom. The rest of the cases are proved in an analogous way to ordinary Semantics. Also,
here we only show it the quasi-transitivity property given in Definition 6.7 and also for the
quasi-transitivity Condition 8 in Table 7.1. However, we have verified this in Agda for all the
alternative quasi-transitivity conditions presented in Table 7.1.

Assume 𝑤 ⊩ 𝐴 ▷ 𝐵 and 𝑤 ⊩ 𝐵 ▷ 𝐶 and that there exists 𝑢 such that 𝑤𝑅𝑢 ⊩ 𝐴. It
follows that there exists 𝑉 such that 𝑢𝑆𝑤𝑉 ⊩ 𝐵. By GF-3 of a generalized frame we have that
∀𝑣 ∈ 𝑉 .𝑤𝑅𝑣 ⊩ 𝐵. Then for every 𝑣 ∈ 𝑉 we have that there exists 𝑍𝑣 such that 𝑣𝑆𝑤𝑍𝑣 ⊩ 𝐶. It
follows from the quasi-transitivity condition that 𝑢𝑆𝑤(⋃𝑣∈𝑉 𝑍𝑣) and clearly ⋃𝑣∈𝑉 𝑍𝑣 ⊩ 𝐶.

Now for quasi-transitivity Condition 8. Assume 𝑤 ⊩ 𝐴 ▷ 𝐵 and 𝑤 ⊩ 𝐵 ▷ 𝐶 and that there
exists 𝑢 such that 𝑤𝑅𝑢 ⊩ 𝐴. It follows that there exists 𝑉 such that 𝑢𝑆𝑤𝑉 ⊩ 𝐵. If 𝑉 ⊩ 𝐶 we
are done, otherwise there exists 𝑣 ∈ 𝑉 such that 𝑣 ⊮ 𝐶. By GF-3 of a generalized frame we have
that 𝑤𝑅𝑣. Since 𝑤𝑅𝑣 ⊩ 𝐵 and 𝑤 ⊩ 𝐵 ▷ 𝐶 it follows that there exists 𝑍 such that 𝑣𝑆𝑤𝑍 ⊩ 𝐶.
Finally since 𝑣 ⊮ 𝐶 we know that 𝑣 ∉ 𝑍 so by quasi-transitivity Condition 8 we can conclude
𝑢𝑆𝑤𝑍 ⊩ 𝐶.

The Agda proof can be found in Appendix B.23.

27

7. Quasi-transitivity
In the literature one can find several semantic requirements for the quasi-transitivity condition
which we present in the table below. We observe that in Definition 6.7 we used Condition 2 from
the table below. Theorem 7.1 presents some direct implications between conditions presented
in Table 7.1. Theorems 6.11 and 7.2 are sufficient to argue that all of them are appropriate for
proving completeness of IL. It is worth mentioning however, that not all of them are sufficiently
expressive to prove completeness for extensions of IL.

Nr. Semantic requirement for quasi-transitivity First mentioned in
1 𝑢𝑆𝑥𝑌 ⇒ ∀ {𝑍𝑦}𝑦∈𝑌 ((∀ 𝑦 ∈ 𝑌 𝑦𝑆𝑥𝑍𝑦) ⇒ ∃𝑉 ⊆ ⋃𝑦∈𝑌 𝑍𝑦 ∧ 𝑢𝑆𝑥𝑉) Joosten et al. ’20 [19]

2 𝑢𝑆𝑥𝑌 ⇒ ∀ {𝑍𝑦}𝑦∈𝑌 ((∀ 𝑦 ∈ 𝑌 𝑦𝑆𝑥𝑍𝑦) ⇒ 𝑢𝑆𝑥 ⋃𝑦∈𝑌 𝑍𝑦) Verbrugge ’92 ’20 [36]
3 𝑢𝑆𝑥𝑌 ⇒ ∃ 𝑦 ∈ 𝑌 ∀𝑌 ′(𝑦𝑆𝑥𝑌 ′ ⇒ ∃ 𝑌 ″⊆𝑌 ′ ∧ 𝑢𝑆𝑥𝑌 ″) Joosten et al. [19]
4 𝑢𝑆𝑥𝑌 ⇒ ∃ 𝑦 ∈ 𝑌 ∀𝑌 ′(𝑦𝑆𝑥𝑌 ′ ⇒ 𝑢𝑆𝑥𝑌 ′) Joosten ’98 [18]
5 𝑢𝑆𝑥𝑌 ⇒ ∀ 𝑦 ∈ 𝑌 ∀𝑌 ′(𝑦𝑆𝑥𝑌 ′ ⇒ ∃ 𝑌 ″⊆𝑌 ′ ∧ 𝑢𝑆𝑥𝑌 ″) Joosten et al. ’20 [19]
6 𝑢𝑆𝑥𝑌 ⇒ ∀ 𝑦 ∈ 𝑌 ∀𝑌 ′(𝑦𝑆𝑥𝑌 ′ ⇒ 𝑢𝑆𝑥𝑌 ′) Verbrugge ’92 [36]
7 𝑢𝑆𝑥𝑌 ⇒ ∀ 𝑦 ∈ 𝑌 ∀𝑌 ′(𝑦𝑆𝑥𝑌 ′ ∧ 𝑦 ∉ 𝑌 ′ ⇒ ∃ 𝑌 ″⊆𝑌 ′ 𝑢𝑆𝑥𝑌 ″) Joosten et al. ’20 [19]
8 𝑢𝑆𝑥𝑌 ⇒ ∀ 𝑦 ∈ 𝑌 ∀𝑌 ′(𝑦𝑆𝑥𝑌 ′ ∧ 𝑦 ∉ 𝑌 ′ ⇒ 𝑢𝑆𝑥𝑌 ′) Goris, Joosten ’09 [14]

Table 7.1.: Semantic requirements for quasi-transitivity mentioned in the literature.

Figure 7.1.: Diagrams for Conditions 2, 4 and 6.

28

Theorem 7.1. Let 𝐹 be a generalized Veltman frame. Let

Mon ≔ ∀𝑤, 𝑢, 𝑉 , 𝑍(𝑢𝑆𝑤𝑉 ⊆ 𝑍 ⊆ {𝑢 ∶ 𝑤𝑅𝑢} ⇒ 𝑢𝑆𝑤𝑍)

represent the monotonicity condition. The following implications hold.
The first item should be read as 𝐹 ⊨ Mon ∧ (1) → (2).

1. Mon ∧ (1) ⇒ (2)

2. (2) ⇒ (1)

3. Mon ∧ (3) ⇒ (4)

4. (4) ⇒ (3)

5. (5) ⇒ (1)

6. Mon ∧ (5) ⇒ (2)

7. (5) ⇒ (3)

8. Mon ∧ (5) ⇒ (4)

9. Mon ∧ (5) ⇒ (6)

10. (5) ⇒ (7)

11. Mon ∧ (5) ⇒ (8)

12. (6) ⇒ (1)

13. Mon ∧ (6) ⇒ (2)

14. (6) ⇒ (3)

15. (6) ⇒ (4)

16. (6) ⇒ (5)

17. (6) ⇒ (7)

18. (6) ⇒ (8)

19. Mon ∧ (7) ⇒ (8)

20. (8) ⇒ (7)

Figure 7.2.: Graphical representation of Theorem 7.1. Blue lines require monotonicity.

Proof. Here we only show item 13: Mon ∧ (6) ⇒ (2). Assume that 𝐹 is a generalized Veltman
frame that satisfies the monotonicity condition and the quasi-transitivity Condition 6. Now
assume that 𝑢𝑆𝑥𝑌 and consider an arbitrary family of sets of worlds {𝑌𝑦 ∶ 𝑦 ∈ 𝑌 }. Assume also
that for every 𝑦 ∈ 𝑌 we have 𝑦𝑆𝑥𝑌𝑦. Since 𝑌 is nonempty we may pick 𝑦0 ∈ 𝑌 . Then we have
that 𝑦𝑆𝑥𝑌𝑦0

. Then by quasi-transitivity Condition 6 we have that 𝑢𝑆𝑥𝑌𝑦0
and since for any

𝑦 ∈ 𝑌 we have 𝑦𝑆𝑥𝑌𝑦 it follows by GF-3 of a generalized frame that 𝑌𝑦 ⊆ {𝑣 ∶ 𝑥𝑅𝑣}. Finally we
see that 𝑌𝑦0

⊆ ⋃𝑦∈𝑌 𝑌𝑦 ⊆ {𝑣 ∶ 𝑥𝑅𝑣} and by monotonicity it follows that 𝑢𝑆𝑥(⋃𝑦∈𝑌 𝑌𝑦).
The Agda proof can be found in Appendix B.5.

Theorem 7.2. Given an ordinary Veltman model 𝑀 = ⟨𝑊, 𝑅, 𝑆, 𝑉 ⟩ we can find some gener-
alized Veltman model 𝑀 ′ = ⟨𝑊, 𝑅, 𝑆′, 𝑉 ⟩, where we can replace our notion of quasi-transitivity
by any of the Conditions 1–8. Furthermore, for every world 𝑤 and formula 𝐴:

𝑀, 𝑤 ⊩ 𝐴 ⇔ 𝑀 ′, 𝑤 ⊩ 𝐴.

29

Proof. We prove it for the quasi-transitivity Condition 2. The rest can be proven in the same
way. Let 𝑀 = ⟨𝑊, 𝑅, 𝑆, 𝑉 ⟩ be an ordinary model. Let 𝑀 ′ ≔ ⟨𝑊, 𝑅, 𝑆′, 𝑉 ⟩ with 𝑆′ defined
thus:

𝑆′ ≔ {⟨𝑤, 𝑥, {𝑦}⟩ ∶ ⟨𝑤, 𝑥, 𝑦⟩ ∈ 𝑆}.
It is easy to observe that 𝑀 ′ satisfies GF-1, …, GF-5. It is also easy to see that it satisfies
quasi-transitivity Condition 2. We show that they force the same formulas by induction on the
complexity of the formula. The only interesting case is 𝐴 ▷ 𝐵.

• Assume 𝑀, 𝑤 ⊩ 𝐴 ▷ 𝐵 and that for some 𝑥 we have 𝑤𝑅𝑥 ⊩ 𝐴. It follows that there exists
some 𝑦 such that 𝑥𝑆𝑤𝑦 ⊩ 𝐵. By definition of 𝑀 ′ we have 𝑥𝑆′

𝑤{𝑦} and also {𝑦} ⊩ 𝐵,
therefore 𝑀 ′, 𝑤 ⊩ 𝐴 ▷ 𝐵.

• Assume 𝑀, 𝑤 ⊮ 𝐴 ▷ 𝐵, then there exists some 𝑥 such that 𝑤𝑅𝑥 ⊩ 𝐴 and ∀𝑦(𝑥𝑆𝑤𝑦 ⇒ 𝑦 ⊮
𝐵). It is obvious that for 𝑀 ′ we have ∀𝑦(𝑥𝑆′

𝑤{𝑦} ⇒ 𝑦 ⊮ 𝐵) and also ∀𝑌 (𝑥𝑆′
𝑤𝑌 ⇒ 𝑌 ⊮ 𝐵),

which is the required property.

30

8. Monotonicity
Recall the monotonicity condition that we presented in the previous chapter:

if 𝑢𝑆𝑤𝑉 ⊆ 𝑍 ⊆ {𝑣 ∶ 𝑤𝑅𝑣} then 𝑢𝑆𝑤𝑍.

It happens that this condition can be assumed (and in fact, is a standard assumption in the
more recent literature) to be satisfied by generalized Veltman frames without harm. This is
desirable as a good number of proofs and definitions (especially definitions related to filtrations)
can be simplified when assuming the monotonicity condition. By “can be assumed without
harm”, we mean that for any generalized Veltman frame, we can find another generalized Velt-
man frame that satisfies the monotonicity condition. Moreover, both frames will be modally
equivalent when expanded to a generalized Veltman model with a valuation. In the following
theorem we prove this fact.

Theorem 8.1. Let 𝐹 = ⟨𝑊, 𝑅, 𝑆⟩ be a generalized Veltman frame with quasi-transitivity
Condition 𝑖 for 𝑖 ∈ {1, …, 8}. Let 𝐹 ′ = ⟨𝑊, 𝑅, 𝑆′⟩ where 𝑆′ is the monotone closure of 𝑆:

𝑆′ ≔ {⟨𝑤, 𝑥, 𝑌 ′⟩ ∶ ⟨𝑤, 𝑥, 𝑌 ⟩ ∈ 𝑆, 𝑌 ⊆ 𝑌 ′ ⊆ {𝑢 ∶ 𝑤𝑅𝑢}}.
Then 𝐹 ′ is a generalized Veltman frame satisfying quasi-transitivity Condition 2. Furthermore,

let 𝑉 be an arbitrary valuation and 𝐴 an arbitrary formula. Let 𝑀 ≔ ⟨𝐹, 𝑉 ⟩ and 𝑀 ′ ≔ ⟨𝐹 ′, 𝑉 ⟩.
We have that for every world 𝑤:

𝑀, 𝑤 ⊩ 𝐴 ⇔ 𝑀 ′, 𝑤 ⊩ 𝐴.

Proof. We check conditions listed in Definition 6.7.

• GF-1 and GF-2 are clear since 𝑅 is unchanged;

• GF-3 follows from the fact that in the definition of 𝑆′ we require 𝑌 ′ ⊆ {𝑢 ∶ 𝑤𝑅𝑢};

• for GF-4 and GF-5 observe that 𝑆 ⊆ 𝑆′. Then, since these conditions hold for 𝐹 they also
hold for 𝐹 ′;

• for quasi-transitivity Condition 2 assume that 𝑢𝑆′
𝑥𝑌 ′ and that for every 𝑦′ ∈ 𝑌 ′ we have

𝑦′𝑆′
𝑥Υ𝑦′ . We need to show that 𝑢𝑆′

𝑥 ⋃𝑦′∈𝑌 ′ Υ𝑦′ . By definition of 𝑆′ it follows that there
exists 𝑌 ⊆ 𝑌 ′ such that 𝑢𝑆𝑥𝑌 , furthermore, for every 𝑦′ ∈ 𝑌 ′ we have that there exists
𝑓(Υ𝑦′) ⊆ Υ𝑦′ such that 𝑦′𝑆𝑥𝑓(Υ𝑦′). From 𝑌 ⊆ 𝑌 ′ it follows that for all 𝑦 ∈ 𝑌 there exists
𝑓(Υ𝑦) ⊆ Υ𝑦 such that 𝑦𝑆𝑥𝑓(Υ𝑦). Then by (2) for 𝐹 it follows that 𝑢𝑆𝑥 ⋃𝑦∈𝑌 𝑓(Υ𝑦). Then
see that ⋃𝑦∈𝑌 𝑓(Υ𝑦) ⊆ ⋃𝑦′∈𝑌 ′ Υ𝑦′ . It remains to show ⋃𝑦′∈𝑌 ′ Υ𝑦′ ⊆ {𝑢 ∶ 𝑥𝑅𝑢}. Consider
some 𝑢 such that there is some 𝑦′ ∈ 𝑌 ′ with 𝑢 ∈ Υ𝑦′ . By assumption we have 𝑦′𝑆′

𝑥Υ𝑦′

and thus 𝑥𝑅𝑢.

To show 𝑀, 𝑤 ⊩ 𝐴 ⇔ 𝑀 ′, 𝑤 ⊩ 𝐴 we proceed by induction on 𝐴. The only interesting case is
𝐴 ▷ 𝐵.

• Assume that 𝑀, 𝑤 ⊩ 𝐴 ▷ 𝐵 and that there is some world 𝑥 such that 𝑤𝑅𝑥 and 𝑀 ′, 𝑥 ⊩ 𝐴.
By IH we have 𝑀, 𝑥 ⊩ 𝐴, so there exists some 𝑌 such that 𝑥𝑆𝑤𝑌 and 𝑀, 𝑌 ⊩ 𝐵. By IH
we have 𝑀 ′, 𝑌 ⊩ 𝐵 and by definition of 𝑆′ it follows that 𝑥𝑆′

𝑤𝑌 , therefore 𝑀 ′, 𝑤 ⊩ 𝐴▷𝐵.

31

• Assume that 𝑀, 𝑤 ⊮ 𝐴 ▷ 𝐵. It follows that there is some 𝑥 such that 𝑤𝑅𝑥, 𝑀, 𝑥 ⊩ 𝐴 and

∀𝑌 (𝑥𝑆wY ⇒ 𝑀, 𝑌 ⊮ 𝐵). (8.1)

We want to prove that ∀𝑌 ′(𝑥𝑆′
𝑤𝑌 ′ ⇒ 𝑀 ′, 𝑌 ′ ⊮ 𝐵). Assume that for some 𝑌 ′ we have

𝑥𝑆′
𝑤𝑌 ′. By definition of 𝑆′ it follows there exists some 𝑌 such that 𝑌 ⊆ 𝑌 ′ and 𝑥𝑆𝑤𝑌 .

Hence by Eq. (8.1) we have that 𝑀, 𝑌 ⊮ 𝐵 and thus there exists 𝑦 ∈ 𝑌 such that 𝑀, 𝑦 ⊮ 𝐵.
By IH we get that 𝑀 ′, 𝑦 ⊮ 𝐵 and since 𝑦 ∈ 𝑌 ⊆ 𝑌 ′ we have 𝑌 ′ ⊮ 𝐵, so 𝑀 ′, 𝑤 ⊮ 𝐴 ▷ 𝐵.

The Agda proof can be found in Appendix B.5.

Remark 8.2. Taking the monotone closure of each 𝑆𝑤 is essentially different from assuming
that each 𝑆𝑤 is monotone by definition of the frame, as then the forcing relation may change. In
the following example we present a generalized Veltman model with Condition 8 that showcases
such behaviour.

Figure 8.1.: Example frame: 𝑤𝑅𝑣0, 𝑤𝑅𝑣1, 𝑤𝑅𝑣2, 𝑤𝑅𝑣3, 𝑣0𝑆𝑤{𝑣1}, 𝑣2𝑆𝑤{𝑣3}.

Let 𝑀 be a model based on the frame displayed1 in Fig. 8.1 such that ⟦𝑝⟧ = {𝑣0}, ⟦𝑞⟧ = {𝑣3}.
We see that 𝑤 ⊩ ¬(𝑝 ▷ 𝑞) as 𝑝 is only true in 𝑣0 and we only have 𝑣0𝑆𝑤{𝑣1} and 𝑣0𝑆𝑤{𝑣0}
(by quasi-reflexivity) with 𝑣0 ⊮ 𝑞 and 𝑣1 ⊮ 𝑞. If we take the monotonic closure of 𝑆 we
have 𝑣0𝑆𝑤{𝑣1, 𝑣2} and by quasi-transitivity Condition 8 we get 𝑣0𝑆𝑤{𝑣3} and consequently
𝑤 ⊩ ¬(𝑝 ▷ 𝑞) is no longer true.

1In the figure we do not show the 𝑆𝑤 relations required by quasi-reflexivity for clarity.

32

Part II.

Generalized vs ordinary models

33

In this part we explore the expressiveness of ordinary and generalized Veltman semantics.
In particular, we discuss how we can transform an ordinary model into a generalized model
and vice versa. Needless to say, we have the requirement that the transformation preserves the
modal theoremhood of the original model. The notion of modal theoremhood is made precise
by Definitions 8.3 and 8.4.

Definition 8.3. Modally equivalent worlds. Given models 𝑀 and 𝑀 ′, we say that two
worlds 𝑤 ∈ 𝑀 and 𝑤′ ∈ 𝑀 ′ are modally equivalent iff for every formula 𝐴 we have:

𝑀, 𝑤 ⊩ 𝐴 ⇔ 𝑀, 𝑤′ ⊩ 𝐴.

Definition 8.4. Modally equivalent models. Given models 𝑀 and 𝑀 ′, we say that 𝑀
and 𝑀 ′ are modally equivalent iff for every world 𝑤 ∈ 𝑀 there is a world 𝑤′ ∈ 𝑀 ′ such that 𝑤
and 𝑤′ are modally equivalent. And vice versa, for every world in 𝑤′ ∈ 𝑀 ′ there exists a world
𝑤 ∈ 𝑀 such that 𝑤 and 𝑤′ are modally equivalent

In Chapter 9 we see a straightforward transformation from an ordinary Veltman model into a
generalized Veltman model. In Chapter 10 we see an involved transformation from a generalized
model into an ordinary model. This transformation is due to Verbrugge and was described in
[36]. The proof was originally described to work with quasi-transitivity Condition 6. We have
slightly improved the result by showing that the same transformation also works for Condition
3, 4 and 5. In Chapter 11 we show a transformation that achieves the same as Verbrugge’s
transformation but it is much simpler. The simpler transformation was suggested by Mikec
during online correspondence.

34

9. From ordinary to generalized
In this chapter we present a theorem that shows how an ordinary model 𝑀 naturally gives rise
to a generalized model 𝑀 for any of the presented quasi-transitivity conditions. The resulting
generalized model 𝑀 ′ has the same set of worlds as the original and is modally equivalent to
𝑀 .

Theorem 9.1. Let 𝑀 = ⟨𝑊, 𝑅, 𝑆, 𝑉 ⟩ be an ordinary Veltman model. We define 𝑀 ′ ≔ ⟨𝑊, 𝑅, 𝑆′, 𝑉 ⟩
where 𝑆′ ≔ {⟨𝑤, 𝑢, {𝑣} ∶ ⟨𝑤, 𝑢, 𝑣⟩ ∈ 𝑆}. Now we distinguish two cases.

• If we want 𝑀 ′ to satisfy quasi-transitivity Condition 2 we take the monotone closure of
𝑆′ as described in Theorem 8.1;

• for the rest of the quasi-transitivity conditions we keep 𝑆′ as defined.

Then M’ is a generalized Veltman frame with quasi-transitivity condition (𝑖) ∈ {1, …, 8}. Fur-
thermore, for any world 𝑤 and formula 𝐴 we have that

𝑀, 𝑤 ⊩ 𝐴 ⇔ 𝑀 ′, 𝑤 ⊩ 𝐴.

Proof. We observe that the transitivity condition for the ordinary models 𝑀 entails the quasi-
transitivity Condition 6 for the 𝑀 ′ generalized model. Keep in mind that by definition of 𝑀 ′ we
only have singleton sets in the third component of 𝑆′. Now assume that 𝑢𝑆′

𝑥{𝑦} and 𝑦𝑆′
𝑥{𝑦′}. By

definition of 𝑆′ it follows that 𝑢𝑆𝑥𝑦𝑆𝑥𝑦′ and by quasi-transitivity of 𝑀 we have 𝑢𝑆𝑥𝑦′ and thus
𝑢𝑆𝑥{𝑦′}. Then, by Theorem 7.1 we know that quasi-transitivity Condition 6 implies Conditions
1, 3–8, thus, the presented transformation works for any of those notions of quasi-transitivity.
Moreover, if we chose to obtain a generalized Veltman frame with quasi-transitivity Condition
2, the same reasoning applies since as we know by Theorem 8.1, taking the monotone closure
does not alter the modal theory of the model. We leave the rest of the details to be worked out
by the reader.

35

10. From generalized to ordinary
In this chapter we show that given a generalized Veltman model 𝑀 with quasi-transitivity
condition (𝑖) ∈ {3, 4, 5, 6}, we can build an ordinary Veltman model 𝑀 ′ such that for every
world in 𝑀 we can find a world in 𝑀 ′ which is modally equivalent. The definitions and proofs
involved in this chapter can be found formalized in Agda in Appendix B.17.

It is worth mentioning that there exists a much simpler transformation which we will present in
Chapter 11 and works for the same quasi-transitivity conditions as the transformation presented
here. We still believe that this transformation holds value for historical reasons. It was the first
transformation from generalized to ordinary models and it was written by Verbrugge in an
unpublished manuscript ([36]). In that manuscript there is a comment where the author says
that the transformation may also hold for Condition 2 although she has not checked it yet.
Unfortunately some steps in the proof do not work if we take a generalized model with quasi-
transitivity Condition 2. In [41] a variation of this transformation is presented with the claim
that it works for Condition 2. However, as we will comment in Chapter 12, the proof of the
claim is in need of repair.

For the rest of this chapter we fix a generalized Veltman model 𝑀 ≔ ⟨𝑊, 𝑅, 𝑆, 𝑉 ⟩.
We define an ordinary Veltman model 𝑀 ′ ≔ ⟨𝑊 ′, 𝑅′, 𝑆′, 𝑉 ′⟩ where

𝑊 ′ ≔{⟨𝑥, 𝐴⟩ ∶ 𝐴 ⊆ 𝑊 2,
(𝑊1) ∀⟨𝑢, 𝑣⟩ ∈ 𝐴 ∃𝑌 (𝑥𝑆𝑢𝑌 , 𝑣 ∈ 𝑌),
(𝑊2) ∀𝑢∀𝑉 (𝑥𝑆𝑢𝑉 ⇒ ∃𝑣 ∈ 𝑉 (⟨𝑢, 𝑣⟩ ∈ 𝐴)};

𝑅′ ≔{⟨⟨𝑥, 𝐴⟩, ⟨𝑦, 𝐵⟩⟩ ∶ 𝑥𝑅𝑦, ∀𝑤∀𝑧(𝑤𝑅𝑥 ⇒ ⟨𝑤, 𝑧⟩ ∈ 𝐵 ⇒ ⟨𝑤, 𝑧⟩ ∈ 𝐴)};
𝑆′ ≔{⟨⟨𝑤, 𝐶⟩, ⟨𝑥, 𝐴⟩, ⟨𝑦, 𝐵⟩⟩ ∶ ⟨𝑤, 𝐶⟩𝑅′⟨𝑥, 𝐴⟩, ⟨𝑤, 𝐶⟩𝑅′⟨𝑦, 𝐵⟩, ∀𝑣(⟨𝑤, 𝑣⟩ ∈ 𝐵 ⇒ ⟨𝑤, 𝑣⟩ ∈ 𝐴)};
𝑉 ′ ≔{⟨⟨𝑥, 𝐴⟩, 𝑝⟩ ∶ ⟨𝑥, 𝑝⟩ ∈ 𝑉 , ⟨𝑥, 𝐴⟩ ∈ 𝑊 ′, 𝑝 ∈ Var}.

Lemma 10.1. The structure ⟨𝑊 ′, 𝑅′, 𝑆′, 𝑉 ′⟩ is an ordinary Veltman model.

Proof. Here we check that the 𝑆′
𝑤 is a transitive relation for each 𝑤 ∈ 𝑊 ′. It is routine to check

that the rest of the requirements are satisfied. Assume that we have

⟨𝑥, 𝐴⟩𝑆′
⟨𝑤,𝐷⟩⟨𝑦, 𝐵⟩𝑆′

⟨𝑤,𝐷⟩⟨𝑧, 𝐶⟩

. We want to show ⟨𝑥, 𝐴⟩𝑆′
⟨𝑤,𝐷⟩⟨𝑧, 𝐶⟩, thus by the definition of 𝑆′ we need to prove the following:

1. ⟨𝑤, 𝐷⟩𝑅′⟨𝑥, 𝐴⟩: it follows from the definition of 𝑆′ and ⟨𝑥, 𝐴⟩𝑆′
⟨𝑤,𝐷⟩⟨𝑦, 𝐵⟩;

2. ⟨𝑤, 𝐷⟩𝑅′⟨𝑧, 𝐶⟩: it follows from the definition of 𝑆′ and ⟨𝑦, 𝐵⟩𝑆′
⟨𝑤,𝐷⟩⟨𝑧, 𝐶⟩;

3. ∀𝑣(⟨𝑤, 𝑣⟩ ∈ 𝐶 ⇒ ⟨𝑤, 𝑣⟩ ∈ 𝐴): from ⟨𝑥, 𝐴⟩𝑆′
⟨𝑤,𝐷⟩⟨𝑦, 𝐵⟩ and the definition of 𝑆′ we get that

∀𝑣(⟨𝑤, 𝑣⟩ ∈ 𝐵 ⇒ ⟨𝑤, 𝑣⟩ ∈ 𝐴).

Likewise, from ⟨𝑦, 𝐵⟩𝑆′
⟨𝑤,𝐷⟩⟨𝑧, 𝐶⟩ and the definition of 𝑆′ we get that

∀𝑣(⟨𝑤, 𝑣⟩ ∈ 𝐶 ⇒ ⟨𝑤, 𝑣⟩ ∈ 𝐵).

Then, from the composition of the previous formulas we get the desired fact.

36

We will now introduce two conditions. These conditions offer a convenient way to show that
the transformation works for various conditions of quasi-transitivity. In fact, the presented
transformation works for a generalized Veltman frame with quasi-transitivity Condition 3, 4, 5
or 6.

Let the conditions (𝐶0) and (𝐶1) be defined thus:

(𝐶0) ≔ ∀𝑤∀𝑥∀𝑉 .𝑥𝑆𝑤𝑉 ⇒ ∃𝑦 ∈ 𝑉 .∀𝑏∀𝑉 ′.𝑦𝑆𝑏𝑉 ′ ⇒ ∃𝑣 ∈ 𝑉 ′.(𝑏 = 𝑤 ⇒ 𝑥𝑆𝑏{𝑣}), (𝑏𝑅𝑤 ⇒ 𝑤𝑆𝑏{𝑣});
(𝐶1) ≔ ∀𝑤∀𝑏∀𝑥∀𝑉 .𝑤𝑅𝑥 ⇒ 𝑥𝑆𝑏𝑉 ⇒ ∃𝑣 ∈ 𝑉 .𝑥𝑆𝑏{𝑣}, (𝑏𝑅𝑤 ⇒ 𝑤𝑆𝑏{𝑣}).

Theorem 10.2. If 𝑀 satisfies both conditions (𝐶0) and (𝐶1) then for any world ⟨𝑤, 𝐶⟩ ∈ 𝑊 ′

and formula 𝐷:
𝑤 ⊩ 𝐷 ⇔ ⟨𝑤, 𝐶⟩ ⊩ 𝐷

Proof. We proceed by induction on the formula. Here we only consider the case 𝐷 ▷ 𝐸 as the
other cases are easy.

• ⇒ Assume 𝑤 ⊩ 𝐷 ▷ 𝐸 and let 𝐶 be such that ⟨𝑤, 𝐶⟩ ∈ 𝑊 ′. We want to prove ⟨𝑤, 𝐶⟩ ⊩
𝐷 ▷ 𝐸. Assume that for some ⟨𝑥, 𝐴⟩ ∈ 𝑊 ′ we have ⟨𝑤, 𝐶⟩𝑅′⟨𝑥, 𝐴⟩ ⊩ 𝐷. By IH it follows
that 𝑥 ⊩ 𝐷 and hence there exists 𝑉 such that 𝑥𝑆𝑤𝑉 ⊩ 𝐸. By (𝐶0) there is some 𝑦 ∈ 𝑉
such that

∀𝑏𝑉 ′.𝑦𝑆𝑏𝑉 ′ ⇒ ∃𝑣 ∈ 𝑉 ′.(𝑏 = 𝑤 ⇒ 𝑥𝑆𝑏{𝑣}), (𝑏𝑅𝑤 ⇒ 𝑤𝑆𝑏{𝑣}) (10.1)

We proceed by showing that there is some 𝐵 such that ⟨𝑥, 𝐴⟩𝑆′
⟨𝑤,𝐶⟩⟨𝑦, 𝐵⟩. Let 𝐵 be defined

thus:

𝐵 ≔ {⟨𝑢, 𝑣⟩ ∶ ∃𝑌 .𝑦𝑆𝑢𝑌 , 𝑣 ∈ 𝑌 , (𝑢 = 𝑤 ⇒ ⟨𝑤, 𝑣⟩ ∈ 𝐴), (𝑢𝑅𝑤 ⇒ ⟨𝑢, 𝑣⟩ ∈ 𝐶)}

To show ⟨𝑦, 𝐵⟩ ∈ 𝑊 ′ we need to prove that (𝑊1) and (𝑊2) hold. The condition (𝑊1)
follows immediately from the definition of 𝐵. To show (𝑊2) assume that for some 𝑏 and
𝑉 we have 𝑦𝑆𝑏𝑉 . We need to see that there exists 𝑣 ∈ 𝑉 such that ⟨𝑏, 𝑣⟩ ∈ 𝐵. From 𝑦𝑆𝑏𝑉
and Eq. (10.1) we get that there exists 𝑣 ∈ 𝑉 ′ such that

𝑏 = 𝑤 ⇒ 𝑥𝑆𝑏{𝑣}, (10.2)
𝑏𝑅𝑤 ⇒ 𝑤𝑆𝑏{𝑣} (10.3)

To show that ⟨𝑏, 𝑣⟩ ∈ 𝐵 we first see that 𝑏 = 𝑤 ⇒ ⟨𝑤, 𝑣⟩ ∈ 𝐴. Assume 𝑏 = 𝑤, then by
Eq. (10.2) it follows that 𝑥𝑆𝑏{𝑣} and therefore by condition (𝑊2) for 𝐴 it follows ⟨𝑏, 𝑣⟩ ∈ 𝐴.
We proceed likewise and use Eq. (10.3) to show 𝑏𝑅𝑤 ⇒ ⟨𝑏, 𝑣⟩ ∈ 𝐶. This concludes the
proof that ⟨𝑦, 𝐵⟩ ∈ 𝑊 ′.
We now check the conditions for ⟨𝑥, 𝐴⟩𝑆′

⟨𝑤,𝐶⟩⟨𝑦, 𝐵⟩. We already have ⟨𝑤, 𝐶⟩𝑅′⟨𝑥, 𝐴⟩ by
assumption. To see that ⟨𝑤, 𝐶⟩𝑅′⟨𝑦, 𝐵⟩ we first observe that 𝑤𝑅𝑦 holds since 𝑥𝑆𝑤𝑉 and
𝑦 ∈ 𝑉 . Then assume that for some 𝑏, 𝑧 we have 𝑏𝑅𝑤 and ⟨𝑏, 𝑧⟩ ∈ 𝐵. Then from the
definition of 𝐵 it follows that ⟨𝑏, 𝑧⟩ ∈ 𝐶. The condition ∀𝑣(⟨𝑤, 𝑣⟩ ∈ 𝐵 ⇒ ⟨𝑤, 𝑣⟩ ∈ 𝐴)
follows immediately from the definition of 𝐵.
Finally, since 𝑉 ⊩ 𝐸 and 𝑦 ∈ 𝑉 we have 𝑦 ⊩ 𝐸 and thus by IH it follows that ⟨𝑦, 𝐵⟩ ⊩ 𝐸.

• ⇐ We proceed by contraposition. Assume 𝑤 ⊮ 𝐷 ▷ 𝐸, then there exists 𝑥 such that
𝑤𝑅𝑥 and

∀𝑌 (𝑣𝑆𝑤𝑌 ⇒ ∃𝑦 ∈ 𝑌 (𝑦 ⊮ 𝐸)). (10.4)

37

Let 𝐴 be defined thus:

𝐴 ≔ {⟨𝑏, 𝑣⟩ ∶ (∃𝑌 .𝑥𝑆𝑏𝑌 , 𝑣 ∈ 𝑌), (𝑏 = 𝑤 ⇒ 𝑀, 𝑣 ⊮ 𝐸), (𝑏𝑅𝑤 ⇒ ⟨𝑏, 𝑣⟩ ∈ 𝐶)}.

We first show that ⟨𝑥, 𝐴⟩ ∈ 𝑊 ′. Condition (𝑊1) follows directly from the definition of 𝐴.
To show that (𝑊2) holds assume that for some 𝑏 and 𝑉 we have 𝑥𝑆𝑏𝑉 . We need to see
that for some 𝑣 ∈ 𝑉 we have ⟨𝑏, 𝑣⟩ ∈ 𝐴. Since 𝑤𝑅𝑥 and 𝑥𝑆𝑏𝑉 it follows from condition
(𝐶1) that there exists 𝑣 ∈ 𝑉 such that

𝑥𝑆𝑏{𝑣}, (10.5)
𝑏𝑅𝑤 ⇒𝑤𝑆𝑏{𝑣}. (10.6)

The first condition to show ⟨𝑏, 𝑣⟩ ∈ 𝐴, namely that ∃𝑌 .𝑥𝑆𝑏𝑌 , 𝑣 ∈ 𝑌 , is met trivially. For
the next condition assume 𝑏 = 𝑤, then see that we have 𝑥𝑆𝑤{𝑣} by Eq. (10.5) and thus
by Eq. (10.4) it follows that 𝑣 ⊮ 𝐸. For the remaining condition assume 𝑏𝑅𝑤, then by
Eq. (10.6) we have 𝑤𝑆𝑏{𝑣} and thus by (𝑊2) for 𝐶 we have ⟨𝑏, 𝑣⟩ ∈ 𝐶. Therefore we
conclude ⟨𝑏, 𝑣⟩ ∈ 𝐴 and thus ⟨𝑥, 𝐴⟩ ∈ 𝑊 ′.
To see that ⟨𝑤, 𝐶⟩𝑅′⟨𝑥, 𝐴⟩ we already have 𝑤𝑅𝑥 by assumption. The remaining condition,
∀𝑏𝑧(𝑏𝑅𝑥 ⇒ ⟨𝑏, 𝑧⟩ ∈ 𝐴 ⇒ ⟨𝑏, 𝑧⟩ ∈ 𝐶), follows directly from the definition of 𝐴.
Since 𝑥 ⊩ 𝐷, it follows from the IH that ⟨𝑥, 𝐴⟩ ⊩ 𝐷.
Lastly, assume that for some ⟨𝑦, 𝐵⟩ ∈ 𝑊 ′ we have ⟨𝑥, 𝐴⟩𝑆′

⟨𝑤,𝐶⟩⟨𝑦, 𝐵⟩. By definition of 𝑆′

we have 𝑥𝑆𝑤𝑦 and thus 𝑤𝑅𝑦. By quasi-reflexivity of 𝑆 we then have 𝑦𝑆𝑤{𝑦} and thus by
(𝑊2) for 𝐵 we have ⟨𝑤, 𝑦⟩ ∈ 𝐵. By definition of 𝑆′ we also have that ∀𝑣(⟨𝑤, 𝑣⟩ ∈ 𝐵 ⇒
⟨𝑤, 𝑣⟩ ∈ 𝐴), hence ⟨𝑤, 𝑦⟩ ∈ 𝐴. By definition of 𝐴 it follows that 𝑦 ⊮ 𝐸 and by IH we have
⟨𝑦, 𝐵⟩ ⊮ 𝐸, which concludes the proof.

Theorem 10.3. If a generalized Veltman frame satisfies quasi-transitivity Condition 3, 4,
5 or 6, then it satisfies conditions (𝐶0) and (𝐶1).
Proof. Here we prove the property for a generalized Veltman frame satisfying quasi-transitivity
Condition 3. Conditions 4–6 imply Condition 3 as shown in Theorem 7.1.

Assume 𝐹 is a generalized Veltman frame satisfying quasi-transitivity Condition 3. It is easy
to observe that the following property holds:

𝑢𝑆𝑥𝑌 ⇒ ∃ 𝑦 ∈ 𝑌 ∀𝑧(𝑦𝑆𝑥{𝑧} ⇒ 𝑢𝑆𝑥{𝑧}). (10.7)

• (𝐶0) Assume that for some 𝑤, 𝑥, 𝑉 we have 𝑥𝑆𝑤𝑉 . Then by Eq. (10.7) there is some
𝑦 ∈ 𝑉 such that

∀𝑧(𝑦𝑆𝑤{𝑧} ⇒ 𝑥𝑆𝑤{𝑧}). (10.8)

Now assume that for some 𝑏, 𝑉 ′ we have 𝑦𝑆𝑏𝑉 ′. It follows by Eq. (10.7) that there is some
𝑣 ∈ 𝑉 ′ such that

∀𝑧(𝑣𝑆𝑏{𝑧} ⇒ 𝑦𝑆𝑏{𝑧}). (10.9)
Assume that 𝑏 = 𝑤, we need to see that 𝑥𝑆𝑏{𝑣}. From 𝑥𝑆𝑤𝑉 and 𝑦 ∈ 𝑉 it follows that
𝑤𝑅𝑦. Then by quasi-reflexivity we have 𝑦𝑆𝑤{𝑦} and by Eq. (10.8) we get 𝑥𝑆𝑤{𝑣} which
is the same as 𝑥𝑆𝑏{𝑣}. Assume that 𝑏𝑅𝑤, we need to see that 𝑤𝑆𝑏{𝑣}. From 𝑏𝑅𝑤𝑅𝑦 we
have 𝑤𝑆𝑏{𝑦} and from property Eq. (10.7) we get

∀𝑧(𝑦𝑆𝑏{𝑧} ⇒ 𝑤𝑆𝑏{𝑧}). (10.10)

Then since 𝑦𝑆𝑏𝑉 ′ and 𝑣 ∈ 𝑉 ′ we have 𝑏𝑅𝑣 so by quasi-reflexivity we have 𝑣𝑆𝑏{𝑣}. Finally
by Eq. (10.9) we get 𝑦𝑆𝑏{𝑣} and by Eq. (10.10) we get 𝑤𝑆𝑏{𝑣}.

38

• (𝐶1) Assume that for some 𝑤, 𝑏, 𝑥, 𝑉 we have 𝑤𝑅𝑥𝑆𝑏𝑉 . By Eq. (10.7) it follows that
there is some 𝑣 ∈ 𝑉 such that

∀𝑧(𝑣𝑆𝑏{𝑧} ⇒ 𝑥𝑆𝑏{𝑧}). (10.11)

We first see that 𝑥𝑆𝑏{𝑣}. From 𝑥𝑆𝑏𝑉 and 𝑣 ∈ 𝑉 we get 𝑏𝑅𝑣 and by quasi-reflexivity we
get 𝑣𝑆𝑏{𝑣}. Then by Eq. (10.11) we have 𝑥𝑆𝑏{𝑣}. Assume 𝑏𝑅𝑤, we need to see 𝑤𝑆𝑏{𝑣}.
By quasi-reflexivity we get 𝑣𝑆𝑏{𝑣} and by Eq. (10.11) we get 𝑥𝑆𝑏{𝑣}. By 𝑏𝑅𝑤𝑅𝑥 we get
𝑤𝑆𝑏{𝑥} and thus by Eq. (10.7) we have

∀𝑧(𝑥𝑆𝑏{𝑧} ⇒ 𝑤𝑆𝑏{𝑧}). (10.12)

Finally by 𝑥𝑆𝑏{𝑣} and Eq. (10.12) we get 𝑤𝑆𝑏{𝑣}.

39

11. From generalized to ordinary (a simpler
approach)

In this chapter we present a transformation that achieves the same effect as the one presented
in Chapter 10. However, the process described here is much simpler as it does not modify the
set of worlds. The definitions and proofs in this chapter can be found formalized in Agda in
Appendix B.8.

Theorem 11.1. Let 𝑀 a generalized Veltman model with quasi-transitivity Condition 3,
4, 5 or 6. By Theorem 7.1 we shall assume without loss of generality that 𝑀 satisfies quasi-
transitivity Condition 3. We remind the reader that the condition reads thus:

𝑢𝑆𝑥𝑌 ⇒ ∃ 𝑦 ∈ 𝑌 ∀𝑌 ′(𝑦𝑆𝑥𝑌 ′ ⇒ ∃ 𝑌 ″⊆𝑌 ′ ∧ 𝑢𝑆𝑥𝑌 ″).

For every ⟨𝑥, 𝑢, 𝑌 ⟩ such that 𝑢𝑆𝑥𝑌 we fix the 𝑦 that is highlighted in blue and name it 𝑦𝑥𝑢𝑌 .
We define 𝑀 ′ ≔ ⟨𝑊, 𝑅, 𝑆′, 𝑉 ⟩ with 𝑆′ ≔ {⟨𝑤, 𝑥, 𝑣⟩ ∶ ∃𝑌 .𝑤𝑆𝑥𝑌 ∧ 𝑦𝑥𝑤𝑌 = 𝑣}. Then 𝑀 ′ is

an ordinary Veltman frame. Furthermore models 𝑀 and 𝑀 ′ are modally equivalent, that is, it
holds that for every 𝑤 ∈ 𝑊 and 𝐴 ∈ Fm we have

𝑀, 𝑤 ⊩ 𝐴 ⇔ 𝑀 ′, 𝑤 ⊩ 𝐴.

Proof. Here we only check that the transitivity condition holds. It is not hard to check that the
rest of the conditions also hold.

Assume that we have 𝑥𝑆′
𝑤𝑦𝑆′

𝑤𝑧. By definition of 𝑆′ it follows that we have 𝑥𝑆′
𝑤{𝑦}𝑆′

𝑤{𝑧}
and furthermore 𝑦 and 𝑧 satisfy quasi-transitivity Condition 3. In particular for 𝑦 it holds that
∀𝑌 (𝑦𝑆𝑤𝑧 ⇒ ∃𝑌 ′ ⊆ 𝑌 ∧ 𝑥𝑆𝑤𝑌 ′). If we set 𝑌 ≔ {𝑧} then have that there exists 𝑌 ′ ⊆ {𝑧} such
that 𝑥𝑆𝑤𝑌 ′. Since 𝑌 ′ must be nonempty we have that 𝑌 ′ = {𝑧} and thus 𝑥𝑆𝑤{𝑧}. Finally by
definition of 𝑆′ we have 𝑥𝑆′

𝑤𝑧.

40

12. A proof in need of repair
As we all know, mathematical proofs can get long and tedious to follow. It is an art to guide
the reader through the key steps of the proof and prevent them from getting lost in the details.
In order to achieve that, a resource that is often used is to omit details of trivial claims during
the proof. Omitting details saves a lot of time and usually there is no harm in it. However, we
may mistakenly believe that something is trivial, whereas in reality it may not be trivial, or in
the worst case, it may not even be true. If the mistake is overlooked, we may end up building on
top of an inconsistent basis. Needless to say, this is an unacceptable situation which we should
try to avoid at all costs. In this chapter we present an example of a published proof where some
steps remain unjustified. We discovered these gaps while trying to formalize the proof in Agda.
We proceed by giving some context to the proof.

The transformations from a generalized to an ordinary Veltman model given in Chapters 10
and 11 work for simple notions of quasi-transitivity but do not seem to work directly for Condi-
tion 2, which is the standard. In [41] a transformation which is claimed to work for Condition
2 is presented. We studied the transformation and started to formalize in Agda the proof of its
correctness following the proof of Proposition 2.8 in [41].

Despite our strong efforts to fill in the missing steps, we could not reproduce the original
reasoning. Although we did not find an explicit counterexample, the original author agrees
with us that the missing steps could render the proof invalid. The validity of Proposition 2.8
of [41] comes into question and until this is resolved, we may consider the problem of finding
transformation from a generalized model (with Condition 2) to an ordinary model such that it
preserves some structure of the original model to be an open question once again. By “preserves
some structure” we mean that we should have a property of the form:

𝑀, 𝑤 ⊩ 𝐴 ⇔ 𝑀 ′, 𝑓(𝑤) ⊩ 𝐴 for every 𝑤 ∈ 𝑊, 𝐴 ∈ Fm.

Where 𝑓 is a map from the set of worlds of 𝑀 to the set of worlds of 𝑀 ′.
We believe that this example should be taken as a humbling reminder that we are humans and

we make mistakes. Even if a proof has been through skilled reviewers from a well established
journal it is still suspect of being flawed in some subtle way. For this reason, we believe that
computer checked proofs should gain relevance in all fields of logic and mathematics. We know
that nowadays proof assistants are far from perfect and usually require a lot of time investment
both on learning and in formalizing big scale mathematical proofs. However, the confidence
level that they offer certainly outweighs their negatives in some situations.

12.1. The details
In this chapter we present the details to better understand which are the problematic steps in
the proof. For that, we copy1 Definitions 2.5, 2.7 and Propositions 2.6, 2.8 in [41].

The definitions and theorems in this section can be found formalized in Agda in Appendix B.18.
Note that Proposition 2.8 does not have a finished proof due to the reasons that we will expose.

Definition 2.5 of [41] Let 𝐹 = ⟨𝑊, 𝑅, {𝑆𝑤 ∶ 𝑤 ∈ 𝑊}⟩ be a generalized Veltman frame.
Let 𝑊 ′ consist of all pairs ⟨𝑣, 𝐶⟩, where 𝑣 ∈ 𝑊 and 𝐶 is a set of ordered pairs ⟨𝑥, 𝑦⟩ ∈ 𝑊 2 such
that:

1with very slim adaptations to accommodate our notation.

41

1. If 𝑥𝑅𝑣, then ⟨𝑥, 𝑣⟩ ∈ 𝐶;

2. for each 𝑥 ∈ 𝑊 and each 𝑉 ⊆ 𝑊[𝑥] such that 𝑣𝑆𝑥𝑉 there are 𝑉 ′ ⊆ 𝑊[𝑥] and 𝑦 ∈ 𝑉 ′ such
that 𝑉 ⊆ 𝑉 ′ and ⟨𝑥, 𝑦⟩ ∈ 𝐶;

3. if ⟨𝑥, 𝑦⟩ ∈ 𝐶, then there is 𝑉 ⊆ 𝑊[𝑥] such that 𝑣𝑆𝑥𝑉 and 𝑦 ∈ 𝑉 .

We define a relation 𝑅′ ⊆ 𝑊 ′ × 𝑊 ′ by

⟨𝑤, 𝐴⟩𝑅′⟨𝑢, 𝐵⟩ iff: 𝑤𝑅𝑢 and ∀𝑥∀𝑦(𝑥𝑅𝑤 ⇒ ⟨𝑥, 𝑦⟩ ∈ 𝐵 ⇒ ⟨𝑥, 𝑦⟩ ∈ 𝐴)

We define a relation 𝑆′
⟨𝑤,𝐴⟩ for each ⟨𝑤, 𝐴⟩ ∈ 𝑊 ′ by

⟨𝑢, 𝐵⟩𝑆′
⟨𝑤,𝐴⟩⟨𝑣, 𝐶⟩ iff: ⟨𝑤, 𝐴⟩𝑅′⟨𝑢, 𝐵⟩ and ⟨𝑤, 𝐴⟩𝑅′⟨𝑣, 𝐶⟩ and ∀𝑦(⟨𝑤, 𝑦⟩ ∈ 𝐶 ⇒ ⟨𝑤, 𝑦⟩ ∈ 𝐵)

We denote an ordered triple ⟨𝑊 ′, 𝑅′, {𝑆′
𝑤′ ∶ 𝑤′ ∈ 𝑊 ′}⟩ by of(𝐹).

Proposition 2.6 of [41] Let 𝑀 be a generalized Veltman frame, then of(𝑀) is an ordinary
Veltman frame.

Proof. The proof is omitted in the original paper and we omit it here too. However, the proof
has been formalized in Agda and can be found in Appendix B.18.

Definition 2.7 of [41] Let 𝑀 = ⟨𝐹, 𝑉 ⟩ be a generalized Veltman model, then we define
V’ by

⟨⟨𝑤, 𝐴⟩, 𝑝⟩ ∈ 𝑉 ′ iff: ⟨𝑤, 𝑝⟩ ∈ 𝑉 .
We denote the model ⟨of(𝐹), 𝑉 ′⟩ by o(𝑀).

Proposition 2.8 of [41]: Let 𝑀 = ⟨𝑊, 𝑅, {𝑆𝑤 ∶ 𝑤 ∈ 𝑊}, 𝑉 ⟩ be a generalized Veltman model.
Let

o(𝑀) = ⟨𝑊 ′, 𝑅′, {𝑆′
𝑤′ ∈ 𝑊 ′}, 𝑉 ⟩.

Then for each formula 𝜙 and each ⟨𝑤, 𝐴⟩ ∈ 𝑊 ′ we have

𝑊, 𝑤 ⊩ 𝜙 iff: o(𝑀), ⟨𝑤, 𝐴⟩ ⊩ 𝜙.

Partial proof. The proof goes by induction on the formula 𝜙. The only interesting case is ▷.
Now, suppose that 𝑤 ⊩ 𝜙 ▷ 𝜓. We want to show ⟨𝑤, 𝐴⟩ ⊩ 𝜙 ▷ 𝜓. Assume ⟨𝑤, 𝐴⟩𝑅′⟨𝑢, 𝐵⟩ and
⟨𝑢, 𝐵⟩ ⊩ 𝜙. By IH we have 𝑢 ⊩ 𝜙. Then from ⟨𝑤, 𝐴⟩ ⊩ 𝜙 ▷ 𝜓 we get that there exists a set of
worlds 𝑉0 ⊆ {𝑥 ∶ 𝑤𝑅𝑥} such that 𝑢𝑆𝑤𝑉0 and 𝑣 ⊩ 𝜓 for each 𝑣 ∈ 𝑉0. Let 𝑣0 be any element of
the set 𝑉0.

In the proof it is claimed that the following holds:

∀𝑥(𝑥𝑅𝑤 and 𝑥𝑅𝑣0 ⇒ ⟨𝑥, 𝑣0⟩ ∈ 𝐴).

However, details on why this holds are not given. This is one of the steps that has not yet been
repaired neither by us or the author.

Further in the proof it is claimed2 that the following holds:

⟨𝑤, 𝑣0⟩ ∈ 𝐵.

We find ourselves again in a situation which we have not been able to justify.
As a closing remark, we want to emphasize that we do not deem this proof as definitely flawed

since we have not found a counterexample to the theorem. However, the fact that we were
unable to fill the presented gaps in this section hints that the at least the definitions involved in
the proof should be tweaked.

2In the original paper a stronger property is claimed, but the property highlighted here is the only piece missing.

42

Part III.

Frame conditions

43

13. Introduction to principles and frame
conditions

An interpretability principle is a schema of modal formulas that carries some special significance.
The relevance of a principle mainly stems from two factors. On the one hand we have principles,
such as the principle M, that give rise to interpretability logics for certain theories. For instance,
ILM is the interpretability logic of PA: ILM = IL(PA) ([5, 31]). On the other hand we have
principles which are valid in all reasonable arithmetical theories and thus are interesting in the
search of an axiomatization for the logic IL(All). For instance, the series of principles Rn and Rn
([16]), which we will present in this part, are central to the best known lower bound for IL(All).

Regardless of the area of interest, finding the frame condition for a principle is always the first
step towards studying the nature of the principle. Once we have established a frame condition
for a principle, say X, one has more tools when studying, for instance, modal soundness and
completeness of the logic ILX. Soundness in itself is already an interesting result, but the
usefulness of a soundness theorem grows when it is applied to prove independence results between
principles. To prove that two principles X and Y are independent means to show ILX ⊬ Y and
ILY ⊬ X, which is done by building countermodels (for instance, see [18]), as usual in modal
logics. To prove that a principle does not entail another principle is a necessary step in order
to improve the lower bound of IL(All) since we need to show that the new lower bound does
indeed not follow from the previous lower bound. In this thesis however, we are not concerned
with independence results and we will only focus on the frame conditions.

As we have briefly mentioned in the overview at the beginning of this thesis, a frame condition
captures the relational semantic nature of the principle. To be more precise, assume that we
have a principle X which is not necessarily valid in an arbitrary ordinary Veltman frame. A
frame condition is a first (or higher) order formula (X) such that for any ordinary Veltman
frame 𝐹 we have:

𝐹 ⊨ (X) ⇔ 𝐹 ⊩ X.
In the expression above, 𝐹 ⊨ (M) denotes that 𝐹 models the condition (M) in the sense of a first
(or higher) order structure. The 𝐹 ⊩ X part means that we have ⟨𝐹 , 𝑉 ⟩ ⊩ X for any valuation
𝑉 and any particular instance of X. We define frame conditions for generalized Veltman frames
in an analogous way. As a convention, for a principle X we will write (X) and (X)gen to denote
the frame conditions with respect to ordinary and generalized semantics, respectively.

In Chapter 21 we will verify in Agda that there is a mechanical procedure to obtain frame
conditions for any axiom schema. However, the generated condition encodes a quantification
over valuations in the frame condition and thus it is usually not suitable as an adequate frame
condition. There is no precise definition on what constitutes an adequate frame condition.
Usually one considers a frame condition to be adequate if it is relatively elegant and succinct.
Let us continue the discussion by using an example. Consider Löb’s axiom given in modal form:

L = □(□𝐴 → 𝐴) → □𝐴.
We know from the characterization of GL-frames that the frame condition for L is the following:

The 𝑅 relation must be transitive and Noetherian.

The same condition expressed in formulas reads as follows (we refer to these formulation as the
original):

∀𝑥.∀𝑦.∀𝑧.𝑥𝑅𝑦𝑅𝑧 ⇒ 𝑥𝑅𝑧 ;

44

∀𝕊.𝕊 ≠ ∅ ⇒ ∃𝑠 ∈ 𝕊∀𝑠′(𝑠��𝑅𝑠′).
And now observe the generic frame condition that arises from a mechanical procedure1(we will
refer to this formulation as the generic):

∀𝔸.∀𝑢(𝑤𝑅𝑢 ⇒ (∀𝑢′(𝑢𝑅𝑢′ ⇒ 𝑢′ ∈ 𝔸)) ⇒ 𝑢 ∈ 𝔸) ⇒ ∀𝑢(𝑤𝑅𝑢 ⇒ 𝑢 ∈ 𝔸).

If we compare the original and the generic conditions we see that they are both second order
formulas as they quantify over sets: We have ∀𝕊 in the original and ∀𝔸 in the generic. If we do the
mental exercise to forget for a moment that we have the concepts of transitivity and Noetherian
relation in our mathematical metalanguage, it is not completely obvious how to objectively
justify why the original formulation is preferred in the literature over the generic formulation.
However, the case is that we do have the concepts of transitivity and Noetherian relations in our
commonly used metalanguage and moreover we are used to operating with them. Furthermore,
it is easy for us to imagine a transitive relation that has no infinite ascending chains. On the
contrary the picture that is described by the generic condition is rather blurry for us. All in
all, we see that we can precisely define the minimal requirement (frame validity) for a frame
condition, but comparing the usefulness of a frame condition remains open to interpretation.
However, we will lean towards conditions which are easy to visualize.

In this part we present a number of principles in conjunction with their respective frame
conditions for ordinary semantics as well as generalized semantics. We will prove that all the
given conditions satisfy the minimal requirement to be considered frame conditions. Moreover,
we attach a diagram representation of most of the presented frame conditions in an attempt to
convey their visual value.

1The mechanical procedure for Veltman semantics is presented in detail in Chapter 21. Basically, the procedure
consists in writing the definition of a frame condition as a second order formula.

45

14. The principle M
The M principle reads as follows:

𝐴 ▷ 𝐵 → (𝐴 ∧ □𝐶) ▷ (𝐵 ∧ □𝐶).

The M principle is named after Franco Montagna because the principle appeared during
discussions between Franco Montagna and Albert Visser about interpretability logic ([6]).

The theorems of ILM are the set of interpretability principles that are always provable in
theories which are Σ1-sound and have full induction. ([5, 19, 38]). An example of such a theory
is PA.

14.1. Ordinary semantics
The frame condition for M for ordinary semantics, which we write as (M), reads as follows:

∀𝑤, 𝑥, 𝑦, 𝑧(𝑥𝑆𝑤𝑦𝑅𝑧 ⇒ 𝑥𝑅𝑧).

Figure 14.1.: Ordinary frame condition for M.

Theorem 14.1. For any ordinary frame 𝐹 , we have that 𝐹 satisfies the (M) condition iff
any model based on 𝐹 forces every instantiation of the M principle. In symbols:

𝐹 ⊨ (M) ⇔ 𝐹 ⊩ M.
Proof. • ⇒ Let 𝑀 be a model based on 𝐹 and let 𝑤 be any world. Assume that 𝑤 ⊩ 𝐴▷𝐵

and that there is a world 𝑥 such that 𝑤𝑅𝑥 and 𝑥 ⊩ 𝐴 ∧ □𝐶. Our aim is to find a world
𝑧 such that 𝑥𝑆𝑤𝑧 ⊩ 𝐵 ∧ □𝐶. Since 𝑤𝑅𝑥 ⊩ 𝐴 and 𝑤 ⊩ 𝐴 ▷ 𝐵 there is a world 𝑧 such that
𝑥𝑆𝑤𝑧 ⊩ 𝐵. We now show that 𝑧 ⊩ □𝐶. Consider an arbitrary 𝑢 such that 𝑧𝑅𝑢. By the
frame condition it follows that 𝑥𝑅𝑢 and we know 𝑥 ⊩ □𝐶 hence 𝑢 ⊩ 𝐶 and thus 𝑧 ⊩ □𝐶.
Hence 𝑧 is the desired world.

• ⇐ Let 𝑎, 𝑏, 𝑐 ∈ Var, assume 𝐹 ⊩ 𝑎 ▷ 𝑏 → (𝑎 ∧ □𝑐) ▷ (𝑏 ∧ □𝑐). Assume also that for
some 𝑥, 𝑤, 𝑢 we have 𝑥𝑆𝑤𝑧𝑅𝑢. Our goal is to prove 𝑥𝑅𝑢. Consider a model such that the
following holds.

⟦𝑎⟧ = {𝑥};
⟦𝑏⟧ = {𝑧};
⟦𝑐⟧ = {𝑣 ∶ 𝑥𝑅𝑣}.

46

We observe that 𝑤 ⊩ 𝑎 ▷ 𝑏 because 𝑎 is only forced in 𝑥 and we have 𝑥𝑆𝑤𝑧 ⊩ 𝑏. Then it
follows that 𝑤 ⊩ (𝑎 ∧ □𝑐) ▷ (𝑏 ∧ □𝑐). It is easy to observe that 𝑥 ⊩ 𝑎 ∧ □𝑐, furthermore we
have that by the definition of an ordinary frame 𝑥𝑆𝑤𝑧 ⇒ 𝑤𝑅𝑥, hence 𝑤𝑅𝑥 and thus there
must exist some 𝑣 such that 𝑥𝑆𝑤𝑣 ⊩ 𝑏 ∧ □𝑐. Since 𝑏 is only true in 𝑧 it must be 𝑧 ⊩ 𝑏 ∧ □𝑐.
Then, because 𝑧𝑅𝑢 we have 𝑢 ⊩ 𝑐, therefore 𝑥𝑅𝑢.

The Agda proof can be found in Appendix B.27.

14.2. Generalized semantics
The frame condition for M for generalized semantics, which we write as (M)gen, reads as follows:

∀𝑤, 𝑥, 𝑉 (𝑥𝑆𝑤𝑉 ⇒ ∃𝑉 ′ ⊆ 𝑉 (𝑥𝑆𝑤𝑉 ′, ∀𝑣′ ∈ 𝑉 ′∀𝑧(𝑣′𝑅𝑧 ⇒ 𝑥𝑅𝑧))).

Figure 14.2.: Generalized frame condition for M.

Theorem 14.2. For any generalized frame 𝐹 , we have that 𝐹 satisfies the (M)gen condition
iff any model based on 𝐹 forces every instantiation of the M principle. In symbols:

𝐹 ⊨ (M)gen ⇔ 𝐹 ⊩ 𝑀.

Proof. • ⇒ Let 𝑀 be a model based on 𝐹 and let 𝑤 be any world. Assume that 𝑤 ⊩ 𝐴▷𝐵
and that there is a world 𝑥 such that 𝑤𝑅𝑥 and 𝑥 ⊩ 𝐴 ∧ □𝐶. Our aim is to find a set
𝑍 such that 𝑥𝑆𝑤𝑍 ⊩ 𝐵 ∧ □𝐶. Since 𝑤𝑅𝑥 ⊩ 𝐴 and 𝑤 ⊩ 𝐴 ▷ 𝐵 there is set 𝑍 such that
𝑥𝑆𝑤𝑍 ⊩ 𝐵. Then by the (M)gen condition it follows that there is a set 𝑍′ ⊆ 𝑍 such that
𝑥𝑆𝑤𝑍′ and ∀𝑣 ∈ 𝑍′∀𝑧(𝑣𝑅𝑧 ⇒ 𝑥𝑅𝑧). Now we show 𝑍′ ⊩ □𝐶. Let 𝑣 ∈ 𝑍′ and 𝑢 such that
𝑣𝑅𝑢, by the condition above it follows 𝑥𝑅𝑢 and since 𝑥 ⊩ □𝐶 we have 𝑢 ⊩ 𝐶. Hence 𝑍′

is the desired set.

• ⇐ Let 𝑎, 𝑏, 𝑐 ∈ Var and assume 𝐹 ⊩ 𝑎 ▷ 𝑏 → (𝑎 ∧ □𝑐) ▷ (𝑏 ∧ □𝑐) and 𝑢𝑆𝑤𝑉 . Consider a
model satisfying the following

⟦𝑎⟧ = {𝑢};
⟦𝑏⟧ = 𝑉 ;
⟦𝑐⟧ = {𝑣 ∶ 𝑢𝑅𝑣}.

We see that 𝑤 ⊩ 𝑎 ▷ 𝑏 since 𝑎 is only true in 𝑢 and we have 𝑢𝑆𝑤𝑉 ⊩ 𝑏. It follows that
𝑤 ⊩ (𝑎 ∧ □𝑐) ▷ (𝑏 ∧ □𝑐). It is easy to see that 𝑢 ⊩ 𝑎 ∧ □𝑐, hence there must exist 𝑉 ′ such
that 𝑢𝑆𝑤𝑉 ′ ⊩ 𝑏 ∧ □𝑐. Clearly 𝑉 ′ ⊆ 𝑉 since 𝑏 is forced exactly in 𝑉 . Now let 𝑣′, 𝑧 such
that 𝑣′ ∈ 𝑉 ′ and 𝑣′𝑅𝑧. Since 𝑣′ ⊩ □𝑐, then 𝑧 ⊩ 𝑐 and thus 𝑢𝑅𝑧. Therefore 𝑉 ′ is the
desired set.

The Agda proof can be found in Appendix B.9.

47

15. The principle M0

The M0 principle reads as follows:

𝐴 ▷ 𝐵 → ♢𝐴 ∧ □𝐶 ▷ 𝐵 ∧ □𝐶.
The M0 principle first appears in [40], where it is proved that M0 is arithmetically sound.

Moreover it is claimed that Dick de Jongh showed that ILM0W = ILW∗. During a short period
of time, ILM0 was a candidate to be IL(All), however, such possibility was ruled out with the
discovery of the principle P0. The logic ILM0 is complete with respect to ordinary and generalized
semantics ([15]).

15.1. Ordinary semantics
The (M0) condition reads as follows:

∀𝑤, 𝑥, 𝑦, 𝑧(𝑤𝑅𝑥𝑅𝑦𝑆𝑤𝑧 ⇒ ∀𝑢(𝑧𝑅𝑢 ⇒ 𝑥𝑅𝑢)).

Figure 15.1.: Ordinary frame condition for M0.

Theorem 15.1. For any ordinary frame 𝐹 , we have that 𝐹 satisfies the (M0) condition iff
any model based on 𝐹 forces every instantiation of the M0 principle. In symbols:

𝐹 ⊨ (M0) ⇔ 𝐹 ⊩ M0.
Proof. • ⇒ Let 𝑀 be a model based on 𝐹 and let 𝑤 be any world. Assume that 𝑤 ⊩ 𝐴▷𝐵

and that there exists some 𝑥 such that 𝑤𝑅𝑥 ⊩ ♢𝐴 ∧ □𝐶. It follows that there exists some
world 𝑦 such that 𝑥𝑅𝑦 ⊩ 𝐴, then since 𝑤𝑅𝑦 and 𝑤 ⊩ 𝐴 ▷ 𝐵 there exists a world 𝑧 such
that 𝑦𝑆𝑤𝑧 ⊩ 𝐵. Observe that from 𝑤𝑅𝑥𝑅𝑦 it follows that 𝑥𝑆𝑤𝑦 and by transitivity of 𝑆𝑤
and 𝑦𝑆𝑤𝑧 we get 𝑥𝑆𝑤𝑧. It remains to show 𝑧 ⊩ □𝐶. Consider some world 𝑢 such that
𝑧𝑅𝑢, then by the (M0) condition we have that ∀𝑢(𝑧𝑅𝑢 ⇒ 𝑥𝑅𝑢) and thus it follows that
𝑥𝑅𝑢 and since 𝑥 ⊩ □𝐶 we also have 𝑢 ⊩ 𝐶.

• ⇐ Let 𝑎, 𝑏, 𝑐 ∈ Var and assume 𝐹 ⊩ 𝑎 ▷ 𝑏 → (♢𝑎 ∧ □𝑐) ▷ (𝑏 ∧ □𝑐) and assume that for
some 𝑤, 𝑥, 𝑦, 𝑧 we have 𝑤𝑅𝑥𝑅𝑦𝑆𝑤𝑧. Consider a model based on 𝐹 such that the following
holds:

⟦𝑎⟧ = {𝑦};
⟦𝑏⟧ = {𝑧};
⟦𝑐⟧ = {𝑣 ∶ 𝑥𝑅𝑣}.

48

Observe that 𝑤 ⊩ 𝑎 ▷ 𝑏 since 𝑎 is forced only in 𝑦 and we have 𝑦𝑆𝑤𝑧 ⊩ 𝑏. It follows that
𝑤 ⊩ (♢𝑎 ∧ □𝑐) ▷ (𝑏 ∧ □𝑐). Clearly 𝑥 ⊩ ♢𝑎 ∧ □𝑐, hence there must exist some world 𝑣 such
that 𝑥𝑆𝑤𝑣 ⊩ 𝑏 ∧ □𝑐 but since 𝑏 is only forced in 𝑧 we have 𝑧 = 𝑣 and thus 𝑥𝑆𝑤𝑧. To prove
the remaining implication let 𝑢 such that 𝑧𝑅𝑢, then 𝑢 ⊩ 𝑐 and thus 𝑥𝑅𝑢.

The Agda proof can be found in Appendix B.27.

15.2. Generalized semantics
The (M0)gen condition reads as follows:

∀𝑤, 𝑥, 𝑦, 𝑌 (𝑤𝑅𝑥𝑅𝑦𝑆𝑤𝑌 ⇒ ∃𝑌 ′ ⊆ 𝑌 (𝑥𝑆𝑤𝑌 ′, ∀𝑦′ ∈ 𝑌 ′∀𝑧(𝑦′𝑅𝑧 ⇒ 𝑥𝑅𝑧))).

Figure 15.2.: Generalized frame condition for M0.

Theorem 15.2. For any ordinary frame 𝐹 , we have that 𝐹 satisfies the (M0)gen condition iff
any model based on 𝐹 forces every instantiation of the M0 principle. In symbols:

𝐹 ⊨ (M0)gen ⇔ 𝐹 ⊩ M0.

Proof.

• ⇒ Let 𝑀 be a model based on 𝐹 and let 𝑤 be any world. Assume that 𝑤 ⊩ 𝐴 ▷ 𝐵
and that there is a world 𝑥 such that 𝑤𝑅𝑥 ⊩ ♢𝐴 ∧ □𝐶. Then there must exist some
world 𝑦 such that 𝑥𝑅𝑦 ⊩ 𝐴. Since 𝑤𝑅𝑦 and 𝑤 ⊩ 𝐴 ▷ 𝐵 there exists some set 𝑌 such that
𝑦𝑆𝑤𝑌 ⊩ 𝐵. Then by the (M0)gen condition we have that there exists some 𝑌 ′ ⊆ 𝑌 such
that 𝑥𝑆𝑤𝑌 ′ and (⋆) ∀𝑦′ ∈ 𝑌 ′∀𝑧(𝑦′𝑅𝑧 ⇒ 𝑥𝑅𝑧). Clearly 𝑌 ′ ⊩ 𝐵 since 𝑌 ′ ⊆ 𝑌 . To show
that 𝑌 ′ ⊩ □𝐶 consider some 𝑦′ ∈ 𝑌 ′ and some 𝑧 such that 𝑦′𝑅𝑧. Then, by (⋆) it follows
that 𝑥𝑅𝑧 and since 𝑥 ⊩ □𝐶 we also have 𝑥 ⊩ 𝐶.

• ⇐ Let 𝑎, 𝑏, 𝑐 ∈ Var and assume 𝐹 ⊩ 𝑎 ▷ 𝑏 → (♢𝑎 ∧ □𝑐) ▷ (𝑏 ∧ □𝑐) and assume that for
some 𝑤, 𝑥, 𝑦, 𝑌 we have 𝑤𝑅𝑥𝑅𝑦𝑆𝑤𝑌 . Then consider a model based on 𝐹 such that.

⟦𝑎⟧ = {𝑦};
⟦𝑏⟧ = 𝑌 ;
⟦𝑐⟧ = {𝑣 ∶ 𝑥𝑅𝑣}.

Observe that 𝑤 ⊩ 𝑎 ▷ 𝑏 as 𝑎 is only forced in 𝑦 and we have 𝑦𝑆𝑤𝑌 ⊩ 𝑏. Consequently it
holds that 𝑤 ⊩ (♢𝑎 ∧ □𝑐) ▷ (𝑏 ∧ □𝑐). See also that 𝑥 ⊩ ♢𝑎 since 𝑥𝑅𝑦 ⊩ 𝑎 and also 𝑥 ⊩ □𝑐
by definition of the model. Then there must exist some set 𝑌 ′ such that 𝑥𝑆𝑤𝑌 ′ ⊩ 𝑏 ∧ □𝑐.
Clearly 𝑌 ′ ⊆ 𝑌 since 𝑌 ′ ⊩ 𝑏. To show the remaining condition pick some 𝑦′ ∈ 𝑌 ′ and
some 𝑧 such that 𝑦′𝑅𝑧. Since 𝑌 ′ ⊩ □𝑐 then 𝑧 ⊩ 𝑐 and thus 𝑥𝑅𝑧.

The Agda proof can be found in Appendix B.10.

49

16. The principle P0

The P0 principle reads as follows:

𝐴 ▷ ♢𝐵 → □(𝐴 ▷ 𝐵).

We give some context to the principle P0, borrowed from [20]. The principle P0 was discovered
in 1998 by Albert Visser. This principle appeared while trying to develop the completeness proof
of ILM0. In an attempt to strengthen the logic, Visser modified the frame condition of ILM0 to
make it stronger and arrived at a stronger principle, which was given the name P0. The frame
condition with respect to ordinary semantics of P0 implies the frame condition (with respect
to ordinary semantics) of M0. In [18] it is proven that ILP0 ⊬ ILM0 using ordinary Veltman
semantics. Thus we have that ILP0 is modally incomplete with respect to ordinary semantics.
However, it was shown recently in [26] that P0 is in fact complete with respect to generalized
Veltman semantics.

The principle P0 is valid in all reasonable arithmetical theories and thus it is in IL(All).

16.1. Ordinary semantics
The (P0) condition reads as follows:

∀𝑤, 𝑥, 𝑦, 𝑧, 𝑢(𝑤𝑅𝑥𝑅𝑦𝑆𝑤𝑧𝑅𝑢 ⇒ 𝑦𝑆𝑥𝑢).

Figure 16.1.: Ordinary frame condition for P0.

Theorem 16.1. For any ordinary frame 𝐹 , we have that 𝐹 satisfies the (P0) condition iff any
model based on 𝐹 forces every instantiation of the P0 principle. In symbols:

𝐹 ⊨ (P0) ⇔ 𝐹 ⊩ P0.

Proof.

• ⇒ Let 𝑀 be a model based on 𝐹 and let 𝑤 be any world. Assume that 𝑤 ⊩ 𝐴 ▷ ♢𝐵 and
that there is a world 𝑥 such that 𝑤𝑅𝑥. Our goal is to show that 𝑥 ⊩ 𝐴 ▷ 𝐵. Consider a
world 𝑦 such that 𝑥𝑅𝑦 ⊩ 𝐴. As 𝑤𝑅𝑦 and 𝑤 ⊩ 𝐴 ▷ ♢𝐵 then there exist some worlds 𝑧, 𝑢
such that 𝑦𝑆𝑤𝑧𝑅𝑢 ⊩ 𝐵. By the (P0) condition it follows that 𝑦𝑆𝑥𝑢 and thus 𝑥 ⊩ 𝐴 ▷ 𝐵.

50

• ⇐ Let 𝑎, 𝑏 ∈ Var and assume 𝐹 ⊩ 𝑎 ▷ ♢𝑏 → □(𝑎 ▷ 𝑏) and assume that 𝑤𝑅𝑥𝑅𝑦𝑆𝑤𝑧𝑅𝑢.
We want to show 𝑦𝑆𝑥𝑢. Consider a model based on 𝐹 such that:

⟦𝑎⟧ = {𝑦};
⟦𝑏⟧ = {𝑢}.

Observe that 𝑤 ⊩ 𝑎 ▷ ♢𝑏 as the only world that forces 𝑎 is 𝑦 and we have 𝑦𝑆𝑤𝑧 ⊩ ♢𝑏,
because 𝑧𝑅𝑢 ⊩ 𝑏. Consequently we have 𝑤 ⊩ □(𝑎 ▷ 𝑏) and therefore 𝑥 ⊩ 𝑎 ▷ 𝑏. Then,
since 𝑥𝑅𝑦 ⊩ 𝑎 it follows that there exist some 𝑣 such that 𝑦𝑆𝑥𝑣 ⊩ 𝑏, but since 𝑏 is only
forced in 𝑢, it must be 𝑢 = 𝑣 and so 𝑦𝑆𝑥𝑢.

The Agda proof can be found in Appendix B.28.

16.2. Generalized semantics
The (P0)gen condition reads as follows:

∀𝑤, 𝑥, 𝑦, 𝑉 , 𝑍((𝑤𝑅𝑥𝑅𝑦𝑆𝑤𝑉 , ∀𝑣 ∈ 𝑌 ∃𝑧 ∈ 𝑍(𝑣𝑅𝑧)) ⇒ ∃𝑍′ ⊆ 𝑍(𝑦𝑆𝑥𝑍′)).

Figure 16.2.: Generalized frame condition for P0.

Theorem 16.2. For any generalized frame 𝐹 , we have that 𝐹 satisfies the (P0)gen condition iff
any model based on 𝐹 forces every instantiation of the P0 principle. In symbols:

𝐹 ⊨ (P0)gen ⇔ 𝐹 ⊩ P0.

Proof.

• ⇒ Let 𝑀 be a model based on 𝐹 and let 𝑤 be any world. Assume that 𝑤 ⊩ 𝐴 ▷ ♢𝐵 and
that there is a world 𝑥 such that 𝑤𝑅𝑥. We aim to show that 𝑥 ⊩ 𝐴 ▷ 𝐵. Assume there
is a world 𝑢 such that 𝑥𝑅𝑢 ⊩ 𝐴 and as 𝑤𝑅𝑢 and 𝑤 ⊩ 𝐴 ▷ ♢𝐵 then there exists a set 𝑉
𝑢𝑆𝑥𝑉 ⊩ ♢𝐵. Let 𝔹 = {𝑣 ∶ 𝑣 ⊩ 𝐵}. Then observe that because 𝑉 ⊩ ♢𝐵 we have that for
all 𝑣 in 𝑉 there exists some 𝑧 ∈ 𝔹 such that 𝑣𝑅𝑧. Hence by the (P0)gen condition there
exists some 𝔹′ ⊆ 𝔹 such that 𝑦𝑆𝑥𝔹′. Clearly 𝔹′ ⊩ 𝐵, therefore 𝑥 ⊩ 𝐴 ▷ 𝐵.

• ⇐ Let 𝑎, 𝑏 ∈ Var and assume 𝐹 ⊩ 𝑎 ▷ ♢𝑏 → □(𝑎 ▷ 𝑏) and assume that for some
𝑤, 𝑥, 𝑦, 𝑉 , 𝑍 we have 𝑤𝑅𝑥𝑅𝑦𝑆𝑤𝑌 and (⋆) ∀𝑣 ∈ 𝑉 ∃𝑧 ∈ 𝑍(𝑣𝑅𝑧). Consider a model based
on 𝐹 such that:

⟦𝑎⟧ = {𝑦};
⟦𝑏⟧ = 𝑍.

51

See that 𝑤 ⊩ 𝑎 ▷ ♢𝑏 as the only world that forces 𝑎 is 𝑦 and we have 𝑦𝑆𝑤𝑉 and by (⋆)
it follows that 𝑉 ⊩ ♢𝑏. Consequently it holds that 𝑤 ⊩ □(𝑎 ▷ 𝑏) and since 𝑤𝑅𝑥 then
𝑥 ⊩ 𝑎 ▷ 𝑏. Also, since 𝑥𝑅𝑦 ⊩ 𝑎 then there exists 𝑍′ such that 𝑦𝑆𝑥𝑍′ ⊩ 𝑏. Clearly 𝑍′ ⊩ 𝑏
implies 𝑍′ ⊆ 𝑍 so we are done.

The Agda proof can be found in Appendix B.11.

52

17. The principle R
The R principle reads as follows:

𝐴 ▷ 𝐵 → ¬(𝐴 ▷ ¬𝐶) ▷ (𝐵 ∧ □𝐶) .
The principle R was introduced by Goris and Joosten in [14]. The authors show that R does

follow semantically but not syntactically from ILP0W∗, which was the best known lower bound
for IL(All) in at a time. Goris and Joosten also show that R is valid in all reasonable arithmetical
theories and thus giving a strictly better lower bound for IL(All).

The principle R is the same as R0 and R0. The Rn and Rn series of principles, which generalize
R, will be discussed in Chapters 18 and 20.

17.1. Ordinary semantics
The (R) condition reads as follows:

∀𝑤, 𝑥, 𝑦, 𝑧, 𝑢(𝑤𝑅𝑥𝑅𝑦𝑆𝑤𝑧𝑅𝑢 ⇒ 𝑦𝑆𝑥𝑢).

Figure 17.1.: Ordinary frame condition for R.

Theorem 17.1. For any ordinary frame 𝐹 , we have that 𝐹 satisfies the (R) condition iff
any model based on 𝐹 forces every instantiation of the R principle. In symbols:

𝐹 ⊨ (R) ⇔ 𝐹 ⊩ R .

Proof. • ⇒ Let 𝑀 be a model based on 𝐹 and let 𝑤 be any world. Assume that 𝑤 ⊩ 𝐴▷𝐵
and that there is a world 𝑥 such that 𝑤𝑅𝑥 ⊩ ¬(𝐴 ▷ ¬𝐶). We need to see that there is
some world 𝑧 such that 𝑥𝑆𝑤𝑧 ⊩ 𝐵 ∧ □𝐶. From 𝑥 ⊩ ¬(𝐴 ▷ ¬𝐶) we get a world 𝑦 such that
𝑥𝑅𝑦 ⊩ 𝐴 and (⋆) ∀𝑣(𝑦𝑆𝑥𝑣 ⇒ 𝑣 ⊩ 𝐶). Since 𝑤 ⊩ 𝐴 ▷ 𝐵, and by transitivity we have 𝑤𝑅𝑦,
it follows that there exists a world 𝑧 such that 𝑦𝑆𝑤𝑧 ⊩ 𝐵. To see that 𝑧 is the desired
world we first see that 𝑧 ⊩ □𝐶. Let 𝑢 be such that 𝑧𝑅𝑢, then by (R) it follows that 𝑦𝑆𝑥𝑢
and by (⋆) we get 𝑢 ⊩ 𝐶. Finally, we have to see that 𝑥𝑆𝑤𝑧. Since 𝑤𝑅𝑥𝑅𝑦 we have that
𝑥𝑆𝑤𝑦 and we have 𝑦𝑆𝑤𝑧 from before, hence by transitivity of 𝑆𝑤 we get 𝑥𝑆𝑤𝑧.

53

• ⇐ Let 𝑎, 𝑏, 𝑐 ∈ Var and assume that for some 𝑤, 𝑥, 𝑦, 𝑧 we have 𝑤𝑅𝑥𝑅𝑦𝑆𝑤𝑧 . Consider a
model based on 𝐹 that satisfies the following.

⟦𝑎⟧ = {𝑦};
⟦𝑏⟧ = {𝑧};
⟦𝑐⟧ = {𝑢 ∶ 𝑦𝑆𝑥𝑢}.

By assumption we have that 𝑤 ⊩ 𝑎 ▷ 𝑏 → (¬(𝑎 ▷ ¬𝑐) ▷ (𝑏 ∧ □𝑐)). Clearly 𝑤 ⊩ 𝑎 ▷ 𝑏
as we have 𝑦𝑆𝑤𝑧 ⊩ 𝑏. Consequently it holds that 𝑤 ⊩ ¬(𝑎 ▷ ¬𝑐) ▷ (𝑏 ∧ □𝑐). In order to
show that 𝑥 ⊩ ¬(𝑎 ▷ ¬𝑐), considering that 𝑎 is only forced in 𝑦, it suffices to observe that
∀𝑧(𝑦𝑆𝑥𝑧 ⇒ 𝑧 ⊩ 𝑐), which clearly holds. Then there must exist some world 𝑣 such that
𝑥𝑆𝑤𝑣 ⊩ 𝑏 ∧ □𝑐 but 𝑣 = 𝑧 since 𝑧 is the only world that forces 𝑏, hence 𝑥𝑆𝑤𝑧 ⊩ □𝑐. Now
to show ∀𝑣(𝑧𝑅𝑣 ⇒ 𝑦𝑆𝑥𝑣) consider some 𝑣 such that 𝑧𝑅𝑣. From 𝑧 ⊩ □𝑐 we get 𝑣 ⊩ 𝑐 and
thus 𝑦𝑆𝑥𝑣.

The Agda proof can be found in Appendix B.29.

17.2. Generalized semantics
In order to define the frame condition for the R principle we first need to introduce the concept
of choice set.

Definition 17.2. If 𝑥𝑅𝑦 we say that a set of worlds 𝐾 is a choice set for ⟨𝑥, 𝑦⟩ iff for any 𝑉
such that 𝑦𝑆𝑥𝑉 we have 𝑉 ∩ 𝐾 ≠ ∅. We denote the family of choice sets for ⟨𝑥, 𝑦⟩ by 𝒞(𝑥, 𝑦).
Note that this definition depends on the frame, but it should always be clear from context.

The (R)gen condition reads as follows:

∀𝑤, 𝑥, 𝑦, 𝑌 , 𝐾(𝑤𝑅𝑥𝑅𝑦𝑆𝑤𝑌 , 𝐾 ∈ 𝒞(𝑥, 𝑦)
⇒∃𝑌 ′ ⊆ 𝑌 (𝑥𝑆𝑤𝑌 ′, ∀𝑦′ ∈ 𝑌 ′∀𝑧(𝑦′𝑅𝑧 ⇒ 𝑧 ∈ 𝐾))).

K
R[y']

Figure 17.2.: Generalized frame condition for R.

Theorem 17.3. For any generalized frame 𝐹 , we have that 𝐹 satisfies the (R)gen condition
iff any model based on 𝐹 forces every instantiation of the R principle. In symbols:

𝐹 ⊨ (R)gen ⇔ 𝐹 ⊩ R.

54

Proof. • ⇒ Let 𝑀 be a model based on 𝐹 and assume there is a world 𝑤 such that
𝑤 ⊩ 𝐴 ▷ 𝐵 and a world 𝑥 such that 𝑤𝑅𝑥 and 𝑥 ⊩ ¬(𝐴 ▷ ¬𝐶). We need to show that
there is a set 𝑍 such that 𝑥𝑆𝑤𝑍 ⊩ 𝐵 ∧ □𝐶. From 𝑥 ⊩ ¬(𝐴 ▷ ¬𝐶) it follows that there
is a world 𝑦 such that 𝑥𝑅𝑦 ⊩ 𝐴 and (⋆) ∀𝑉 (𝑦𝑆𝑥𝑉 ⇒ ∃𝑐 ∈ 𝑉 (𝑐 ⊩ 𝐶)). Consider the set
𝐾 ≔ {𝑐 ∶ 𝑐 ⊩ 𝐶, ∃𝑉 (𝑐 ∈ 𝑉 , 𝑦𝑆𝑥𝑉)}. Clearly by (⋆) it follows that 𝐾 is a choice set for
⟨𝑥, 𝑦⟩. By transitivity of 𝑅 we get 𝑤𝑅𝑦 and since 𝑤 ⊩ 𝐴 ▷ 𝐵 then there must exist some
𝑌 such that 𝑦𝑆𝑤𝑌 ⊩ 𝐵. We can now apply the (R)gen condition and get a 𝑌 ′ ⊆ 𝑌 such
that 𝑥𝑆𝑤𝑌 ′ and (†) ∀𝑦′ ∈ 𝑌 ′∀𝑧(𝑦′𝑅𝑧 ⇒ 𝑧 ∈ 𝐾). To show that 𝑌 ′ is the desired set it
remains to see that 𝑌 ′ ⊩ 𝐵 ∧ □𝐶. From the fact that 𝑌 ′ ⊆ 𝑌 ⊩ 𝐵 it easily follows that
𝑌 ′ ⊩ 𝐵. Now, let 𝑦′ ∈ 𝑌 ′ and 𝑢 such that 𝑦′𝑅𝑢, from (†) we get 𝑢 ∈ 𝐾 and by definition
of 𝐾 we have 𝑢 ⊩ 𝐶.

• ⇐ Let 𝑎, 𝑏, 𝑐 ∈ Var and assume 𝐹 ⊩ 𝑎 ▷ 𝑏 → ¬(𝑎 ▷ ¬𝑐) ▷ (𝑏 ∧ □𝑐). Assume also that for
some 𝑤, 𝑥, 𝑦, 𝑌 , 𝐾 we have 𝑤𝑅𝑥𝑅𝑦𝑆𝑤𝑌 , 𝐾 ∈ 𝒞(𝑥, 𝑦). Now consider a model based on 𝐹
that satisfies the following:

⟦𝑎⟧ = {𝑦};
⟦𝑏⟧ = 𝑌 ;
⟦𝑐⟧ = 𝐾.

By assumption we have 𝑤 ⊩ 𝑎 ▷ 𝑏 → ¬(𝑎 ▷ ¬𝑐) ▷ (𝑏 ∧ □𝑐). Observe that that 𝑤 ⊩ 𝑎 ▷ 𝑏
since 𝑦𝑆𝑤𝑌 ⊩ 𝑏. Thus 𝑤 ⊩ ¬(𝑎 ▷ ¬𝑐) ▷ (𝑏 ∧ □𝑐). As 𝑦 is the only world that forces 𝑎, in
order to show 𝑥 ⊩ ¬(𝑎 ▷ ¬𝑐) we need to see that ∀𝑉 (𝑦𝑆𝑥𝑉 ⇒ ∃𝑧 ∈ 𝑉 (𝑧 ⊩ 𝑐)), which is
equivalent to ∀𝑉 (𝑦𝑆𝑥𝑉 ⇒ ∃𝑧 ∈ 𝑉 ∩𝐾) and this holds since 𝐾 ∈ 𝒞(𝑥, 𝑦). As a consequence
of 𝑥 ⊩ ¬(𝑎 ▷ ¬𝑐) we have that there exists a set 𝑌 ′ such that 𝑥𝑆𝑤𝑌 ′ ⊩ 𝑏 ∧ □𝑐. From
𝑌 ′ ⊩ 𝑏 we get 𝑌 ′ ⊆ 𝑌 and from 𝑌 ′ ⊩ □𝑐 we get ∀𝑦′ ∈ 𝑌 ′(∀𝑧(𝑦′𝑅𝑧 → 𝑧 ∈ 𝐾)), hence 𝑌 ′

is the desired set.
The Agda proof can be found in Appendix B.12.

55

18. The principle R1

The 𝑅1 principle reads as follows:

𝐴 ▷ 𝐵 → (¬(𝐴 ▷ ¬𝐶) ∧ (𝐷 ▷ ♢𝐸)) ▷ (𝐵 ∧ □𝐶 ∧ (𝐷 ▷ 𝐸)).

It is the second principle of the Rn series. The series of principles Rn is defined in [16] and it
has been named the slim series.

18.1. Ordinary semantics
The (R1) frame condition reads as follows:

∀𝑤, 𝑥, 𝑦, 𝑧(𝑤𝑅𝑥𝑅𝑦𝑆𝑤𝑧 ⇒ ∀𝑢(𝑧𝑅𝑢 ⇒ 𝑦𝑆𝑥𝑢, ∀𝑣(𝑢𝑆𝑥𝑣 ⇒ ∀𝑚(𝑣𝑅𝑚 ⇒ 𝑢𝑆𝑧𝑚))))

Theorem 18.1. For any ordinary frame 𝐹 , we have that 𝐹 satisfies the (R1) condition iff any
model based on 𝐹 forces every instantiation of the R1 principle. In symbols:

𝐹 ⊨ (R1) ⇔ 𝐹 ⊩ R1.

Proof. The details of the proof can be found in [16].

18.2. Generalized semantics
The results presented in this section are a joint work with Luka Mikec.

We start by giving some definitions:

1. 𝑅−1[𝐸] ≔ {𝑥 ∶ ∃𝑦 ∈ 𝐸.𝑥𝑅𝑦}. 𝐸 denotes a set.

2. 𝑅−1
𝑥 [𝐸] ≔ 𝑅−1[𝐸] ∩ 𝑅[𝑥]. 𝐸 denotes a set.

The (R1)gen condition reads as follows:

∀𝑤,𝑥, 𝑢, 𝔹, ℂ, 𝔼.
𝑤𝑅𝑥𝑅𝑢𝑆𝑤𝔹, ℂ ∈ 𝒞(𝑥, 𝑢)

⇒ ∃𝔹′ ⊆ 𝔹.𝑥𝑆𝑤𝔹′, 𝑅[𝔹′] ⊆ ℂ, ∀𝑣 ∈ 𝔹′.∀𝑐 ∈ ℂ.(∃𝑈 ⊆ 𝑅−1
𝑥 [𝔼], 𝑣𝑅𝑐𝑆𝑥𝑈) ⇒ ∃𝔼′ ⊆ 𝔼.𝑐𝑆𝑣𝔼′)

Theorem 18.2. For any generalized frame 𝐹 , we have that 𝐹 satisfies the (R1)gen condition
iff any model based on 𝐹 forces every instantiation of the R1 principle. In symbols:

𝐹 ⊨ (R1)gen ⇔ 𝐹 ⊩ R1.

Proof. • ⇒ Let’s fix the model and let 𝑤 ∈ 𝑊 be arbitrary. Suppose 𝑤 ⊩ 𝐴 ▷ 𝐵, and let
𝑥 be such that 𝑤𝑅𝑥 and 𝑥 ⊩ ¬(𝐴 ▷ ¬𝐶) ∧ (𝐷 ▷ ♢𝐸). It follows from 𝑥 ⊩ ¬(𝐴 ▷ ¬𝐶) that
there exists 𝑢 such that 𝑥𝑅𝑢, such that 𝑢 ⊩ 𝐴, and for every 𝑍 such that 𝑢𝑆𝑥𝑍 there is
some 𝑐𝑍 ∈ 𝑍 such that 𝑐𝑍 ⊩ 𝐶. From 𝑤𝑅𝑢, 𝑤 ⊩ 𝐴 ▷ 𝐵 and 𝑢 ⊩ 𝐴 follows in particular
that there is a 𝔹, 𝑢𝑆𝑤𝔹 ⊩ 𝐵. Let ℂ ≔ {𝑐𝑍 ∶ 𝑢𝑆𝑥𝑍}. It is easy to check that ℂ ∈ 𝒞(𝑥, 𝑢).

56

Let 𝔼 ≔ ⟦𝐸⟧. For the selected 𝑤, 𝑥, 𝑢, 𝔹, ℂ, 𝔼 the property (R1)gen implies that there exists
𝔹′ ⊆ 𝔹 such that:

𝑥𝑆𝑤𝔹′, 𝑅[𝔹′] ⊆ ℂ, ∀𝑣 ∈ 𝔹′.∀𝑐 ∈ ℂ.(∃𝑈 ⊆ 𝑅−1
𝑥 [𝔼], 𝑣𝑅𝑐𝑆𝑥𝑈) ⇒ ∃𝔼′ ⊆ 𝔼.𝑐𝑆𝑣𝔼′

We have that 𝔹′ ⊩ 𝐵 since 𝔹′ ⊆ 𝔹 and 𝔹′ ⊩ □𝐶 since 𝑅[𝔹′] ⊆ ℂ. We now show that
𝔹′ ⊩ 𝐷 ▷ 𝐸. Let 𝑣 ∈ 𝐵′ and assume that for some 𝑐 such that 𝑣𝑅𝑐 we have 𝑐 ⊩ 𝐷. From
earlier we have 𝑥 ⊩ 𝐷 ▷ ♢𝐸. Since 𝑐 ∈ 𝑅[𝔹′] ⊆ 𝐶 ⊆ 𝑅[𝑥], then 𝑥𝑅𝑐 so it follows that
there exists 𝑈 such that 𝑐𝑆𝑥𝑈 and 𝑈 ⊩ ♢𝐸. Clearly 𝑈 ⊆ 𝑅−1

𝑥 [𝔼] so by the above property
there exists 𝔼′ ⊆ 𝔼 such that 𝑐𝑆𝑣𝔼′. Because 𝔼′ ⊆ 𝔼 we have 𝔼′ ⊩ 𝐸.

• ⇐ Assume for a contradiction that 𝐹 ⊭ (R1)gen. It follows that there exist 𝑤, 𝑥, 𝑢, 𝔹, ℂ, 𝔼
such that 𝑤𝑅𝑥𝑅𝑢𝑆𝑤𝔹, ℂ ∈ 𝒞(𝑥, 𝑢) and:

∀𝔹′ ⊆ 𝔹.𝑥𝑆𝑤𝔹′, 𝑅[𝔹′] ⊆ ℂ ⇒ ∃𝑣 ∈ 𝔹′.∃𝑐 ∈ ℂ.∃𝑍 ⊆ 𝑅−1
𝑥 [𝔼].𝑣𝑅𝑐𝑆𝑥𝑍, ∀𝔼′ ⊆ 𝔼.𝑐�𝑆𝑣𝔼′.

Let 𝒱 be a family of sets defined thus:

𝒱 ≔ {𝑈 ∶ 𝑈 ⊆ 𝔹, 𝑥𝑆𝑤𝑈, 𝑅[𝑈] ⊆ ℂ}.

From the condition it follows that for every 𝑈 ∈ 𝒱 the following is valid:

∃𝑣𝑈 ∈ 𝑈.∃𝑐𝑈 ∈ ℂ.(∃𝑍𝑈 ⊆ 𝑅−1
𝑥 [𝔼](𝑣𝑈𝑅𝑐𝑈𝑆𝑥𝑍𝑈 , ∀𝔼′ ⊆ 𝔼.𝑐𝑈�𝑆𝑣𝑈

𝔼′)).

Let us fix such 𝑣𝑈 and 𝑐𝑈 and 𝑍𝑈 for all 𝑈 ∈ 𝒱.
Define a valuation such that the following applies:

⟦𝑎⟧ = {𝑢};
⟦𝑏⟧ = 𝔹;
⟦𝑐⟧ = ℂ;
⟦𝑑⟧ = {𝑐𝑈 ∶ 𝑈 ∈ 𝒱};
⟦𝑒⟧ = 𝔼.

By assumption we have 𝑤 ⊩ 𝑎 ▷ 𝑏 → (¬(𝑎 ▷ ¬𝑐) ∧ (𝑑 ▷ ♢𝑒)) ▷ (𝑏 ∧ □𝑐 ∧ (𝑑 ▷ 𝑒)).
It is easy to see that 𝑤 ⊩ 𝑎 ▷ 𝑏 and 𝑥 ⊩ ¬(𝑎 ▷ ¬𝑐).
Let us prove 𝑥 ⊩ 𝑑 ▷ ♢𝑒. Let 𝑥𝑅𝑐 ⊩ 𝐷. Then 𝑐 = 𝑐𝑈 for some 𝑈 ∈ 𝒱. From the definition
of 𝑐𝑈 we have that 𝑐𝑈𝑆𝑥𝑍𝑈 . The valuation is defined such that 𝑒 is true exactly on the
set 𝔼. Hence 𝑅−1

𝑥 [𝔼] ⊩ ♢𝑒 and since 𝑍𝑈 ⊆ 𝑅−1
𝑥 [𝔼] it follows that 𝑥 ⊩ 𝑑 ▷ ♢𝑒.

We can also check that for every 𝑈 ∈ 𝒱 we have 𝑈 ⊩ 𝑏 ∧ □𝑐. Furthermore, for any set 𝑈
we have

(⋆) 𝑥𝑆𝑤𝑈 ⊩ 𝑏 ∧ □𝑐 ⇒ 𝑈 ∈ 𝒱.

Since 𝑤 ⊩ 𝑎 ▷ 𝑏 and 𝑤𝑅𝑥 ⊩ ¬(𝑎 ▷ ¬𝑐) ∧ (𝑑 ▷ ♢𝑒) there must exist some set 𝑈 such that
𝑥𝑆𝑤𝑈 ⊩ 𝑏 ∧ □𝑐 ∧ (𝑑 ▷ 𝑒). From (⋆) follows that 𝑈 ∈ 𝒱 hence there exist 𝑣𝑈 , 𝑐𝑈 , 𝑍𝑈 such
that 𝑍𝑈 ⊆ 𝑅−1

𝑥 [𝔼] and 𝑣𝑈𝑅𝑐𝑈𝑆𝑥𝑍𝑈 , (∀𝔼′ ⊆ 𝔼)𝑐𝑈�𝑆𝑣𝑈
𝔼′. Since 𝑐𝑈 ⊩ 𝑑 there must exist

some 𝑌 such that 𝑐𝑈𝑆𝑣𝑈
𝑌 ⊩ 𝑒, however, by the definition of the valuation it follows that

𝑌 ⊆ 𝔼 and thus 𝑐𝑈�𝑆𝑣𝑈
𝑌 , which is a contradiction.

The Agda proof can be found in Appendix B.16.

57

19. The principle R1

The R1 principle reads as follows:

𝐴 ▷ 𝐵 → (♢¬(𝐷 ▷ ¬𝐶) ∧ (𝐷 ▷ 𝐴)) ▷ (𝐵 ∧ □𝐶).
R1 is the second principle of the series Rn. The series of principles Rn is defined in [16] and it

has been named the broad series. In Chapter 20 we comment on the series Rn and present the
frame condition with respect to generalized semantics.

19.1. Generalized semantics
The (R1)gen condition reads as follows:

∀𝑤, 𝑥, 𝑦, 𝑧, 𝔸, 𝔹, ℂ, 𝔻.
𝑤𝑅𝑥𝑅𝑦𝑅𝑧,
(∀𝑢.𝑤𝑅𝑢, 𝑢 ∈ 𝔸 ⇒ ∃𝑉 .𝑢𝑆𝑤𝑉 , 𝑉 ⊆ 𝔹),
(∀𝑢.𝑥𝑅𝑢, 𝑢 ∈ 𝔻 ⇒ ∃𝑉 .𝑢𝑆𝑥𝑉 , 𝑉 ⊆ 𝔸),
(∀𝑉 .𝑧𝑆𝑦𝑉 ⇒ ∃𝑣 ∈ 𝑉 .𝑣 ∈ ℂ),
𝑧 ∈ 𝔻

⇒ ∃𝑉 ⊆ 𝔹(𝑥𝑆𝑤𝑉 , 𝑅[𝑉] ⊆ ℂ).

Theorem 19.1. For any generalized frame 𝐹 , we have that 𝐹 satisfies the (R1)gen condition
iff any model based on 𝐹 forces every instantiation of the R1 principle. In symbols:

𝐹 ⊨ (R1)gen ⇔ 𝐹 ⊩ R1.
Proof. • ⇒ Fix a model 𝑀 and a world 𝑤, we are to prove that 𝑤 ⊩ 𝐴 ▷ 𝐵 → (♢¬(𝐷 ▷

¬𝐶) ∧ (𝐷 ▷ 𝐴)) ▷ (𝐵 ∧ □𝐶). For that assume that 𝑤 ⊩ 𝐴 ▷ 𝐵 and that for some 𝑥, 𝑦, 𝑧
we have 𝑤𝑅𝑥𝑅𝑦𝑅𝑧 and satisfy the conditions on the left hand side of the implication in
the (R1)gen condition. From that we derive that 𝑥 ⊩ 𝐷 ▷ 𝐴, 𝑦 ⊩ ¬(𝐷 ▷ ¬𝐶) and 𝑧 ⊩ 𝐷.
Now let 𝔸 ≔ {𝑤 ∶ 𝑤 ⊩ 𝐴}. We define 𝔹, ℂ, 𝔻 likewise for formulas 𝐵, 𝐶, 𝐷 respectively.
It is routine to check that the left part of the implication of (R1)gen is met. Hence there
exist a set 𝑉 ⊆ 𝔹 such that 𝑥𝑆𝑤𝑉 and 𝑅[𝑉] ⊆ ℂ. By the definition of the sets 𝔹 and ℂ it
follows that 𝑉 ⊩ 𝐵 ∧ □𝐶.

• ⇐ Fix a frame 𝐹 and let 𝑎, 𝑏, 𝑐, 𝑑 be propositional variables and assume 𝐹 ⊩ 𝑎 ▷ 𝑏 →
(♢¬(𝑑 ▷ ¬𝑐) ∧ (𝑑 ▷ 𝑎)) ▷ (𝑏 ∧ □𝑐). Assume that the left part of the implication of (R1)gen
holds. Now consider a model extending 𝐹 such that:

⟦𝑎⟧ = 𝔸,
⟦𝑏⟧ = 𝔹,
⟦𝑐⟧ = ℂ,
⟦𝑑⟧ = 𝔻.

Now one can easily check that 𝑤 ⊩ 𝐴 ▷ 𝐵, 𝑥 ⊩ ♢¬(𝐷 ▷ ¬𝐶) ∧ (𝐷 ▷ 𝐴), hence there exists
𝑈 such that 𝑥𝑆𝑤𝑈 and 𝑈 ⊩ 𝐵 ∧ □𝐶. From that we derive that 𝑈 ⊆ 𝔹 and 𝑅[𝑈] ⊆ ℂ.

The Agda proof can be found in Appendix B.13.

58

20. The series of principles Rn

The series of principles Rn principle is defined thus:

𝑈0 ≔ ♢¬(𝐷0 ▷ ¬𝐶)
𝑈𝑟+1 ≔ ♢((𝐷𝑟 ▷ 𝐷𝑟+1) ∧ 𝑈𝑟)

𝑅0 ≔ 𝐴 ▷ 𝐵 → ¬(𝐴 ▷ ¬𝐶) ▷ 𝐵 ∧ □𝐶
𝑅𝑛+1 ≔ 𝐴 ▷ 𝐵 → ((𝐷𝑛 ▷ 𝐴) ∧ 𝑈𝑛) ▷ 𝐵 ∧ □𝐶

The principle R0 is equivalent to R, which we already discussed in Chapter 17 and we already
discussed the principle R1 in Chapter 19. In this chapter we deal with these and other principles
from the series at once.

The Rn series is also referred to as the broad series.

20.1. Ordinary semantics
The frame condition for ordinary semantics (Rn) can be found in [16].

20.2. Generalized semantics
The (Rn)gen condition reads as follows:

∀𝑤,𝑥0, …, 𝑥𝑛−1, 𝑦, 𝑧, 𝔸, 𝔹, ℂ, 𝔻0, …, 𝔻𝑛−1.
𝑤𝑅𝑥𝑛−1𝑅…𝑅𝑥0𝑅𝑦𝑅𝑧,
(∀𝑢.𝑤𝑅𝑢, 𝑢 ∈ 𝔸 ⇒ ∃𝑉 .𝑢𝑆𝑤𝑉 ⊆ 𝔹),
(∀𝑢.𝑥𝑛−1𝑅𝑢 ∈ 𝔻𝑛−1 ⇒ ∃𝑉 .𝑢𝑆𝑥𝑛−1

𝑉 ⊆ 𝔸),
(∀𝑖 ∈ {1, …, 𝑛 − 2}∀𝑢.𝑥 i 𝑅𝑢 ∈ 𝔻𝑖 ⇒ ∃𝑉 .𝑢𝑆𝑥𝑖

𝑉 ⊆ 𝔻𝑖+1),
(∀𝑉 .𝑧𝑆𝑦𝑉 ⇒ 𝑉 ∩ ℂ ≠ 0),
𝑧 ∈ 𝔻0

⇒ ∃𝑉 ⊆ 𝔹.𝑥𝑛−1𝑆𝑤𝑉 , 𝑅[𝑉] ⊆ ℂ.

Lemma 20.1. Let 𝑀 be a model, let 𝑥 be a world of 𝑀 and let 𝑛 ∈ ℕ. For any 𝑖 ≤ 𝑛 we
have that if 𝑀, 𝑥 ⊩ 𝑈𝑖 then there exist some worlds 𝑦, 𝑧, 𝑥0, …, 𝑥𝑖 such that:

1. 𝑥 i = 𝑥;

2. 𝑥𝑖𝑅…𝑅𝑥0𝑅𝑦𝑅𝑧;

3. for all 𝑗 ≤ 𝑖 we have that 𝑀, 𝑥𝑗 ⊩ 𝑈𝑗;

4. for all 𝑗 < 𝑖 we have that 𝑀, 𝑥𝑗 ⊩ 𝐷𝑗 ▷ 𝐷𝑗+1;

5. for all 𝑉 we have that if 𝑧𝑆𝑦𝑉 then 𝑉 ∩ {𝑤 ∶ 𝑀, 𝑤 ⊩ 𝐶} ≠ ∅;

6. 𝑀, 𝑧 ⊩ 𝐷0.

59

Proof. By induction on 𝑖.

• For 𝑖 = 0 we have that 𝑥 ⊩ ♢¬(𝐷0 ▷ ¬𝐶). It follows that there exists some 𝑦 such that
𝑥𝑅𝑦 ⊩ ¬(𝐷0 ▷ ¬𝐶) and therefore there exists some 𝑧 such that 𝑦𝑅𝑧 ⊩ 𝐷0 and for any 𝑉 ,
if 𝑧𝑆𝑦𝑉 , then 𝑉 ∩ {𝑤 ∶ 𝑀, 𝑤 ⊩ 𝐶} ≠ ∅. It is clear that all claims are met.

• For 𝑖 + 1 we have that 𝑥 ⊩ ♢((𝐷𝑖 ▷ 𝐷𝑖+1) ∧ 𝑈𝑖). It follows that there exists some 𝑥𝑖 such
that 𝑥𝑖 ⊩ 𝐷𝑖 ▷ 𝐷𝑖+1 ∧ 𝑈𝑖. By IH there exist 𝑦, 𝑧, 𝑥0, …, 𝑥𝑖 such that they satisfy claims
1, …, 6. We set 𝑥𝑖+1 ≔ 𝑥. It is trivial to observe that by using the IH all conditions are
met for 𝑖 + 1.

Theorem 20.2. For any generalized frame 𝐹 , we have that 𝐹 satisfies the (Rn)gen condition
iff any model based on 𝐹 forces every instantiation of the Rn principle. In symbols:

𝐹 ⊨ (Rn)gen ⇔ 𝐹 ⊩ Rn.

Proof. If 𝑛 = 0 we refer to Theorem 17.3. For 𝑛 + 1 proceed as follows.

• ⇒ Fix a model and assume that for some world 𝑤 we have 𝑤 ⊩ 𝐴▷𝐵. Then assume also
that 𝑤𝑅𝑥 ⊩ ((𝐷n ▷ 𝐴) ∧ 𝑈𝑛). Our goal is to find a set 𝑉 such that 𝑥𝑆𝑤𝑉 ⊩ 𝐵 ∧ □𝐶. By
Lemma 20.1 it follows that there exist 𝑦, 𝑧, 𝑥0, …, 𝑥𝑛 satisfying 1, …, 6. Then let 𝔸 ≔ ⟦𝐴⟧,
𝔹 ≔ ⟦𝐵⟧, ℂ ≔ ⟦𝐶⟧ and for 𝑖 ≤ 𝑛 let 𝔻 i ≔ ⟦𝐷 i ⟧.
It is routine to check that the left part of the (Rn+1)gen holds and thus we get that there
exists some 𝑉 ⊆ 𝔹 such that 𝑥𝑛𝑆𝑤𝑉 and 𝑅[𝑉] ⊆ ℂ. Since 𝑉 ⊆ 𝔹 we have that 𝑉 ⊩ 𝐵 and
since 𝑅[𝑉] ⊆ ℂ we have 𝑉 ⊩ □𝐶. Finally, since 𝑥𝑛 = 𝑥 we conclude 𝑥𝑆𝑤𝑉 ⊩ 𝐵 ∧ □𝐶.

• ⇐ Fix a frame 𝐹 and let 𝑎, 𝑏, 𝑐, 𝑑0, …, 𝑑n be propositional variables and assume 𝐹 ⊩ 𝑅𝑛+1.
Assume that the left part of the implication of (Rn+1)gen holds. Now consider a model based
on 𝐹 that satisfies the following:

⟦𝑎⟧ = 𝔸;
⟦𝑏⟧ = 𝔹;
⟦𝑐⟧ = ℂ;

⟦𝑑 i ⟧ = 𝔻 i , for all 𝑖 ∈ {0…𝑛}.

Now one can routinely check that 𝑤 ⊩ 𝐴 ▷ 𝐵 and 𝑥 ⊩ ((𝐷𝑛 ▷ 𝐴) ∧ 𝑈𝑛), hence there exists
𝑈 such that 𝑥𝑆𝑤𝑈 and 𝑈 ⊩ 𝐵 ∧ □𝐶. From that we derive that 𝑈 ⊆ 𝔹 and 𝑅[𝑈] ⊆ ℂ.

The Agda proof can be found in Appendix B.15.

60

21. Generic frame condition
In this chapter we present a method that given a formula 𝐴, builds a second order formula that
is a generalized frame condition for 𝐴.

Definition 21.1. Generic frame condition Given a generalized frame 𝐹 = ⟨𝑊, 𝑅, 𝑆⟩
and a formula 𝐴 with Var(𝐴) = {𝑥1, …, 𝑥n}. Consider 𝑛 second order variables 𝕏1, …, 𝕏n which
range over sets of worlds. We write 𝕏∗ instead of 𝕏1, …, 𝕏n. Let ℱ be defined by:

ℱ ∶ 𝒫(𝑊) × ⋯ × 𝒫(𝑊)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

×Fm → 𝒫(𝑊)

ℱ(𝕏∗, 𝑥 i) ≔ 𝕏 i ;
ℱ(𝕏∗, ⊥) ≔ ∅;

ℱ(𝕏∗, 𝐴 → 𝐵) ≔ {𝑤 ∶ 𝑤 ∈ ℱ(𝕏∗, 𝐴) ⇒ 𝑤 ∈ ℱ(𝕏∗, 𝐵)};
ℱ(𝕏∗, 𝐴 ▷ 𝐵) ≔ {𝑤 ∶ ∀𝑢.(𝑤𝑅𝑢, 𝑢 ∈ ℱ(𝕏∗, 𝐴)) ⇒ ∃𝑌 .𝑢𝑆𝑤𝑌 ⊆ ℱ(𝕏∗, 𝐵))}.

Finally we define the condition (A∗)gen thus:

(A∗)gen ≔ ∀𝕏∗∀𝑤.𝑤 ∈ ℱ(𝕏∗, 𝐴).

The following theorem shows that the previous definition gives a valid frame condition.

Theorem 21.2. Let 𝐴 be a formula. For any generalized frame 𝐹 , we have that 𝐹 satisfies
the (A∗)gen condition iff any model based on 𝐹 forces 𝐴. In symbols:

𝐹 ⊨ (A∗)gen ⇔ 𝐹 ⊩ 𝐴.

Proof. The proof goes by an easy induction on the formula.
The Agda proof can be found in Appendix B.7.

Remark 21.3. For instance, if we want the frame condition for P0 we would look at

((a ▷ ♢b → □(a ▷ b))∗)gen.

Where 𝑎, 𝑏 are different propositional variables.

It is easy to see that the presented method can be adapted to generate a frame condition for
ordinary semantics.

We suggest a future systematic study that lays down the relations between generic frame
conditions and the ones used in practice.

61

Part IV.

The logic of Agda

62

The purpose of this part is to give a gradual introduction to Agda.
In Chapter 22 we will give a short introduction to untyped lambda calculus. Then we will

proceed with simply typed lambda calculus. The important takeaway of this chapter is to
observe how we can use types to rule out bogus terms.

In Chapter 23 we will explain Martin Löf’s logical framework. This system features dependent
types and thus is a suitable system to formalize propositions and proofs. This system is espe-
cially important because it is the basis of Agda’s type theory. We will see how we can embed
intuitionistic propositional logic into the system and how we can prove some simple properties
about natural numbers.

In Chapter 24 we give an approximated specification of the Agda language. We must em-
phasize that it is an approximation because there is no formal specification of Agda. The one
we present has been built from the official documentation ([3]), Ulf Norell’s1 PhD thesis ([29])
and personal experience. Furthermore, by no means we attempt to describe all the language.
Rather, we focus on the parts which are more important to understand our implementation,
which we will present in Part V.

In Chapter 25 we present an introductory tutorial to Agda. The spirit of this tutorial is to
prioritize intuition over formalization and precision. The informal format is the one in which
Agda is presented to the public in its official documentation ([3]) and some of the most popular
learning resources ([7, 28, 42]).

1Original author of Agda.

63

22. Introduction to types
Type theory is a branch of mathematical symbolic logic. It formalizes mathematical concepts
through terms, types and a typing relation between them. One could think of types as predicates
on terms. We write 𝑇 ∶ 𝐴 to say that term 𝑇 satisfies predicate 𝐴, or synonymously, that term 𝑇
has type 𝐴. Later in this chapter we will see that types in simply typed lambda calculus provide
a basic classification of lambda terms. For instance, a term representing a natural number will
have a different type from a lambda term representing a Boolean value. In more expressive
type theories which feature dependent types, such as intuitionistic type theory, we can express
complex mathematical properties such as “2 ∗ 𝑛 is always even” or that “any finite sequence of
numbers can be sorted in lexicographical order”.

Type theory has become especially relevant in the following areas.

• Programming languages and proof assistants. Simple (non-dependent) types are
present in almost every modern programming language. Programming languages use types
to classify its objects and functions with the goal of minimizing the amount of errors caused
by misusing them. For instance, the term 1+𝑡𝑟𝑢𝑒 does not make sense and types are used
to rule out the validity of such term.
Furthermore, the expressiveness of type theories with dependent types make them an ad-
equate basis for modern proof assistants. Due to the constructive nature of the theory the
proof assistants can be used as programming languages too. Agda and Coq are examples
of that.

• Foundations of mathematics. (This paragraph is a paraphrase from [12]) A sufficiently
expressive type theory such as Martin-Löf type theory is a formal logical system and
philosophical foundation for constructive mathematics. It is a full-scale system which is
based on the propositions-as-types principle and aims to play a similar role for constructive
mathematics as Zermelo-Fraenkel set theory does for classical mathematics.
(This paragraph is a quote from [35]) Univalent Foundations of Mathematics is Vladimir
Voevodsky’s new program for a comprehensive, computational foundation for mathematics
based on the homotopical interpretation of type theory. The type theoretic univalence
axiom relates propositional equality on the universe with homotopy equivalence of small
types. The program is currently being implemented with the help of the automated proof
assistant Coq. The Univalent Foundations program is closely tied to homotopy type theory.

22.1. The origins of types
([9]) Types were first introduced by Russel in 1903 in “Apendix B: The Doctrine of Types, from
Principia Mathematica” while trying to avoid a contradiction in set theory, namely Russel’s
paradox. In Principia Mathematica types are defined as follows.

1. 𝑖 is the type of individuals (elements of some fixed domain);

2. if 𝐴1, …, 𝐴𝑛 (for 𝑛 ≥ 0) are types then (𝐴1, …, 𝐴𝑛) is the type of n-ary relations over
objects of respective types 𝐴1, …, 𝐴𝑛. Note that for 𝑛 = 0 we have that () is the type of
propositions.

64

For instance, the type of binary relations over individuals is (𝑖, 𝑖), the type of binary propositional
connectives is ((), ()). Observe that this formulation prevents a proposition of the form 𝑅(𝑅).
Assume for a contradiction that 𝑅(𝑅) is a proposition, then we have that (by looking at the
outer occurrence) 𝑅 has type (𝐴) for some type 𝐴 and thus (by looking at the inner occurrence)
𝑅 has type 𝐴 but 𝐴 ≠ (𝐴). This observation is the key for avoiding Russel’s paradox using
types.

The more habitual definition of types is the one that stems from Church’s formalization of
lambda calculus which includes functions as primitive objects.

1. 𝑖 is the type of individuals;

2. 𝑜 is the type of propositions;

3. if 𝐴 and 𝐵 are types then 𝐴 → 𝐵 is the type of functions from 𝐴 to 𝐵.

We may observe that 𝑖 → 𝑜 is the type of predicates on individuals, 𝑖 → 𝑖 is the type of functions
on individuals and 𝑖 → (𝑖 → … → (𝑖⏟⏟⏟⏟⏟⏟⏟

𝑛
→ 𝑜)) is an 𝑛-ary relation. Although this definition of

types is relevant for historical reasons, it has become obsolete and we proceed by giving a short
introduction to three (out of many) versions of lambda calculus available today.

22.2. Untyped lambda calculus
For the language of terms we present a refinement of Church’s version due to Curry:

1. variable: every variable is a term;

2. function application: If 𝐴 and 𝐵 are terms then 𝐴 𝐵 is a term. Note that application
associates to the left, thus 𝐴 𝐵 𝐶 = (𝐴 𝐵) 𝐶.

3. lambda abstraction: If 𝑥 is a variable and 𝐴 is a term then 𝜆𝑥.𝐴 is a term. The body
of a lambda abstraction (the expression after the .) extends to the rightmost part. Thus
𝜆𝑥.𝜆𝑦.𝑥 𝑦 = 𝜆𝑥.(𝜆𝑦.𝑥 𝑦).

This can be more succinctly expressed in the so-called Backus-Naur form (BNF for short):

𝑇 ≔ 𝑥 | 𝑇 𝑇 | 𝜆𝑥.𝑇
In lambda calculus we have the following equation known as 𝛽-reduction.

(𝜆𝑥.𝑇) 𝐴 = 𝑇 [𝑥 ↦ 𝐴]
This equation is often given as a reduction rule from left to right, giving computational value
to lambda terms. In other words, 𝛽-reduction gives an algorithm based on a rewrite rule that
reduces, evaluates or computes a lambda term until it can no longer be reduced. When a term
cannot be reduced we say that it is in normal form. Note that not every term can be reduced
to a normal form term as showcased by the following term, which reduces to itself:

(𝜆𝑥.𝑥 𝑥) (𝜆𝑥.𝑥 𝑥)
Notice how this term is of the form 𝑅(𝑅) (or 𝑅 𝑅, in the new syntax), which we were able to
rule out before by using types. In fact, in the next section we will see how this term cannot be
assigned a type.

Turing showed that untyped lambda calculus is equivalent in terms of computability to Turing
machines ([34]), therefore any computable function has a lambda term that computes it.

It might be difficult to imagine how we could express every computable function in a lambda
term. We believe that showing some practical examples will be enlightening, thus we will briefly
introduce the Church encoding for Booleans and natural numbers.

65

• Booleans. We define true and false thus:

𝑡𝑟𝑢𝑒 ∶= 𝜆𝑎.𝜆𝑏.𝑎; 𝑓𝑎𝑙𝑠𝑒 ≔ 𝜆𝑎.𝜆𝑏.𝑏

As we can see, both true and false are defined as a function that takes two arguments. The
former returns the first argument while the latter returns the second. Thus, this encoding
of Booleans conveniently allows us to define an if then else expression.

𝑖𝑡𝑒 ≔ 𝜆𝑏.𝜆𝑥.𝜆𝑦.𝑏 𝑥 𝑦

It is immediate to see by means of 𝛽-reduction that

𝑖𝑡𝑒 𝑏 𝑥 𝑦 = 𝑏 𝑥 𝑦

hence, we will usually prefer to write 𝑏 𝑥 𝑦 instead of 𝑖𝑡𝑒 𝑏 𝑥 𝑦. We can use the if then else
concept to encode the and and or operators. It may help to read the and as “if the first
argument is true return the second argument else return false”. Likewise for the or.

𝑎𝑛𝑑 ∶= 𝜆𝑎.𝜆𝑏.𝑎 𝑏 𝑓𝑎𝑙𝑠𝑒; 𝑜𝑟 ≔ 𝜆𝑎.𝜆𝑏.𝑎 𝑡𝑟𝑢𝑒 𝑏

• Natural numbers. The natural number 𝑛 is encoded as a lambda term that applies 𝑛
times some parameter function 𝑓 .

0 ∶= 𝜆𝑓.𝜆𝑎.𝑎; 1 ≔ 𝜆𝑓.𝜆𝑎.𝑓 𝑎; 2 ≔ 𝜆𝑓.𝜆𝑎.𝑓 (𝑓 𝑎); …

Then we can define the successor function:

𝑠𝑢𝑐 ≔ 𝜆𝑛.𝜆𝑓.𝜆𝑎.𝑓 (𝑛 𝑓 𝑎)

Let us show that the successor of 1 is indeed 2.

𝑠𝑢𝑐 1 = (𝜆𝑛.𝜆𝑓.𝜆𝑎.𝑓 (𝑛 𝑓 𝑎)) (𝜆𝑓.𝜆𝑎.𝑓 𝑎) Def
= 𝜆𝑓.𝜆𝑎.𝑓 ((𝜆𝑓.𝜆𝑎.𝑓 𝑎) 𝑓 𝑎) 𝛽-reduction for 𝑛
= 𝜆𝑓.𝜆𝑎.𝑓 (𝜆𝑎.𝑓 𝑎) 𝑎 𝛽-reduction for 𝑓
= 𝜆𝑓.𝜆𝑎.𝑓 (𝑓 𝑎) 𝛽-reduction for 𝑎
= 2 Def

It is also easy to define addition and multiplication. It may help to read add n m as “apply
𝑚 times 𝑓 , then apply 𝑛 times 𝑓” and mul n m as “apply 𝑛 times (apply 𝑚 times)”.

𝑎𝑑𝑑 ≔ 𝜆𝑛.𝜆𝑚.𝜆𝑓.𝜆𝑎.𝑛 𝑓 (𝑚 𝑓 𝑎); 𝑚𝑢𝑙 ≔ 𝜆𝑛.𝜆𝑚.𝜆𝑓.𝜆𝑎.𝑛 (𝑚 𝑓) 𝑎

22.3. Simply typed lambda calculus
Let us introduce the idea of types in lambda calculus due to Curry. We view types as predicates
on lambda terms. We write 𝑇 ∶ 𝐴 to say that the term 𝑇 has type 𝐴.

We fix a set of base types 𝐁 and a set of term constants

Γ = {⟨𝑐0
0 ∶ 𝐵0⟩, ⟨𝑐1

0 ∶ 𝐵0⟩, …, ⟨𝑐0
1 ∶ 𝐵1⟩, ⟨𝑐1

1 ∶ 𝐵1⟩, …},

where each 𝐵𝑖 ∈ 𝐁.
The syntax of terms is defined thus.

𝑇 ≔ 𝑥 | 𝑇 𝑇 | 𝜆(𝑥 ∶ 𝑆).𝑇 | 𝑐

66

Where 𝑆 is a type, 𝑐 a term constant and 𝑥 a variable.
The syntax of types is defined thus.

𝑆 ≔ 𝐵 | 𝑆 → 𝑆

With 𝐵 ∈ 𝐁. The → symbol has right associativity, so 𝐴 → 𝐵 → 𝐶 = 𝐴 → (𝐵 → 𝐶).
Then we define typing rules to assign a type to suitable terms. We define a context to be a

set of tuples ⟨𝑥 ∶ 𝐴⟩ where 𝑥 is either a variable or a constant and 𝐴 is a type. If Γ is a context
write Γ ⊢ 𝑡 ∶ 𝐴 to mean that 𝑦 has type 𝐴 in context Γ. When a term can be assigned a type
in a context we say that it is well-typed in that context. Only well-typed terms are considered
valid in simply typed lambda calculus.

Id
𝑐 ∶ 𝐴 ∈ Γ
Γ ⊢ 𝑐 ∶ 𝐴

App
Γ ⊢ 𝑓 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑡 ∶ 𝐴

Γ ⊢ 𝑓 𝑡 ∶ 𝐵

Abstraction
Γ ∪ {⟨𝑥 ∶ 𝐴⟩} ⊢ 𝑡 ∶ 𝐵

Γ ⊢ 𝜆(𝑥 ∶ 𝑆).𝑡 ∶ 𝐴 → 𝐵

Figure 22.1.: Typing rules for simply typed lambda calculus.

Let us now see how we can give types to Booleans and natural numbers following the encoding
given in the previous section. For that, we consider a singleton set of base types 𝐵 ≔ {𝛼}.

• Booleans. We define the type of Booleans thus:

𝔹 ≔ 𝛼 → 𝛼 → 𝛼

𝑡𝑟𝑢𝑒 ∶= 𝜆(𝑎 ∶ 𝛼).𝜆(𝑏 ∶ 𝛼).𝑎; 𝑓𝑎𝑙𝑠𝑒 ≔ 𝜆(𝑎 ∶ 𝛼).𝜆(𝑏 ∶ 𝛼).𝑏
We proceed by showing that ∅ ⊢ 𝑡𝑟𝑢𝑒 ∶ 𝔹.

Def
Abs

Abs
Id {⟨𝑎 ∶ 𝛼⟩, ⟨𝑏 ∶ 𝛼⟩} ⊢ 𝑎 ∶ 𝛼
{⟨𝑎 ∶ 𝛼⟩} ⊢ 𝜆(𝑏 ∶ 𝛼).𝑎 ∶ 𝛼 → 𝛼

∅ ⊢ 𝜆(𝑎 ∶ 𝛼).𝜆(𝑏 ∶ 𝛼).𝑎 ∶ 𝛼 → 𝛼 → 𝛼
∅ ⊢ 𝑡𝑟𝑢𝑒 ∶ 𝔹

Likewise we can show that ∅ ⊢ 𝑓𝑎𝑙𝑠𝑒 ∶ 𝔹. It is routine to check that ∅ ⊢ 𝑎𝑛𝑑 ∶ 𝔹 → 𝔹 → 𝔹
and that ∅ ⊢ 𝑜𝑟 ∶ 𝔹 → 𝔹 → 𝔹. As we can see, types give us information about the nature
of the term. For instance, 𝑎𝑛𝑑 ∶ 𝔹 → 𝔹 → 𝔹 tells us that 𝑎𝑛𝑑 is a lambda term that
expects two Booleans as arguments and returns a Boolean.

• Natural numbers. We define the type of natural numbers thus:

ℕ ≔ (𝛼 → 𝛼) → 𝛼 → 𝛼

0 ∶= 𝜆(𝑓 ∶ 𝛼 → 𝛼).𝜆(𝑎 ∶ 𝛼).𝑎; 1 ≔ 𝜆(𝑓 ∶ 𝛼 → 𝛼).𝜆(𝑎 ∶ 𝛼).𝑓 𝑎; …
We can routinely check that for any natural number 𝑛 we have ∅ ⊢ 𝑛 ∶ ℕ and ∅ ⊢ 𝑎𝑑𝑑 ∶
ℕ → ℕ → ℕ and ∅ ⊢ 𝑚𝑢𝑙 ∶ ℕ → ℕ → ℕ.

67

It is a well known property that simply typed lambda calculus is strongly normalizing, which
means that every well-typed term can be reduced to a normal form. Thus it must be the case,
and it is easy to observe, that the non-normalizing term we presented before cannot be typed
for any choice of 𝐴.

(𝜆(𝑥 ∶ 𝐴).𝑥 𝑥) (𝜆(𝑥 ∶ 𝐴).𝑥 𝑥)
Strong normalization is a desirable property, but it comes at the price of losing equivalence

to Turing machines as there are many computable functions that cannot be expressed in simply
typed lambda calculus. To circumvent this, some extensions of simply typed lambda calculus
are extended with Curry’s 𝑌 combinator defined below. The 𝑌 combinator, also known as the
fixed-point combinator, is a primitive lambda term that can be added to the language and be
assigned the type (𝐴 → 𝐴) → 𝐴 for any type 𝐴.

𝑌 ≔ 𝜆𝑔.(𝜆𝑥.𝑔 (𝑥 𝑥)) (𝜆𝑥.𝑔 (𝑥 𝑥))

The 𝑌 combinator gives general recursion and thus the strong normalization property no longer
holds.

22.4. Dependently typed lambda calculus
There is no way to briefly present a description of a type system with dependent types in an
analogous form to untyped and simply typed lambda calculus. For this reason, we prefer to
dedicate a whole chapter to it. In the upcoming Chapter 23 we present a full description of a
theory which is based on dependent types and is the logical basis of Agda.

68

23. Martin Löf’s logical framework
In this chapter we will present the intuitionistic type theory presented in [27]. We will refer to
this system as Martin Löf’s logical framework or LF for short. Even though Agda lacks a well
defined specification, LF is considered the basis of Agda’s type system ([12]). Furthermore, Peter
Dybjer, who is a professor at the Chalmers University of Technology1, suggested2 the specific
version of LF that we will present in this chapter. However, there are important differences
between LF and Agda’s theory that we will comment in Section 23.5.

System LF is complex and has a lot of cyclic dependencies in the definitions. As such, it is
impossible to give a linear presentation. For that, we ask the reader to have some patience when
following this chapter. It may be a good idea to skim through the chapter and then read it
more thoroughly for a second time. Additionally, it is likely, specially for someone new to type
theory, that everything will remain very abstract until we start introducing sets in Section 23.4.

23.1. Basic definitions
The system LF has four kinds of judgment. Each kind of judgment is bound to a context. We
postpone momentarily the definition of context.

1. “𝑎 has type 𝐴 in context Γ”. We write Γ ⊢ 𝑎 ∶ 𝐴. Crucially, in a type theory that follows
the paradigm of propositions as types we may interpret the statement 𝑎 ∶ 𝐴 in several ways,
all of them equivalent in such a paradigm:

• The term 𝑎 has type 𝐴;
• the term 𝑎 satisfies the proposition 𝐴;
• the term 𝑎 is a proof of the proposition 𝐴;
• the term 𝑎 is a program that satisfies the specification 𝐴.

2. “𝐴 is a type in context Γ”. We write Γ ⊢ 𝐴 ∶ Type.

3. “𝐴1 and 𝐴2 are equal types in context Γ”. We write Γ ⊢ 𝐴1 = 𝐴2 ∶ Type. It is important
to remark that the = sign is part of the judgment and is not part of the syntax of types
and terms.

4. “𝑎1 and 𝑎2 are equal elements of the type 𝐴 in context Γ”. We write Γ ⊢ 𝑎1 = 𝑎2 ∶ 𝐴. As
before, the = sign is part of the judgment.

Notice that we have not yet defined what is the syntax of terms nor types. We need to postpone
the definition because in order to describe how we can build types and terms we first need to
define several basic concepts. We will define the syntax of types and terms in Section 23.2.

The following definition characterizes what we consider propositions in the LF system.

Definition 23.1. Proposition. We say that 𝐴 is a proposition (or a type) when we have:

∅ ⊢ 𝐴 ∶ Type

1Where most of the development of Agda takes place.
2via email correspondence.

69

The above is the formal definition of a type within the system. However, it might be helpful
for the reader to consider a meta definition of what we understand as type in the system. For
that, we quote the description given in [27]:

What does it mean that something is a type? To know that 𝐴 is a type is to know
what it means to be an object of the type, as well as what it means for two objects
to be the same. The identity between objects must be an equivalence relation and
it must be decidable.

Since types are proposition in LF, we need a way to discern which propositions hold the status
of theorem. Such a notion is given by the following definition.

Definition 23.2. Theorem. We say that some proposition (or type) 𝐴 is true in LF if there
exists some 𝑡 such that:

∅ ⊢ 𝑡 ∶ 𝐴

The following definition gives a precise statement on what it means for two terms to be
indiscernible in LF.

Definition 23.3. Equality of terms. We say that two terms 𝑡 and 𝑡′ of type 𝐴 are equal in
LF if we have:

∅ ⊢ 𝑡 = 𝑡′ ∶ 𝐴

Similarly we define when two types are considered to be the same in LF.

Definition 23.4. Equality of types. We say that two types 𝑇 and 𝑇 ′ are equal in LF if we
have:

∅ ⊢ 𝑇 = 𝑇 ′ ∶ Type

We proceed by defining the concept of context.

Definition 23.5. Context. Intuitively, a context, is a sequence of typed variables, where each
type may depend on the preceding variables in the sequence.

More precisely, a context is a finite sequence of the form

𝑥1 ∶ 𝑆1, …, 𝑥n ∶ 𝑆n

Where each 𝑥 i denotes a variable3. Furthermore, given arbitrary terms 𝑎1, …, 𝑎𝑛 it must hold
that:

∅ ⊢ 𝑆1 ∶ Type and ∅ ⊢ 𝑎1 ∶ 𝑆1;
∅ ⊢ 𝑆2[𝑥1 ↦ 𝑎1] ∶ Type and ∅ ⊢ 𝑎2 ∶ 𝑆2[𝑥1 ↦ 𝑎1];

⋮
∅ ⊢ 𝑆𝑛[𝑥1 ↦ 𝑎1, …, 𝑥𝑛−1 ↦ 𝑎𝑛−1] ∶ Type and ∅ ⊢ 𝑎𝑛 ∶ 𝑆𝑛[𝑥1 ↦ 𝑎1, …, 𝑥𝑛−1 → 𝑎𝑛−1].

We will now introduce a type for the first time. We introduce the type Set4.

Set

Γ ⊢ Set ∶ Type

As we see the previous rule has no assumptions, hence we have that ∅ ⊢ Set ∶ Type is valid in
LF.

3Every variable must be different than the rest, that is, for every 𝑖, 𝑗 such that 𝑖 ≠ 𝑗 we have 𝑥 i ≠ 𝑥 j .
4The concept of set used here differs from the one in set theory.

70

The nature of the type Set is given by the following meta definition.

Definition 23.6. Set. A set is an inductive description of how its canonical elements are built,
plus a decidable equality relation between them. Two sets are equal if any canonical element of
one set is a canonical element of the other set and moreover, if any two equal canonical elements
in one set also are equal in the other set.

For instance, if we want to define the set of natural numbers, we have two canonical elements:
zero and the successor of a natural number. The equality relation can be defined as expected.
In Section 23.4 we will see how we can define the natural numbers, among other sets, in more
detail.

If 𝐴 is a set, then the elements of 𝐴, denoted with El(𝐴), in conjunction with their equivalence
relation form a type. As such, we add the following rules:

El
Γ ⊢ 𝐴 ∶ Set

Γ ⊢ El(𝐴) ∶ Type

El=
Γ ⊢ 𝐴 = 𝐵 ∶ Set

Γ ⊢ El(𝐴) = El(𝐵) ∶ Type

Note that El(.) is a primitive which takes a Set as an argument and returns a Type, which
represents the elements of the set.

Later in the chapter (Section 23.3) we will define the concept of family of types and we will
see (in Example 23.13) that El(.) is family of types over Set.

We are now ready to introduce the first structural rule. The following rule allows us to use
assumptions in the context:

Assum
Γ ⊢ 𝐴 ∶ Type

Γ, 𝑥 ∶ 𝐴, Γ′ ⊢ 𝑥 ∶ 𝐴

Finally we can build our first derivation:

Example 23.7. The derivation below shows that we can fully formalize in the system that we
have an arbitrary set 𝑃 as an assumption and show that El(𝑃) is a type.

El
Assum

Set Γ ⊢ Set ∶ Type
Γ, 𝑃 ∶ Set, Γ′ ⊢ 𝑃 ∶ Set

Γ, 𝑃 ∶ Set, Γ′ ⊢ El(𝑃) ∶ Type

It turns out that this is a common pattern that we will use in the examples later in the
chapter. Thus, it is convenient to define a shortcut rule:

VarType

Γ, 𝑃 ∶ Set, Γ′ ⊢ El(𝑃) ∶ Type

We proceed by giving some rules that express that equality, both for types and terms, is
indeed an equivalence relation.

For equality on terms we have:

Refl
Γ ⊢ 𝑎 ∶ 𝐴

Γ ⊢ 𝑎 = 𝑎 ∶ 𝐴

Sym
Γ ⊢ 𝑎 = 𝑏 ∶ 𝐴
Γ ⊢ 𝑏 = 𝑎 ∶ 𝐴

Trans
Γ ⊢ 𝑎 = 𝑏 ∶ 𝐴 Γ ⊢ 𝑏 = 𝑐 ∶ 𝐴

Γ ⊢ 𝑎 = 𝑐 ∶ 𝐴

71

Analogously, for equality on types we have:

ReflTy
Γ ⊢ 𝐴 ∶ Type

Γ ⊢ 𝐴 = 𝐴 ∶ Type

SymTy
Γ ⊢ 𝐴 = 𝐵 ∶ Type
Γ ⊢ 𝐵 = 𝐴 ∶ Type

TransTy
Γ ⊢ 𝐴 = 𝐵 ∶ Type Γ ⊢ 𝐵 = 𝐶 ∶ Type

Γ ⊢ 𝐴 = 𝐶 ∶ Type

Furthermore we can substitute equal types.

SubsTy1
Γ ⊢ 𝐴 = 𝐵 ∶ Type Γ ⊢ 𝑎 ∶ 𝐴

Γ ⊢ 𝑎 ∶ 𝐵

SubsTy2
Γ ⊢ 𝐴 = 𝐵 ∶ Type Γ ⊢ 𝑎 = 𝑏 ∶ 𝐴

Γ ⊢ 𝑎 = 𝑏 ∶ 𝐵

Example 23.8. Let us show a trivial example. By using the shortcut rule VarType that we
defined before we can show that type of the elements of an arbitrary set 𝑆 is indeed equal to
itself:

ReflTy
VarType 𝑃 ∶ Set ⊢ El(𝑃) ∶ Type

𝑃 ∶ Set ⊢ El(𝑃) = El(𝑃) ∶ Type

With the rules that we have given so far it is not possible to prove a judgment of the kind
Γ ⊢ 𝑎 ∶ 𝐴 nor Γ ⊢ 𝑎 = 𝑏 ∶ 𝐴. We will be able to do so in the next section.

23.2. Rules for types and terms
We are finally ready to introduce the syntax of terms and types. The syntax is introduced by
means of typing rules.

We first introduce the syntax of the dependent function type. The dependent function type
is the type of functions from a type 𝐴 to a type 𝐵, where 𝐵 is a type that may depend on an
arbitrary term of type 𝐴.

Fun
Γ ⊢ 𝐴 ∶ Type Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ Type

Γ ⊢ (𝑥 ∶ 𝐴) ↠ 𝐵 ∶ Type

The subtle generalization to allow 𝐵 to depend on a term of type 𝐴 has incredible consequences
for the system. So much so that it gives name the paradigm of dependent types.

When we have (𝑥 ∶ 𝐴) ↠ 𝐵 we say that 𝐴 is the type of the argument and that 𝐵 is the
return type. Also, we set ↠ to have right associativity.

When 𝐵 does not depend on a term of type 𝐴, or in other words, when 𝑥 does not appear free
in 𝐵, we will simply write 𝐴 ↠ 𝐵 instead of (𝑥 ∶ 𝐴) ↠ 𝐵. This notation convention motivates
the following simplified rule which corresponds to the function type in simply typed lambda
calculus:

Fun’
Γ ⊢ 𝐴 ∶ Type Γ ⊢ 𝐵 ∶ Type

Γ ⊢ 𝐴 ↠ 𝐵 ∶ Type

Example 23.9. As an easy example, we show how for arbitrary set 𝑃 we can build the function
type from elements of 𝑃 to elements of 𝑃 .

Fun
VarType 𝑃 ∶ Set ⊢ El(𝑃) ∶ Type

VarType 𝑃 ∶ Set, 𝑥 ∶ El(𝑃) ⊢ El(𝑃) ∶ Type
𝑃 ∶ Set ⊢ (𝑥 ∶ El(𝑃)) ↠ El(𝑃) ∶ Type

72

We have seen how we can build the dependent function type so the natural question is to ask
how we can build terms of that type. The answer lies in the simple construction of a lambda
abstraction, which is very reminiscent of the lambda abstraction of simply typed lambda calculus.

Abs
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵

Γ ⊢ 𝜆𝑥 → 𝑏 ∶ (𝑥 ∶ 𝐴) ↠ 𝐵

As a notational convention we have that expression on the right of the → extends to the rightmost
part, without escaping parenthesis.

Example 23.10. To follow up on Example 23.9 we show how we can build a term that has the
type El(𝑃) ↠ El(𝑃) presented in that example. Unsirprisingly, the term that we are after is
the lambda term 𝜆(𝑥 ∶ El(𝑃)) → 𝑥. For the experienced reader it should be obvious that term
represents the identity function. For the novel reader we will see it in Example 23.11. We will
often refer to terms of a type of the form (𝑥 ∶ 𝐴) ↠ 𝐵 as functions. Without further ado we
show that 𝑃 ∶ Set ⊢ 𝜆𝑥 → 𝑥 ∶ (𝑥 ∶ El(𝑃)) ↠ El(𝑃).

Abs
Assum
VarType 𝑃 ∶ Set ⊢ El(𝑃) ∶ Type

𝑃 ∶ Set, 𝑥 ∶ El(𝑃) ⊢ 𝑥 ∶ El(𝑃)
𝑃 ∶ Set ⊢ 𝜆𝑥 → 𝑥 ∶ (𝑥 ∶ El(𝑃)) ↠ El(𝑃)

In order for a function to be useful we need to be able to apply it to an argument. The following
rule allows us to do precisely that. More precisely, if we have a term 𝑓 of type (𝑥 ∶ 𝐴) ↠ 𝐵 and
a term 𝑎 of type 𝐴, then we can build a term 𝑓 𝑎 of type 𝐵[𝑥 ↦ 𝑎].

App
Γ ⊢ 𝑓 ∶ (𝑥 ∶ 𝐴) ↠ 𝐵 Γ ⊢ 𝑎 ∶ 𝐴

Γ ⊢ 𝑓 𝑎 ∶ 𝐵[𝑥 ↦ 𝑎]

The most important detail to notice is that in the consequence we have 𝑓 𝑎 ∶ 𝐵[𝑥 ↦ 𝑎]. Thus,
exhibiting the fact that indeed the type of an application depends not only on the type of the
function but also on the argument itself.

Application has left associativity. Thus, 𝑓 𝑎 𝑏 = (𝑓 𝑎) 𝑏. Also, application binds stronger that
abstraction, thus 𝜆𝑥 → 𝑓 𝑏 𝑥 is equivalent to 𝜆𝑥 → (𝑓 𝑏 𝑥).

In mathematics, when we have 𝑓(𝑥) ≔ 2 + 𝑥 we expect that 𝑓(3) = 2 + 3. The rule of
𝛽-reduction or simply 𝛽-= tells us exactly that. More precisely, the 𝛽-= rule tells us that if
we have (𝜆𝑥 → 𝑏) 𝑎, then we can substitute the variable 𝑥 in the body 𝑏 by the term 𝑎. It is
important to notice that the term 𝑎 is also substituted in the type 𝐵:

𝛽-=
Γ ⊢ 𝑎 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵

Γ ⊢ (𝜆𝑥 → 𝑏) 𝑎 = 𝑏[𝑥 ↦ 𝑎] ∶ 𝐵[𝑥 ↦ 𝑎]

Example 23.11. Let us now argue why we identify the term 𝜆𝑥 → 𝑥 with the identity function.
For that, we will show that 𝑃 ∶ Set, 𝑎 ∶ El(𝑃) ⊢ (𝜆𝑥 → 𝑥) 𝑎 = 𝑎 ∶ El(𝑃).

𝛽-=
Assum

…
𝑃 ∶ Set, 𝑎 ∶ El(𝑃) ⊢ 𝑎 ∶ El(𝑃) Assum

…
𝑃 ∶ Set, 𝑎 ∶ El(𝑃), 𝑥 ∶ El(𝑃) ⊢ 𝑥 ∶ El(𝑃)

𝑃 ∶ Set, 𝑎 ∶ El(𝑃) ⊢ (𝜆𝑥 → 𝑥) 𝑎 = 𝑎 ∶ El(𝑃)

At this point the reader should be able to fill in the … gaps.

73

In mathematics, we are used to renaming variables without affecting, if we are careful, the
meaning of the expression that we are operating on. For instance the definitions 𝑓(𝑥) ≔ 2 + 𝑥
and 𝑓(𝑦) ≔ 2 + 𝑦 are essentially the same in any conceivable practical system. This equivalence
is usually known as 𝛼-equivalence. In the LF system, 𝛼-equivalence given by the 𝛼-= rule
which we define below. Such rule tells us that we can rename the abstracted variable of lambda
abstraction terms.

𝛼-=
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵

Γ ⊢ 𝜆𝑥 → 𝑏 = 𝜆𝑦 → (𝑏[𝑥 ↦ 𝑦]) ∶ (𝑧 ∶ 𝐴) ↠ 𝐵
It is important to remark that 𝑦 must not occur free in 𝑏.

In mathematics, if we have 𝑓(𝑥) ≔ 𝑔(𝑥) we expect that 𝑓 = 𝑔. The 𝜂-= rule expresses such
equivalence. In other words, the rule tells us that abstraction and application cancel each other
out.

𝜂-=
Γ ⊢ 𝑔 ∶ (𝑥 ∶ 𝐴) ↠ 𝐵

Γ ⊢ 𝜆𝑥 → 𝑔 𝑥 = 𝑔 ∶ (𝑥 ∶ 𝐴) ↠ 𝐵
The following allows us to replace equal terms and types inside other terms and types.
The 𝜉-= rule tells us that we can replace equal bodies of lambda terms.

𝜉-=
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑏 = 𝑏′ ∶ 𝐵

Γ ⊢ 𝜆𝑥 → 𝑏 = 𝜆𝑥 → 𝑏′ ∶ (𝑥 ∶ 𝐴) ↠ 𝐵
We can perform substitution in a function application.

SubsApp
Γ ⊢ 𝑓 = 𝑓 ′ ∶ (𝑥 ∶ 𝐴) ↠ 𝐵 Γ ⊢ 𝑎 = 𝑎′ ∶ 𝐴

Γ ⊢ 𝑓 𝑎 = 𝑓 ′ 𝑎′ ∶ 𝐵[𝑥 ↦ 𝑎]
Likewise, we can perform substitution in function types:

SubsFun
Γ ⊢ 𝐴 = 𝐴′ ∶ Type Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 = 𝐵′ ∶ Type

Γ ⊢ (𝑥 ∶ 𝐴) ↠ 𝐵 = (𝑥 ∶ 𝐴′) ↠ 𝐵′

At this point, we have introduced most of the system but still we cannot show any judgment
of the form ∅ ⊢ 𝑎 ∶ 𝐴. For that, we will need to wait until Section 23.4, where we introduce
concrete sets to the language.

23.3. Families of types
In this section we present the concept of family of types. This is a technical concept that does
not add much to the intuition of the system. As such, we suggest the reader to skip it on a first
read and go back to it later.

Definition 23.12. Family of types. We say that 𝐴 is a family of types in the context Γ iff
Γ ⊢ 𝐴 ∶ Type and is extensional with respect to the context. To be extensional with respect to
the context means the following. If 𝑥1 ∶ 𝑆1, …, 𝑥n ∶ 𝑆n ⊢ 𝐴 and the following holds:

∅ ⊢ 𝑎1 = 𝑏1 ∶ 𝑆1;
∅ ⊢ 𝑎2 = 𝑏2 ∶ 𝑆1[𝑥1 ↦ 𝑎1];

⋮
∅ ⊢ 𝑎n = 𝑏n ∶ 𝑆n[𝑥1 ↦ 𝑎1, …, 𝑥𝑛−1 ↦ 𝑎𝑛−1].

74

Then it must be that:

∅ ⊢ 𝐴[𝑥1 ↦ 𝑎1, …, 𝑥𝑛−1 ↦ 𝑎𝑛−1] = 𝐴[𝑥1 ↦ 𝑏1, …, 𝑥𝑛−1 ↦ 𝑏𝑛−1].

Note that in the case where Γ = ∅, while 𝐴 is still a family of types by definition, we will
usually simply say that 𝐴 is a type.

If we have that 𝐴 is a family of types in the context 𝑥 ∶ 𝐵 we will say that 𝐴 is a family of
types over 𝐵. Likewise, if 𝐴 is a family of types in the context 𝑥 ∶ 𝐵, 𝑦 ∶ 𝐶 we will say that is a
family of types over 𝐵 and 𝐶. And so on.

Example 23.13. As we have previously commented, El(𝑃) is a family of types over Set. To check
that, we observe that 𝑃 ∶ Set ⊢ El(𝑃) follows from rule VarType. Moreover, extensionality is
given by the El-= rule.

We proceed by giving some rules for type families. Note that in the upcoming rules we have
two assumptions, one on top the other. This is due to spacing and readability reasons. The
intended meaning is the same as if the two hypotheses were side by side.

Instantiation of a type family:

TF1
𝑥1 ∶ 𝐴1, …, 𝑥n ∶ 𝐴n ⊢ 𝐶 ∶ Type

∅ ⊢ 𝑎1 ∶ 𝐴1 … ∅ ⊢ 𝑎n ∶ 𝐴n[𝑥1 ↦ 𝑎1, …, 𝑥𝑛−1 ↦ 𝑎𝑛−1]
∅ ⊢ 𝐶[𝑥1 ↦ 𝑎1, …, 𝑥n ↦ 𝑎n] ∶ Type

Substitution in a type family:

TF2
𝑥1 ∶ 𝐴1, …, 𝑥n ∶ 𝐴n ⊢ 𝐶 ∶ Type

∅ ⊢ 𝑎1 = 𝑏1 ∶ 𝐴1 … ∅ ⊢ 𝑎n = 𝑏n ∶ 𝐴n[𝑥1 ↦ 𝑎1, …, 𝑥𝑛−1 ↦ 𝑎𝑛−1]
∅ ⊢ 𝐶[𝑥1 ↦ 𝑎1, …, 𝑥n ↦ 𝑎n] = 𝐶[𝑥1 ↦ 𝑏1, …, 𝑥n ↦ 𝑏n]

Instantiation of a term of a type family:

TF3
𝑥1 ∶ 𝐴1, …, 𝑥n ∶ 𝐴n ⊢ 𝑐 ∶ 𝐶

∅ ⊢ 𝑎1 ∶ 𝐴1 … ∅ ⊢ 𝑎n ∶ 𝐴n[𝑥1 ↦ 𝑎1, …, 𝑥𝑛−1 ↦ 𝑎𝑛−1]
∅ ⊢ 𝑐[𝑥1 ↦ 𝑎1, …, 𝑥n ↦ 𝑎n] ∶ 𝐶[𝑥1 ↦ 𝑎1, …, 𝑥n ↦ 𝑎n]

Substitution in term of a type family:

TF4
𝑥1 ∶ 𝐴1, …, 𝑥n ∶ 𝐴n ⊢ 𝑐 ∶ 𝐶

∅ ⊢ 𝑎1 = 𝑏1 ∶ 𝐴1 … ∅ ⊢ 𝑎n = 𝑏n ∶ 𝐴n[𝑥1 ↦ 𝑎1, …, 𝑥𝑛−1 ↦ 𝑎𝑛−1]
∅ ⊢ 𝑐[𝑥1 ↦ 𝑎1, …, 𝑥n ↦ 𝑎n] = 𝑐[𝑥1 ↦ 𝑏1, …, 𝑥n ↦ 𝑏n] ∶ 𝐶[𝑥1 ↦ 𝑎1, …, 𝑥n ↦ 𝑎n]

Substitution of a type family.

TF5
𝑥1 ∶ 𝐴1, …, 𝑥n ∶ 𝐴n ⊢ 𝐵 = 𝐶 ∶ Type

∅ ⊢ 𝑎1 ∶ 𝐴1 … ∅ ⊢ 𝑎n ∶ 𝐴n[𝑥1 ↦ 𝑎1, …, 𝑥𝑛−1 ↦ 𝑎𝑛−1]
∅ ⊢ 𝐵[𝑥1 ↦ 𝑎1, …, 𝑥n ↦ 𝑎n] = 𝐶[𝑥1 ↦ 𝑎1, …, 𝑥n ↦ 𝑎n] ∶ 𝐵[𝑥1 ↦ 𝑎1, …, 𝑥n ↦ 𝑎n]

Substitution of a type family term.

TF6
𝑥1 ∶ 𝐴1, …, 𝑥n ∶ 𝐴n ⊢ 𝑏 = 𝑐 ∶ 𝐶

∅ ⊢ 𝑎1 ∶ 𝐴1 … ∅ ⊢ 𝑎n ∶ 𝐴n[𝑥1 ↦ 𝑎1, …, 𝑥𝑛−1 ↦ 𝑎𝑛−1]
∅ ⊢ 𝑏[𝑥1 ↦ 𝑎1, …, 𝑥n ↦ 𝑎n] = 𝑐[𝑥1 ↦ 𝑎1, …, 𝑥n ↦ 𝑎n] ∶ 𝐶[𝑥1 ↦ 𝑎1, …, 𝑥n ↦ 𝑎n]

75

23.4. Introducing sets
In this section we will define some sets that will allow us to represent different mathematical
objects, such as pairs or natural numbers, in the system LF.

For each set we will introduce the following (we will be purposely vague in this summary. A
more precise list is given a few lines below).

1. A constant that denotes the set.

2. Some (zero or more) constants to build elements in the set.

3. A way to interact with the elements of the set.

The subsequent sections are going to be structured as follows: We define a new set, including
all the parts mentioned before. then we give some examples. During the introduction of the first
few sets we show how we can embed propositional intuitionistic logic into LF. After defining
the natural numbers and the identity set we show how we can prove a property on addition by
(formalized) induction.

We believe that the summary above is enough to continue to Section 23.4.1. In fact, we
recommend the reader to continue to Section 23.4.1 and come back to read the remainder of
this section once they have seen some examples of sets.

We proceed by repeating the summary above with more precision. We want to stress that
the following details do not add much to the intuition of the system and we add them just for
reference.

For each set we will introduce the following:

1. A typed constant T ∶ 𝑆 that represents the set. By that we mean that we add a rule of
the form ∅ ⊢ T ∶ 𝑆 to the system. Moreover the following must hold:

• T is a fresh constant;
• 𝑆 is of the form (𝑥1 ∶ 𝐴1) ↠ … ↠ (𝑥n ∶ 𝐴n) ↠ Set;
• we have ∅ ⊢ 𝑆 ∶ Type.

2. Zero or more5 typed constants c1 ∶ 𝐶1, …, cn ∶ 𝐶n to introduce elements of the set. We call
these constants constructors of the set. Furthermore each 𝐶𝑖 must be of the form

(𝑦1 ∶ 𝐴1) ↠ … ↠ (𝑦n ∶ 𝐴n) ↠ (𝑧1 ∶ 𝐵1) ↠ … ↠ (𝑧m ∶ 𝐵m) ↠ T 𝑦1 … 𝑦n

The reader should notice the following:
• The types of the first 𝑛 arguments of each constructor must coincide with the types

of the arguments of 𝑆.
• Furthermore, the return type of the constructor (the type after the rightmost arrow)

must be 𝑇 applied to the first 𝑛 arguments of the constructor. In this case T 𝑦1 … 𝑦n.

3. A way to interact with the elements of the set. This is done via an induction principle.
The induction principle is defined by giving a typed constant to represent it. Then for
each of the constructors we add an equality that describes the behavior of the induction
principle with that constructor.
The concept of principle of induction that we use here should be taken in the wide sense
of structural induction since every set is defined in an inductive way. Of course, not every
set that we will define has a recursive nature and thus the introduced induction principle

5The empty set is the only set which has no constants to introduce new elements.

76

for those sets is not going to be reminiscent of a principle of induction in the traditional
sense.
We use the following notational convention: If X is the constant that denotes the set, then
we will define the constant that represents the induction principle as caseX.

The rest of this chapter is going to be structured as follows: We define a new set, including all
the parts mentioned before. then we give some examples. During the introduction of the first
few sets we show how we can embed propositional intuitionistic logic into LF. After defining
the natural numbers and the identity set we show how we can prove a property on addition by
(formalized) induction.

23.4.1. Function set
We introduce the typed constant that denotes the set of functions from elements of a set 𝐴 to
elements of a set 𝐵:

↣∶ Set ↠ Set ↠ Set

When we say that we introduce a typed constant to the language is shorthand for saying that
we introduce a rule to assert that the new constant can be proven to have the given type from
the empty set. In our case, it corresponds to the following rule:

∅ ⊢ ↣∶ Set ↠ Set ↠ Set

Notation: We will use infix notation and write 𝐴 ↣ 𝐵 instead of ↣ 𝐴 𝐵. Also, ↣ has
right associativity.

We add a constructor to introduce elements in this set:

Λ ∶ (𝐴 ∶ Set) ↠ (𝐵 ∶ Set) ↠ (El(𝐴) ↠ El(𝐵)) ↠ El(𝐴 ↣ 𝐵)

As we can see, the return type of Λ is El(𝐴 ↣ 𝐵). As such, if we apply Λ to a set 𝐴, a set 𝐵
and a function from elements of 𝐴 to elements of 𝐵 we get an element of the set 𝐴 ↣ 𝐵. In this
case we will not introduce more constructors, thus, applying Λ to the corresponding arguments
will be the only way to build an element of the function set.

We proceed by adding an induction principle:

caseΛ ∶ (𝐴 ∶ Set) ↠ (𝐵 ∶ Set) ↠ (El(𝐴 ↣ 𝐵)) ↠ El(𝐴) ↠ El(𝐵)

Let us clarify why we use the words induction principle here. As already pointed out in the
introduction of this section, every set must be defined in an inductive way. Some sets only have
non-recursive constructors, like pairs or the function set being defined here. In the case of the
function set we only have the Λ constructor. From the type of Λ we see that in order to build
a term of type El(𝐴 ↣ 𝐵) we need to provide a term of type El(𝐴) ↠ El(𝐵). We see that the
inductive principle caseΛ does works in the opposite direction: from a term of type El(𝐴 ↣ 𝐵)
returns a term of type El(𝐴) ↠ El(𝐵). Because of this, the functionality of the caseΛ constant
is often referred to as inversion, deconstruction or unwrapping principle. We believe that in this
introduction to sets it helps to use a homogeneous language so we will always use the general
term induction principle.

And the equality:

caseΛ
𝑓 ∶ El(𝐴) ↠ El(𝐵)

caseΛ 𝐴 𝐵 (Λ 𝐴 𝐵 𝑓) = 𝑓 ∶ El(𝐴) ↠ El(𝐵)

77

The following rules are redundant but they help keeping proofs shorter.

IntroΛ
𝑓 ∶ El(𝐴) ↠ El(𝐵)

Λ 𝐴 𝐵 𝑓 ∶ El(𝐴 ↣ 𝐵)

AbsΛ
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵

Λ 𝐴 𝐵 (𝜆𝑥 → 𝑏) ∶ El(𝐴 ↣ 𝐵)

AppΛ
𝑓 ∶ El(𝐴 ↣ 𝐵) 𝑎 ∶ El(𝐴)

caseΛ 𝑓 𝑎 ∶ El(𝐵)

Notation: When we have 𝑓 ∶ El(𝐴 ↣ 𝐵) and 𝑎 ∶ El(𝐴) we will write 𝑓 𝑎 instead of caseΛ 𝑓 𝑎.
Note that this notational convention is very convenient and adds no ambiguity since 𝑓 𝑎 on its
own would never be a valid term.

In each of the sections where we define a set we will draw a horizontal line such as the one
below to separate the definition of the set from the corresponding examples.

Consider the fragment of intuitionistic logic with only implication. If 𝐴 is a propositional for-
mula then 𝐴∗ is the type that identifies the formula 𝐴 in LF, where ∗ is a map from propositional
formulas to types as defined below.

𝐴∗ ≔ El(⟦𝐴⟧)

⟦𝑝⟧ ≔ 𝑃 where 𝑃 ∶ Set
⟦𝐴 → 𝐵⟧ ≔ ⟦𝐴⟧ ↣ ⟦𝐵⟧

We map lowercase propositional variables to the same uppercase variable of type Set, that is,
⟦𝑝⟧ = 𝑃 with 𝑃 ∶ Set, ⟦𝑞⟧ = 𝑄 with 𝑄 ∶ Set, and so on.

Let us now show that (𝑝 → 𝑝)∗ is a theorem in LF. In order to prove that, we need to give a
term with type El(𝑃 ↣ 𝑃). This term is in fact the identity function wrapped in the function
set, as shown below.

AbsΛ
Assum
VarType 𝑃 ∶ Set ⊢ El(𝑃) ∶ Type

𝑃 ∶ Set, 𝑥 ∶ El(𝑃) ⊢ 𝑥 ∶ El(𝑃)
𝑃 ∶ Set ⊢ Λ 𝑃 𝑃 (𝜆𝑥 → 𝑥) ∶ El(𝑃 ↣ 𝑃)

As another example we show that (𝑝 → (𝑞 → 𝑝))∗ is a theorem in LF:

AbsΛ
AbsΛ

Assum
VarType 𝑃 ∶ Set, 𝑄 ∶ Set, 𝑦 ∶ EL(𝑄) ⊢ El(𝑃) ∶ Type

𝑃 ∶ Set, 𝑄 ∶ Set, 𝑥 ∶ EL(𝑃), 𝑦 ∶ EL(𝑄) ⊢ 𝑥 ∶ El(𝑃)
𝑃 ∶ Set, 𝑄 ∶ Set, 𝑥 ∶ EL(𝑃) ⊢ Λ 𝑄 𝑃 (𝜆𝑦 → 𝑥) ∶ 𝑄 ↣ 𝑃

𝑃 ∶ Set, 𝑄 ∶ Set ⊢ Λ 𝑃 (𝑄 ↣ 𝑃) (𝜆𝑥 → Λ 𝑄 𝑃 (𝜆𝑦 → 𝑥)) ∶ El(𝑃 ↣ 𝑄 ↣ 𝑃)

Notation. In order to improve readability, from now on, where we would have Λ 𝐴 𝐵 (𝜆𝑥 → 𝑏)
and 𝐴 and 𝐵 are clear from the context, we will write Λ𝑥 → 𝑏 instead. For instance, the last
step of the previous proof would be written as

AbsΛ
…

𝑃 ∶ Set, 𝑄 ∶ Set ⊢ Λ𝑥 → Λ𝑦 → 𝑥 ∶ El(𝑃 ↣ 𝑄 ↣ 𝑃)

We now show the last step of the proof for ((𝑝 → (𝑞 → 𝑟)) → ((𝑝 → 𝑞) → (𝑝 → 𝑟))∗. It should
not be hard for the reader to see how the proof can be finished.

AbsΛ
…

𝑃 ∶ Set, 𝑄 ∶ Set, 𝑅 ∶ Set ⊢ Λ𝑓 → (Λ𝑔 → (Λ𝑥 → 𝑓 𝑥 (𝑔 𝑥))) ∶
El((𝑃 ↣ 𝑄 ↣ 𝑅) ↣ (𝑃 ↣ 𝑄) ↣ 𝑃 ↣ 𝑅)

78

Observe now that the modus ponens rule is valid, that is, if (𝑝 → 𝑞)∗ and 𝑝∗ are theorems in
LF, then 𝑞∗ is also a theorem. From the assumption it follows that there are terms 𝑓 ∶ El(𝑃 ↣ 𝑄)
and 𝑎 ∶ EL(𝑃). Then we have that caseΛ 𝑓 𝑎, which we write as 𝑓 𝑎, is the desired term.

App
𝑃 ∶ Set, 𝑄 ∶ Set ⊢ 𝑓 ∶ El(𝑃 ↣ 𝑄) 𝑃 ∶ Set, 𝑄 ∶ Set ⊢ 𝑎 ∶ El(𝑃)

𝑃 ∶ Set, 𝑄 ∶ Set ⊢ 𝑓 𝑎 ∶ El(𝑄)

Theorem 23.14.

If 𝐴 is a theorem in the fragment of propositional intuitionistic logic with only implication,
then 𝐴∗ is a theorem in LF.

Proof. By induction on 𝐴 and using the previous facts.

23.4.2. Top set
We now define the singleton set. We name it ⊤. We say that it is a singleton set because it only
has one element, namely tt. The ⊤ set represents “true” in this logic.

We add the constant that represents the set:

⊤ ∶ Set

We introduce the constant that is the only element in the set:

tt ∶ El(⊤)

An induction principle:

case⊤ ∶ (𝑃 ∶ El(⊤) ↠ Set) ↠ El(𝑃 tt) ↠ (𝑎 ∶ El(⊤)) ↠ El(𝑃 𝑎)

The above type should read as follows. Given a predicate 𝑃 , a proof that 𝑃 holds for the base
case, that is, an element of the set 𝑃 tt, and an arbitrary element 𝑎 in the set ⊤, we build a
term in the set 𝑃 𝑎, which is a proof that 𝑎 satisfies 𝑃 .

We also add the following equality.

case⊤
𝑃 ∶ El(⊤) ↠ Set 𝑝 ∶ El(𝑃 tt)

case⊤ 𝑃 𝑝 tt = 𝑝 tt ∶ El(𝑃 tt)

As expected from a set representing true, it is trivial to provide a term of type El(⊤).

tt ∶ El(⊤)

23.4.3. Bottom set
We define the empty set, ⊥, as we call it. We say that it is the empty set because there is no
term 𝑡 such that 𝑡 ∶ El(⊥). The ⊥ type represents “false” in this theory.

We introduce the constant that represents the type:

⊥ ∶ Set

We do not introduce any constructors for this set. We introduce an induction principle:

case⊥ ∶ (𝑃 ∶ El(⊥) ↠ Set) ↠ (𝑎 ∶ El(⊥)) ↠ El(𝑃 𝑎)

79

The justification of this induction principle is that since it is impossible to build a term of
type ⊥ by definition, then from the assumption that we have a term of type ⊥, follows anything.

We add the following equation to the map ⟦.⟧:

⟦⊥⟧ ≔ ⊥

The ⊥ on the right of ≔ is the constant introduced in this section.
Let us now show that the principle (⊥ → 𝑝)∗ known as ex falso quodlibet or principle of

explosion holds in LF. For that, we provide a term typed (⊥ → 𝑝)∗.

AbsΛ
App
App

case⊥ ∶ … Abs
Assum 𝑃 ∶ Set, 𝑥 ∶ El(⊥) ⊢ 𝑃 ∶ Set

𝑃 ∶ Set(𝜆𝑥 → 𝑃) ∶ El(⊥) ↠ Set
𝑃 ∶ Set, 𝑦 ∶ El(⊥) ⊢ case⊥ (𝜆𝑥 → 𝑃) ∶ El(⊥) ↠ El(𝑃) Assum 𝑦 ∶ El(⊥) ⊢ 𝑦 ∶ El(⊥)

𝑃 ∶ Set, 𝑦 ∶ El(⊥) ⊢ case⊥ (𝜆𝑥 → 𝑃) 𝑦 ∶ El(𝑃)
𝑃 ∶ Set ⊢ Λ𝑦 → case⊥ (𝜆𝑥 → 𝑃) 𝑦 ∶ El(⊥ ↣ 𝑃)

23.4.4. Disjoint unions set
We introduce the constant:

⊎ ∶ Set ↠ Set ↠ Set

Notation.We will use infix notation for ⊎, hence we will write 𝐴 ⊎ 𝐵 instead of ⊎ 𝐴 𝐵. The
disjoint union set represents two options, hence, when we have a term of type 𝐴 ⊎ 𝐵 it means
that we either have a term of type 𝐴 or a term of type 𝐵 (and we know which of the two we
have).

Since we want to represent two options, we introduce two constructors:

inj1 ∶ (𝐴 ∶ Set) ↠ (𝐵 ∶ Set) ↠ El(𝐴) ↠ El(𝐴 ⊎ 𝐵)
inj2 ∶ (𝐴 ∶ Set) ↠ (𝐵 ∶ Set) ↠ El(𝐵) ↠ El(𝐴 ⊎ 𝐵)

We introduce the following induction principle:

case⊎ ∶ (𝐴 ∶ Set) ↠ (𝐵 ∶ Set) ↠ (𝑃 ∶ El(𝐴 ⊎ 𝐵) ↠ Set)
↠ ((𝑎 ∶ El(𝐴)) ↠ El(𝑃 (inj1 𝐴 𝐵 𝑎))) case A
↠ ((𝑏 ∶ El(𝐵)) ↠ El(𝑃 (inj2 𝐴 𝐵 𝑏))) case B
↠ (𝑢 ∶ El(𝐴 ⊎ 𝐵))
↠ El(𝑃 𝑢)

As we can easily identify from the type of case⊎, this induction principle corresponds to a proof
by cases. Note that we need to provide a proof for 𝑃 given an element of 𝐴 and also a proof of
𝑃 given an element of 𝐵.

We also introduce the rules below. These rules tells us that when we apply the proof by cases
to a disjoint set built with the inj1 constructor we apply the proof which corresponds to the first
case, whereas if we apply proof by cases to a disjoint set built with the inj2 constructor we apply

80

the proof which corresponds to the second case.

Case⊎1
𝑃 ∶ El(𝐴 ⊎ 𝐵) ↠ Set

𝑝1 ∶ (𝑎 ∶ El(𝐴)) ↠ El(𝑃 (inj1 𝐴 𝐵 𝑎))
𝑝2 ∶ (𝑏 ∶ El(𝐵)) ↠ El(𝑃 (inj2 𝐴 𝐵 𝑏))

𝑎 ∶ El(𝐴)
case⊎ 𝐴 𝐵 𝑃 𝑝1 𝑝2 (inj1 𝐴 𝐵 𝑎) = 𝑝1 𝑎 ∶ El(𝑃 (inj1 𝐴 𝐵 𝑎))

Case⊎2
𝑃 ∶ El(𝐴 ⊎ 𝐵) ↠ Set

𝑝1 ∶ (𝑎 ∶ El(𝐴)) ↠ El(𝑃 (inj1 𝐴 𝐵 𝑎))
𝑝2 ∶ (𝑏 ∶ El(𝐵)) ↠ El(𝑃 (inj2 𝐴 𝐵 𝑏))

𝑏 ∶ El(𝐵)
case⊎ 𝐴 𝐵 𝑃 𝑝1 𝑝2 (inj2 𝐴 𝐵 𝑏) = 𝑝2 𝑏 ∶ El(𝑃 (inj2 𝐴 𝐵 𝑏))

We extend the map ⟦.⟧ we defined with the following equation:

⟦𝐴 ∨ 𝐵⟧ ≔ ⟦𝐴⟧ ⊎ ⟦𝐵⟧

We show that (𝑝 → (𝑝 ∨ 𝑞))∗ is a theorem in LF.

…
𝑃 ∶ Set, 𝑄 ∶ Set ⊢ Λ𝑥 → inj1 𝑃 𝑄 𝑥 ∶ El(𝑃 ↣ (𝑃 ⊎ 𝑄))

The proof of (𝑞 → (𝑝 ∨ 𝑞))∗ is analogous.

…
𝑃 ∶ Set, 𝑄 ∶ Set ⊢ Λ𝑥 → inj2 𝑃 𝑄 𝑥 ∶ El(𝑄 ↣ (𝑃 ⊎ 𝑄))

Finally we have that ((𝑝 → 𝑟) → ((𝑞 → 𝑟) → ((𝑝 ∨ 𝑞) → 𝑟)))∗ is a theorem in LF. Finishing the
proof is straightforward.

…
𝑃 ∶ Set, 𝑄 ∶ Set, 𝑅 ∶ Set ⊢ Λ𝑓 → Λ𝑔 → Λ𝑥 → case⊎ 𝑃 𝑄 (𝜆𝑥 → 𝑅) (caseΛ 𝑓) (caseΛ 𝑔) 𝑥 ∶

El((𝑃 ↣ 𝑅) ↣ (𝑄 ↣ 𝑅) ↣ (𝑃 ⊎ 𝑄) ↣ 𝑅)

23.4.5. Pairs set
The following constant which represents the set of pairs:

× ∶ Set ↠ Set ↠ Set

Notation. We will use infix notation for ×, hence we will write 𝐴 × 𝐵 instead of ×𝐴 𝐵.
We introduce one constructor:

pair ∶ (𝐴 ∶ Set) ↠ (𝐵 ∶ Set) ↠ El(𝐴) ↠ El(𝐵) ↠ El(𝐴 × 𝐵)

We introduce the following induction principle:

case× ∶ (𝐴 ∶ Set) ↠ (𝐵 ∶ Set) ↠ (𝑃 ∶ El(𝐴 × 𝐵) ↠ Set)
↠ ((𝑎 ∶ El(𝐴)) ↠ (𝑏 ∶ El(𝐵)) ↠ El(𝑃 (pair 𝐴 𝐵 𝑎 𝑏)))
↠ (𝑢 ∶ El(𝐴 × 𝐵))
↠ El(𝑃 𝑢)

81

The functionality of this induction principle is to unwrap a term of type El(𝐴 × 𝐵) to access
its components.

We add the following rule, which tells us that the constructor pair and the induction principle
case× cancel each other.

case×
𝑃 ∶ El(𝐴 × 𝐵) ↠ Set

𝑝 ∶ (𝑎′ ∶ El(𝐴)) ↠ (𝑏′ ∶ El(𝐵)) ↠ El(𝑃 (pair 𝐴 𝐵 𝑎′ 𝑏′))
𝑎 ∶ El(𝐴) 𝑏 ∶ El(𝐵)

case× 𝐴 𝐵 𝑃 𝑝 (pair 𝐴 𝐵 𝑎 𝑏) = 𝑝 𝑎 𝑏 ∶ 𝑃 (pair 𝐴 𝐵 𝑎 𝑏)

We extend the ⟦.⟧ map with the following clause:

⟦𝐴 ∧ 𝐵⟧ ≔ ⟦𝐴⟧ × ⟦𝐵⟧
We show that (𝑝 ∧ 𝑞 → 𝑝)∗ is a theorem in LF.

…
𝑃 ∶ Set, 𝑄 ∶ Set ⊢ Λ𝑥 → case× 𝑃 𝑄 (𝜆𝑣 → 𝑃) (𝜆𝑦 → 𝜆𝑧 → 𝑦) 𝑥 ∶ El((𝑃 × 𝑄) ↣ 𝑃)

Analogously, the proof for (𝑝 ∧ 𝑞 → 𝑞)∗.

…
𝑃 ∶ Set, 𝑄 ∶ Set ⊢ Λ𝑥 → case× 𝑃 𝑄 (𝜆𝑣 → 𝑄) (𝜆𝑦 → 𝜆𝑧 → 𝑧) 𝑥 ∶ El((𝑃 × 𝑄) ↣ 𝑄)

Finally we show that 𝑝 → (𝑞 → (𝑝 ∧ 𝑞))∗ is a theorem in LF.

…
𝑃 ∶ Set, 𝑄 ∶ Set ⊢ Λ𝑥 → Λ𝑦 → pair 𝑃 𝑄 𝑥 𝑦 ∶ El(𝑃 ↣ 𝑄 ↣ (𝑃 × 𝑄))

23.4.6. Dependent functions set
Dependent functions generalize regular functions in the way that the type of the return type
depends on the argument value. More precisely, a dependent function is a map from elements
of a set 𝐴 to elements of a set 𝐵 indexed by elements of 𝐴. Thus we introduce the following
constant:

⇝∶ (𝐴 ∶ Set) ↠ (𝐵 ∶ El(𝐴) ↠ Set) ↠ Set
Notation: We will use infix notation and write 𝐴 ⇝ 𝐵 instead of ⇝ 𝐴 𝐵. Also, ⇝ has right
associativity.

We add a constant to introduce elements in this set:

Λ′ ∶ (𝐴 ∶ Set) ↠ (𝐵 ∶ El(𝐴) ↠ Set) ↠ ((𝑎 ∶ El(𝐴)) ↠ El(𝐵 𝑎)) ↠ El(𝐴 ⇝ 𝐵)
We add an induction principle:

caseΛ
′ ∶ (𝐴 ∶ Set) ↠ (𝐵 ∶ El(𝐴) ↠ Set) ↠ (El(𝐴 ⇝ 𝐵)) ↠ (𝑎 ∶ El(𝐴)) ↠ El(𝐵 𝑎)

And the equality:
caseΛ’

𝑓 ∶ El(𝐴) ↠ El(𝐵)
caseΛ

′ 𝐴 𝐵 (Λ 𝐴 𝐵 𝑓) = 𝑓 ∶ (𝑎 ∶ El(𝐴)) ↠ El(𝐵 𝑎)
The following rules are redundant but they help keeping proofs shorter.

IntroΛ’
𝑓 ∶ (𝑎 ∶ El(𝐴)) ↠ El(𝐵 𝑎)

Λ 𝐴 𝐵 𝑓 ∶ El(𝐴 ⇝ 𝐵)

AbsΛ’
𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵 𝑥

Λ 𝐴 𝐵 (𝜆𝑥 → 𝑏) ∶ El(𝐴 ⇝ 𝐵)

AppΛ’
𝑓 ∶ El(𝐴 ⇝ 𝐵) 𝑎 ∶ El(𝐴)

caseΛ 𝑓 𝑎 ∶ El(𝐵 𝑎)
Notation: When we have 𝑓 ∶ El(𝐴 ⇝ 𝐵) and 𝑎 ∶ El(𝐴) we will write 𝑓 𝑎 instead of case′

Λ 𝑓 𝑎.

82

23.4.7. Σ Pairs set
A Σ pair generalizes the concept of a regular pair. In a Σ pair the type of the second component
depends on the value of the first component.

We introduce the constant for the set:

Σ ∶ (𝐴 ∶ Set) ↠ (𝐵 ∶ El(𝐴) ↠ Set) ↠ Set

We introduce a constant to build dependent pairs:

pairΣ ∶ (𝐴 ∶ Set) ↠ (𝐵 ∶ 𝐴 ↠ Set) ↠ (𝑎 ∶ El(𝐴)) ↠ (𝑏 ∶ El(𝐵 𝑎)) ↠ Σ 𝐴 𝐵
The above constructor takes four arguments: The type of the first component, the type of the
second component, the term for the first component, and the term for the second component.
We add the following induction principle:

caseΣ ∶(𝐴 ∶ Set) ↠ (𝐵 ∶ El(𝐴) ↠ Set) ↠ (𝑃 ∶ Σ 𝐴 𝐵 ↠ Set)
↠ ((𝑎 ∶ El(𝐴)) ↠ (𝑏 ∶ El(𝐵 𝑎)) ↠ 𝑃 (pairΣ 𝐴 𝐵 𝑎 𝑏))
↠ (𝑢 ∶ El(Σ 𝐴 𝐵))
↠ El(𝑃 𝑢)

We also add this equality.

𝑃 ∶ El(Σ 𝐴 𝐵) ↠ Set
𝑝 ∶ (𝑎′ ∶ El(𝐴)) ↠ (𝑏′ ∶ El(𝐵 𝑎′)) ↠ El(𝑃 (pairΣ 𝐴 𝐵 𝑎′ 𝑏′))

𝑎 ∶ El(𝐴) 𝑏 ∶ El(𝐵 𝑎)
caseΣ 𝐴 𝐵 𝑃 𝑝 (pairΣ 𝐴 𝐵 𝑎 𝑏) = 𝑝 𝑎 𝑏 ∶ 𝑃 (pairΣ 𝐴 𝐵 𝑎 𝑏)

23.4.8. Natural numbers set
We represent the set of natural numbers with the constant ℕ:

ℕ ∶ Set

We add two constants to build elements in ℕ.

𝟬 ∶ ℕ
suc ∶ ℕ ↠ ℕ

We add an induction principle:

caseℕ ∶ (𝑃 ∶ El(ℕ) ↠ Set)
↠ El(𝑃 𝟬)
↠ ((𝑛 ∶ El(ℕ)) ↠ El(𝑃 𝑛) ↠ El(𝑃 (suc 𝑛)))
↠ (𝑎 ∶ El(ℕ))
↠ El(𝑃 𝑎)

We add two equalities for the induction principle:
case 0

𝑃 ∶ El(ℕ) ↠ Set 𝐵 ∶ El(𝑃 𝟬)
𝑅 ∶ (𝑛 ∶ El(ℕ)) ↠ El(𝑃 𝑛) ↠ El(𝑃 (suc 𝑛))

caseℕ 𝑃 𝐵 𝑅 𝟬 = 𝐵 ∶ El(𝑃 𝟬)

case suc
𝑃 ∶ El(ℕ) ↠ Set 𝐵 ∶ El(𝑃 𝟬) 𝑛 ∶ El(ℕ)

𝑅 ∶ (𝑛 ∶ El(ℕ)) ↠ El(𝑃 𝑛) ↠ El(𝑃 (suc 𝑛))
caseℕ 𝑃 𝐵 𝑅 (suc 𝑛) = 𝑅 𝑛 (caseℕ 𝑃 𝐵 𝑅 𝑛) ∶ El(𝑃 (suc 𝑛))

83

Let us see how we can define addition:

add ≔ 𝜆𝑛 → 𝜆𝑚 → caseℕ (𝜆𝑥 → ℕ) 𝑚 (𝜆𝑥 → 𝜆𝑦 → suc 𝑦) 𝑛

It is easy to show that indeed

add ∶ El(ℕ) ↠ El(ℕ) ↠ El(ℕ)

Let us sketch the proof of add 1 2 = 3.

add 1 2 = (𝜆𝑛 → 𝜆𝑚 → caseℕ (𝜆𝑥 → ℕ) 𝑚 (𝜆𝑥 → 𝜆𝑦 → suc 𝑦) 𝑚) (suc 𝟬) (suc (suc 𝟬))
= caseℕ (𝜆𝑥 → ℕ) (suc (suc 𝟬)) (𝜆𝑥 → 𝜆𝑦 → suc 𝑦) (suc 𝟬) Case suc
= (𝜆𝑥 → 𝜆𝑦 → suc 𝑦) 𝟬 (caseℕ (𝜆𝑥 → ℕ) (suc (suc 𝟬)) (𝜆𝑥 → 𝜆𝑦 → suc 𝑦) 𝟬) 𝛽-=
= suc (caseℕ (𝜆𝑥 → ℕ) (suc (suc 𝟬)) (𝜆𝑥 → 𝜆𝑦 → suc 𝑦) 𝟬) Case 𝟬
= suc (suc (suc 𝟬))
= 3

In the next section we will see how we can use induction on the natural numbers to prove
properties of addition.

23.4.9. Identity set
We denote the identity set (or equality set) with the ≡ constant:

≡ ∶ (𝑆 ∶ Set) ↠ (𝑥 ∶ El(𝑆)) ↠ El(𝑆) ↠ Set

Notation. We will write 𝐴 ≡𝑆 𝐵 instead of ≡ 𝑆 𝐴 𝐵.
We add the constant refl to build elements of this set.

refl ∶ (𝑆 ∶ Set) ↠ (𝑥 ∶ El(𝑆)) ↠ 𝑥 ≡𝑆 𝑥

We add an induction principle:

case≡ ∶ (𝑆 ∶ Set) ↠ (𝑥 ∶ 𝑆) ↠ (𝑦 ∶ El(𝑆))
↠ (𝑃 ∶ (𝑥′ ∶ El(𝑆)) ↠ (𝑦′ ∶ El(𝑆)) ↠ El(𝑥′ ≡𝑆 𝑦′) ↠ Set)
↠ ((𝑧 ∶ El(𝑆)) ↠ El(𝑃 𝑧 𝑧 (refl 𝑆 𝑧)))
↠ (𝑒 ∶ El(𝑥 ≡𝑆 𝑦))
↠ El(𝑃 𝑥 𝑦 𝑒)

We add one equality:

Case≡
𝑆 ∶ Set 𝑎 ∶ El(𝑆) 𝑦 ∶ El(𝑆)

𝑃 ∶ (𝑥′ ∶ El(𝑆)) ↠ (𝑦′ ∶ El(𝑆)) ↠ El(𝑥 ≡𝑆 𝑦) ↠ Set
𝑖 ∶ (𝑧 ∶ El(𝑆)) ↠ El(𝑃 𝑧 𝑧 (refl 𝑆 𝑧))

case≡ 𝑆 𝑥 𝑦 𝑃 𝑖 (refl 𝑆 𝑥) = 𝑖 𝑎 ∶ El(𝑃 𝑥 𝑥 (refl 𝑆 𝑥))

With this set we can build a type which states “for every natural 𝑛, we have 𝑛 + 0 = 𝑛”. Such
type is as follows:

(𝑛 ∶ El(ℕ)) ↠ El(add 𝑛 𝟬 ≡ℕ 𝑛)
If we were to prove this informally we would proceed as follows. Perform induction on 𝑛, for
the base case is trivial, for the successor case 𝑛 = suc𝑚 we have by IH that add 𝑚 𝟬 = 𝑚, then

84

we apply suc on both sides of the IH, so we have suc (add 𝑚 𝟬) = suc 𝑚 which is equivalent to
(add (suc 𝑚) 𝟬) = suc 𝑚.

In order to formalize the previous proof we will first show this lemma:

(𝑛 ∶ El(ℕ)) ↠ (𝑚 ∶ El(ℕ)) ↠ El(𝑛 ≡ℕ 𝑚) ↠ El(suc 𝑛 ≡ℕ suc 𝑚)

In order to show that we build a term of the above type:

lemma ≔ 𝜆𝑛 → 𝜆𝑚 → 𝜆𝑒 → case≡ ℕ 𝑛 𝑚
(𝜆𝑛′ → 𝜆𝑚′ → 𝜆𝑒′ → suc 𝑛′ ≡ℕ suc 𝑚′)
(𝜆𝑧 → refl ℕ (suc 𝑧))
𝑒

Let us explain the proof step by step. We start with three lambda abstractions as we have three
arguments: two natural numbers and a proof of equality between them. Then we use the case≡
primitive to build the desired proof. We now inspect each of the applied arguments. First we
have ℕ because the equalities in the proof are between naturals. Second and third we have 𝑛
and 𝑚 because they are the two involved naturals. Then we have the property that we want to
show, namely (𝜆𝑛′ → 𝜆𝑚′ → 𝜆𝑒′ → suc 𝑛′ ≡ℕ suc 𝑚′), we will refer to this term as 𝑃 . After
that we need to provide a term typed (𝑧 ∶ El(𝑆)) ↠ El(𝑃 𝑧 𝑧 (refl 𝑆 𝑧)). In our case we need
to replace 𝑆 by ℕ and 𝑃 by the fourth argument. After simplifying with the 𝛽-reduction rule
we get (𝑧 ∶ El(ℕ)) ↠ El(suc 𝑧 ≡ℕ suc 𝑧). We can easily see that (𝜆𝑧 → refl ℕ (suc 𝑧)) has the
desired type. The last argument, 𝑒, which has type El(𝑛 ≡ℕ 𝑚) is the equality that we will use.
Finally we see that the return type is El(𝑃 𝑥 𝑦 𝑒). After replacing 𝑃 with its definition, 𝑥 by
and 𝑛 and 𝑦 by 𝑚 and simplifying via the 𝛽-reduction rule we get El(suc 𝑛 ≡ℕ suc 𝑚), which is
what we wanted.

We are now ready to prove the theorem. The term that serves as a proof of the theorem, or
in other words the term that has the specified type, is provided below.

thm ≔ 𝜆𝑛 → caseℕ (𝜆𝑛′ → add 𝑛′ 𝟬 ≡ℕ 𝑛′)
(refl ℕ 𝟬) base case
(𝜆𝑚 → 𝜆𝑝 → lemma (add 𝑚 𝟬) 𝑚 𝑝) inductive case
𝑛

Let us break the term thm into smaller pieces and analyze them. Since we are proving that a
property holds for any natural number, we start with a lambda abstraction 𝜆𝑛 → … and then
we proceed by induction on 𝑛 by using the caseℕ constant.

The first argument of caseℕ, namely (𝜆𝑛′ → add 𝑛′ 𝟬 ≡ℕ 𝑛′), expresses the property that
we want to prove abstracted over the term on which we perform the induction, in our case we
abstract 𝑛 with the variable 𝑛′. We will refer to this argument as 𝑃 . It is easy to observe that
𝑃 has type El(ℕ) ↠ Set as required by the type of caseℕ.

Then, the second argument, which corresponds to the proof for the base case has type El(𝑃 𝟬),
which in our case translates into (𝜆𝑛′ → add 𝑛′ 𝟬 ≡ℕ 𝑛′) 𝟬 which is the same (by 𝛽-reduction)
as El(add 𝟬 𝟬 ≡ℕ 𝟬) which is the same (by case 0) as El(𝟬 ≡ℕ 𝟬). Thus it suffices to provide
the term refl ℕ 𝟬, which has the desired type.

The third argument corresponds to the proof of the inductive case. The type for this argument
is6 ((𝑚 ∶ El(ℕ)) ↠ El(𝑃 𝑚) ↠ El(𝑃 (suc 𝑚))) which in our case translates into ((𝑚 ∶ El(ℕ)) ↠
El(add 𝑚 𝟬 ≡ℕ 𝑛) ↠ El(add (suc 𝑚) 𝟬 ≡ℕ suc 𝑚)). It is easy to see that the lemma we
proved before will come in handy. In fact, it suffices to observe that the term (𝜆𝑚 → 𝜆𝑝 →
lemma (add 𝑚 𝟬) 𝑚 𝑝) has the desired type. This concludes the proof of the inductive case.

6We renamed the variable 𝑛 in this argument to 𝑚 to avoid confusion with the previously bound variable 𝑛.
Recall that this can be done thanks to the 𝛼-= rule.

85

Finally, the fourth argument is the specific natural number for which we want to perform the
induction and prove the property. We just give it 𝑛, which is bound by the initial 𝜆𝑛 → ….
This concludes our proof.

23.5. Main differences with Agda’s type system
In this section we briefly highlight some of the differences between LF and Agda.

Hierarchy of sets. The most important difference between LF and Agda is that Agda does
not has the concepts of Type and Set, where Set ∶ Type. For instance, in LF we do not have an
answer to “what is the type of Type?”. Agda solves this problem an infinite hierarchy of sets
Set0 ∶ Set1 ∶ …. It is important to note that the word Type does not exist in Agda, instead,
there is only the hierarchy of sets. For instance, small types such as the type of natural numbers
reside in Set0. Predicates on natural numbers reside in Set1, and so on. For a more detailed
description we refer the reader to Section 25.4 and Appendix A.7.

Extensible language. Agda allows the introduction of new types within the language.
Of course, in order to avoid bogus types that could cause the soundness of the system to be
compromised, the types defined by the user are subject to some restrictions. For instance,
positivity checking (Section 25.9).

Pattern matching. Agda has a generic way, called pattern matching, to deconstruct terms
and do case splits based on the constructors of the corresponding type. We refer the reader to
Chapter 24 for more information.

Induction by proof of termination. Agda does not have explicit induction principles. In
Agda, recursive calls and induction hypotheses are the same. In order to ensure that the system
remains sound Agda checks for termination on the recursive calls, which is the same as saying
that we use the induction hypotheses on something provably smaller.

86

24. Basic Agda
This part of the thesis is not meant to be an exhaustive analysis of the inner workings of Agda, as
this falls out of the scope of this thesis. The original author of Agda, Ulf Norell, has suggested1

[8] as a good reference for that purpose.
In this chapter we precisely define a moderate subset of Agda. We have tried to remain faithful

to the semantics of the real Agda language, however, this is an incomplete simplification and
thus is not meant to be a reference for the real Agda language.

We introduce several concepts that have cyclic dependencies and thus a linear presentation is
not possible.

Definition 24.1. Identifier. An identifier is a sequence of characters which do not contain
any white space or parentheses (normal () or curly {}) and furthermore it is different than all
reserved keywords. Some identifier examples are a, x, ¬¬x, A▷B, A→B, Some-Long-Word. For
all practical purposes, we can assume we have an infinite set of identifiers.

Some of the Agda reserved keywords are λ, ∀, →, =, data, where, :.
It is worth noting that syntactically constructors and identifiers are subject to the same rules.

Agda detects constructors by using the datatype definitions in scope. For more information on
constructors see the definition of a datatype in Definition 24.4.

Definition 24.2. Term/Type. An Agda term is recursively defined as shown in the figure
below.

We use x to denote an arbitrary identifier, we use p₁, …, pn to denote arbitrary patterns (see
Definition 24.5), we use A,, B, A₁, …, An to denote arbitrary terms and we use c to denote an
arbitrary constructor (see Definition 24.4).

𝑡𝑒𝑟𝑚 ≔ x identifier;
| (x : A) → B function type;
| λ x → A lambda abstraction;
| λ {p₁ → A₁; … ; pn → An} lambda abstraction with pattern matching;
| A B function application;
| Set ℓ universe (ℓ ∈ 𝜔).

We say that an Agda term A is a type if we have A : Set ℓ for some ℓ. In Definition 24.8
we give a description of the typing relation :. We want to emphasize, and it is clear from the
definition, that all types are also terms.

The → in the function type has right associativity, hence (a : A) → (b : B) → C is
the same as (a : A) → ((b : B) → C). The → in the lambda abstraction extends to the
rightmost part, hence λ x → λ y → A B is the same as (λ x → (λ y → A B)). Function
application has left associativity, hence a b c is the same as (a b) c. Also note that the i in
Set i can be an identifier but for simplicity in this chapter we restrict the i to be an arbitrary
constant natural number.

An example term:

λ (A : Set 0) → λ (B : Set 0) → (f : A → B) → (a : A) → B

1In correspondence via email.

87

Definition 24.3. Function definition. A function definition is used to bind a new2 identifier
to a term.

Note: Maybe the name “term definition” or “term binding” would be more appropriate for
the concept defined here. We have decided to use the name “Function definition” since it is
widely used in the field of computer science.

Below we present two schemas of function definitions:

x : T
x = A

y : T'
y = A'

The above code should read as: The identifier x is bound to A, which is a term of type T.
Likewise, the identifier y is bound to A' which is a term of type T'.

Note that A : T and A' : T' must be valid according to the typing rules (see Section 24.1).
Function definitions are evaluated in order, thus, in T' and in A' we can refer to x. However,

neither in A or T we can refer to y.
Recursive references are allowed in the term, thus we can refer to x in A. Likewise we can

refer to y in A'.
Also note that we cannot bind the same identifier twice.

Definition 24.4. Datatype definition. Datatype definitions are used to introduce new
terms/types to the language. We call datatypes the types which have been defined using a
datatype definition. For instance, we would use a datatype definition to define a type represent-
ing the natural numbers.

The general form of the definition of a datatype D is the following:

data D (x₁ : P₁) … (xk : Pk) : (y₁ : Q₁) → … → (yl : Ql) → Set ℓ where
c₁ : T₁
…
cn : Tn

Note that 𝑘 ≥ 0, 𝑙 ≥ 0 and 𝑛 ≥ 0. We distinguish the following parts of the declaration:

1. Name. D is an identifier, which is the name of the newly introduced datatype. D is assigned
the following type and is brought into scope:

(x₁ : P₁) → … → (xk : Pk) → (y₁ : Q₁) → … → (yl : Ql) → Set ℓ

By bringing D into scope we mean that D can be referenced in the constructor types T₁,
…, Tn, also in subsequent datatypes definitions and in terms defined after the definition of
the datatype D.

2. Indices. (y₁ : Q₁) … (yl : Ql) are the indices of the datatype. For any 𝑖 ∈ {1, …, 𝑙}
we have that:

a) yi is an identifier with associated type Qi;
b) the type Qi can reference xj for any 𝑗 ∈ {1, …, 𝑘};
c) if 𝑖 > 1 we have that the type Qi can reference any yj for 𝑗 < 𝑖.

3. Parameters. (x₁ : P₁) … (xk : Pk) are the parameters of the datatype. For every
𝑖 ∈ {1, …, 𝑘} we have that:

2By new we mean that is has not yet been bound by another definition.

88

a) xi is an identifier with associated type Pi;
b) if 𝑖 > 1 we have that the type Pi can reference any xj for 𝑗 < 𝑖.

4. Constructors. c₁ … cn are identifiers, which we call the constructors of the datatype.
For every 𝑖 ∈ {1, …, 𝑛} we have that:

a) Ti is the type of the constructor ci.
b) Ti has to be of the form

(z₁ : B₁) → ... → (zm : Bm) → D x₁ … xk t₁ … tl

Where for every 𝑖 ∈ {1, …, 𝑙} we have that ti : Qi, furthermore ti can refer to zj
for any 𝑗 ∈ {1, …, 𝑚}.
If we focus on the return type3 of ci, namely D x₁ … xk t₁ … tl, we see
that the first 𝑘 arguments to D are required to be precisely the parameters of D,
while the remaining 𝑙 arguments, the indices, can be any terms t₁, …, tl of type
Q₁, …, Ql respectively and may vary for each constructor. For that reason, we say
that parameters are shared among all constructors, while indices are specified on a
constructor basis. Refer to Appendix A.4 for a meaningful example.

The following is fundamental: the only way to build a term of type D x₁ … xk t₁ …
tl is to build a term of the form ci w₁ ... wm, for some 𝑖 ∈ {1, …, 𝑛}, assuming ci is
declared to have the type (z₁ : B₁) → ... → (zm : Bm) → D x₁ … xk t₁ …
tl and w₁, … wm are terms of type B₁, … Bm respectively.
There are no datatypes or constructors which are inherent to the language, thus, every
datatype and constructor will be defined by the user in a datatype definition.

Definition 24.5. Pattern. A pattern is recursively defined as follows. We use p₁, …, pn to
denote patterns.

𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ≔ c p₁ … pn constructor of arity n ≥ 0;
| x identifier.

A pattern cannot contain repeated identifiers. We define 𝑖𝑑𝑠(𝑝) to be the set of identifiers
that appear in a pattern.

Note that patterns of the form c p₁ … pn for 𝑛 ≥ 1 must be surrounded by parentheses.

Definition 24.6. Module. A module is a sequence of function definitions and datatype defini-
tions. Each function definition exposes the bound identifier to the subsequent definitions. Each
datatype definition exposes the name of the datatype and its constructors to the subsequent
definitions.

𝑚𝑜𝑑𝑢𝑙𝑒 ≔ fundef ↵ module function definition;
| datadef ↵ module datatype definition;
| empty.

The ↵ symbol represents a line break.
An example module which contains a definition of the Bool datatype and the not function:

data Bool : Set 0 where
true : Bool
false : Bool

not : (b : Bool) → Bool
not = λ { false → true; true → false}

3The rightmost term which is not a function type.

89

24.1. Contexts, and typing rules
Definition 24.7. Context. A context is a pair of (finite) sets ⟨Τ, Δ⟩. The set Τ consists of
pairs ⟨𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 ∶ 𝑡𝑦𝑝𝑒⟩. It is used to keep track of what identifiers are bound and what is their
type. The set Δ consists of pairs ⟨𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 = 𝑡𝑒𝑟𝑚⟩ which are the identifiers which have been
assigned a term through a function definition.

In order to simplify things we assume that there is no shadowing, which means that an
identifier which is already bound in the current context cannot be bound again. Thus, the term
λ x → λ x → x would be invalidated by this assumption since the identifier x is rebound
by the second lambda function. This restriction is not a limiting as we can always rename our
identifiers to De Bruijn indices ([11]), which guarantee this assumption.

Notation. We refer to contexts by a single letter, thus if Γ = ⟨Τ, Δ⟩ we abuse notation and
write 𝑎 ∶ 𝑡 ∈ Γ instead of ⟨𝑎 ∶ 𝑡⟩ ∈ Τ and 𝑎 = 𝑡 ∈ Γ instead of ⟨𝑎 = 𝑡⟩ ∈ Δ. Also, we use Γ; 𝑡 ∶ 𝐴
as short for ⟨Τ ∪ {⟨𝑡 ∶ 𝐴⟩}, Δ⟩.

Definition 24.8. Well-typed term (and patterns). We say that a term 𝑡 is well-typed in
context Γ if Γ ⊢ 𝑡 ∶ 𝐴 for some type 𝐴. The rules for ⊢ are presented below. We also define
the relation ⊢Ρ, which is for typing patterns. For that purpose we need an auxiliary function
definition, 𝜏 , which is defined afterwards.

The structure of a module implicitly assigns a context to each term in it. We usually use the
concept of well-typed term in the context of a module, in that case, we implicitly refer to the
context assigned by the structure of the module. See Definition 24.9 for a thorough explanation.

Id
𝑡 ∶ 𝐴 ∈ Γ
Γ ⊢ 𝑡 ∶ 𝐴

Level

Γ ⊢ 𝑆𝑒𝑡 𝑖 ∶ 𝑆𝑒𝑡 (𝑖 + 1)

Arrow
Γ ⊢ 𝐴 ∶ 𝑆𝑒𝑡 𝑖 Γ; 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝑆𝑒𝑡 𝑗

Γ ⊢ (𝑥 ∶ 𝐴) → 𝐵 ∶ 𝑆𝑒𝑡 (𝑖 ⊔ 𝑗)

Abstraction
𝑥 ∶ 𝐴; Γ ⊢ 𝑡 ∶ 𝐵

Γ ⊢ 𝜆𝑥 → 𝑡 ∶ (𝑥 ∶ 𝐴) → 𝐵

Application
Γ ⊢ 𝑓 ∶ (𝑥 ∶ 𝐴) → 𝐵 Γ ⊢ 𝑎 ∶ 𝐴

Γ ⊢ 𝑓 𝑎 ∶ 𝐵[𝑥 ↦ 𝑡]

Pattern abstraction
Let 𝐷 ≔ 𝐷 𝑥1 … 𝑥n 𝑡1 … 𝑡n

Γ ⊢Ρ 𝑝1 ∶ 𝐷 … Γ ⊢Ρ 𝑝n ∶ 𝐷
Γ ∪ 𝜏(Γ, 𝐷, 𝑝1) ⊢ 𝑠1 ∶ 𝐵[𝑥 ↦ 𝑝1] … Γ ∪ 𝜏(Γ, 𝐷, 𝑝n) ⊢ 𝑠n ∶ 𝐵[𝑥 ↦ 𝑝n]

Γ ⊢ 𝜆 {𝑝1 → 𝑠1; … ; 𝑝n → 𝑠n} ∶ (𝑥 ∶ 𝐷) → 𝐵

Figure 24.1.: Typing rules for terms.

90

Identifier

Γ ⊢Ρ 𝑥 ∶ 𝐴

Constructor
𝑐 ∶ (𝑏1 ∶ 𝐵1) → … → (𝑏n ∶ 𝐵n) → 𝐷 𝑥1 … 𝑥n 𝑡1 … 𝑡n ∈ Γ
∀𝑖 ∈ {1, …, 𝑛 − 1}. Γ ⊢Ρ 𝑝 i ∶ 𝐵 i [𝑏1 ↦ 𝑝1, …, 𝑏𝑖−1 ↦ 𝑝𝑖−1]

Γ ⊢Ρ 𝑐 𝑝1 … 𝑝n ∶ 𝐷 𝑥1 … 𝑥n 𝑡1 … 𝑡n

Figure 24.2.: Typing rules for patterns.

Let 𝐷 ≔ 𝐷 𝑥1 … 𝑥n 𝑡1 … 𝑡n. We now define 𝜏(Γ, 𝐷, 𝑝), which is the set of identifiers bound by
pattern 𝑝 paired with their respective types. Assume that Γ ⊢Ρ 𝑝 ∶ 𝐷. Finally, let 𝜏 be defined
as follows:

𝜏(Γ, 𝐷, 𝑥) ≔ {𝑥 ∶ 𝐷} Identifier
𝜏(Γ, 𝐷, 𝑐 𝑝1 … 𝑝n) ≔ 𝜏(Γ, 𝑝1, 𝐵1) ∪ … ∪ 𝜏(Γ, 𝑝n, 𝐵n) Constructor

assuming 𝑐 ∶ (𝑏1 ∶ 𝐵1) → … → (𝑏n ∶ 𝐵n) → 𝐷 ∈ Γ

Definition 24.9. Scoping and type checking a module. We understand by scoping the
process of implicitly assigning a context to each part of the module. We understand by type
checking the process of checking that all terms in a module are well-typed (in their corresponding
context) and respect the typing annotations. These processes are tightly tied and thus we
describe them together.

It may be worth noticing that sometimes the annotation x : A may be redundant since the
type of t can be automatically inferred to be A from the rules. Type inference is widely used in
the real Agda language, however, in this presentation we skip it for simplicity.

However, for simplicity we do not differentiate between type inference and type checking.
assume that the annotation is always required.

The process of type-checking a module is as follows:

1. At the beginning of a module we start with an empty context Γ ≔ ∅.

2. We look at the next definition.
• If it is a function definition, it is of the form

x : A
x = t

Check there is some ℓ such that Γ ⊢ 𝐴 ∶ 𝑆𝑒𝑡 ℓ. Then let Γ′ ≔ Γ; 𝑥 ∶ 𝐴 and check
Γ′ ⊢ 𝑡 ∶ 𝐴.
We repeat step 2 with context Γ′.

• If it is a datatype definition, it is the form
data D (x₁ : P₁) … (xk : Pk) : (y₁ : Q₁) → … → (yl : Ql) → Set ℓ where

c₁ : T₁
…
cn : Tn

where each Ti is of the form
(z₁ : B₁) → … → (zm : Bm) → D x₁ … xk t₁ … tl

We check that:

91

a) For each parameter xi : Pi check that for some 𝜀 ≤ ℓ we have

Γ; 𝑥1 ∶ 𝑃1; …; 𝑥𝑖−1 ∶ 𝑃𝑖−1 ⊢ 𝑃 i ∶ 𝑆𝑒𝑡 𝜀.

b) Then let

Γ′ ≔Γ; 𝑥1 ∶ 𝑃1; …; 𝑥k ∶ 𝑃 k;
𝐷 ∶ (𝑥1 ∶ 𝑃1) → … → (𝑥k ∶ 𝑃 k) → (𝑦1 ∶ 𝑄1) → … → (𝑦 l ∶ 𝑄 l) → 𝑆𝑒𝑡 ℓ.

For each 𝑖 ∈ {1, …, 𝑛} check that

Γ′ ⊢ (𝑧1 ∶ 𝐵1) → … → (𝑧m ∶ 𝐵m) → 𝐷 𝑥1 … 𝑥k 𝑡1 … 𝑡 l ∶ 𝑆𝑒𝑡 ℓ.

Then let

Γ″ ≔Γ;
𝐷 ∶ (𝑥1 ∶ 𝑃1) → … → (𝑥k ∶ 𝑃 k) → (𝑦1 ∶ 𝑄1) → … → (𝑦 l ∶ 𝑄 l) → 𝑆𝑒𝑡 ℓ;
𝑐1 ∶ (𝑧1

1 ∶ 𝐵1
1) → … → (𝑧1

m ∶ 𝐵1
m) → 𝐷 𝑥1 … 𝑥k 𝑡1

1 … 𝑡1
l ;

⋮
𝑐n ∶ (𝑧𝑛

1 ∶ 𝐵𝑛
1) → … → (𝑧𝑛

m ∶ 𝐵𝑛
m) → 𝐷 𝑥1 … 𝑥k 𝑡𝑛

1 … 𝑡𝑛
l

and continue to step 2 with context Γ″.

24.2. Normalization
Normalization is refers to the process of simplifying or evaluating a term via rewrite rules.

In real Agda normalization is done at the same time as type-checking via an involved algorithm
(see Section 3.3.2 of [29]). Here we present a collection normalization rules which are detached
from the type-checking process. Our aim is to provide an intuition of how well-typed terms are
simplified automatically in Agda rather than giving details of the algorithm.

The reader may be already acquainted with the 𝛽-reduction rule, which is present in untyped
lambda calculus, the most basic form of lambda calculus. Here we present the mentioned rule
among others. We use the notation Δ ⊢𝑁 𝑡 ↓ 𝑡′ to say that term 𝑡 normalizes to term 𝑡′ in
context Δ. We extend the definition of context to also contain all the pairs ⟨𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 = 𝑡𝑒𝑟𝑚⟩
which are defined in a function definition above in the module. To be more precise, now a
context consists of two sets: One contains the typing relations ⟨𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 ∶ 𝑡𝑒𝑟𝑚⟩ and the other
contains the binding relations ⟨𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 = 𝑡𝑒𝑟𝑚⟩.

Normalization can happen in nested terms. For instance, if we have that 𝑡 ↓ 𝑡′ then 𝜆𝑥 → 𝑡 ↓
𝜆𝑥 → 𝑡′. Likewise for the other kinds of terms.

In the rule Match we use the notation ∃𝑚𝑖𝑛𝑖 to mean that in case there exist multiple values
for 𝑖 such that the function 𝑚𝑎𝑡𝑐ℎ(𝑝 i , 𝑏) succeeds and returns a substitution 𝜎, then we must
take the minimum of such 𝑖s. In other words, we check patterns in order and we use the first
that succeeds.

We use 𝑎, 𝑏, 𝑐, 𝑡 to denote arbitrary terms and 𝑥, 𝑓 to denote arbitrary identifiers.

92

𝛽-reduction

Δ ⊢𝑁 (𝜆𝑥 → 𝑡) 𝑎 ↓ 𝑡[𝑥 ↦ 𝑎]

Transitivity
Δ ⊢𝑁 𝑎 ↓ 𝑏 Δ ⊢𝑁 𝑏 ↓ 𝑐

Δ ⊢𝑁 𝑎 ↓ 𝑐

Definition
𝑓 = 𝑡 ∈ Δ
Δ ⊢𝑁 𝑓 ↓ 𝑡

Match
Δ ⊢𝑁 𝑎 ↓ 𝑏 ∃𝑚𝑖𝑛𝑖.𝑚𝑎𝑡𝑐ℎ(𝑝 i , 𝑏) = 𝜎
Δ ⊢𝑁 𝜆 {𝑝1 → 𝑡1; …; 𝑝n → 𝑡n} 𝑎 ↓ 𝜎(𝑡 i)

Figure 24.3.: Normalization rules for terms.

Here we define the partial function 𝑚𝑎𝑡𝑐ℎ, which takes a pattern and a term, then either fails
or returns a substitution. We represent a substitution by a set of pairs of the form ⟨𝑥 ↦ 𝑡⟩,
which means “replace identifier 𝑥 by term 𝑡”. Keep in mind that a pattern does not contain
repeated identifiers, so the result (if it succeeds) of 𝑚𝑎𝑡𝑐ℎ is a proper function.

𝑚𝑎𝑡𝑐ℎ(𝑥, 𝑡) ≔ {⟨𝑥 ↦ 𝑡⟩}

𝑚𝑎𝑡𝑐ℎ(𝑐 𝑝1 … 𝑝n, 𝑐′ 𝑡1 … 𝑡n) ≔ {⋃𝑖(𝑚𝑎𝑡𝑐ℎ(𝑝 i , 𝑡 i)) if 𝑐 = 𝑐′ and all recursive calls succed;
fail otherwise.

Some examples for the 𝛽-reduction rule:

𝜆𝑦 → (𝜆𝑥 → 𝑥) 𝑦 ↓ 𝜆𝑦 → 𝑦
(𝜆𝑥 → 𝑥) 𝑎 ↓ 𝑎
To see examples for the Match rule assume we have the following definition in scope:
data Nat : Set 0 where

zero : Nat
suc : Nat → Nat

plus : Nat → Nat → Nat
plus = λ { zero → (λ b → b); (suc a) → (λ b → suc (plus a b)) }

Then see that the term plus zero normalizes to the identity function:

𝑝𝑙𝑢𝑠 𝑧𝑒𝑟𝑜 ↓ 𝜆𝑏 → 𝑏
As another example, see that the term plus (suc zero) normalizes to λ b → suc b.

We present this example step by step.

𝑝𝑙𝑢𝑠 (𝑠𝑢𝑐 𝑧𝑒𝑟𝑜) ↓ Def
𝜆 {𝑧𝑒𝑟𝑜 → (𝜆𝑏 → 𝑏); (𝑠𝑢𝑐 𝑎) → (𝜆𝑏 → 𝑠𝑢𝑐 (𝑝𝑙𝑢𝑠 𝑎 𝑏))} (𝑠𝑢𝑐 𝑧𝑒𝑟𝑜) ↓ Match

𝜆𝑏 → 𝑠𝑢𝑐 (𝑝𝑙𝑢𝑠 𝑧𝑒𝑟𝑜 𝑏) ↓ Def
𝜆𝑏 → 𝑠𝑢𝑐 ((𝜆𝑏′ → 𝑏′) 𝑏) ↓ 𝛽-reduction

𝜆𝑏 → 𝑠𝑢𝑐 𝑏
Theorem 24.10. Normalization is type-preserving.

Γ ⊢𝑁 𝑡 ↓ 𝑡′ Γ ⊢ 𝑡 ∶ 𝐴
Γ ⊢ 𝑡′ ∶ 𝐴

Proof. By an easy proof by induction.

93

24.3. Totality
In order to be a sound system, Agda requires all of its terms to be total. Thus, it needs to assure
that:

1. Every lambda abstraction with pattern matching of the form λ {p₁ → A₁; … ; pn
→ An} must have a set of exhaustive patterns p₁, …, pn. For instance if we have the
following:

data Bool : Set 0 where
true : Bool
false : Bool

wrong : (b : Bool) → Bool
wrong = λ { true → true }

Then the definition of wrong is rejected since it does not have the false pattern. The
coverage algorithm (the algorithm which checks the exhaustivity of patterns) is described
in [29].

2. There are no infinite loops. For instance, the following definition is rejected.

loop : (A : Set 0) → A
loop = λ A → loop A

In order to do so Agda analyses every recursive call and tries to find a well-founded order
on its arguments. If it succeeds the recursive call is considered save, otherwise it is rejected.
The Agda online documentation ([3]) references [1] as the basis of the termination checker
implemented in Agda. For instance, the checker is sophisticated enough to accept the
definition of the Ackermann function ([3]), which is non-primitive recursive.

94

25. Agda tutorial

25.1. BHK interpretation of propositional logic
In this section we present an informal tutorial of Agda. We introduce new syntax by means of
example and we introduce new concepts appealing to the reader intuition. We guide the reader
to Chapter 24 for a more precise definition of the language. In the official Agda reference ([3]),
the informal approach is always preferred.

As we have already mentioned, Agda is based on an intuitionistic type theory with dependent
types that extends Per Martin-Löf’s type theory ([23]). Agda’s constructive nature suggests
that a fitting way to start the introduction is through the BHK interpretation of intuitionistic
logic ([4]). We start with propositional logic. During this part, the reader will notice that the
first steps in this tutorial are going to be reminiscent of the embedding of propositional logic
into LF we presented in Section 23.4. Later in the chapter (Section 25.5) we will continue with
first-order logic and explain how to represent relations and quantifiers in Agda.

The BHK interpretation states that:

1. A proof of 𝐴 → 𝐵 is an algorithm that transforms an arbitrary proof of 𝐴 into a proof of
𝐵;

2. A proof of 𝐴 ∧ 𝐵 is a proof of 𝐴 and a proof of 𝐵;

3. A proof of 𝐴 ∨ 𝐵 is an algorithm telling to which of 𝐴 or 𝐵 we commit to and according
to that, a proof of 𝐴 or a proof of 𝐵;

4. Nothing is a proof of ⊥;

5. ⊤ is always true and provable.

According to the BHK interpretation a proof of 𝐴 → 𝐴 is an algorithm implementing the
identity function. We can implement this algorithm in Agda by writing the identity lambda
term:

λ a → a

More generally, in order to build lambda terms we will use the syntax λ arg₁ arg₂ … →
term. The term λ a → a is well-formed. However, in Agda we must give a name to all the
terms that we define so we can refer to them in other parts of our code. We give a name to a
term by prepending name = to the term. We name our term id:

id = λ a → a

When the term that we are defining is a lambda term, we are allowed to move the arguments
to the left of the = sign. Furthermore, we should write the type of the function using the :
symbol. The : symbol denotes the typing relation between terms and types, hence a : A
reads as “term a has type A”. Sometimes we also say that “the term a is a proof of A”.

id : (A : Set) → A → A
id A a = a

95

The definition id A a = a should be read as id(𝐴)(𝑎) ≔ 𝑎. The definition id : (A : Set)
→ A → A should be read as follows: Given an arbitrary type A and a term of type A, it returns
a term of type A. It may be helpful to the reader to identify the Agda type (A : Set) → A →
A with the LF type (𝐴 ∶ Set) ↠ El(𝐴) ↠ El(𝐴). The Agda type checking algorithm is in charge
of checking the implementation of id matches the specified type. For instance, if we wrote the
following:

id-bad : (A : Set) → A → A
id-bad A a = A

Agda would complain that A is of type Set and not of type A.
Since the argument named A will always be exactly the type of the second argument of id,

Agda can infer it and thus it is recommended to use an implicit argument (see Appendix A.3).

id2 : {A : Set} → A → A
id2 a = a

For instance, assume we have a term t of type B and we want to apply the identity function to
it. If we use id we would write id B t. On the other hand, using id2 we would write id2 t.
We observe that the argument {A : Set} is inferred from t and is not needed to be explicitly
given.

Let us identify propositional formulas which contain only the implication connective with
Agda types. We define the map ∗ as follows:

• If 𝑝 is a variable, then 𝑝∗ ≔ P, where P : Set.

• (𝐴 → 𝐵)∗ ≔ 𝐴∗ → 𝐵∗. Note that the → on the right of the symbol ≔ is Agda’s arrow
type.

Then, if 𝐹 is a propositional formula with variables 𝑝1, …, 𝑝n we define

⟦𝐹⟧ ≔ {P₁ : Set} → … → {Pn : Set} → F*

Note that in Agda we can write {P₁ … Pn : Set} → F* instead of {P₁ : Set} → … →
{Pn : Set} → F*.

We will say that an Agda type T is a theorem if we can provide a function definition of type
T. In the simplest form, the definition will be of the following form:

thm : T
thm = proof

Where thm is the name of the theorem. For the general form we refer the reader to the Agda
documentation in Appendix A.1.

Let us now see that ⟦𝐴 → 𝐴⟧ is a theorem in Agda. It suffices to observe that ⟦𝐴 → 𝐴⟧ is
equal to {A : Set} → A → A, which is the type of id2. Hence id2 is indeed a proof that
⟦𝐴 → 𝐴⟧ is an Agda theorem. However, it is more than that. Agda is a programming language,
so the programs that we define in Agda are executable. For instance, we can ask the system to
evaluate the expression id2 t, which evaluates to t, as expected. The capability of evaluating
expressions reflects the fact that the id2 function we defined is a perfect candidate to be a proof
of 𝐴 → 𝐴 according to the BHK interpretation. How the evaluation of expression works falls
out of the scope of this tutorial. We refer the reader to the Agda documentation ([3]) for that.

96

Let us see another example involving functions. The following Agda definition shows that
⟦(𝐴 → (𝐵 → 𝐶)) → (𝐵 → (𝐴 → 𝐶))⟧ is an Agda theorem.

commute : {A B C : Set} → (A → B → C) → B → A → C
commute f b a = f a b

We see that commute has three explicit arguments, namely f : A → B → C, b : B and a
: A. Then in the right hand side of the = sign we have f a b, which should read as “term f
applied to a and b”. Notice how function application is denoted by juxtaposition and has left
associativity.

Let us now put our attention on proofs that revolve around conjunction. First, we need to
define a new type. In Agda we can introduce new types by means of a datatype definition (we
refer the reader to Definition 24.4 for a precise definition). Recall from Chapter 24 that we call
datatypes the types which have been defined by the user by means of a datatype definition.

The definition below defines the pair datatype (the semantics of this datatype are analogous
to the pair set we defined for LF in Section 23.4.5).

data _×_ (A B : Set) : Set where
, : A → B → A × B

A pair type is in rough terms the type of a tuple. More precisely, the definition defines a new
datatype called _×_. It has two parameters: (A B : Set). These parameters are the types
of the components of the pair. It has a single constructor named _,_. Underscores are used to
denote infix operators. Thus we have that _,_ A B is the same as A , B. We observe that the
type of the constructor _,_ is A → B → A × B. This tells us that _,_ is a constructor that
takes an argument of type A, an argument of type B, and then returns a term of type A × B.
Recall that when we pattern match (or deconstruct) a term we will have a case for each possible
constructor of the type of that term.

We proceed by extending the map ∗ with the following clause:

(𝐴 ∧ 𝐵)∗ ≔ 𝐴∗ × 𝐵∗

We can show that ⟦𝐴 → (𝐵 → 𝐴∧𝐵)⟧ is a theorem in Agda by simply applying the constructor
,:

p1 : {A B : Set} → A → B → A × B
p1 a b = a , b

In order to show that ⟦𝐴 ∧ 𝐵 → 𝐵 ∧ 𝐴⟧ is a theorem we need to access to components of
the argument. We can do so by deconstructing the argument with pattern matching as shown
below. Note that when we use pattern matching on an argument we need to put parentheses
around it.

swap : {A B : Set} → A × B → B × A
swap (a , b) = b , a

We proceed by giving some more examples involving conjunction.
We show that we can prove ⟦𝐴 ∧ 𝐵 → 𝐴⟧ and ⟦𝐴 ∧ 𝐵 → 𝐵⟧. It suffices to pattern match on

the argument to access to corresponding component and return it.

proj₁ : {A B : Set} → A × B → A
proj₁ (a , b) = a

proj₂ : {A B : Set} → A × B → B
proj₂ (a , b) = b

97

If we ask Agda to evaluate an expression of the form proj₁ (a , b) the result will be a.
Observe how we can use proj₁ and proj₂ to provide an alternative proof of ⟦𝐴∧𝐵 → 𝐵∧𝐴⟧:

swap' : {A B : Set} → A × B → B × A
swap' ab = (proj₁ ab) , (proj₂ ab)

We show that we can prove ⟦(𝐴 → 𝐵 → 𝐶) → ((𝐴 ∧ 𝐵) → 𝐶)⟧.
p3 : {A B C : Set} → (A → B → C) → (A × B) → C
p3 f (a , b) = f a b

As we can see, we use pattern matching to extract the components of the pair and then apply
f to them.

Now that we are familiarized with the pair type we can proceed by exploring disjunction.
In order to express options we can define a new datatype called sum type thus (the semantics

of this datatype are analogous to the disjoint union set we defined for LF in Section 23.4.4):

data _⊎_ (A B : Set) : Set where
inj₁ : A → A ⊎ B
inj₂ : B → A ⊎ B

We see that the main difference with respect to the pair type is that now we have two constructors
which we named inj₁ and inj₂. The constructor inj₁ is used to build a term of type A ⊎
B by providing a term with type A. The constructor inj₂ builds a term of type A ⊎ B given a
term of type B.

We extend the ∗ map with the following clause:

(𝐴 ∨ 𝐵)∗ ≔ 𝐴∗ ⊎ 𝐵∗

We show how we can prove ⟦𝐴 ∨ 𝐵 → 𝐵 ∨ 𝐴⟧.
p4: {A B : Set} → A ⊎ B → B ⊎ A
p4 (inj₁ a) = inj₂ a
p4 (inj₂ b) = inj₁ b

We observe that since we have the ⊎ type has two constructors, when pattern matching against
an argument of type A ⊎ B we need to define two cases, one for each constructor. In the first
case, when we have inj₁ a on the left of the equal sign we know that a is of type A by the
definition of the inj₁ constructor. Hence, we can build a term of type B ⊎ A by applying
inj₂ to a. The second case is symmetric to the first case.

Let us see another example, we show ⟦(𝐴 ∨ 𝐵) → (𝐴 → 𝐶) → (𝐵 → 𝐶) → 𝐶⟧.
p5 : {A B : Set} → A ⊎ B → (A → C) → (B → C) → C
p5 (inj₁ a) f g = f a
p5 (inj₂ b) f g = g b

The reader may have raised the following question in their mind: when we pattern match an
argument of type A ⊎ B, what if we do not include one of the cases? In other words, what
happens if we try to prove ⟦𝐴 ∨ 𝐵 → 𝐴⟧?
wrong : {A B : Set} → A ⊎ B → A
wrong : (inj₁ a) = a

The answer is that Agda rejects the above definition. As explained in Section 24.3 Agda requires
all the definitions to be total. As such, when we split an argument into cases using pattern
matching, it checks that the cases are exhaustive.

We proceed with ⊥. We can define a datatype which we call bottom type or empty type.

98

data ⊥ : Set where

Notice that ⊥ has no constructors and hence it is impossible to construct a term with type ⊥.
The bottom type is specially useful to define negation, which we define in the following way:

¬ : Set → Set
¬ A = A → ⊥

We extend the ∗ map with the following clauses (note that the ⊥ and ¬ on the left of the
symbol ≔ refer to the Agda symbols):

⊥∗ ≔ ⊥

(¬𝐴)∗ ≔ ¬(𝐴∗)

The principle of explosion (ex falso quodlibet) ⟦⊥ → 𝐴⟧ can be proved as shown below:

explosion : {A : Set} → ⊥ → A
explosion ()

We see that we have a new pattern: (). Agda uses the pattern () to denote the impossible
pattern. When one of the arguments matches the impossible pattern then there is no need to
provide a definition of the function. In this case we match the impossible pattern because the
type ⊥ has not constructors. For more information on the absurd pattern we refer the reader to
Appendix A.2.

As we are in an intuitionistic logic then we cannot show ⟦¬¬𝐴 → 𝐴⟧ nor ⟦𝐴 ∨ ¬𝐴⟧1:

¬¬elim : {A : Set} → ¬ (¬ A) → A
¬¬elim = ? -- not provable

excluded-middle : {A : Set} → A ⊎ (¬ A)
excluded-middle = ? -- not provable

However, we can show that ⟦𝐴 → ¬¬𝐴⟧ and ⟦¬¬¬𝐴 → ¬𝐴⟧:

¬¬intro : {A : Set} → A → ¬ (¬ A)
¬¬intro a ¬a = ¬a a

¬¬¬elim : {A : Set} → ¬ (¬ (¬ A)) → ¬ A
¬¬¬elim ¬¬¬a a = ¬¬¬a (¬¬intro a)

We can build an alternative proof of ⟦¬¬¬𝐴 → ¬𝐴⟧ that does not use ¬¬intro by replacing
it with a lambda term:

¬¬¬elim' : {A : Set} → ¬ (¬ (¬ A)) → ¬ A
¬¬¬elim' ¬¬¬a a = ¬¬¬a (λ ¬a → ¬a a)

Consider the proof of ⟦𝐴 → ¬𝐴 → 𝐵⟧.

p6 : {A B : Set} A → ¬ A → B
p6 a ¬a = explosion (¬a a)

1Observe that in the Agda code we use the symbol ¬ in the name of the term ¬¬elim. Here the ¬ symbol is
just part of the name and serves the same purpose of any other character. Hence it is important to note that
¬a (just a name with the ¬ character) is different from ¬ a (the negation of a).

99

We have two arguments, a : A and ¬a : ¬ A. It is easy to see that the type of ¬a a is ⊥.
Also, recall that the type of explosion is2 {C : Set} → ⊥ → C. Then, in the definition
above, since we expect a term of type B, Agda can infer that implicit argument {C : Set} is
equal to B and thus explosion (¬a a) has type B. For illustrative purposes, let us rewrite
the same proof but with the implicit arguments made explicit. We can make implicit arguments
explicit by surrounding them with {} as shown below:

p6' : {A B : Set} A → ¬ A → B
p6' {A} {B} a ¬a = explosion {B} (¬a a)

This concludes the first part of the introduction.

25.2. Booleans and case analysis
The true or false concept is ubiquitous in computer science and in logic. In this section we show
how we can define a datatype that represents this dichotomy and we give a small introduction
to case analysis through pattern matching.

In Agda we can define the Bool type in a similar fashion to the disjunction type we defined
before.

data Bool : Set where
true : Bool
false : Bool

As a simple example, see how we can define the not and and Boolean operators using pattern
matching:

not : Bool → Bool
not false = true
not true = false

and : Bool → Bool → Bool
and false b = false
and true b = b

We proceed by defining equality for the Bool type3. We use the symbol ≡ because = is reserved
for Agda.

data _≡_ : Bool → Bool → Set where
t≡t : true ≡ true
f≡f : false ≡ false

We see that the type of _≡_ is Bool → Bool → Set. We say that _≡_ is an indexed datatype,
in this case with two Bool indices. In contrast to parameters (recall the definitions of _×_ and
⊎) which are shared among all constructors, indices are specified on a constructor basis.

Let us prove the following property:

notnot : (b : Bool) → not (not b) ≡ b
notnot true = t≡t
notnot false = f≡f

2we have renamed the bound variable A to C to avoid confusion with the A in A → ¬ B → B.
3This definition is just for illustrative purposes. It is possible to define generic equality as described in Sec-

tion 25.6.

100

There are a number of things that are worth mentioning. First, we see that we refer to b on
the returning result not (not b) ≡ b, which is possible in virtue of dependent types. Then
we see that we pattern match on b and thus we need to fill out two cases. We could make an
analogy with a hand written proof by cases. The case split with pattern matching allows Agda
to know via normalization that in the true case we must provide a term (proof) of type true ≡
true, which we can provide using the t≡t constructor. We proceed analogously in the false
case. Agda normalizes the terms when possible, for instance the term not (not b) is already
normalized because we cannot apply any rule. On the other hand the term not (not true)
can be normalized to not false and further normalized to true by using the definition of
not. For further information on normalization refer to [29]. Another thing to notice is that we
use the same construction (i.e. an Agda function definition) to provide function definitions, like
not, and theorems, like notnot.

Pattern matching (case analysis) is ubiquitous in Agda, be it in definitions or in proofs. We
show some more examples below:

p1 : (b : Bool) → and false b ≡ false
p1 b = f≡f

p2 : (b : Bool) → and b false ≡ false
p2 true = f≡f
p2 false = f≡f

See that in the first case we did not need to do pattern matching while in the second we had to.
This is due to how the definition of and is written which in our case performs pattern matching
on the first argument.

25.3. Naturals and induction
In this section we will have a look at the simplest possible recursive structure, the natural
numbers. In Agda natural numbers can be defined in the following way:

data Nat : Set where
zero : Nat
suc : Nat → Nat

The definition should be intuitive enough for the reader at this point. We can represent the
number 1 with the term suc zero, the number 2 with suc (suc zero) and so on.

Let us continue by defining the equality relation for natural numbers4.

data _≡_ : Nat → Nat → Set where
z≡z : zero ≡ zero
s≡s : {a b : Nat} → a ≡ b → suc a ≡ suc b

We see that it has a similar structure to the datatype for Boolean equality. The only difference
is that the s≡s constructor requires a proof of a ≡ b as an argument. Let us show that every
natural number is equal to itself.

refl : (n : Nat) → n ≡ n
refl zero = z≡z
refl (suc n) = s≡s (refl n)

4Agda does not allow overloading of symbols so we would need to use a different name other than _≡_ to avoid
the clash with the equality relation of Booleans that we defined before.

101

We see that we pattern match on n, for the zero case we give the z≡z constructor. For the
suc case we need to provide a proof of suc n ≡ suc n. By performing a recursive call with
n as argument we get a proof of n ≡ n, then we can use the constructor s≡s to build a term
of type suc n ≡ suc n. It can be enlightening to observe that in a proof by induction, such
as the previous one, a recursive call plays the role of an induction hypothesis.

An inexperienced Agda user might try the following:

refl' : (n : Nat) → n ≡ n
refl' zero = z≡z
refl' (suc n) = refl' (suc n)

While the types match we see that in the inductive case we perform a recursive call on the same
argument and thus we get an infinite loop. Agda has a termination checker that rejects proofs
where termination cannot be assured and thus rejects the previous definition. We know that
termination is an undecidable problem hence it is inevitable that Agda will reject some programs
that in fact would always terminate. For more information on Agda’s termination checker refer
to [3, 29].

We now define addition on natural numbers:

+ : Nat → Nat → Nat
zero + b = b
(suc a) + b = suc (a + b)

Proving associativity can be achieved by means of an inductive proof following a similar
structure as before. For the base case we use the refl property proved above.

assoc : (a b c : Nat) → (a + b) + c ≡ a + (b + c)
assoc zero b c = refl (b + c)
assoc (suc a) b c = s≡s (assoc a b c)

Consider the following example involving negation. Keep in mind that ¬ (n ≡ suc n) =
n ≡ suc n → ⊥.

p1 : (n : Nat) → ¬ (n ≡ suc n)
p1 zero ()
p1 (suc n) (s≡s x) = p1 n x

For the base case we have the impossible pattern because when n = zero the second argument
is supposed to have the type zero ≡ suc zero which is not unifiable with any type of a
constructor and thus we get the empty pattern. For more information on Agda unification refer
to [29].

Finally, let us focus on proving commutativity of addition, which is a more involved example.
We first prove transitivity of equality, which is proved by an easy induction.

trans : {a b c : Nat} → a ≡ b → b ≡ c → a ≡ c
trans z≡z z≡z = z≡z
trans (s≡s x) (s≡s y) = s≡s (trans x y)

Notice how there are two missing cases, that is, z≡z with s≡s and vice versa. We are allowed
to do that because Agda was able to detect the empty pattern. We could have also omitted the
p1 zero () case in the theorem above.

We proceed by proving two lemmas by an easy induction:

zero-r : (a : Nat) → a ≡ (a + zero)
zero-r zero = z≡z
zero-r (suc a) = s≡s (zero-r a)

102

suc-r : (a b : Nat) → suc (a + b) ≡ (a + suc b)
suc-r zero b = refl (suc b)
suc-r (suc a) b = s≡s (suc-r a b)

At last, we put all the pieces together to prove our theorem:

+commut : (a b : Nat) → (a + b) ≡ (b + a)
+commut zero b = zero-r b
+commut (suc a) b = trans (s≡s (+commut a b)) (suc-r b a)

For the base case we must prove 0 + b ≡ b + 0 which normalizes to b ≡ b + 0 and then
we can use our zero-r lemma. For the inductive case we must prove suc a + b ≡ b + suc
a which normalizes to suc (a + b) ≡ b + suc a. By IH we know that a + b ≡ b + a
so by s≡s we get suc (a + b) ≡ suc (b + a). Then by our lemma suc-r we get suc
(b + a) ≡ b + suc a. Finally by transitivity we get the desired suc (a + b) ≡ b +
suc a.

We hope that at this point the user has a grasp of how properties can be proved in Agda.

25.4. Universe hierarchy
In Agda every well-typed term is assigned a type. For instance, the type of true is Bool and
the type of 0 is Nat. As we have seen before, in a dependent type theory we are allowed to
mix types and terms, hence Nat is a term in itself and must be assigned a type. Agda calls
the type of (small) types Set, hence we have that Nat has type Set. But then Set is also a
term an must be assigned a type as well. Could we have that the type of Set is Set? No. The
first version of Martin-Löf’s type theory ([22]) had an axiom stating that there is a type of all
types and thus we would have that the type of Set is Set. However Girard showed ([12]) that
having Set : Set allowed the Burali-Forti paradox5 to be encoded in the theory, and thus
the relation Set : Set needs to be rejected. In order to avoid such inconsistency Agda builds
a hierarchy of universes where small types such as Nat and Bool are assigned the type Set 0
and then for every 𝑖 ∈ 𝜔 we have that Set i : Set i+1. Notice however, that Set i :
Set i+1 is true while Set i : Set i+n does not hold for 𝑛 > 1. In Agda we write Set
instead of Set 0. When the level is a constant natural number we can also write Set₁, Set₂,
etc. instead of Set 1, Set 2, etc.

It is possible to combine types of different universe levels. The biggest type is the one that
counts. For instance:

function : Set₃ → Set₁ → Set₃
function A B = A → B

The typing rule is analogous for product and sum types.
Agda provides a primitive6 type for universe levels called Level. Essentially it is the same

as Nat (we have lzero for the base level and lsuc for the successor level), but it is designed
to work as a universe index. Having the Level type allows us to write universe polymorphic
functions. See the same function as before, but now with universe polymorphism.

function' : {a b : Level} → Set a → Set b → Set (a ⊔ b)
function' A B = A → B

5The assumption that there is a set of all ordinal numbers leads to a contradiction.
6primitive means that it is built in the language and it cannot be defined by the user.

103

The _⊔_ operator is a primitive operator of type Level → Level → Level that normalizes
to the the maximum of its two operands.

Most of the functions that we have defined before should be rewritten to be universe poly-
morphic if possible. For instance, we can now rewrite the identity function thus:

id : {a : Level} {A : Set a} → A → A
id a = a

In the most recent version of Agda (2.6.1) there is an option to enable universe cumulativity
([3]). This extension adds the typing rule 𝑆𝑒𝑡 i ∶ 𝑆𝑒𝑡 j for 𝑖 < 𝑗. Hence it allows us to write the
following:

a : Set -- always allowed
a = Nat
b : Set₁ -- only with cumulativity
b = Nat
c : {i : Level} → Set i -- only with cumulativity
c = Nat

In our thesis we have not used this extension.

25.5. BHK interpretation of first order logic
We extend the interpretation that we gave before to include the universal and existential quan-
tifiers ([4]):

1. A proof of ∀𝑥.𝑃 (𝑥) is a function that given an arbitrary element 𝑐 in the domain, builds
a proof that 𝑐 satisfies 𝑃 .

2. A proof of ∃𝑥.𝑃 (𝑥) is a witness 𝑐 in the domain and a proof that 𝑐 satisfies 𝑃 .

Before diving into quantifiers we first discuss how to represent relations in Agda. Recall the
equality relation for natural numbers _≡_ that we defined before. Its type is Nat → Nat →
Set. Let us say that we want to define a generic type REL for relations on any type. A first
attempt could be:

REL : Set → Set → Set₁
REL A B = A → B → Set

This first definition is somewhat limited. Recall that Set = Set 0, thus we restrict A and
B to be small types, furthermore, we require the relation to be a small type as well. If we make
our REL definition universe polymorphic it turns out like this.

REL : {a b : Level} → Set a → Set b → (ℓ : Level) → Set (a ⊔ b ⊔ lsuc ℓ)
REL A B ℓ = A → B → Set ℓ

This is the definition used in the Agda standard library ([10]) and is the one that we use in our
thesis.

For homogeneous relations we use the name Rel:

Rel : {a : Level} → Set a → (ℓ : Level) → Set (a ⊔ lsuc ℓ)
Rel A ℓ = REL A A ℓ

By using these new definitions we could have defined the type of _≡_ thus (observe that Rel
Nat lzero normalizes to Nat → Nat → Set):

104

data _≡_ : Rel Nat lzero where
... -- same as before

In a similar way we can define predicates:

Pred : {a : Level} → Set a → (ℓ : Level) → Set (a ⊔ lsuc ℓ)
Pred A ℓ = A → Set ℓ

We proceed by giving a representation of the universal quantifier. In the following definition
the parameter D represents the domain and P the predicate.

data ∀[_] {a ℓ : Level} (D : Set a) (P : Pred D ℓ) : Set (a ⊔ ℓ) where
proof∀ : ((e : D) → P e) → ∀[D] P

In fact this datatype is just a wrapper for a function of type (e : D) → P e.
For instance, let us prove that every successor of a natural number is different than zero:

aux : (n : Nat) → ¬ (suc n ≡ zero)
aux n ()

s≠z : ∀[Nat] (λ n → ¬ (suc n ≡ zero))
s≠z = proof∀ aux

Alternatively we could have written a shorter version that does not use an auxiliary lemma.

s≠z : ∀[Nat] (λ n → ¬ (suc n ≡ zero))
s≠z = proof∀ λ {n ()}

Proving ∀-elimination (if ∀𝑥.𝑃(𝑥) and 𝑐 is in the domain then 𝑃(𝑐)) is straightforward:

∀-elim : {a ℓ : Level} {A : Set a} {P : Pred A ℓ} → ∀[A] P → (a : A) → P a
∀-elim (proof∀ f) a = f a

We now continue with the existential quantifier. Recall that according to the BHK interpre-
tation a proof ∃𝑥.𝑃 (𝑥) is an element 𝑐 of the domain and a proof that 𝑃(𝑐). The first plan
could be to use the pair type we defined before to contain the needed elements. We repeat the
definition here:

data _×_ (A B : Set) : Set where
, : A → B → A × B

The problem is that the type of the second component, B, is independent of the first component
and thus we cannot express what we need. Here is where the Σ type (or dependent pair) comes
into play. A dependent pair is a structure where the type of the second component depends on
the value of the first component. This concept is defined by the following datatype.

data Σ {ℓ ℓ' : Level} (A : Set ℓ) (B : A → Set ℓ') : Set (ℓ ⊔ ℓ') where
, : (a : A) → B a → Σ A B

Proving ∃-introduction is trivial:

∃-intro : {ℓ ℓ' : Level} {A : Set ℓ} {P : A → Set ℓ'}
→ (a : A) → P a → Σ A P

∃-intro a p = a , p

We now show that ∀𝑥(𝑃 (𝑥)) ⇒ ¬∃𝑥(¬𝑃(𝑥)).

105

p1 : {ℓ ℓ' : Level} {A : Set ℓ} {P : A → Set ℓ'}
→ ∀[A] P → ¬ (Σ A (λ x → ¬ (P x)))

p1 (proof∀ f) (c , b) = b (f c)

Our goal is to give a term of type ⊥. We have that f has type (a : A) → P a so f c has
type P c, then b has type ¬ (P c) which is the same as P c → ⊥, thus by applying b to (f
c) we get a term of type ⊥.

Of course, as we are in an intuitionistic logic we cannot show the other direction, namely
¬∃𝑥(¬𝑃(𝑥)) ⇒ ∀𝑥(𝑃 (𝑥)).

A note on syntax. The reader may find the Σ syntax a bit too different from the usual
existential notation: ∃𝑥(𝑃𝑥). We can fix that thanks to Agda’s syntax versatility. Agda provides
a tool to define custom syntax. Below we show how we can use that tool to improve the syntax
of Σ pairs. We will not go into more detail since this feature is of shallow mathematical interest.

Σ-syntax : {ℓ ℓ' : Level} → (A : Set ℓ) → (A → Set ℓ') → Set (ℓ ⊔ ℓ')
Σ-syntax = Σ
syntax Σ-syntax A (λ x → B) = Σ[x ∈ A] B

With this syntax enhancement we can replace Σ A (λ c → P c) by Σ[c ∈ A] (P c).
The previous theorem becomes:

∃-intro : {ℓ ℓ' : Level} {A : Set ℓ} {P : A → Set ℓ'}
→ (a : A) → P a → Σ[c ∈ A] (P c)

There is a variation of this notation which omits the type of the variable as it can be inferred
in many cases. That is, instead of Σ[c ∈ A] (P c) we would have ∃[c] (P c). We
prefer this notation when possible in the thesis7. See again the ∃-intro theorem type using
this notation:

∃-intro : {ℓ ℓ' : Level} {A : Set ℓ} {P : A → Set ℓ'}
→ (a : A) → P a → ∃[c] (P c)

25.6. Equality
In Sections 25.2 and 25.3 we have seen how we can define equality for Booleans and naturals. In
this section we explore a generic equality and some of its properties and limitations. Of course,
the main advantage of generic equality is that we can use it for every type and thus there is no
need to redefine it for every new datatype that we define.

Below we present a slight simplification of generic equality as defined in [10]. The semantics of
this generic equality type defined in this section are analogous to the identity set for the system
LF presented in Section 23.4.9.

data _≡_ {a : Level} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x

It may help the reader to read the following description of the generic equality datatype
defined above taken from [42]:

For any type A and for any x of type A, the constructor refl provides evidence that
x ≡ x. Hence, every value is equal to itself, and we have no other way of showing
values equal. The definition features an asymmetry, in that the first argument to
≡ is given by the parameter x : A, while the second is given by an index in A
→ Set a. The first argument to _≡_ can be a parameter because it does not vary,
while the second must be an index, so it can be required to be equal to the first.

7For instance, in the definition of Veltman semantics in Chapter 28.

106

It is easy to see that equality is a reflexive relation.

reflexive : {ℓ : Level} {A : Set ℓ} {a : A} → a ≡ a
reflexive = refl

We can also show that it is symmetric.

symmetric : {ℓ : Level} {A : Set ℓ} {a b : A} → a ≡ b → b ≡ a
symmetric a≡b = ?

The argument a≡b has type a ≡ b and our goal is to give a term of type b ≡ a. However,
the only way to give a term of type b ≡ a is by unifying a and b since we only have the refl
constructor. We achieve that by pattern matching against the argument a≡b. Then the goal
becomes a ≡ a and we can use the refl constructor.

symmetric : {ℓ : Level} {A : Set ℓ} {a b : A} → a ≡ b → b ≡ a
symmetric refl = refl

We can prove transitivity in an analogous way.

transitivity : {ℓ : Level} {A : Set ℓ} {a b c : A} → a ≡ b → b ≡ c → a ≡ c
transitivity refl refl = refl

We can also show that if x ≡ y then for any f we have f x ≡ f y.

cong : {ℓA ℓB : Level} {A : Set ℓA} {B : Set ℓB} {x y : A}
→ (f : A → B) → x ≡ y → f x ≡ f y

cong f refl = refl

We now see that this new equality datatype is equivalent to the previously defined equality
for naturals. To avoid a name clash, we redefine equality for naturals with the _ℕ≡_ symbol.
We also rename reflexivity for _ℕ≡_ as ℕrefl.

data _ℕ≡_ : Nat → Nat → Set where
z≡z : zero ℕ≡ zero
s≡s : {a b : Nat} → a ℕ≡ b → suc a ℕ≡ suc b

ℕrefl : (n : Nat) → n ℕ≡ n
ℕrefl zero = z≡z
ℕrefl (suc n) = s≡s (ℕrefl n)

We show that the new equality implies the old equality.

≡→ℕ≡ : {a b : Nat} → a ≡ b → a ℕ≡ b
≡→ℕ≡ {a} refl = ℕrefl a

We see that the old equality implies the new equality.

ℕ≡→≡ : {a b : Nat} → a ℕ≡ b → a ≡ b
ℕ≡→≡ z=z = refl
ℕ≡→≡ (s=s aℕ≡b) = cong suc (ℕ≡→≡ aℕ≡b)

See Section 25.8 for a note on extensionality.

107

25.7. Predicates as mathematical sets
In this section when we say set we refer to a subset of an Agda type. The most natural way to
represent subsets in Agda is to use predicates. See 25.5 for an introduction. A predicate repre-
sents the characteristic function of the associated subset. For instance consider the predicate:

Pos : Pred Nat lzero
Pos n = ¬ (n ≡ 0)

It represents the subset of strictly positive natural numbers.
We proceed by defining the usual concepts related to mathematical sets. In order to make

the types less verbose we assume that we already have A : Set ℓ in scope.

1. ∈ A proof of membership is a simple function application.

∈ : REL A (Pred A)
a ∈ X = X a

This definition is mostly superfluous but it helps to have a syntax closer to regular math-
ematics.

2. ∉ A proof of non membership is function from a proof of membership to ⊥.

∉ : REL A (Pred A)
a ∉ X = ¬ (a ∈ X)

3. ⊆ A proof of inclusion X ⊆ Y is a function that maps a proof of membership to X to a
proof of membership to Y.

⊆ : Rel (Pred A)
X ⊆ Y = ∀ {x} → x ∈ X → x ∈ Y

4. ∩ We use pairs to represent the intersection. Each component is a proof of membership
to X and Y respectively.

∩ : Pred A → Pred A → Pred A
X ∩ Y = λ x → x ∈ X × x ∈ Y

5. ∪ We use a sum type to represent the union.

∪ : Pred A → Pred A → Pred A
X ∪ Y = λ x → x ∈ X ⊎ x ∈ Y

6. ∅ The empty set is represented by a characteristic constant function to ⊥.

∅ : Pred A
∅ = λ x → ⊥

7. 𝟏 Similarly, the universe set is represented by a characteristic constant function to ⊤.

U : Pred A
U = λ x → ⊤

8. {𝑥} A singleton set is defined using equality (assuming we have equality defined for that
type).

{_} : A → Pred A
{ x } = λ y → x ≡ y

108

25.8. Extensionality
In Set theory we call axiom of extensionality the property that if two sets have the same elements,
then they are equal. As in Agda we represent sets as functions we reword extensionality for
functions: if two functions have the same domain and coincide for every element in their domain
then they are equal. In symbols:

∀𝑓∀𝑔.(∀𝑥.𝑓(𝑥) = 𝑔(𝑥)) ⇒ 𝑓 = 𝑔.
In Agda we can represent this concept thus ([10]):

Extensionality : (a b : Level) → Set _
Extensionality a b =

{A : Set a} {B : A → Set b} {f g : (x : A) → B x} →
((x : A) → f x ≡ g x) → f ≡ g

It is usually the case that we accept the axiom of extensionality as part of our metalogic as it is
part of the most popular logical framework ZF, however, in Agda the property of extensionality
is not an axiom nor a provable theorem.

An direct consequence of the lack of extensionality is that we cannot show equality of sets by
double inclusion.

⊆⊇→≡ : {ℓS ℓA : Level} {A : Set ℓA} {X Y : Pred A ℓS} → X ⊆ Y → Y ⊆ X → X ≡ Y
⊆⊇→≡ = ? -- not provable

We will see that this has a small effect on the definition of generalized Veltman frames in
Chapter 29.

25.9. Positivity
In this section we present a technicality as described in the Agda documentation ([3]) regarding
datatype definitions that will become relevant in Chapter 28 where we define ordinary Veltman
semantics.

When defining a datatype D, Agda poses an additional requirement on the types of the con-
structors of D, namely that D may only occur strictly positively in the types of their arguments.
Concretely, for a datatype with constructors c₁ : A₁, …, cn : An, Agda checks that each
Ai has the form

(y₁ : B₁) → ... → (yl : Bl) → D

where an argument of type Bi of the constructors does not mention D or has the form

(z₁ : C₁) → ... → (zk : Ck) → D

The following example showcases the possibility to build a term of type ⊥ by defining a non
strictly positive type Bad. As mentioned above, Agda rejects the definition of Bad.

data ⊥ : Set where

data Bad : Set where
bad : (Bad → ⊥) → Bad

self-app : Bad → ⊥
self-app (bad f) = f (bad f)

absurd : ⊥
absurd = self-app (bad self-app)

109

Part V.

Agda in the thesis

110

The goal of this part is to guide the reader through some key parts of the code that we have
implemented. It is worth noting that we have started from scratch as we believe that no other
previous work in interpretability logics has been done in Agda.

In Chapter 26 we give the inductive definition of modal formulas in Agda. We also show how
we can define the non-primitive operators.

In Chapter 27 we show how we have define Noetherian relations in Agda. We introduce the
concepts of coinductive type and proof by coinduction in Agda.

In Chapter 28 we describe how we defined ordinary frames. Moreover, we explain how we
implemented the forcing relation, as it is non-trivial to implement in Agda due to the restriction
of positivity on datatype definitions.

In Chapter 28 we comment how we adapted the definitions for generalized Veltman semantics.
Furthermore, we include a guided Agda proof which shows that Löb’s axiom is forced in every
world and model.

In Chapter 30 we give an Agda implementation of the logic IL. We also show how we can use
to prove some theorems of IL.

In Chapter 30 we present a language, that we implemented, for writing verified Hilbert style
proofs in Agda. All of that, with paper-like syntax.

The implementation relies on Agda 2.6.1 and the Agda standard library ([10]).

111

26. Modal formulas
Here we present the Agda type that represents a formula as defined in Chapter 4.

First we define variables to be natural numbers:

Var : Set
Var = Nat

We proceed by inductively defining the formula type: Fm. We add a constructor for variables
and one for each primitive operator.

data Fm : Set where
var : Var → Fm
⊥' : Fm
↝ : Fm → Fm → Fm
▷ : Fm → Fm → Fm

We have named the bottom constructor ⊥' since the symbol ⊥ is commonly used in Agda as
the empty type. We have used the ↝ to denote a implication since → is a reserved symbol for
the Agda function type.

We finally add definable operators as Agda functions. For instance, we define ¬ and □ thus:

infix 60 ¬'_
¬'_ : Fm → Fm
¬' a = a ↝ ⊥'

infix 70 □_
□_ : Fm → Fm
□_ a = ¬' a ▷ ⊥'

We use the symbol ¬' instead of ¬ for the same reason we used ⊥' instead of ⊥.
It is often the case that we define priority and associativity for our infix operators in order

to minimize the amount of needed parentheses. The following code defines the infixity (level or
priority) of _↝_ and _▷_.

infixr 20 _↝_
infixr 50 _▷_

A greater number means higher priority. Then we can drop the parentheses from the previous
formula var 1 ▷ var 0 ↝ ⊥'. The 𝑟 in infixr stands for right associativity.

112

27. Noetherian relations
We say that a relation is Noetherian if it is conversely well-founded. We begin by formalizing
the concept of infinite ascending chain in Agda. In order to do that, we define a coinductive
record datatype ([3, 29]). A coinductive record is allowed to be infinite. In other words, it does
not need to have a non-recursive constructor.

record InfiniteChain {ℓW ℓR} {W : Set ℓW} (_<_ : Rel W ℓR) (a : W)
: Set (ℓR ⊔ ℓW)where
coinductive
constructor infiniteChain
field

b : W
a<b : a < b
tail : InfiniteChain _<_ b

We see that the previous record datatype represents an infinite ascending chain starting at a of
some relation _<_. It has three fields. b: The next element in the chain. a<b: A proof that
𝑎 < 𝑏 and tail: an infinite chain starting at b.

Then we can define being Noetherian as the negation of the existence of an infinite chain:

Noetherian : ∀ {ℓR ℓW} {W : Set ℓW} → Rel W ℓR → Set (ℓR ⊔ ℓW)
Noetherian _<_ = ∀ {a} → ¬ (InfiniteChain _<_ a)

For instance, we can prove that a Noetherian relation is irreflexive. First we show that from
a proof that 𝑥𝑅𝑥 we can build an infinite chain:

infiniteRefl : ∀ {ℓ} {R : Rel A ℓ} {x} → R x x → InfiniteChain R x
InfiniteChain.b (infiniteRefl {x = x} Rxx) = x
InfiniteChain.a<b (infiniteRefl {x = x} Rxx) = Rxx
InfiniteChain.tail (infiniteRefl {x = x} Rxx) = infiniteRefl Rxx

We see that each equation corresponds to a different field in the record datatype. This construc-
tion is known as copattern. Coinductive datatypes must be constructed in this way. Copatterns
are for coinductive types what patterns are for inductive (finite) types. In [2] copatterns are
described in detail.

And then we can apply the Noetherian definition.

Noetherian⇒Irreflexive : ∀ {ℓR ℓW} {W : Set ℓW} {R : Rel W ℓR}
→ Noetherian R → ∀ {x} → ¬ R x x

Noetherian⇒Irreflexive noetherian Rxx = noetherian (infiniteRefl Rxx)

To see another example we refer the reader to Section 29.1.

113

28. Ordinary Veltman semantics
In this chapter we explain how we have represented ordinary Veltman semantics in Agda.

To represent ordinary Veltman semantics in Agda, the first step is to define the type of an
ordinary Veltman frame:

record Frame {ℓW ℓR ℓS : Level} (W : Set ℓW) (R : Rel W ℓR) (S : Rel₃ W ℓS)
: Set (ℓW ⊔ ℓR ⊔ ℓS) where
constructor frame
field

witness : W
R-trans : Transitive R
R-noetherian : Noetherian R
Sw⊆R[w]² : ∀ {w u v} → S w u v → R w u × R w v
Sw-refl : ∀ {w u} → R w u → S w u u
Sw-trans : ∀ {w} → Transitive (S w)
R-Sw-trans : ∀ {w u v} → R w u → R u v → S w u v

The keyword record is used to define a new product type (a tuple) in which each component
(or field) has a name that we can use to access it.

We see that the datatype is parameterized by the universe W, the R relation, the S relation
and their respective universe levels ℓW, ℓR, ℓS.

The first component, witness, is required to make sure that the set of worlds is not empty.
The remaining components are the properties that must be satisfied according to Definition 6.1.

We define a valuation on a frame thus:

Valuation : Frame {ℓW} {ℓR} {ℓS} W R S → Set (lsuc lzero ⊔ ℓW)
Valuation {W = W} F = REL W Var lzero

And then we define a model to be a frame parameterized with a valuation on that frame.

record Model (W : Set ℓW) (R : Rel W ℓR) (S : Rel₃ W ℓS) (V : REL W Var lzero)
: Set (ℓW ⊔ ℓR ⊔ ℓS) where
constructor model
field

F : Frame {ℓW} {ℓR} {ℓS} W R S

Our next step is to define the forcing relation.

data _,_⊩_ (M : Model {ℓW} {ℓR} {ℓS} W R S V) (w : W)
: Fm → Set (ℓW ⊔ ℓR ⊔ ℓS)

We set a model and a world of that model as parameters as they should be shared by all
constructors. We leave the formula as an index as it may vary depending on the constructor.
We should introduce a constructor for each case in Definition 6.3:

1. We do not need a constructor for ⊥' as its absence implicitly implies that we can never
build an instance of M , w ⊩ ⊥' regardless of M and w.

2. If 𝑥 ∈ Var, then 𝑤 ⊩ 𝑥 iff ⟨𝑤, 𝑥⟩ ∈ 𝑉 :

114

var : {p : Var} → p ∈ V w → M , w ⊩ var p

3. If 𝐴, 𝐵 ∈ Fm, then 𝑤 ⊩ 𝐴 → 𝐵 iff if 𝑤 ⊩ 𝐴 then 𝑤 ⊩ 𝐵:

impl : {A B : Fm} → ((M , w ⊩ A) → (M , w ⊩ B)) → M , w ⊩ (A ↝ B)

4. If 𝐴, 𝐵 ∈ Fm, then 𝑤 ⊩ 𝐴 ▷ 𝐵 iff if 𝑤𝑅𝑢 and 𝑢 ⊩ 𝐴 then there exists 𝑣 such that 𝑣 ⊩ 𝐵
and 𝑢𝑆𝑤𝑣.

rhd : {A B : Fm} →
({u : W} → R w u → M , u ⊩ A → (∃[v] (S w u v × (M , v ⊩ B))))
→ M , w ⊩ A ▷ B

Unfortunately the definition above is not accepted by Agda. The reason is that constructors
rhd and impl both fail the positivity check (see Section 25.9). For instance, observe that in
the impl constructor type we have (M , w ⊩ A) on the left of an arrow →.

We have circumvented this problem by providing mutually recursive definitions for forcing
(_,_⊩_) and not forcing (_,_⊮_). Agda allows the definition of mutually recursive datatypes
(and functions) by first providing the type of both1 definitions and after those giving the rest of
the definition, that is, the constructors for datatypes and the equations for functions.

The type of the two datatypes that we want to define are as follows.

data _,_⊩_ (M : Model {ℓW} {ℓR} {ℓS} W R S V) (w : W)
: Fm → Set (ℓW ⊔ ℓR ⊔ ℓS) -- forcing relation

data _,_⊮_ (M : Model {ℓW} {ℓR} {ℓS} W R S V) (w : W)
: Fm → Set (ℓW ⊔ ℓR ⊔ ℓS) -- not forcing relation

Next we provide the strictly positive types of each constructor of the _,_⊩_ and _,_⊮_
relations.

1. For the ⊥' constant.
a) Forcing (_,_⊩_). No constructor is required.
b) Not forcing (_,_⊮_).

bot : M , w ⊮ ⊥'

2. For variables.
a) Forcing (_,_⊩_).

var : {p : Var} → p ∈ V w → M , w ⊩ var p

b) Not forcing (_,_⊮_).
var : {p : Var} → p ∉ V w → M , w ⊮ var p

3. For implication (↝).
a) Forcing (_,_⊩_).

impl : {A B : Fm} → M , w ⊮ A ⊎ M , w ⊩ B → M , w ⊩ A ↝ B

b) Not forcing (_,_⊮_).
impl : {A B : Fm} → M , w ⊩ A → M , w ⊮ B → M , w ⊮ A ↝ B

1Or more if it is the case.

115

4. For interpretability (▷).
a) Forcing (_,_⊩_).

rhd : {A B : Fm} →
(∀ {u} → R w u → M , u ⊮ A ⊎ (∃[v] (S w u v × M , v ⊩ B)))
→ M , w ⊩ A ▷ B

b) Not forcing (_,_⊮_).
rhd : {A B : Fm} →
∃[u] (R w u × M , u ⊩ A × ((v : W) → (¬ S w u v) ⊎ M , v ⊮ B))
→ M , w ⊮ A ▷ B

Putting it all together results in the following definitions:

data _,_⊩_ M w where
var : {x : Var} → V w x → M , w ⊩ var x
impl : {A B : Fm} → M , w ⊮ A ⊎ M , w ⊩ B → M , w ⊩ A ↝ B
rhd : {A B : Fm} →

(∀ {u} → R w u → M , u ⊮ A ⊎ (∃[v] (S w u v × M , v ⊩ B)))
→ M , w ⊩ A ▷ B

data _,_⊮_ M w where
var : {x : Var} → ¬ (V w x) → M , w ⊮ var a
impl : {A B : Fm} → M , w ⊩ A → M , w ⊮ B → M , w ⊮ A ↝ B
rhd : {A B : Fm} →

∃[u] (R w u × M , u ⊩ A × ((v : W) → (¬ S w u v) ⊎ M , v ⊮ B))
→ M , w ⊮ A ▷ B

bot : M , w ⊮ ⊥'

To prove that _,_⊩ and _,_⊮ are indeed the negation of each other we should prove two
lemmas. We define A ⇔ B ≔ A → B × B → A. Then the lemma in Agda types is as follows.

Lemma 28.1.

1. ∀ {M w A} → M , w ⊩ A ⇔ ¬ (M , w ⊮ A).

2. ∀ {M w A} → ¬ (M , w ⊩ A) ⇔ M , w ⊮ A.

For part 1 we can prove ⇒ and for part 2 we can prove ⇐ (see Lemma 28.3). However, it is
not possible to prove the remaining directions. In general terms, this is due to the fact that in
Agda (and in intuitionistic logic in general) we can prove that (¬ A ⊎ B) → A → B but we
cannot prove A → B → (¬ A ⊎ B). The reason being that we lack the law of excluded middle,
as it is a non-constructive axiom. In order to prove the remaining directions we need to assume
that the forcing relation is decidable.

Definition 28.2.
We say that M is decidable model if for any world w and formula A we have that either M ,

w ⊩ A or M , w ⊮ A.
In Agda terms:

DecidableModel : Model → Set
DecidableModel M = ∀ w A → M , w ⊩ A ⊎ M , w ⊮ A

Proof. Under the assumption that we restrict ourselves to decidable models we can prove
Lemma 28.1.

116

Lemma 28.3. The following properties on the forcing relation are true:

1. ⊩⊥ : ∀ {M w} → ¬ (M , w ⊩ ⊥');

2. ⊮→¬⊩ : ∀ {M w A} → M , w ⊮ A → ¬ (M , w ⊩ A);

3. ⊩→¬⊮ : ∀ {M w A} → M , w ⊩ A → ¬ (M , w ⊮ A);

4. ⊩MP : ∀ {M w A B} → M , w ⊩ A ↝ B → M , w ⊩ A → M , w ⊩ B;

5. ⊩¬ : ∀ {M w A} → (M , w ⊩ ¬' A) ⇔ (M , w ⊮ A);

6. ⊮¬ : ∀ {M w A} → M , w ⊮ ¬' A ⇔ M , w ⊩ A;

7. ⊩¬¬ : ∀ {M w A} → M , w ⊩ ¬' ¬' A ⇔ M , w ⊩ A;

8. ⊮¬¬ : ∀ {M w A} → M , w ⊮ ¬' ¬' A ⇔ M , w ⊮ A;

9. ⊩∧ : ∀ {M w A B} → M , w ⊩ A ∧ B ⇔ (M , w ⊩ A × M , w ⊩ B);

10. ⊮∧ : ∀ {M w A B} → M , w ⊮ A ∧ B ⇔ (M , w ⊮ A ⊎ M , w ⊮ B);

11. ⊩∨ : ∀ {M w A B} → M , w ⊩ A ∨ B ⇔ (M , w ⊩ A ⊎ M , w ⊩ B);

12. ⊩□ : ∀ {M w A} → M , w ⊩ □ A ⇔ (∀ {v} → R w v → M , v ⊩ A);

13. ⊮□ : ∀ {M w A} → M , w ⊮ □ A ⇔ (∃[u] (R w u × M , u ⊮ A));

14. ⊩♢ : ∀ {M w A} → M , w ⊩ ♢ A ⇔ (∃[u] (R w u × M , u ⊩ A));

15. ⊮♢ : ∀ {M w A} → M , w ⊮ ♢ A ⇔ (∀ {u} → R w u → M , u ⊮ A);

16. ⊩↝⇨ : ∀ {M w A B} → M , w ⊩ A ↝ B → M , w ⊩ A → M , w ⊩ B;

17. ⊩▷⇨ : ∀ {M w A B} → M , w ⊩ A ▷ B → (∀ {u} → R w u → M , u ⊩ A →
∃[v] (S w u v × M , v ⊩ B).

Proof. The above properties have been proven in Agda and Coq without assuming that the
model is decidable.

Lemma 28.4. The following series of equivalences can be proven for decidable models.

1. ⊩↝ : ∀ {w A B} → M , w ⊩ A ↝ B ⇔ (M , w ⊩ A → M , w ⊩ B);

2. ⊩▷ : ∀ {w A B} → M , w ⊩ A ▷ B ⇔ (∀ {u} → R w u → M , u ⊩ A → ∃[v
] (S w u v × M , v ⊩ B));

3. ⊩⇔¬⊮ : ∀ {w A} → M , w ⊩ A ⇔ (¬ M , w ⊮ A);

4. ⊮⇔¬⊩ : ∀ {w A} → M , w ⊮ A ⇔ (¬ M , w ⊩ A).

Proof. Note that we only need the decidability assumption for 1 (⇐), 2 (⇐), 3 (⇐) and 4
(⇐).

From now on, we always restrict ourselves to decidable models as the usage of Lemma 28.4
is ubiquitous. If we were to assume that we are outside of Agda and that we accept the law of
excluded middle as part of our metalogic, the mentioned assumption could be dropped.

117

29. Generalized Veltman semantics
In this chapter we explain how we have represented generalized Veltman semantics in Agda. As
explained in Chapter 7 we consider eight different quasi-transitivity properties, thus, we need
to define everything related to generalized Veltman semantics to be generic with respect to the
quasi-transitivity condition used, which was certainly presented some challenges.

Analogously to ordinary semantics we start by defining a frame. We begin by defining a
datatype that represents a frame without the quasi-transitivity condition. See that we define
the type 𝕎 ≔ Pred W ℓW, which means that a term of type 𝕎 is a subset of W (see Section 25.7
for details on how to represent mathematical sets in Agda). See that the S-ext field adds
extensionality restricted to the third component of the S relation.

record FrameNoTrans (W : Set ℓW) (R : Rel W ℓR) (S : REL₃ W W (Pred W ℓW) ℓS)
: Set (lsuc lzero ⊔ ℓR ⊔ ℓS ⊔ lsuc ℓW) where
constructor frame
𝕎 : Set (lsuc ℓW)
𝕎 = Pred W ℓW
field
witness : W
Swu-sat : ∀ {w u Y} → S w u Y → Satisfiable Y
R-trans : Transitive R
R-noetherian : Noetherian R
Sw⊆R[w] : ∀ {w u Y} → S w u Y → R w u
SwuY⊆Rw : ∀ {w u Y} → S w u Y → ∀ {y} → y ∈ Y → R w y
S-quasirefl : ∀ {w u} → R w u → S w u { u }
R-Sw-trans : ∀ {w u v} → R w u → R u v → S w u { v }
S-ext : ∀ {w x V V'} → S w x V → V ⊆ V' → V' ⊆ V → S w x V'

Then we define a new datatype Frame which represents a non-transitive Generalized Veltman
frame plus some quasi-transitivity condition, which is left as a parameter T.

record Frame (W : Set ℓW) (R : Rel W ℓR) (S : REL₃ W W (Pred W ℓW) ℓS)
(T : (W : Set ℓW) → REL₃ W W (Pred W ℓW) ℓS → Set (lsuc ℓW ⊔ ℓS))
: Set (lsuc ℓW ⊔ ℓR ⊔ ℓS) where
constructor frame
field

frame-0 : FrameNoTrans {ℓW} {ℓR} {ℓS} W R S
quasitrans : T W S

We now define all the quasi-transitivity conditions. Here we only present Condition 4.

Trans-4 : (W : Set ℓW) → REL₃ W W (Pred W ℓW) ℓS → Set (lsuc ℓW ⊔ ℓS))
Trans-4 W S = ∀ {x u Y} → S x u Y → ∃[y] (y ∈ Y × (∀ {Y'} → S x y Y' → S x u Y'))

And finally we can define a datatype that represents a generalized Veltman frame for each of
the quasi-transitivity conditions as a simple instantiation of the generic Frame defined before.
Here we only present Condition 4.

Frame4 : (W : Set ℓW) (R : Rel W ℓR) (S : REL₃ W W (Pred W ℓW) ℓS) → Set _
Frame4 W R S = Frame W R S (Trans-4 W S)

118

In order to define the generalized Veltman semantics forcing relation, since we need to define
it generically to work for any quasi-transitivity condition assume that we have some term T
representing such condition of typed thus:

(T : ∀ {ℓW ℓS} (W : Set ℓW) → REL₃ W W (Pred W ℓW) ℓS → Set (lsuc ℓW ⊔ ℓS))

Then we define a generalized model in an analogous way to how we did it for ordinary seman-
tics:

record Model
{ℓW ℓR ℓS}
(W : Set ℓW)
(R : Rel W ℓR)
(S : REL₃ _ _ _ ℓS)
(V : REL W Var lzero)
: Set (lsuc ℓW ⊔ ℓR ⊔ ℓS) where
constructor model
field

F : Frame {ℓW} {ℓR} {ℓS} W R S T

And finally we define the forcing relation using mutually recursive datatypes as we did for
ordinary semantics. The only difference is in the rhd constructor.

data _,_⊮_ {ℓW ℓR ℓS W R S V} (M : Model {ℓW} {ℓR} {ℓS} W R S V) (w : W)
: Fm → Set (lsuc ℓW ⊔ ℓR ⊔ ℓS)

data _,_⊩_ {ℓW ℓR ℓS W R S V} (M : Model {ℓW} {ℓR} {ℓS} W R S V) (w : W)
: Fm → Set (lsuc ℓW ⊔ ℓR ⊔ ℓS)

data _,_⊩_ {ℓW} {ℓR} {ℓS} {W} {R} {S} {V} M w where
var : ∀ {a : Var} → a ∈ V w → M , w ⊩ var a
impl : ∀ {A B} → M , w ⊮ A ⊎ M , w ⊩ B → M , w ⊩ A ↝ B
rhd : ∀ {A B} →

(∀ {u} → R w u → M , u ⊮ A ⊎ (∃[Y] (S w u Y × (Y ⊆ M ,_⊩ B))))
→ M , w ⊩ A ▷ B

data _,_⊮_ {ℓW} {ℓR} {ℓS} {W} {R} {S} {V} M w where
var : ∀ {a : Var} → a ∉ V w → M , w ⊮ var a
impl : ∀ {A B} → M , w ⊩ A → M , w ⊮ B → M , w ⊮ A ↝ B
rhd : ∀ {A B} →

∃[u] (R w u × M , u ⊩ A
× ∀ Y → Satisfiable Y → (¬ S w u Y) ⊎ (Satisfiable (Y ∩ (M ,_⊮ B))))
→ M , w ⊮ A ▷ B

bot : M , w ⊮ ⊥'

Recall that in Chapter 28 in order to prove some properties we had to assume that the ordinary
models were decidable in the sense of Definition 28.2. For generalized semantics we need to make
a stronger assumption described in the next definition.

Definition 29.1. We say that M is multi-decidable model if for any set of worlds Y and
formula A we can decide whether

1. for every element y in Y we have M , y ⊮ A; or

2. there is an element y in Y such that M , y ⊮ A.

119

In Agda terms:

MultiDecidableModel : ∀ {ℓW ℓR ℓS W R S V} → Model {ℓW} {ℓR} {ℓS} W R S V
→ Set (lsuc ℓW ⊔ ℓR ⊔ ℓS ⊔ lsuc ℓW)

MultiDecidableModel {ℓW = ℓW} {W = W} M =
∀ (Y : Pred W ℓW) A → Y ⊆ M ,_⊩ A ⊎ Satisfiable (Y ∩ (M ,_⊮ A))

Lemma 29.2. Every multi-decidable model is also decidable.

Lemma 29.3. Assuming that we restrict ourselves to multi-decidable models then properties
in Lemmas 28.1, 28.3 and 28.4 also hold for generalized semantics.

29.1. A guided Agda proof
In this section we guide the user through a non-trivial Agda proof, which will hopefully give the
reader a feel of how we can proof generalized Veltman semantic properties in Agda. We prove
that for any generalized Veltman model 𝑀 and world 𝑤 we have that 𝑤 forces Löb’s axiom. In
symbols:

∀𝑀∀𝑤∀𝐴. 𝑀, 𝑤 ⊩ □(□𝐴 → 𝐴) → □𝐴.
Note that since Löb’s axiom is in IL we need to show this as part of the soundness proof.

We begin by outlining the proof without Agda. Assume that for some world 𝑤0 we have
𝑤0 ⊩ □(□𝐴 → 𝐴). Assume for a contradiction that 𝑤 ⊮ □𝐴, then there exists some 𝑤1 such
that 𝑤0𝑅𝑤1 ⊮ 𝐴. Since 𝑤0𝑅𝑤1 it follows that 𝑤1 ⊩ □𝐴 → 𝐴. Then since 𝑤1 ⊮ 𝐴 we necessarily
have that 𝑤1 ⊮ □𝐴. Then there exists 𝑤2 such that 𝑤1𝑅𝑤2 ⊮ 𝐴. Since 𝑅 is transitive we have
that 𝑤0𝑅𝑤2 and thus 𝑤2 ⊩ □𝐴 → 𝐴. We can repeat the previous argument indefinitely to build
an infinite chain 𝑤0𝑅𝑤1𝑅…, which is a contradiction since 𝑅 is Noetherian. This concludes the
pen and paper proof.

We proceed with the Agda proof. During the course of this example we use some lemmas
listed below, which we have proved in Agda, however, we just display their type here and we
omit their proof in order to save space. Also, assume that we have some model M in scope.

⊩4' : ∀ {w A} → M , w ⊩ □ A → M , w ⊩ □ □ A
⊮□ : ∀ {w A} → M , w ⊮ □ A ⇔ (∃[u] (R w u × M , u ⊮ A))
⊩□ : ∀ {w A} → M , w ⊩ □ A ⇔ (∀ {v} → R w v → M , v ⊩ A)
⊩⇔¬⊮ : ∀ {w A} → M , w ⊩ A ⇔ ¬ (M , w ⊮ A)
⇒ : ∀ {a b} {A : Set a} {B : Set b} → A ⇔ B → A → B

Naming convention. In this proof we use the popular convention to name variables after
their type, which greatly improves the readability of proofs. For instance, if we bind some
variable of type R w u we will name it Rwu; if we bind a variable of type M , w ⊩ A we will
name it w⊩A; and so on.

We begin by showing a useful lemma: for any 𝑤, 𝑢, 𝐴, if 𝑤𝑅𝑢 and 𝑢 ⊮ 𝐴 and 𝑤 ⊩ □(□𝐴 →
𝐴) then we can build an infinite 𝑅-chain starting at 𝑤. The following type expresses the
aforementioned property.

R-chain : ∀ {w u A} → R w u → M , u ⊮ A → M , w ⊩ □ (□ A ↝ A) → InfiniteChain R w

Recall that infinite chains are defined as coinductive datatypes in Chapter 27. Hence we proceed
by building the infinite chain using copatterns. The first two components are clear:

InfiniteChain.b (R-chain {w} {u} Rwu uA uF) = u
InfiniteChain.a<b (R-chain {w} {u} Rwu uA uF) = Rwu

120

Then we must show that there is an infinite chain starting at 𝑢. The argument w⊩□⟨□A↝A⟩
has type M , w ⊩ □ (□ A ↝ A), hence by applying the lemma ⊩□ in the right (⇒) direction
and using the fact that Rwu has type R w u we get a term of type M , u ⊩ □ A ↝ A which
we pattern match using the widh construct1. By the definition of the constructor impl for the
,⊩_ datatype it follows that we have two cases: either M , u ⊩ A or M , u ⊮ □ A.

If it is the case that M , u ⊩ A we can build a term of type ⊥ by using the ⊩→¬⊮ lemma
and then we can use the principle of explosion to return anything.
InfiniteChain.tail (R-chain Rwu u⊮A w⊩□⟨□A↝A⟩) with (⊩□ ⇒ w⊩□⟨□A↝A⟩) Rwu
... | impl (inj₂ u⊩A) = explosion (⊩→¬⊮ u⊩A u⊮A)

On the contrary, if we have that M , u ⊮ □ A then by the ⊮□ lemma we get that there
exists some v such that R u v and M , v ⊩ A. Then we can use the ⊩4' lemma to get a term
of type M , w ⊩ □ (□ (□ A ↝ A)), then by lemma ⊩□ and the fact we have a proof of R w
u we can build a term of type M , u ⊩ □ (□ A ↝ A). Finally by a recursive call (induction
hypothesis) to R-chain with R u v and v⊩A and the term described above we get a term of
the desired type.
... | impl (inj₁ x⊮□A) with ⊮□ ⇒ x⊮□A
... | (v , Ruv , v⊩A) = R-chain Ruv v⊩A ((⊩□ ⇒ ⊩4' w⊩□⟨□A↝A⟩) Rwu)

This concludes the proof of the lemma. We now proceed to prove our theorem. The statement
of the theorem is represented by the following type:
⊩L : ∀ {w A} → M , w ⊩ □ (□ A ↝ A) ↝ □ A

We use lemma ⊩↝ to get a proof of M , w ⊩ □ (□ A ↝ A). Then we use lemma ⊩□ on the
left direction, so we assume R w u and our goal is to show M , u ⊩ A. By using lemma ⊩⇔¬⊮
on the left direction. Our goal is to show ¬ (M , w ⊮ A) which normalizes to M , w ⊮ A
→ ⊥, hence we assume M , u ⊮ A and we aim to build a proof of ⊥. We can build an infinite
chain with lemma R-chain proved above and the facts that R w u, M , u ⊮ A and M , w ⊩
□ (□ A ↝ A). Before the final step it may be useful to recall the definition of a Noetherian
relation (see Chapter 27):
Noetherian _<_ = ∀ {a} → ¬ (InfiniteChain _<_ a)

Finally we use the property that the R relation of the model is Noetherian to get a term of type
⊥ as desired.
⊩L : ∀ {w A} → M , w ⊩ □ (□ A ↝ A) ↝ □ A
⊩L {w} {A} = ⊩↝ ⇐ λ w⊩□⟨□A→A⟩ → ⊩□ ⇐ λ {u} Rwu → ⊩⇔¬⊮ ⇐

λ {u⊮A → R-noetherian (R-chain Rwu u⊮A w⊩□⟨□A→A⟩)}

Putting it all together we have:
R-chain : ∀ {w u A} → R w u → M , u ⊮ A → M , w ⊩ □ (□ A ↝ A) → InfiniteChain R w
InfiniteChain.b (R-chain {w} {u} Rwu uA uF) = u
InfiniteChain.a<b (R-chain {w} {u} Rwu uA uF) = Rwu
InfiniteChain.tail (R-chain {w} {u} Rwu u⊮A w⊩□⟨□A↝A⟩)

with (⊩□ ⇒ w⊩□⟨□A↝A⟩) Rwu
... | impl (inj₂ u⊩A) = ⊥-elim (⊩→¬⊮ u⊩A u⊮A)
... | impl (inj₁ x⊮□A) with ⊮□ ⇒ x⊮□A
... | (v , Ruv , v⊩A) = R-chain Ruv v⊩A ((⊩□ ⇒ ⊩4' w⊩□⟨□A↝A⟩) Rwu)

⊩L : ∀ {w A} → M , w ⊩ □ (□ A ↝ A) ↝ □ A
⊩L {w} {A} = ⊩↝ ⇐ λ w⊩□⟨□A→A⟩ → ⊩□ ⇐ λ {u} Rwu → ⊩⇔¬⊮ ⇐

λ {u⊮A → R-noetherian (R-chain Rwu u⊮A w⊩□⟨□A→A⟩)}

1The width construct allows us to pattern match on terms that can be build from the arguments of the function.

121

30. Logic IL and syntactic proofs
Here we present our efforts on formalizing syntactic IL proofs in Agda. We restrict ourselves to
finite sets of assumptions.

We begin by defining the necessary type to represent a finite list:

data List {a : Level} (A : Set a) : Set a where
[] : List A
∷ : A → List A → List A

Then we can define a proof of membership inductively in the following way:

data _∈_ {a : Level} {A : Set a} (a : A) : Pred (List A) a where
here : {x : A} {xs : List A} → a ≡ x → a ∈ (x ∷ xs)
there : {x : A} {xs : List A} → a ∈ xs → a ∈ (x ∷ xs)

Now that we have all the necessary tools, we proceed to define the relation _⊢_, which
represents the IL logic in Agda.

data _⊢_ (Π : List Fm) : Fm → Set where
-- identity rule
Ax : ∀ {A} → A ∈ Π → Π ⊢ A
-- classical axioms
C1 : ∀ {A B} → Π ⊢ A ↝ (B ↝ A)
C2 : ∀ {A B C} → Π ⊢ (A ↝ (B ↝ C)) ↝ ((A ↝ B) ↝ (A ↝ C))
C3 : ∀ {A B} → Π ⊢ (¬' A ↝ ¬' B) ↝ (B ↝ A)
-- GL axioms
K : ∀ {A B} → Π ⊢ (□ (A ↝ B)) ↝ (□ A ↝ □ B)
L : ∀ {A} → Π ⊢ □ (□ A ↝ A) ↝ □ A
-- IL axioms
J1 : ∀ {A B} → Π ⊢ □ (A ↝ B) ↝ A ▷ B
J2 : ∀ {A B C} → Π ⊢ A ▷ B ∧ B ▷ C ↝ A ▷ C
J3 : ∀ {A B C} → Π ⊢ (A ▷ C ∧ B ▷ C) ↝ (A ∨ B) ▷ C
J4 : ∀ {A B} → Π ⊢ A ▷ B ↝ ♢ A ↝ ♢ B
J5 : ∀ {A} → Π ⊢ ♢ A ▷ A
-- rules
MP : ∀ {A B} → Π ⊢ A ↝ B → Π ⊢ A → Π ⊢ B
nec : ∀ {A} → [] ⊢ A → Π ⊢ □ A

We include constructor Ax so we can use assumptions. We include constructors C1, C2 and
C3 so that every classical tautology in the language of IL can be proved. Then we add the
axioms of IL and finally we add MP for modus ponens and nec for necessitation. Note that the
necessitation rule only accepts IL theorems (empty set of assumptions) and thus this definition
is fitting for local semantics. We have formalized several results about IL, which are presented
in Chapter 5.

122

Consider the pen and paper syntactic proof of 𝐴 → 𝐴.

0. (𝐴 → ((𝐴 → 𝐴) → 𝐴)) → ((𝐴 → (𝐴 → 𝐴)) → (𝐴 → 𝐴)) By 𝐶2
1. 𝐴 → ((𝐴 → 𝐴) → 𝐴) By 𝐶1
2. 𝐴 → (𝐴 → 𝐴) By 𝐶1
3. (𝐴 → (𝐴 → 𝐴)) → 𝐴 → 𝐴 By MP 0, 1
4. 𝐴 → 𝐴 By MP 3, 2
■

Now see how we could replicate the proof in Agda using our definition of _⊢_.

⊢A↝A : ∀ {A Π} → Π ⊢ A ↝ A
⊢A↝A {A} = MP (MP (C2 {Π} {A} {A ↝ A} {A}) (C1 {Π} {A} {A ↝ A})) (C1 {Π} {A} {A})

We see that it is extremely verbose and hard to read. We can substantially shorten it by relying
on Agda’s type inference to automatically infer the instantiation of almost all of the axiom
schemas used. However, it is still far from being human friendly.

⊢A↝A : ∀ {A Π} → Π ⊢ A ↝ A
⊢A↝A {A} = MP (MP C2 C1) (C1 {B = A})

For now, we forget about the obscure syntax and we use the previous result to prove that 𝐴 ▷ 𝐴
is an IL theorem. First, the pen and paper proof:

0. 𝐴 → 𝐴 By ⊢ 𝐴 → 𝐴
1. □(𝐴 → 𝐴) By necessitation on 0
2. □(𝐴 → 𝐴) → (𝐴 ▷ 𝐴) By J1
3. 𝐴 ▷ 𝐴 By MP 2, 1
■

And now the same proof in Agda.

⊢A▷A : ∀ {A Π} → Π ⊢ A ▷ A
⊢A▷A {A} = MP J1 (nec ⊢A↝A)

Although the Agda proofs of 𝐴 → 𝐴 and 𝐴 ▷ 𝐴 are short, it is very hard for a human to fully
understand them with the Agda syntax used above. This problem motivates our next chapter,
in which we present a way to express syntactic proofs in Agda using paper-like syntax.

123

31. An eDSL for syntactic proofs
In this chapter we present a verified language for writing Hilbert style proofs for logic IL. The
language has been designed and implemented by the author of this thesis. It was first presented
in [24] for logic 𝐾.

We begin by introducing the concept of eDSL. The acronym eDSL stands for Embedded
Domain Specific Language. It refers to a small language (a set of functions and datatypes)
embedded in another language (in this case Agda) that has been designed to solve a problem in
a very specific domain, in this case, Hilbert style proofs.

We begin by showing how we could write the two syntactic proofs presented in the previous
section in our eDSL. Then we will present the language in detail.

The first example shows how we can formalize the proof ⊢IL 𝐴 → 𝐴 in the new language.

⊢A↝A : ∀ {A} → [] ⊢ A ↝ A
⊢A↝A {A} =

begin[0] (A ↝ ((A ↝ A) ↝ A)) ↝ ((A ↝ (A ↝ A)) ↝ (A ↝ A)) By C2
[1] A ↝ ((A ↝ A) ↝ A) By C1
[2] A ↝ (A ↝ A) By C1
[3] (A ↝ (A ↝ A)) ↝ A ↝ A ByMP 0 , 1
[4] A ↝ A ByMP 3 , 2
■

Second example:

⊢A▷A : ∀ {A} → [] ⊢ A ▷ A
⊢A▷A {A} =

begin[0] A ↝ A By ⊢A↝A
[1] □ (A ↝ A) ByNec 0
[2] □ (A ↝ A) ↝ (A ▷ A) By J1
[3] A ▷ A ByMP 2 , 1
■

We see that our eDSL allows us to write syntactic proofs in a very similar human-friendly
syntax which is almost identical to the pen and paper usual syntax with the standout benefit that
the proof is computer checked. In particular, it is checked by Agda’s type checking algorithm.

We want to emphasize, as it may be surprising to the reader, that the proofs shown above are
actual Agda code. It is crucial to make clear that this eDSL is not an alternative definition of
the logic IL presented in different syntax. The eDSL is layer above the definition which allows
us to use nice syntax while still relying on the simple definition of IL we provided in the previous
chapter. Of course, the main challenge is to prove that we can transform proofs in the nice
syntax to proofs in the original syntax. We will comment on it later on this section.

We proceed by giving a short description of the language, which consists of four types of
instructions:

1. [_]_By_. This instruction is used to include a theorem in the proof. The theorem can be
any axiom scheme of IL or anything proved to be a theorem. More precisely, the theorem
can be any A if we have Π ⊢ A for some Π. The first instruction must be of this kind and
must be preceded with begin.

124

2. [_]_ByNec_. This instruction applies the necessitation rule to a formula in a previous
line referenced by its number. This rule can only be applied if we have an empty set of
assumptions.

3. [_]_ByMP_. This instruction applies the modus ponens rule to two formulas in previous
lines referenced by their number.

4. ■. The proof must be closed using this instruction.

Every instruction must be numbered in increasing order starting at 0.
Thanks to the design of the language, if the user mistakenly numbers one of the instructions

Agda will report an error indicating where the error is. If the user improperly instantiates an
axiom scheme or theorem or references an incorrect line, they will also be prompted with an
error. Summarizing, an error will appear if the proof has any deficiency. This holds true as the
eDSL is implemented in Agda and thus it is verified.

We proceed by giving a rough approximation on how the language has been implemented.
Details of the inner workings of the language are left out as they fall out of the scope of this
paper, however, we encourage the reader to look for further information in [24] if they are
interested.

We begin by defining the datatype that represents our language.

data HilbertProof : List Fm → Fm → Nat → Set where
begin : ∀ {Σ A} → Σ ⊢ A → HilbertProof Σ A 0
by : ∀ {Σ A B n} → Σ ⊢ B → HilbertProof Σ A n → HilbertProof Σ B (suc n)
Ax : ∀ {Σ B n} → (A : Fm) → HilbertProof Σ B n → HilbertProof (A ∷ Σ) A (suc n)
nec : ∀ {Σ n □A C} (H : HilbertProof [] C n) (i : HilbertRef H (□A) □_)

→ HilbertProof Σ (□A) (suc n)
MP : ∀ {n Σ A B C} (H : HilbertProof Σ C n) → HilbertRef H (A ↝ B) id

→ HilbertRef H A id → HilbertProof Σ B (suc n)

Each instruction (except ■) has its corresponding constructor. We see that the datatype is
indexed by a list of formulas and a formula. Those are the set of assumptions and the formula
that is shown to be a theorem. The third index is a natural number. This number keeps track
of the length of the proof and it is needed to ensure that references to previous lines are not out
of bounds. The type HilbertRef represents a reference to a previous line in the proof. We
omit its definition here as is not crucial for understanding the overall idea.

Then we define the front end syntax for each of the constructors. For instance, the definition
of the [_]_By_ instruction is as follows (we omit the type for simplicity as it is the same as the
type of the constructor by).

infixl 10 _[_]_By_
[]_By_ : ...
H [n] B By p = by p H

Notice that we also declare the instruction to have left associativity (infixl), which will allow
us to write each subsequent instruction below the other without need of parentheses.

We skip how references work for simplicity, as they use advanced Agda features (type classes
and instance arguments ([3])) in order to be automatically checked without an explicit proof.

Observe now how we can build a proof in this language.

⊢A▷A' : ∀ {A} → HilbertProof [] (A ▷ A) 3
⊢A▷A' {A} =

begin[0] A ↝ A By ⊢A↝A
[1] □ (A ↝ A) ByNec 0
[2] □ (A ↝ A) ↝ (A ▷ A) By J1
[3] A ▷ A ByMP 2 , 1

125

It is essentially the same as we showcased before but it is lacking the closing ■ instruction. The
type of such instruction is:

_■ : ∀ {n Σ A} → HilbertProof Σ A n → Σ ⊢ A

We see that ■ is defined as a postfix operator which translates a proof HilbertProof Σ A
n into a proof Σ ⊢ A. This translation step is where most of the complexity lays. Needless
to say, as is implemented and verified in Agda it is guaranteed to be correct. To reiterate, by
correct we mean that every proof in the new syntax can be transformed (and definition of the
term ■, which can be found in Appendix B.22, is actually the algorithm which performs the
transformation) to a proof using only axioms and rules of IL as presented in the previous section.
This ends the tour of the language.

We strongly believe in the practical usefulness of this language as it can be used by logicians
that are not Agda experts due to its simple and familiar syntax. We are all aware that long
syntactic proofs are error prone. This language completely removes such problem. Of course,
there is some room for improvement, for instance, the language does not include the deduction
theorem rule, which is frequently used in practice. Note that this limitation can be ameliorated
as we can use the deduction theorem outside of the eDSL and then include the result by using
a [_]_By_ instruction.

126

Part VI.

Glossary and bibliography

127

Glossary
⊩𝑔𝑒𝑛

𝑀 Forcing relation for generalized semantics 26

⊩𝑜𝑟𝑑
𝑀 Forcing relation for ordinary semantics 23

IL Base logic for interpretability logics 19

A definition or theorem formalized in Agda 14, 18–20, 22–27, 29, 31, 36–38, 40–42, 46–51,
53, 54, 56, 58–61, 116, 117, 119, 120

A definition or theorem formalized in Coq 15, 18, 19, 22–24, 117

Pred A predicate or a subset 105

REL Heterogeneous relation 104

Rel Homogeneous relation 104

choice set Choice set 54

decidable model A model whose forcing relation is decidable 116

dependent pair A pair in which the type of the second component may depend on the first
component 105

frame Generalized Veltman frame 25

frame Ordinary Veltman frame 22

modally equivalent models Two models which have modally equivalent worlds 34

modally equivalent worlds Two worlds that force the same formulas 34

model Generalized Veltman model 26

model Ordinary Veltman model 23

multi-decidable model A model whose forcing relation is decidable for sets 119

Noetherian Conversely well-founded relation 113

128

Bibliography
[1] Andreas Abel. “foetus – Termination checker for simple functional programs”. In: (1998).
[2] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. “Programming In-

finite Structures by Observations”. In: (2013).
[3] Agda’s documentation. https://agda.readthedocs.io/en/latest/. 2020.
[4] Mark van Atten. “The Development of Intuitionistic Logic”. In: The Stanford Encyclopedia

of Philosophy. Ed. by Edward N. Zalta. Winter 2017. Metaphysics Research Lab, Stanford
University, 2017.

[5] Alessandro Berarducci. “The interpretability logic of Peano arithmetic”. In: Journal of
Symbolic Logic (1990), pp. 1059–1089.

[6] Marta Bı́lková, Dick de Jongh, and Joost J. Joosten. “Interpretability in PRA”. In: Annals
of Pure and Applied Logic 161.2 (2009), pp. 128–138.

[7] Ana Bove, Peter Dybjer, and Ulf Norell. “A brief overview of Agda–a functional language
with dependent types”. In: International Conference on Theorem Proving in Higher Order
Logics. Springer. 2009, pp. 73–78.

[8] Jesper Cockx and Andreas Abel. “Elaborating dependent (co)pattern matching”. In: Pro-
ceedings of the ACM on Programming Languages 2.ICFP (2018), pp. 1–30.

[9] Thierry Coquand. “Type Theory”. In: The Stanford Encyclopedia of Philosophy. Ed. by
Edward N. Zalta. Fall 2018. Metaphysics Research Lab, Stanford University, 2018.

[10] Nils Anders Danielsson, Ulf Norell, SC Mu, S Bronson, D Doel, P Jansson, and LT et al
Chen. “The Agda standard library”. In: (2020). url: https://github.com/agda/
agda-stdlib.

[11] Nicolaas Govert De Bruijn. “Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser theorem”. In:
Indagationes Mathematicae (Proceedings). Vol. 75. 5. North-Holland. 1972, pp. 381–392.

[12] Peter Dybjer and Erik Palmgren. “Intuitionistic Type Theory”. In: The Stanford Encyclo-
pedia of Philosophy. Ed. by Edward N. Zalta. Summer 2020. Metaphysics Research Lab,
Stanford University, 2020.

[13] Kurt Gödel. “Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme I”. In: Monatshefte für mathematik und physik 38.1 (1931), pp. 173–
198.

[14] Evan Goris and Joost J. Joosten. “A new principle in the interpretability logic of all
reasonable arithmetical theories”. In: Logic Journal of the IGPL 19.1 (2011), pp. 14–17.

[15] Evan Goris and Joost J. Joosten. “Modal Matters for Interpretability Logics”. In: Logic
Journal of the IGPL 16.4 (Aug. 2008), pp. 371–412. issn: 1367-0751. doi: 10.1093/
jigpal/jzn013. eprint: https://academic.oup.com/jigpal/article-pdf/
16/4/371/2055430/jzn013.pdf. url: https://doi.org/10.1093/jigpal/
jzn013.

[16] Evan Goris and Joost J. Joosten. “Two New Series of Principles in the Interpretability
Logic of All Reasonable Arithmetical Theories”. In: Journal of Symbolic Logic 85.1 (2020),
pp. 1–25. doi: 10.1017/jsl.2019.90.

129

https://agda.readthedocs.io/en/latest/
https://github.com/agda/agda-stdlib
https://github.com/agda/agda-stdlib
https://doi.org/10.1093/jigpal/jzn013
https://doi.org/10.1093/jigpal/jzn013
https://academic.oup.com/jigpal/article-pdf/16/4/371/2055430/jzn013.pdf
https://academic.oup.com/jigpal/article-pdf/16/4/371/2055430/jzn013.pdf
https://doi.org/10.1093/jigpal/jzn013
https://doi.org/10.1093/jigpal/jzn013
https://doi.org/10.1017/jsl.2019.90

[17] Dick de Jongh and Frank Veltman. “Provability logics for relative interpretability”. In:
Mathematical Logic, Proceedings of the Heyting 1988 summer school in Varna, Bulgaria.
Ed. by P.P. Petkov. New York: Plenum Press, Boston, 1990, pp. 31–42. isbn: 978-1-4612-
7890-0. doi: 10.1007/978-1-4613-0609-2_3.

[18] Joost J. Joosten. “Towards the interpretability logic of all reasonable arithmetical theories”.
MA thesis. University of Amsterdam, 1998.

[19] Joost J. Joosten, Jan Mas Rovira, Luka Mikec, and Mladen Vuković. An overview of
Generalised Veltman Semantics. submitted 2020. arXiv: 2007.04722 [math.LO].

[20] Joost J. Joosten and Albert Visser. “The interpretability logic of all reasonable arithmetical
theories. The new conjecture”. In: Erkenntnis 53.1-2 (2000), pp. 3–26. issn: 0165-0106.

[21] Martin Hugo Löb. “Solution of a problem of Leon Henkin”. In: The Journal of Symbolic
Logic 20.2 (1955), pp. 115–118.

[22] Per Martin-Löf. “Unpublished manuscript (An intuitionistic theory of types)”. Amsterdam,
1971.

[23] Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory. Vol. 9. Bibliopolis Naples,
1984.

[24] Jan Mas Rovira. Personal blog. 2020. url: https://janmasrovira.gitlab.io/
ascetic-slug/ (visited on 06/22/2020).

[25] Jan Mas Rovira, Luka Mikec, and Joost J. Joosten. “Generalised Veltman semantics in
Agda”. In: Short Papers, Advances in Modal Logic, AiML 2020. Ed. by R. Verbrugge and
N. Olivetti. 2020, pp. 86–90. url: https://www.helsinki.fi/sites/default/
files/atoms/files/finalshortpapermain.pdf.

[26] Luka Mikec and Mladen Vuković. “Interpretability Logics and Generalised Veltman Se-
mantics”. In: The Journal of Symbolic Logic (June 2020), pp. 1–21. doi: 10.1017/jsl.
2020.7.

[27] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-Löf’s type
theory. Vol. 200.

[28] Ulf Norell. “Dependently typed programming in Agda”. In: International school on ad-
vanced functional programming. Springer. 2008, pp. 230–266.

[29] Ulf Norell. “Towards a practical programming language based on dependent type the-
ory”. PhD thesis. SE-412 96 Göteborg, Sweden: Department of Computer Science and
Engineering, Chalmers University of Technology, Sept. 2007.

[30] Panu Raatikainen. “Gödel’s Incompleteness Theorems”. In: The Stanford Encyclopedia of
Philosophy. Ed. by Edward N. Zalta. Winter 2020. Metaphysics Research Lab, Stanford
University, 2020.

[31] Vladimir Yurievich Shavrukov. The logic of relative interpretability over Peano arithmetic.
Preprint. In Russian. Moscow: Steklov Mathematical Institute, 1988.

[32] Robert Martin Solovay. “Provability interpretations of modal logic”. In: Israel journal of
mathematics 25.3-4 (1976), pp. 287–304.

[33] The Coq Development Team. Coq. Version 8.12. Nov. 5, 2020. url: https://coq.
inria.fr.

[34] Alan Turing. “Computability and 𝜆-definability”. In: The Journal of Symbolic Logic 2.4
(1937), pp. 153–163.

[35] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study: https://homotopytypetheory.org/
book, 2013.

130

https://doi.org/10.1007/978-1-4613-0609-2_3
https://arxiv.org/abs/2007.04722
https://janmasrovira.gitlab.io/ascetic-slug/
https://janmasrovira.gitlab.io/ascetic-slug/
https://www.helsinki.fi/sites/default/files/atoms/files/finalshortpapermain.pdf
https://www.helsinki.fi/sites/default/files/atoms/files/finalshortpapermain.pdf
https://doi.org/10.1017/jsl.2020.7
https://doi.org/10.1017/jsl.2020.7
https://coq.inria.fr
https://coq.inria.fr
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

[36] L.C. Verbrugge. “Verzamelingen-Veltman frames en modellen (Set Veltman frames and
models)”. Unpublished manuscript. 1992.

[37] Rineke Verbrugge. “Provability Logic”. In: The Stanford Encyclopedia of Philosophy. Ed.
by Edward N. Zalta. Fall 2017. Metaphysics Research Lab, Stanford University, 2017.

[38] Albert Visser. “An overview of Interpretability Logic”. In: Advances in modal logic ’96.
Ed. by M. Kracht, M. de Rijke, and H. Wansing. CSLI Publications, Stanford, CA, 1997,
pp. 307–359.

[39] Albert Visser. “Interpretability Logic”. In: Mathematical Logic. Ed. by Petio Petrov Petkov.
Boston, MA: Springer US, 1990, pp. 175–209. isbn: 978-1-4613-0609-2. doi: 10.1007/
978-1-4613-0609-2_13. url: https://doi.org/10.1007/978-1-4613-
0609-2_13.

[40] Albert Visser. “The formalization of interpretability”. In: Studia Logica 50.1 (1991), pp. 81–
106.

[41] Mladen Vuković. “Bisimulations between generalized Veltman models and Veltman mod-
els”. In: Mathematical Logic Quarterly 54.4 (2008), pp. 368–373.

[42] Philip Wadler and Wen Kokke. Programming Language Foundations in Agda. Available at
http://plfa.inf.ed.ac.uk/. 2019.

131

https://doi.org/10.1007/978-1-4613-0609-2_13
https://doi.org/10.1007/978-1-4613-0609-2_13
https://doi.org/10.1007/978-1-4613-0609-2_13
https://doi.org/10.1007/978-1-4613-0609-2_13
http://plfa.inf.ed.ac.uk/

Part VII.

Appendix

132

A. Official Agda reference
This appendix contains a thorough description of some of the Agda related topics that were
discussed in the thesis. We believe that the intuition given in the introduction should be enough
for the reader to be able to read Part V, however, we encourage the reader to resort to the
ensuing reference if they wish for more precise information on the language. The contents of
this section have been merely copied from the online Agda documentation ([3]).

A.1. Function definitions and pattern matching
A function is defined by first declaring its type followed by a number of equations called clauses.
Each clause consists of the function being defined applied to a number of patterns, followed by
= and a term called the right-hand side. For example:

not : Bool → Bool
not true = false
not false = true

Functions are allowed to call themselves recursively, for example:

twice : Nat → Nat
twice zero = zero
twice (suc n) = suc (suc (twice n))

The general form for defining a function is

f : (x₁ : A₁) → … → (xn : An) → B
f p₁ … pn = d
…
f q₁ … qn = e

where f is a new identifier, pi and qi are patterns of type Ai, and d and e are expressions.
The declaration above gives the identifier f the type (x₁ : A₁) → … → (xn : An) → B

and f is defined by the defining equations. Patterns are matched from top to bottom, i.e., the
first pattern that matches the actual parameters is the one that is used.

By default, Agda checks the following properties of a function definition:

1. The patterns in the left-hand side of each clause should consist only of constructors and
variables.

2. No variable should occur more than once on the left-hand side of a single clause.

3. The patterns of all clauses should together cover all possible inputs of the function.

4. The function should be terminating on all possible inputs.

133

A.2. Absurd patterns
Absurd patterns can be used when none of the constructors for a particular argument would be
valid. The syntax for an absurd pattern is ().

As an example, if we have a datatype Even defined as follows:

data Even : Nat → Set where
even-zero : Even zero
even-plus2 : {n : Nat} → Even n → Even (suc (suc n))

#+end_src text

Then we can define a function =one-not-even : Even 1 → ⊥= by using an absurd
pattern:
#+begin_src text
one-not-even : Even 1 → ⊥
one-not-even ()

Note that if the left-hand side of a clause contains an absurd pattern, its right-hand side must
be omitted.

In general, when matching on an argument of type D i₁ … in with an absurd pattern, Agda
will attempt for each constructor c : (x₁ : A₁) → … → (xm : Am) → D j₁ … jn of
the datatype D to unify i₁ … in with j₁ … jn. The absurd pattern will only be accepted if
all of these unifications end in a conflict.

A.3. Implicit arguments and automatic inference
It is possible to omit terms that the type checker can figure out for itself, replacing them by _.
If the type checker cannot infer the value of an _ it will report an error. For instance, for the
polymorphic identity function

id : (A : Set) → A → A

the first argument can be inferred from the type of the second argument, so we might write id
_ zero for the application of the identity function to zero.

We can even write this function application without the first argument. In that case we
declare an implicit function space:

id : {A : Set} → A → A

and then we can use the notation id zero.
Another example:

== : {A : Set} → A → A → Set
subst : {A : Set} (C : A → Set) {x y : A} → x == y → C x → C y

Note how the first argument to _==_ is left implicit. Similarly, we may leave out the implicit
arguments A, x, and y in an application of subst. To give an implicit argument explicitly,
enclose it in curly braces. The following two expressions are equivalent:

x1 = subst C eq cx
x2 = subst {_} C {_} {_} eq cx

It is worth noting that implicit arguments are also inserted at the end of an application, if it is
required by the type. For example, in the following, y1 and y2 are equivalent.

134

y1 : a == b → C a → C b
y1 = subst C

y2 : a == b → C a → C b
y2 = subst C {_} {_}

Implicit arguments are inserted eagerly in left-hand sides so y3 and y4 are equivalent. An
exception is when no type signature is given, in which case no implicit argument insertion takes
place. Thus in the definition of y5 the only implicit is the A argument of subst.

y3 : {x y : A} → x == y → C x → C y
y3 = subst C

y4 : {x y : A} → x == y → C x → C y
y4 {x} {y} = subst C {_} {_}

y5 = subst C

It is also possible to write lambda abstractions with implicit arguments. For example, given id
: (A : Set) → A → A, we can define the identity function with implicit type argument as

id’ = λ {A} → id A

Implicit arguments can also be referred to by name, so if we want to give the expression e
explicitly for y without giving a value for x we can write

subst C {y = e} eq cx

In rare circumstances it can be useful to separate the name used to give an argument by name
from the name of the bound variable, for instance if the desired name shadows an existing name.
To do this you write

id₂ : {A = X : Set} → X → X -- name of bound variable is X
id₂ x = x

use-id₂ : (Y : Set) → Y → Y
use-id₂ Y = id₂ {A = Y} -- but the label is A

Labeled bindings must appear by themselves when typed, so the type Set needs to be repeated
in this example:

const : {A = X : Set} {B = Y : Set} → A → B → A
const x y = x

When constructing implicit function spaces the implicit argument can be omitted, so both
expressions below are valid expressions of type {A : Set} → A → A:

z1 = λ {A} x → x
z2 = λ x → x

The ∀ (or forall) syntax for function types also has implicit variants:

① : (∀ {x : A} → B) is-the-same-as ({x : A} → B)
② : (∀ {x} → B) is-the-same-as ({x : _} → B)
③ : (∀ {x y} → B) is-the-same-as (∀ {x} → ∀ {y} → B)

135

In very special situations it makes sense to declare unnamed hidden arguments {A} → B. In
the following example, the hidden argument to scons of type zero ≤ zero can be solved
by 𝜂-expansion, since this type reduces to ⊤.

data ⊥ : Set where

≤ : Nat → Nat → Set
zero ≤ _ = ⊤
suc m ≤ zero = ⊥
suc m ≤ suc n = m ≤ n

data SList (bound : Nat) : Set where
[] : SList bound
scons : (head : Nat) → {head ≤ bound} → (tail : SList head) → SList bound

example : SList zero
example = scons zero []

There are no restrictions on when a function space can be implicit. Internally, explicit and
implicit function spaces are treated in the same way. This means that there are no guarantees
that implicit arguments will be solved. When there are unsolved implicit arguments the type
checker will give an error message indicating which application contains the unsolved arguments.
The reason for this liberal approach to implicit arguments is that limiting the use of implicit
argument to the cases where we guarantee that they are solved rules out many useful cases in
practice.

A.4. datatype definitions and constructors
The general form of the definition of a simple datatype D is the following

data D (x₁ : P₁) ... (xk : Pk) : (y₁ : Q₁) → ... → (yl : Ql) → Set ℓ where
c₁ : A₁
...
cn : An

The name D of the data type and the names c₁, …, cn of the constructors must be new w.r.t.
the current signature and context, and the types A₁, …, An must be function types ending in D,
i.e. they must be of the form

(y₁ : B₁) → ... → (ym : Bm) → D

Datatypes can have parameters. They are declared after the name of the datatype but before
the colon, for example:

data List (A : Set) : Set where
[] : List A
∷ : A → List A → List A

In addition to parameters, datatypes can also have indices. In contrast to parameters which are
required to be the same for all constructors, indices can vary from constructor to constructor.
They are declared after the colon as function arguments to Set. For example, fixed-length
vectors can be defined by indexing them over their length of type Nat:

data Vector (A : Set) : Nat → Set where
[] : Vector A zero
∷ : {n : Nat} → A → Vector A n → Vector A (suc n)

136

Notice that the parameter A is bound once for all constructors, while the index {n : Nat}
must be bound locally in the constructor _∷_.

Indexed datatypes can also be used to describe predicates, for example the predicate Even :
Nat → Set can be defined as follows:
data Even : Nat → Set where

even-zero : Even zero
even-plus2 : {n : Nat} → Even n → Even (suc (suc n))

The general form of the definition of a (parametrized, indexed) datatype D is the following
data D (x₁ : P₁) ... (xk : Pk) : (y₁ : Q₁) → ... → (yl : Ql) → Set ℓ where
c₁ : A₁
...
cn : An

where the types A₁, …, An are function types of the form
(z₁ : B₁) → ... → (zm : Bm) → D x₁ ... xk t₁ ... tl

A.5. Function types
Function types are written (x : A) → B, or in the case of non-dependent functions simply A
→ B. For instance, the type of the addition function for natural numbers is:
Nat → Nat → Nat

and the type of the addition function for vectors is:
(A : Set) → (n : Nat) → (u : Vec A n) → (v : Vec A n) → Vec A n

where Set is the type of sets and Vec A n is the type of vectors with n elements of type A.
Arrows between consecutive hypotheses of the form (x : A) may also be omitted, and (x :
A) (y : A) may be shortened to (x y : A):
(A : Set) (n : Nat) (u v : Vec A n) → Vec A n

Functions are constructed by lambda abstractions, which can be either typed or untyped. For
instance, both expressions below have type (A : Set) → A → A (the second expression checks
against other types as well):
example₁ = λ (A : Set) (x : A) → x
example₂ = λ A x → x

The application of a function f : (x : A) → B to an argument a : A is written f a
and the type of this is B[x := a].

Some notation conventions follow.
• Function types:

prop₁ : ((x : A) (y : B) → C) is-the-same-as ((x : A) → (y : B) → C)
prop₂ : ((x y : A) → C) is-the-same-as ((x : A)(y : A) → C)
prop₃ : (∀ (x : A) → C) is-the-same-as ((x : A) → C)
prop₄ : (∀ x → C) is-the-same-as ((x : _) → C)
prop₅ : (∀ x y → C) is-the-same-as (∀ x → ∀ y → C)

• Functional abstraction:

(λ x y → e) is-the-same-as (λ x → (λ y → e))

• Functional application:

(f a b) is-the-same-as ((f a) b)

137

A.6. Record types
The general form of a record declaration is as follows:

record <recordname> <parameters> : Set <level> where
<directives>
constructor <constructorname>
field

<fieldname1> : <type1>
<fieldname2> : <type2>
-- ...

<declarations>

All the components are optional, and can be given in any order. In particular, fields can be
given in more than one block, interspersed with other declarations. Each field is a component
of the record. Types of later fields can depend on earlier fields.

The directives available are eta-equality, no-eta-equality, inductive and co-inductive. For more
information visit [3].

A.7. Universes
Russell’s paradox implies that the collection of all sets is not itself a set. Namely, if there were
such a set U, then one could form the subset A ⊆ U of all sets that do not contain themselves.
Then we would have A ∈ A if and only if A ∉ A, a contradiction.

For similar reasons, not every Agda type is a Set. For example, we have

Bool : Set
Nat : Set

but not Set : Set. However, it is often convenient for Set to have a type of its own, and so
in Agda, it is given the type Set₁:

Set : Set₁

In many ways, expressions of type Set₁ behave just like expressions of type Set; for example,
they can be used as types of other things. However, the elements of Set₁ are potentially larger;
when A : Set₁, then A is sometimes called a large set. In turn, we have:

Set₁ : Set₂
Set₂ : Set₃

and so on. A type whose elements are types is called a universe; Agda provides an infinite
number of universes Set, Set₁, Set₂, Set₃, …, each of which is an element of the next one.
In fact, Set itself is just an abbreviation for Set₀. The subscript n is called the level of the
universe Setn.

A note on syntax: you can also write Set1, Set2, etc., instead of Set₁, Set₂. To enter a
subscript in the Emacs mode, type _1.

A.7.1. Universe example
So why are universes useful? Because sometimes it is necessary to define, and prove theorems
about, functions that operate not just on sets but on large sets. In fact, most Agda users sooner
or later experience an error message where Agda complains that Set₁ != Set. These errors
usually mean that a small set was used where a large one was expected, or vice versa.

For example, suppose you have defined the usual datatypes for lists and Cartesian products:

138

data List (A : Set) : Set where
[] : List A
:: : A → List A → List A

data _×_ (A B : Set) : Set where
, : A → B → A × B

infixr 5 _::_
infixr 4 _,_
infixr 2 _×_

Now suppose you would like to define an operator Prod that inputs a list of n sets and takes
their Cartesian product, like this:

Prod (A :: B :: C :: []) = A × B × C

There is only one small problem with this definition. The type of Prod should be:

Prod : List Set → Set

However, the definition of List A specified that A had to be a Set. Therefore, List Set
is not a valid type. The solution is to define a special version of the List operator that works
for large sets:

data List₁ (A : Set₁) : Set₁ where
[] : List₁ A
:: : A → List₁ A → List₁ A

With this, we can indeed define:

Prod : List₁ Set → Set
Prod [] = ⊤
Prod (A :: As) = A × Prod As

A.7.2. Universe polymorphism
Although we were able to give a type to the Prod operator by defining a special notion of
large list, this quickly gets tiresome. Sooner or later, we find that we require yet another list
type List₂, and it doesn’t stop there. Also every function on lists (such as append) must be
re-defined, and every theorem about such functions must be re-proved, for every possible level.

The solution to this problem is universe polymorphism. Agda provides a special primitive
type Level, whose elements are possible levels of universes. In fact, the notation for the n th
universe, Setn, is just an abbreviation for Set n, where n : Level is a level. We can use this
to write a polymorphic List operator that works at any level. The library Agda.Primitive
must be imported to access the Level type. The definition then looks like this:

open import Agda.Primitive

data List {n : Level} (A : Set n) : Set n where
[] : List A
:: : A → List A → List A

This new operator works at all levels; for example, we have

List Nat : Set
List Set : Set₁
List Set₁ : Set₂

139

A.7.3. Level arithmetic
Even though we don’t have the number of levels specified, we know that there is a lowest level
lzero, and for each level n, there exists some higher level lsuc n; therefore, the set of levels is
infinite. In addition, we can also take the least upper bound n ⊔ m of two levels. In summary,
the following (and only the following) operations on levels are provided:

lzero : Level
lsuc : (n : Level) → Level
⊔ : (n m : Level) → Level

This is sufficient for most purposes; for example, we can define the Cartesian product of two
types of arbitrary (and not necessarily equal) levels like this:

data _×_ {n m : Level} (A : Set n) (B : Set m) : Set (n ⊔ m) where
, : A → B → A × B

With this definition, we have, for example:

Nat × Nat : Set
Nat x Set : Set₁
Set × Set : Set₁

140

B. Agda library code

B.1. All
This is a helper module which imports everything in the library. It is used to check all the
library at once.

module _ where

-- This modules imports everything and it is meant to help checking
the whole
-- library at once.

open import Base
open import Classical
open import Formula
open import Principles

open import IL
open import IL.Properties
open import IL.Edsl

open import OrdinaryVeltmanSemantics
open import OrdinaryVeltmanSemantics.Finite
open import OrdinaryVeltmanSemantics.Properties
open import OrdinaryVeltmanSemantics.Properties.M
open import OrdinaryVeltmanSemantics.Properties.P₀
open import OrdinaryVeltmanSemantics.Properties.R
open import OrdinaryVeltmanSemantics.Properties.M₀

open import GeneralizedVeltmanSemantics
open import GeneralizedVeltmanSemantics.Properties
open import GeneralizedVeltmanSemantics.Properties.M
open import GeneralizedVeltmanSemantics.Properties.M₀
open import GeneralizedVeltmanSemantics.Properties.P₀
open import GeneralizedVeltmanSemantics.Properties.Rⁿ
open import GeneralizedVeltmanSemantics.Properties.R
open import GeneralizedVeltmanSemantics.Properties.R¹
open import GeneralizedVeltmanSemantics.Properties.R²
open import GeneralizedVeltmanSemantics.Properties.R₁
open import GeneralizedVeltmanSemantics.Properties.GenericFrameCond
open import GeneralizedVeltmanSemantics.Properties.Verbrugge
open import GeneralizedVeltmanSemantics.Properties.Luka

open import GeneralizedFrame
open import GeneralizedFrame.Properties

141

open import OrdinaryFrame

B.2. Base
This module contains some definitions and helper functions which are used throughout the thesis.
It includes, for instance, the definition of a Noetherian relation.

module Base where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; zero; suc)
open import Agda.Builtin.Bool
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym; cong)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Level using (Level; _⊔_) renaming (suc to lsuc; zero to
lzero)
open import Relation.Binary using (REL; Rel; Transitive; Irreflexive)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary using (¬_)
open import Relation.Unary using (Pred; Decidable; _⊆_) renaming (_⇒_
to _P⇒_)

private
variable

ℓa ℓb ℓc ℓ ℓ₁ ℓ₂ ℓ₃ : Level
A : Set ℓa
B : Set ℓb
C : Set ℓc

infix 5 _⇒_
⇒ : ∀ {a b} {A : Set a} {B : Set b} → A ⇔ B → A → B
f ⇒ x = Equivalence.to f ⟨$⟩ x

infix 5 _⇐_
⇐ : ∀ {f t} {A : Set f} {B : Set t} → A ⇔ B → B → A
f ⇐ x = Equivalence.from f ⟨$⟩ x

REL₃ : Set ℓa → Set ℓb → Set ℓc → (ℓ : Level) → Set (ℓa ⊔ ℓb ⊔ ℓc ⊔
lsuc ℓ)
REL₃ A B C ℓ = A → B → C → Set ℓ

Rel₃ : Set ℓa → (ℓ : Level) → Set (ℓa ⊔ lsuc ℓ)
Rel₃ A ℓ = REL₃ A A A ℓ

Decidable₃ : REL₃ A B C ℓ → Set _

142

Decidable₃ R = ∀ x y z → Dec (R x y z)

subst₃ : ∀ {ℓ ℓ'} {A B C : Set ℓ} (R : REL₃ A B C ℓ') {w z x y u v} →
w ≡ z → x ≡ y → u ≡ v → R x u w → R y v z
subst₃ _ refl refl refl p = p

record InfiniteChain {ℓW ℓR} {W : Set ℓW} (_<_ : Rel W ℓR) (a : W)
: Set (ℓR ⊔ ℓW) where
coinductive
field

b : W
a<b : a < b
tail : InfiniteChain _<_ b

infiniteRefl : ∀ {R : Rel A ℓ} {x} → R x x → InfiniteChain R x
InfiniteChain.b (infiniteRefl {x = x} Rxx) = x
InfiniteChain.a<b (infiniteRefl {x = x} Rxx) = Rxx
InfiniteChain.tail (infiniteRefl {x = x} Rxx) = infiniteRefl Rxx

Noetherian : ∀ {ℓR ℓW} {W : Set ℓW} → Rel W ℓR → Set (ℓR ⊔ ℓW)
Noetherian _<_ = ∀ {a} → ¬ (InfiniteChain _<_ a)

Noetherian⇒Irreflexive : ∀ {ℓR ℓW} {W : Set ℓW} {R : Rel W ℓR} →
Noetherian R → Irreflexive _≡_ R
Noetherian⇒Irreflexive noeth refl Rxx = noeth (infiniteRefl Rxx)

Noetherian⇒Irreflexive' : ∀ {ℓR ℓW} {W : Set ℓW} {R : Rel W ℓR} →
Noetherian R → ∀ {x} → ¬ R x x
Noetherian⇒Irreflexive' noeth Rxx = noeth (infiniteRefl Rxx)

data _≤_ : Rel Nat lzero where
z≤n : (a : Nat) → zero ≤ a
s≤s : {a b : Nat} → a ≤ b → suc a ≤ suc b

≤-trans : Transitive _≤_
≤-trans {a} {b} {c} (z≤n b) b≤c = z≤n c
≤-trans {suc a} {suc b} {suc c} (s≤s a≤b) (s≤s b≤c) = s≤s (≤-trans a≤b
b≤c)

reflex : ∀ {ℓ} {A : Set ℓ} {a : A} → a ≡ a
reflex = refl

symm : ∀ {ℓ} {A : Set ℓ} {a b : A} → a ≡ b → b ≡ a
symm refl = refl

transitivity : ∀ {ℓ} {A : Set ℓ} {a b c : A} → a ≡ b → b ≡ c → a ≡ c
transitivity refl refl = refl

B.3. Classical
module Classical where

143

open import Function.Equivalence using (_⇔_; equivalence; map; module
Equivalence)

open import Agda.Builtin.Nat using (Nat)
open import Agda.Builtin.Unit using (⊤; tt)
open import Data.List using (List; []; _∷_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Data.Product using (Σ; proj₁; proj₂; _×_) renaming (_,_ to
,)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Base using (_⇒_; _⇐_)

Var : Set
Var = Nat

infixr 20 _↝_
data Fm : Set where

var : Var → Fm
⊥' : Fm
↝ : Fm → Fm → Fm

infix 60 ¬'_
¬'_ : Fm → Fm
¬' a = a ↝ ⊥'

⊤' : Fm
⊤' = ¬' ⊥'

infix 30 _∨_
∨ : Fm → Fm → Fm
ϕ ∨ ψ = ¬' ϕ ↝ ψ

infix 40 _∧_
∧ : Fm → Fm → Fm
a ∧ b = ¬' (a ↝ ¬' b)

infix 5 _⊢_
data _⊢_ (Π : List Fm) : Fm → Set where

-- classical axioms
C1 : ∀ {A B} → Π ⊢ A ↝ B ↝ A
C2 : ∀ {A B C} → Π ⊢ (A ↝ B ↝ C) ↝ ((A ↝ B) ↝ A ↝ C)
C3 : ∀ {A B} → Π ⊢ (¬' A ↝ ¬' B) ↝ B ↝ A
MP : ∀ {A B} → Π ⊢ A ↝ B → Π ⊢ A → Π ⊢ B
Ax : ∀ {A} → A ∈ Π → Π ⊢ A

record ClassicalLanguage (fm : Set) : Set where
field

144

implication : fm → fm → fm
varia : Var → fm
bottom : fm

negation : fm → fm
negation x = implication x bottom

-- infix 30 _∨'_
-- _∨'_ : fm → fm → fm
-- ϕ ∨' ψ = ¬'' ϕ c↝ ψ

-- infix 40 _∧_
-- _∧_ : Fm → Fm → Fm
-- a ∧ b = ¬' (a ↝ ¬' b)

instance
FmClassical : ClassicalLanguage Fm
FmClassical = record { implication = _↝_ ; varia = var ; bottom = ⊥'

}

record ExtendsClassical {fm : Set} {{l : ClassicalLanguage fm}} (_⊢_ :
List fm → fm → Set) : Set where

infixr 20 _↝'_
↝' = ClassicalLanguage.implication l

infix 60 ¬''_
¬''_ = ClassicalLanguage.negation l

field C1' : ∀ {A B : fm} {Π : List fm} → Π ⊢ (A ↝' B ↝' A)
field C2' : ∀ {A B C Π} → Π ⊢ ((A ↝' B ↝' C) ↝' ((A ↝' B) ↝' A ↝'

C))
field C3' : ∀ {A B Π} → Π ⊢ ((¬'' A ↝' ¬'' B) ↝' B ↝' A)
field MP' : ∀ {A B Π} → Π ⊢ (A ↝' B) → Π ⊢ A → Π ⊢ B
field Ax' : ∀ {A Π} → A ∈ Π → Π ⊢ A

instance
ClassicalExt : ExtendsClassical _⊢_
ClassicalExt = record { C1' = C1 ; C2' = C2 ; C3' = C3 ; MP' = MP ;

Ax' = Ax }

-- fromClassical : ∀ {fm : Set} {{_ : ClassicalLanguage fm}} {_⊢'_ :
List fm → fm → Set} {{_ : ExtendsClassical _⊢'_}} {Π A} → Π ⊢ A → Π ⊢'
A
-- fromClassical = {!!}

weak : ∀ {Π A B} → Π ⊢ A → (B ∷ Π) ⊢ A
weak C1 = C1
weak C2 = C2
weak C3 = C3

145

weak (MP x x₁) = MP (weak x) (weak x₁)
weak (Ax x) = Ax (there x)

cut : ∀ {Π A B} → Π ⊢ B → (B ∷ Π) ⊢ A → Π ⊢ A
cut y C1 = C1
cut y C2 = C2
cut y C3 = C3
cut y (MP x x₁) = MP (cut y x) (cut y x₁)
cut y (Ax (here refl)) = y
cut y (Ax (there x)) = Ax x

deduction : ∀ {Π A B} → Π ⊢ A ↝ B ⇔ (A ∷ Π) ⊢ B
deduction {Π} {A} {B} = equivalence ⇨ ⇦

where
⇨ : ∀ {Π A B} → Π ⊢ A ↝ B → (A ∷ Π) ⊢ B
⇨ x = MP (weak x) (Ax (here refl))
⇦ : ∀ {Π A B} → (A ∷ Π) ⊢ B → Π ⊢ A ↝ B
⇦ C1 = MP C1 C1
⇦ C2 = MP C1 C2
⇦ C3 = MP C1 C3
⇦ {Π} {A} {B} (MP {C} x y) = MP (MP C2 (⇦ x)) (⇦ y)
⇦ (Ax (here refl)) = MP (MP C2 C1) (C1 {_} {_} {⊥'})
⇦ (Ax (there x)) = MP C1 (Ax x)

⊢A↝A : ∀ {Π A} → Π ⊢ A ↝ A
⊢A↝A {_} {A} = deduction ⇐ Ax (here refl)

⊢A∨¬A : ∀ {Π A} → Π ⊢ A ∨ (¬' A)
⊢A∨¬A {A} = ⊢A↝A

trans : ∀ {A B C Π} → Π ⊢ (A ↝ B) ↝ (B ↝ C) ↝ A ↝ C
trans {A} {B} {C} = deduction ⇐ (deduction ⇐ (deduction ⇐ MP (Ax (there
(here refl)))

(MP (Ax (there (there (here refl)))) (Ax (here refl)))))

⊢⟦A↝B⟧↝⟦B↝C⟧↝A↝C : ∀ {A B C Π} → Π ⊢ (A ↝ B) ↝ (B ↝ C) ↝ A ↝ C
⊢⟦A↝B⟧↝⟦B↝C⟧↝A↝C = trans

⊢A↝¬¬A : ∀ {Π A} → Π ⊢ A ↝ ¬' ¬' A
⊢A↝¬¬A = deduction ⇐ (deduction ⇐ MP (Ax (here refl)) (Ax (there (here
refl))))

⊢¬¬A↝A : ∀ {A Π} → Π ⊢ (¬' ¬' A) ↝ A
⊢¬¬A↝A {A} = MP C3 ⊢A↝¬¬A

⟦A↝B⟧↝¬B↝¬A : ∀ {A B Π} → Π ⊢ (A ↝ B) ↝ ¬' B ↝ ¬' A
⟦A↝B⟧↝¬B↝¬A = deduction ⇐ (deduction ⇐ (deduction ⇐ MP (Ax (there (here
refl)))
(MP (Ax (there (there (here refl)))) (Ax (here refl)))))

⟦A↝B↝C⟧↝B↝A↝C : ∀ {A B C Π} → Π ⊢ (A ↝ B ↝ C) ↝ B ↝ A ↝ C

146

⟦A↝B↝C⟧↝B↝A↝C = deduction ⇐ (deduction ⇐ (deduction ⇐ cut
(MP (Ax (there (there (here refl)))) (Ax (here refl))) (MP (Ax (here

refl))
(Ax (there (there (here refl)))))))

⊢A↝⊤ : ∀ {Π A} → Π ⊢ A ↝ ⊤'
⊢A↝⊤ = deduction ⇐ (deduction ⇐ Ax (here refl))

⊢⊥↝A : ∀ {Π A} → Π ⊢ ⊥' ↝ A
⊢⊥↝A = MP C3 ⊢A↝⊤

⊢¬A↝A↝B : ∀ {A B Π} → Π ⊢ ¬' A ↝ A ↝ B
⊢¬A↝A↝B = MP (MP C2 (MP C1 C3)) C1

⊢↝ : ∀ {A B Π} → (Π ⊢ ¬' A ⊎ Π ⊢ B) → Π ⊢ A ↝ B
⊢↝ (inj₁ x) = MP C3 (MP C1 x)
⊢↝ (inj₂ y) = MP C1 y

⊢∨ : ∀ {Π A B} → (Π ⊢ A ⊎ Π ⊢ B) → Π ⊢ A ∨ B
⊢∨ (inj₁ x) = deduction ⇐ cut (weak x) (MP ⊢⊥↝A (MP (Ax (there (here
refl)))
(Ax (here refl))))

⊢∨ (inj₂ y) = deduction ⇐ weak y

⊢A∧B↝A : ∀ {Π A B} → Π ⊢ A ∧ B ↝ A
⊢A∧B↝A = MP (MP trans (MP ⟦A↝B⟧↝¬B↝¬A ⊢¬A↝A↝B)) ⊢¬¬A↝A
⊢A∧B↝B : ∀ {Π A B} → Π ⊢ A ∧ B ↝ B
⊢A∧B↝B = MP (MP trans (MP ⟦A↝B⟧↝¬B↝¬A C1)) ⊢¬¬A↝A

⊢A↝B↝A∧B : ∀ {Π A B} → Π ⊢ A ↝ B ↝ A ∧ B
⊢A↝B↝A∧B = deduction ⇐ (deduction ⇐ (deduction ⇐ cut (MP (Ax (here
refl))

(Ax (there (there (here refl))))) (MP (Ax (here refl))
(Ax (there (there (here refl)))))))

⊢∧ : ∀ {Π A B} → (Π ⊢ A × Π ⊢ B) ⇔ Π ⊢ A ∧ B
⊢∧ {Π} {A} {B} = equivalence ⇨ ⇦

where
⇨ : (Π ⊢ A × Π ⊢ B) → Π ⊢ A ∧ B
⇨ (fst , snd) = MP (MP ⊢A↝B↝A∧B fst) snd
⇦ : Π ⊢ A ∧ B → (Π ⊢ A × Π ⊢ B)
⇦ x = MP ⊢A∧B↝A x , MP ⊢A∧B↝B x

B.4. Formula
The definition of formulas in the language of interpretability logics.

module Formula where

open import Agda.Builtin.Nat using (Nat; _-_)
open import Agda.Builtin.Char using (Char; primCharToNat)

147

open import Data.Empty using (⊥; ⊥-elim)
open import Function using (_∘_)
open import Relation.Binary using (REL; Rel)

Var : Set
Var = Nat

infixr 20 _↝_
infix 50 _▷_

data Fm : Set where
var : Var → Fm
⊥' : Fm
↝ : Fm → Fm → Fm
▷ : Fm → Fm → Fm

car : Char → Fm
car c = var (primCharToNat c - primCharToNat 'a')

infix 60 ¬'_
¬'_ : Fm → Fm
¬' a = a ↝ ⊥'

∼ : Fm → Fm
∼ (var x) = ¬' (var x)
∼ ⊥' = ¬' ⊥'
∼ a@(x ↝ var _) = ¬' a
∼ (a ↝ ⊥') = a
∼ a@(_ ↝ _ ↝ _) = ¬' a
∼ a@(_ ↝ _ ▷ _) = ¬' a
∼ a@(_ ▷ _) = ¬' a

⊤' : Fm
⊤' = ¬' ⊥'

infix 30 _∨_
∨ : Fm → Fm → Fm
a ∨ b = ¬' a ↝ b

infixr 40 _∧_
∧ : Fm → Fm → Fm
a ∧ b = ¬' (a ↝ ¬' b)

infix 70 □_
□_ : Fm → Fm
□_ a = ¬' a ▷ ⊥'

infix 70 ♢_
♢_ : Fm → Fm
♢_ a = ¬' □ (¬' a)

148

infixr 15 _↔_
↔ : Fm → Fm → Fm
a ↔ b = (a ↝ b) ∧ (b ↝ a)

infix 50 _◁_
◁ : Fm → Fm → Fm
a ◁ b = ¬' (a ▷ ¬' b)

B.5. GeneralizedFrame/Properties
Properties of generalized Veltman frames.

module GeneralizedFrame.Properties where

open import Agda.Builtin.Nat using (Nat; suc; _+_)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.List using (List)
open import Data.List.Relation.Unary.All using (All)
open import Data.Product
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Relation.Nullary using (yes; no; ¬_)
open import Function using (_∘_; case_of_; _$_)
open import Relation.Binary using (REL; Rel; Transitive; Reflexive)
renaming (Decidable to Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl;
subst; cong)
open import Relation.Nullary using (¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; {_}; _∩_;
⊆; Satisfiable)

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; var; ¬'_)
open import Base using (Noetherian; REL₃)

import GeneralizedVeltmanSemantics as G
open import GeneralizedFrame

private
variable
ℓW ℓR ℓS : Level

module FrameProperties
{W R S}
(T : ∀ {ℓW ℓS} (W : Set ℓW) → REL₃ W W (Pred W ℓW) ℓS → Set (lsuc

ℓW ⊔ ℓS))
(F : Frame {ℓW} {ℓR} {ℓS} W R S T)

where
open Frame F

149

S⊆{v} : ∀ {w u v V} → V ⊆ { v } → S w u V → S w u { v }
S⊆{v} V⊆v SwuV = S-ext SwuV V⊆v (λ { refl → case Swu-sat SwuV of

λ { (_ , snd) → case V⊆v snd of λ {refl → snd}}})

S⊆{v}' : ∀ {w u k} → ∃[V] (V ⊆ { k } × S w u V) → S w u { k }
S⊆{v}' (V , V⊆k , SwuV) = S⊆{v} V⊆k SwuV

module FrameLProperties
{ℓW ℓR ℓS}
{W R S}
(F : FrameL {ℓW} {ℓR} {ℓS} W R S)
where
open FrameL F

transUni : ∀ {b w x V} → S b w { x } → S b x V → S b w V
transUni {b} {w} {x} Sbwx SbxV = case quasitrans Sbwx (λ {refl → _

, SbxV}) of
λ {SbwU → S-ext SbwU (λ { (_ , refl , snd) → snd}) (λ {k →

_ , refl , k})}

S-trans : ∀ {x w u} {V : 𝕎} → R x w → R w u → S x u V → S x w V
S-trans {x} {w} {u} {V} Rxw Rwu = transUni (R-Sw-trans Rxw Rwu)

module Mono-closure
(W : Set ℓW)
(R : Rel W ℓR)
(S : REL₃ W W (Pred W ℓW) ℓS) where
private

𝕎 = Pred W ℓW

data S' : REL₃ W W 𝕎 (ℓR ⊔ lsuc ℓW ⊔ ℓS) where
s' : ∀ {w u Y Y'} → S w u Y → Y ⊆ Y' → Y' ⊆ R w → S' w u Y'

S'→S : ∀ {w u Y'} → S' w u Y' → Σ 𝕎 λ Y → S w u Y × Y ⊆ Y' × Y' ⊆ R w
S'→S (s' {Y = Y} x x₁ x₂) = Y , x , x₁ , x₂

S'→S[Y] : ∀ {w u} {Y' : 𝕎} → (Σ 𝕎 λ Y → S w u Y × Y ⊆ Y' × Y' ⊆ R
w) → 𝕎

S'→S[Y] = proj₁

S'→S[S] : ∀ {w u} {Y' : 𝕎} → (P : Σ 𝕎 λ Y → S w u Y × Y ⊆ Y' × Y' ⊆
R w) → let Y = proj₁ P in S w u Y

S'→S[S] = proj₁ ∘ proj₂

S'→S[⊆] : ∀ {w u} {Y' : 𝕎} → (P : Σ 𝕎 λ Y → S w u Y × Y ⊆ Y' × Y' ⊆
R w) → let Y = proj₁ P in Y ⊆ Y'

S'→S[⊆] = proj₁ ∘ proj₂ ∘ proj₂

S'→S[R] : ∀ {w u} {Y' : 𝕎} → (P : Σ 𝕎 λ Y → S w u Y × Y ⊆ Y' × Y' ⊆

150

R w) → Y' ⊆ R w
S'→S[R] = proj₂ ∘ proj₂ ∘ proj₂

module Transitivity'
{W : Set ℓW}
{R : Rel W ℓR}
{S : REL₃ W W (Pred W ℓW) ℓS}
where
𝕎 : Set _
𝕎 = Pred W ℓW

Frame-1 Frame-2 Frame-3 Frame-4 Frame-5 Frame-6 Frame-7 Frame-8
: Set _

Frame-1 = Frame W R S (Trans-conditions.Trans-1)
Frame-2 = Frame W R S (Trans-conditions.Trans-2)
Frame-3 = Frame W R S (Trans-conditions.Trans-3)
Frame-4 = Frame W R S (Trans-conditions.Trans-4)
Frame-5 = Frame W R S (Trans-conditions.Trans-5)
Frame-6 = Frame W R S (Trans-conditions.Trans-6)
Frame-7 = Frame W R S (Trans-conditions.Trans-7)
Frame-8 = Frame W R S (Trans-conditions.Trans-8)

open Mono-closure W R S

Frame-1' Frame-2' Frame-3' Frame-4' Frame-5' Frame-6' Frame-7' Frame-
8'

: Set _
Frame-1' = Frame W R S' (Trans-conditions.Trans-1)
Frame-2' = Frame W R S' (Trans-conditions.Trans-2)
Frame-3' = Frame W R S' (Trans-conditions.Trans-3)
Frame-4' = Frame W R S' (Trans-conditions.Trans-4)
Frame-5' = Frame W R S' (Trans-conditions.Trans-5)
Frame-6' = Frame W R S' (Trans-conditions.Trans-6)
Frame-7' = Frame W R S' (Trans-conditions.Trans-7)
Frame-8' = Frame W R S' (Trans-conditions.Trans-8)

lemma : FrameNoTrans W R S → FrameNoTrans W R S'
lemma (frame witness Swu-sat R-trans R-noetherian Sw⊆R[w]
SwuY⊆Rw S-quasirefl R-Sw-trans S-ext) =
frame witness
(λ { (s' SwuY Y⊆Y' Y'⊆Rw) → case Swu-sat SwuY of λ { (fst , snd)

→ fst , (Y⊆Y' snd)}})
R-trans
R-noetherian
(λ { (s' x x₁ x₂) → Sw⊆R[w] x})
(λ { (s' x x₂ x₃) x₁ → x₃ x₁})
(λ x → S⊆S' (S-quasirefl x))
(λ {x x₁ → S⊆S' (R-Sw-trans x x₁)})
λ { (Mono-closure.s' SwxY Y⊆V V⊆R) V⊆V' V'⊆V →

Mono-closure.s' SwxY (V⊆V' ∘ Y⊆V) (V⊆R ∘ V'⊆V)}
where

151

S⊆S' : ∀ {w u Y} → S w u Y → S' w u Y
S⊆S' {w} {u} {Y} x = s' x (λ z → z) (SwuY⊆Rw x)

S'-⊆-Irrel : Set (lsuc ℓW ⊔ ℓR ⊔ ℓS)
S'-⊆-Irrel = ∀ {x u Y'} (SxuY' : S' x u Y') →

let Y = S'→S[Y] (S'→S SxuY')
in Σ (Y ⊆ Y') λ Y⊆Y' → ∀ {y} {y∈Y y∈'Y : y ∈ Y} → Y⊆Y' y∈Y ≡ Y⊆Y'

y∈'Y

1⇒2' : S'-⊆-Irrel → Frame-1 → Frame-2'
1⇒2' ⊆-irrel (frame frame-0 trans) = frame (lemma frame-0)

λ { a@(s' {x} {u} {Y} {Y'} SxuY Y⊆ Y⊆Rx) y'→Y' irrel SxyY'y →
case ⊆-irrel a of λ { (Y⊆Y' , irrel') →
case trans SxuY
(λ y∈Y → S'→S[Y] (S'→S (SxyY'y (Y⊆Y' y∈Y))))
(cong (S'→S[Y] ∘ S'→S ∘ SxyY'y) irrel')
(λ y∈Y → S'→S[S] (S'→S (SxyY'y (Y⊆Y' y∈Y)))) of
λ { (Z , Z⊆ , SxuZ) → s' SxuZ
(λ { z → case Z⊆ z of
λ { ((v , v∈Y) , snd) →

(v , (Y⊆Y' v∈Y)) , (S'→S[⊆] (S'→S (SxyY'y (Y⊆Y' v∈Y)))) snd
}})

λ { {v} ((y , y∈Y') , v∈Y_y) → (S'→S[R] (S'→S (SxyY'y y∈Y')))
v∈Y_y}}}}

2⇒2' : S'-⊆-Irrel → Frame-2 → Frame-2'
2⇒2' ⊆-irrel (frame frame-0 trans) = frame (lemma frame-0)

λ { a@(s' {x} {u} {Y} {Y'} SxuY Y⊆ _) y'→Y' irrel SxyY'y →
case ⊆-irrel a of λ { (Y⊆Y' , irrel') →
case trans SxuY
(λ y∈Y → S'→S[Y] ∘ S'→S ∘ SxyY'y ∘ Y⊆Y' $ y∈Y)
(cong (S'→S[Y] ∘ S'→S ∘ SxyY'y) irrel')
(λ y∈Y → S'→S[S] (S'→S (SxyY'y (Y⊆Y' y∈Y)))) of
λ {Sxu⋃ → s' Sxu⋃
(λ { ((v , v∈Y) , snd) →
(v , (Y⊆Y' v∈Y)) , (S'→S[⊆] ∘ S'→S ∘ SxyY'y ∘ Y⊆Y' $ v∈Y) snd

})
λ { {v} ((y , y∈Y') , v∈Yy) → (S'→S[R] ∘ S'→S ∘ SxyY'y $ y∈Y')

v∈Yy}}}}

3⇒2' : Frame-3 → Frame-2'
3⇒2' (frame frame-0 trans) = frame (lemma frame-0)
λ { (s' {x} {u} {Y} SxuY Y⊆Y' _) y'→Y irrel y'→S' → case trans SxuY

of
λ { (y₀ , y₀∈Y , snd) → case snd (S'→S[S] ∘ S'→S ∘ y'→S' ∘ Y⊆Y' $

y₀∈Y) of
λ { (Z , Z⊆ , SxuZ) → s' SxuZ
(λ { {v} v∈Yy → (y₀ , Y⊆Y' y₀∈Y) , (S'→S[⊆] ∘ S'→S ∘ y'→S' ∘ Y⊆Y'

$ y₀∈Y) (Z⊆ v∈Yy)})
λ { {v} ((y , y∈Y') , snd) → (S'→S[R] ∘ S'→S ∘ y'→S' $ y∈Y') snd}}}}

152

4⇒2' : Frame-4 → Frame-2'
4⇒2' (frame frame-0 trans) = frame (lemma frame-0)
λ { (s' {x} {u} {Y} SxuY Y⊆Y' _) y'→Y irrel y'→S' → case trans SxuY

of
λ { (y₀ , y₀∈Y , snd) → s' (snd (S'→S[S] ∘ S'→S ∘ y'→S' ∘ Y⊆Y' $

y₀∈Y))
(λ { {v} v∈Yy → (y₀ , Y⊆Y' y₀∈Y) , (S'→S[⊆] ∘ S'→S ∘ y'→S' ∘ Y⊆Y'

$ y₀∈Y) v∈Yy})
λ { {v} ((y , y∈Y') , snd) → (S'→S[R] ∘ S'→S ∘ y'→S' $ y∈Y') snd}}}

5⇒2' : Frame-5 → Frame-2'
5⇒2' (frame frame-0 trans) = frame (lemma frame-0)

λ { (s' {x} {u} {Y} SxuY Y⊆Y' _) y'→Y irrel y'→S' →
case Swu-sat SxuY of λ { (y₀ , y₀∈Y) →
case trans SxuY y₀∈Y (S'→S[S] ∘ S'→S ∘ y'→S' ∘ Y⊆Y' $ y₀∈Y) of
λ { (Z , Z⊆SxuYy₀ , SxuYy₀) → s' SxuYy₀
(λ {∈Z → case Z⊆SxuYy₀ ∈Z of
λ {v∈Yy → (y₀ , Y⊆Y' y₀∈Y) , (S'→S[⊆] ∘ S'→S ∘ y'→S' ∘ Y⊆Y' $ y₀∈Y)

v∈Yy}})
λ { {v} ((y , y∈Y') , snd) → (S'→S[R] ∘ S'→S ∘ y'→S' $ y∈Y') snd}}}}
where open FrameNoTrans frame-0

6⇒2' : Frame-6 → Frame-2'
6⇒2' (frame frame-0 trans) = frame (lemma frame-0)

λ { (s' {x} {u} {Y} SxuY Y⊆Y' _) y'→Y irrel y'→S' →
case Swu-sat SxuY of λ { (y₀ , y₀∈Y) →
case trans SxuY y₀∈Y (S'→S[S] ∘ S'→S ∘ y'→S' ∘ Y⊆Y' $ y₀∈Y) of
λ { SxuYy₀ → s' SxuYy₀
((λ { {v} v∈Yy → (y₀ , Y⊆Y' y₀∈Y) , (S'→S[⊆] ∘ S'→S ∘ y'→S' ∘ Y⊆Y'

$ y₀∈Y) v∈Yy}))
λ { {v} ((y , y∈Y') , snd) → (S'→S[R] ∘ S'→S ∘ y'→S' $ y∈Y') snd}}}}
where open FrameNoTrans frame-0

dec-⊆ : Set _
dec-⊆ = (X Y : 𝕎) → X ⊆ Y ⊎ (Σ W λ x → x ∈ X × x ∉ Y)

7⇒2' : dec-⊆ → Frame-7 → Frame-2'
7⇒2' ⊆? (frame frame-0 trans) = frame (lemma frame-0)
λ { a@(s' {x} {u} {Y} {Y'} SxuY Y⊆Y' _) y'→Y irrel y'→S' →
case ⊆? Y (⋃[Σ W (_∈ Y')] (y'→Y ∘ proj₂)) of
λ { (inj₁ Y⊆U) → s' SxuY Y⊆U
λ { {v} ((y , y∈Y') , snd) → (S'→S[R] ∘ S'→S ∘ y'→S' $ y∈Y') snd}
; (inj₂ (y₀ , y₀∈Y , ∉U)) →

let r = S'→S ∘ y'→S' ∘ Y⊆Y' $ y₀∈Y in
case trans SxuY y₀∈Y (S'→S[S] r)
(λ { y₀∈Yy₀- → ∉U ((y₀ , Y⊆Y' y₀∈Y) , S'→S[⊆] r y₀∈Yy₀-)}) of
λ { (Z , Z⊆ , SxuYy₀) → s' SxuYy₀ (λ ∈Y'- → (y₀ , Y⊆Y' y₀∈Y)

, S'→S[⊆] r (Z⊆ ∈Y'-))
(λ { {v} ((y , y∈Y') , snd) → (S'→S[R] ∘ S'→S ∘ y'→S' $ y∈Y')

snd})} }}

153

8⇒2' : dec-⊆ → Frame-8 → Frame-2'
8⇒2' ⊆? (frame frame-0 trans) = frame (lemma frame-0)

λ { a@(s' {x} {u} {Y} {Y'} SxuY Y⊆Y' _) y'→Y irrel y'→S' →
case ⊆? Y (⋃[Σ W (_∈ Y')] (y'→Y ∘ proj₂)) of
λ { (inj₁ Y⊆U) → s' SxuY Y⊆U
λ { {v} ((y , y∈Y') , snd) → (S'→S[R] ∘ S'→S ∘ y'→S' $ y∈Y') snd}
; (inj₂ (y₀ , y₀∈Y , ∉U)) →

let r = S'→S ∘ y'→S' ∘ Y⊆Y' $ y₀∈Y in
case trans SxuY y₀∈Y (S'→S[S] r)
(λ { y₀∈Yy₀- → ∉U ((y₀ , Y⊆Y' y₀∈Y) , S'→S[⊆] r y₀∈Yy₀-)}) of
λ { SxuYy₀ → s' SxuYy₀ (λ ∈Y'- → (y₀ , Y⊆Y' y₀∈Y) , S'→S[⊆]

r ∈Y'-)
(λ { {v} ((y , y∈Y') , snd) → (S'→S[R] ∘ S'→S ∘ y'→S' $ y∈Y')

snd})}}}

module Transitivity {W} {R} {S}
(F : FrameNoTrans {ℓW} {ℓR} {ℓS} W R S)
where
open FrameNoTrans F

Monotone : Set _
Monotone = ∀ {w u} {V Z : 𝕎} → S w u V → V ⊆ Z → Z ⊆ R w → S w u Z

R-Decidable : Set _
R-Decidable = Decidable₂ R

S₃-Decidable : Set _
S₃-Decidable = ∀ {w u Y} → S w u Y → Decidable Y

open Trans-conditions W S

1⇒2 : Monotone → Trans-1 → Trans-2
--
2⇒1 : Trans-2 → Trans-1
--
3⇒4 : Monotone → Trans-3 → Trans-4
--
4⇒3 : Trans-4 → Trans-3
--
5⇒1 : Trans-5 → Trans-1
5⇒2 : Monotone → Trans-5 → Trans-2
5⇒3 : Trans-5 → Trans-3
5⇒4 : Monotone → Trans-5 → Trans-4
5⇒6 : Monotone → Trans-5 → Trans-6
5⇒7 : Trans-5 → Trans-7
5⇒8 : Monotone → Trans-5 → Trans-8
--
6⇒1 : Trans-6 → Trans-1
6⇒2 : Monotone → Trans-6 → Trans-2

154

6⇒3 : Trans-6 → Trans-3
6⇒4 : Trans-6 → Trans-4
6⇒5 : Trans-6 → Trans-5
6⇒7 : Trans-6 → Trans-7
6⇒8 : Trans-6 → Trans-8
--
7⇒8 : Monotone → Trans-7 → Trans-8
--
8⇒7 : Trans-8 → Trans-7

1⇒2 mono t SxuY y→Y irrel p = case t SxuY y→Y irrel p of
λ { (Z , Z⊆ , SxuZ) → mono SxuZ Z⊆
λ { {v} ((y , y∈Y) , snd) → SwuY⊆Rw (p y∈Y) snd}}

2⇒1 t {Y = Y} SxuY y→Y irrel p = ⋃[Σ W (_∈ Y)] (y→Y ∘ proj₂) , (λ
z → z) , t SxuY y→Y irrel p

3⇒4 mono t SxuY = case t SxuY of
λ { (y , y∈Y , snd) → y , y∈Y , λ {SxyY' → case snd SxyY' of
λ { (Y'' , Y''⊆Y' , SxuY'') → mono SxuY'' Y''⊆Y' (λ { {v} v∈
→ SwuY⊆Rw SxyY' v∈})}}}

4⇒3 t SxuY = case t SxuY of λ { (y , fst₁ , snd) → y , fst₁ ,
λ { {Y'} SxyY' → Y' , (λ x → x) , snd SxyY'}}

-- needs irrel
-- 2⇒2L : Trans-2 → Trans-L
-- 2⇒2L T2 SxuY f = S-ext (T2 SxuY (λ { {y} y∈Y → proj₁ (f y∈Y)})
-- (λ { {y} {a} {b} → {!!} }) λ {y∈Y → proj₂ (f y∈Y)})
-- (λ { ((x , x∈V) , snd) → _ , x∈V , snd})
-- λ { (y , y∈Y , snd) → (y , y∈Y) , snd}

2L⇒2 : Trans-L → Trans-2
2L⇒2 TL SxuY y→Y irrel y→SYy = S-ext

(TL SxuY λ {v∈Y → _ , y→SYy v∈Y})
(λ { (y , y∈Y , snd) → (y , y∈Y) , snd})
λ { ((y , y∈Y) , snd) → _ , y∈Y , snd}

5⇒1 t SxuY y→Y irrel p = case Swu-sat SxuY of λ { (y , y∈Y)
→ case t SxuY y∈Y (p y∈Y) of λ { (Y' , Y'⊆Yy , SxuY') → Y' ,
(λ {x → (_ , y∈Y) , Y'⊆Yy x}) , SxuY'}}

5⇒2 mono t SxuY y→Y irrel p = case Swu-sat SxuY of λ { (y , y∈Y)
→ case t SxuY y∈Y (p y∈Y) of λ { (Y' , Y'⊆Yy , SxuY') →
mono SxuY' (λ x₁ → (y , y∈Y) , Y'⊆Yy x₁)
(λ { {v} ((y' , y'∈Y) , snd) → SwuY⊆Rw (p y'∈Y) snd})}}

5⇒3 t SxuY = case Swu-sat SxuY of λ { (y , y∈Y) → y , y∈Y ,
λ {SxyY' → t SxuY y∈Y SxyY'}}

155

5⇒4 mono t SxuY = case Swu-sat SxuY of λ { (y , y∈Y) → y , y∈Y ,
λ {SxyY' → case t SxuY y∈Y SxyY' of λ { (Y'' , Y''⊆Y' , SxuY'') →
mono SxuY'' Y''⊆Y' (λ x₁ → SwuY⊆Rw SxyY' x₁)}}}

5⇒6 mono t SxuY y∈Y SxyY' = case t SxuY y∈Y SxyY' of
λ { (Y'' , Y''⊆Y' , SxuY'') → mono SxuY'' Y''⊆Y' λ { {v} v∈ →

SwuY⊆Rw SxyY' v∈}}

5⇒7 t SxuY y∈Y SxyY' y∉Y' = t SxuY y∈Y SxyY'

5⇒8 mono t = 6⇒8 (5⇒6 mono t)

6⇒1 t = 5⇒1 (6⇒5 t)

6⇒2 mono t = 1⇒2 mono (6⇒1 t)

6⇒3 t = 4⇒3 (6⇒4 t)

6⇒4 t SxuY = case Swu-sat SxuY of
λ { (y , y∈Y) → y , y∈Y , λ {SxyY' → t SxuY y∈Y SxyY'}}

6⇒5 t {Y' = Y'} SxuY y∈Y SxyY' = Y' , (λ z → z) , t SxuY y∈Y SxyY'

6⇒8 t SxuY y∈Y SxyY' y∉Y' = t SxuY y∈Y SxyY'

6⇒7 x = 8⇒7 (6⇒8 x)

7⇒8 mono t7 SxuY y∈Y SxyY' y∉Y' = case t7 SxuY y∈Y SxyY' y∉Y'
of λ { (Y'' , Y''⊆Y' , snd) → mono snd Y''⊆Y' (λ {v} v∈Y' → SwuY⊆Rw

SxyY' v∈Y')}

8⇒7 t8 {Y' = Y'} SxuY y∈Y SxyY' y∉Y' = Y' , ((λ x₆ → x₆) , t8 SxuY
y∈Y SxyY' y∉Y')

B.6. GeneralizedFrame
module GeneralizedFrame where

open import Agda.Builtin.Nat using (Nat; suc; _+_)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.List using (List)
open import Data.List.Relation.Unary.All using (All)
open import Data.Product
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Relation.Nullary using (yes; no; ¬_)
open import Function using (_∘_; case_of_; _$_)
open import Relation.Binary using (REL; Rel; Transitive; Reflexive)
renaming (Decidable to Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl;

156

subst; cong)
open import Relation.Nullary using (¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; {_}; _∩_;
⊆; Satisfiable)

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; var; ¬'_)
open import Base

private
variable
ℓW ℓR ℓS : Level

⋃[_] : ∀ {ℓ ℓ' ℓ''} {B : Set ℓ'} → (A : Set ℓ) → (A → Pred B ℓ'') →
Pred B _
⋃[y∈Y] y→Y z = ∃[y∈Y] (z ∈ (y→Y y∈Y))

module Trans-conditions (W : Set ℓW) (S : REL₃ W W (Pred W ℓW) ℓS)
where

private
𝕎 = Pred W ℓW

Trans-1 Trans-2 Trans-3 Trans-4 Trans-5 Trans-6 Trans-7 Trans-8
Trans-L

: Set (lsuc ℓW ⊔ ℓS)

Trans-1 = ∀ {u x Y} → S x u Y → (y→Y : ∀ {y} → y ∈ Y → 𝕎)
→ (irrel : ∀ {y} {y∈Y y∈'Y : y ∈ Y} → y→Y y∈Y ≡ y→Y y∈'Y)
→ (∀ {y} (y∈Y : y ∈ Y) → S x y (y→Y y∈Y))
→ ∃[Z] (Z ⊆ ⋃[Σ W (_∈ Y)] (y→Y ∘ proj₂) × S x u Z)

Trans-2 = ∀ {u x Y} → S x u Y → (y→Y : ∀ {y} → y ∈ Y → 𝕎)
→ (irrel : ∀ {y} {y∈Y y∈'Y : y ∈ Y} → y→Y y∈Y ≡ y→Y y∈'Y)
→ (∀ {y} (y∈Y : y ∈ Y) → S x y (y→Y y∈Y))
→ S x u (⋃[Σ W (_∈ Y)] (y→Y ∘ proj₂))

Trans-3 = ∀ {x u Y} → S x u Y → ∃[y] (Σ[y∈Y ∈ (y ∈ Y)] (∀ {Y'} →
S x y Y' → ∃[Y'']

(Y'' ⊆ Y' × S x u Y'')))
Trans-4 = ∀ {x u Y} → S x u Y → ∃[y] (y ∈ Y × (∀ {Y'} → S x y Y' →

S x u Y'))
Trans-5 = ∀ {u x y Y Y'} → S x u Y → y ∈ Y → S x y Y' → ∃[Y''] (Y''

⊆ Y' × S x u Y'')
Trans-6 = ∀ {u x y Y Y'} → S x u Y → y ∈ Y → S x y Y' → S x u Y'
Trans-7 = ∀ {u x y Y Y'} → S x u Y → y ∈ Y → S x y Y' → y ∉ Y'

→ ∃[Y''] (Y'' ⊆ Y' × S x u Y'')
Trans-8 = ∀ {u x y Y Y'} → S x u Y → y ∈ Y → S x y Y' → y ∉ Y' → S x

u Y'
Trans-L1 = ∀ {w u V} → S w u V → (f : ∀ {v} → v ∈ V → ∃[Z] (S w v

Z))
→ ∃[Z] (Z ⊆ (λ { x → ∃[v] (Σ[v∈V ∈ (v ∈ V)] (x ∈ proj₁ (f

v∈V)))}) × S w u Z)
Trans-L = ∀ {w u V} → S w u V → (f : ∀ {v} → v ∈ V → ∃[Z] (S w v Z))

→ S w u λ {x → ∃[v] (Σ[v∈V ∈ (v ∈ V)] (x ∈ proj₁ (f v∈V)))}

157

record FrameNoTrans (W : Set ℓW) (R : Rel W ℓR) (S : REL₃ W W (Pred W
ℓW) ℓS)

: Set (lsuc lzero ⊔ ℓR ⊔ ℓS ⊔ lsuc ℓW) where
constructor frame
𝕎 : Set _
𝕎 = Pred W ℓW
field
witness : W
Swu-sat : ∀ {w u Y} → S w u Y → Satisfiable Y
R-trans : Transitive R
R-noetherian : Noetherian R
Sw⊆Rw : ∀ {w u Y} → S w u Y → R w u
SwuY⊆Rw : ∀ {w u Y} → S w u Y → ∀ {y} → y ∈ Y → R w y
S-quasirefl : ∀ {w u} → R w u → S w u { u }
R-Sw-trans : ∀ {w u v} → R w u → R u v → S w u { v }
S-ext : ∀ {w x V V'} → S w x V → V ⊆ V' → V' ⊆ V → S w x V'

IsChoiceSet : 𝕎 → (w x : W) → Set (lsuc ℓW ⊔ ℓR ⊔ ℓS)
IsChoiceSet Γ w x = R w x × ∀ {Y} → S w x Y → Satisfiable (Y ∩ Γ)

ChoiceSet : (w x : W) → Set (lsuc ℓW ⊔ ℓR ⊔ ℓS)
ChoiceSet w x = Σ 𝕎 λ Γ → IsChoiceSet Γ w x

record Frame (W : Set ℓW) (R : Rel W ℓR) (S : REL₃ W W (Pred W ℓW) ℓS)
(T : (W : Set ℓW) → REL₃ W W (Pred W ℓW) ℓS → Set (lsuc ℓW ⊔ ℓS))
: Set (lsuc ℓW ⊔ ℓR ⊔ ℓS) where
constructor frame
field
frame-0 : FrameNoTrans {ℓW} {ℓR} {ℓS} W R S
quasitrans : T W S

open FrameNoTrans frame-0 public

FrameL : (W : Set ℓW) (R : Rel W ℓR) (S : REL₃ W W (Pred W ℓW) ℓS) →
Set _
FrameL W R S = Frame W R S (Trans-conditions.Trans-L)

Frame1 : (W : Set ℓW) (R : Rel W ℓR) (S : REL₃ W W (Pred W ℓW) ℓS) →
Set _
Frame1 W R S = Frame W R S (Trans-conditions.Trans-1)

Frame2 : (W : Set ℓW) (R : Rel W ℓR) (S : REL₃ W W (Pred W ℓW) ℓS) →
Set _
Frame2 W R S = Frame W R S (Trans-conditions.Trans-2)

Frame3 : (W : Set ℓW) (R : Rel W ℓR) (S : REL₃ W W (Pred W ℓW) ℓS) →
Set _
Frame3 W R S = Frame W R S (Trans-conditions.Trans-3)

Frame4 : (W : Set ℓW) (R : Rel W ℓR) (S : REL₃ W W (Pred W ℓW) ℓS) →
Set _

158

Frame4 W R S = Frame W R S (Trans-conditions.Trans-4)

Frame5 : (W : Set ℓW) (R : Rel W ℓR) (S : REL₃ W W (Pred W ℓW) ℓS) →
Set _
Frame5 W R S = Frame W R S (Trans-conditions.Trans-5)

Frame6 : (W : Set ℓW) (R : Rel W ℓR) (S : REL₃ W W (Pred W ℓW) ℓS) →
Set _
Frame6 W R S = Frame W R S (Trans-conditions.Trans-6)

Frame7 : (W : Set ℓW) (R : Rel W ℓR) (S : REL₃ W W (Pred W ℓW) ℓS) →
Set _
Frame7 W R S = Frame W R S (Trans-conditions.Trans-7)

Frame8 : (W : Set ℓW) (R : Rel W ℓR) (S : REL₃ W W (Pred W ℓW) ℓS) →
Set _
Frame8 W R S = Frame W R S (Trans-conditions.Trans-8)

module FrameL
{W R S}
(F : FrameL {ℓW} {ℓR} {ℓS} W R S) where
open Frame F public

module Frame1
{W R S}
(F : Frame1 {ℓW} {ℓR} {ℓS} W R S) where
open Frame F public

module Frame2
{W R S}
(F : Frame2 {ℓW} {ℓR} {ℓS} W R S) where
open Frame F public

module Frame3
{W R S}
(F : Frame3 {ℓW} {ℓR} {ℓS} W R S) where
open Frame F public

module Frame4
{W R S}
(F : Frame4 {ℓW} {ℓR} {ℓS} W R S) where
open Frame F public

module Frame5
{W R S}
(F : Frame5 {ℓW} {ℓR} {ℓS} W R S) where
open Frame F public

module Frame6
{W R S}
(F : Frame6 {ℓW} {ℓR} {ℓS} W R S) where

159

open Frame F public

module Frame7
{W R S}
(F : Frame7 {ℓW} {ℓR} {ℓS} W R S) where
open Frame F public

module Frame8
{W R S}
(F : Frame8 {ℓW} {ℓR} {ℓS} W R S) where
open Frame F public

module Predicates
{W R S}
(F : FrameL {lzero} {lzero} {lzero} W R S)
where
open FrameL F

R[_] : 𝕎 → 𝕎
R[V] x = ∃[v] (v ∈ V × R v x)

R⁻¹[_] : 𝕎 → 𝕎
R⁻¹[E] x = ∃[e] (e ∈ E × R x e)

R⁻¹_[_] : W → 𝕎 → 𝕎
R⁻¹ x [V] = R⁻¹[V] ∩ R x

B.7. GeneralizedVeltmanSemantics/Properties/GenericFrameCond
It contains the proof that we can find a frame condition for any principle.

module GeneralizedVeltmanSemantics.Properties.GenericFrameCond where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product using (Σ; proj₁; proj₂; _×_) renaming (_,_ to
,)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_}; ∅)
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym)

160

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; _◁_; var; ⊤'; ¬'_;
□_; ♢_; _∧_; _∨_; car)
open import GeneralizedVeltmanSemantics
open import Base using (_⇒_; _⇐_; Decidable₃; Rel₃; REL₃)
open import GeneralizedVeltmanSemantics.Properties

using (module Extended; ⊩¬; ⊮¬; ⊩□; ⊩♢; ⊩MP; ⊩∧; ⊩→¬⊮)
import Principles as P

private
variable

ℓW ℓR ℓS : Level
W : Set ℓW
R : Rel W ℓR
S : REL₃ W W (Pred W ℓW) ℓS
V : REL W Var lzero

module Condition
(F : FrameL {lzero} {lzero} {lzero} W R S)
where
open FrameL F

lift : Set → Set₁
lift Sa = Sa × (⊥ → Set)

Tagger : Set₁
Tagger = Var → 𝕎

fm2pred : Tagger → Fm → W → Set₁
fm2pred ⟦_⟧ (var v) u = lift (u ∈ ⟦ v ⟧)
fm2pred _ ⊥' w = lift ⊥
fm2pred ⟦_⟧ (A ↝ B) w = w ∈ fm2pred ⟦_⟧ A → w ∈ fm2pred ⟦_⟧ B
fm2pred ⟦_⟧ (A ▷ B) w = ∀ {u} → R w u → u ∈ fm2pred ⟦_⟧ A

→ Σ 𝕎 λ Y → S w u Y × Y ⊆ fm2pred ⟦_⟧ B

Frame-cond : Fm → Set₁
Frame-cond A = ∀ g w → fm2pred g A w

module Truth-lemma
{M : Model {lzero} {lzero} {lzero} W R S V}
(M,_*⊩?_ : MultiDecidableModel M)
(∈S? : Decidable₃ S)
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y) where

open Model M
open FrameL F
open Extended M,_*⊩?_ ∈S? ∈SV?
open Condition F

lemma : ∀ {⟦_⟧ w A} → (q : ∀ {w v} → M , w ⊩ var v ⇔ w ∈ ⟦ v ⟧) →
M , w ⊩ A ⇔ w ∈ fm2pred ⟦_⟧ A

161

lemma {g} {w} {A} q = equivalence ⇨ ⇦
where
⇨ : ∀ {w A} → M , w ⊩ A → w ∈ fm2pred g A
⇦ : ∀ {w A} → w ∈ fm2pred g A → M , w ⊩ A
⇨ v@(var x) = q ⇒ v , λ ()
⇨ i@(impl _) u = ⇨ ((⊩↝ ⇒ i) (⇦ u))
⇨ {w} r@(rhd _) Rwu u∈[A] = case (⊩▷ ⇒ r) Rwu (⇦ u∈[A]) of
λ { (Z , SZ , snd) → Z , SZ , λ {v → ⇨ (snd v)}}

⇦ {w} {var x} (fst , _) = q ⇐ fst
⇦ {w} {A ↝ B} p = ⊩↝ ⇐ λ {x → ⇦ (p (⇨ x))}
⇦ {w} {A ▷ B} p = ⊩▷ ⇐ λ {Rwu uA → case p Rwu (⇨ uA) of
λ { (Z , ZS , snd) → Z , ZS , λ {x → ⇦ (snd x)}}}

module soundness
{M : Model {lzero} {lzero} {lzero} W R S V}
(M,_*⊩?_ : MultiDecidableModel M)
(∈S? : Decidable₃ S)
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y) where

open Model M
open FrameL F
open Extended M,_*⊩?_ ∈S? ∈SV?
open Condition F
open Truth-lemma M,_*⊩?_ ∈S? ∈SV?

sound : ∀ w P → Frame-cond P → M , w ⊩ P
sound w A cond = lemma g-aux ⇐ cond ⟦_⟧ w

where
⟦_⟧ : Tagger
⟦ x ⟧ = [⊩ var x]
g-aux : ∀ {w v} → M , w ⊩ var v ⇔ w ∈ [⊩ var v]
g-aux {w} {v} = equivalence ⇨ ⇦
where
⇨ : M , w ⊩ var v → w ∈ [⊩ var v]
⇨ x = ∈[⊩ var v] ⇐ x
⇦ : w ∈ [⊩ var v] → M , w ⊩ var v
⇦ x = ∈[⊩ var v] ⇒ x

module P⇒ℱ
{F : FrameL {lzero} {lzero} {lzero} W R S}
(∈S? : Decidable₃ S)
(dec : ∀ V → MultiDecidableModel (model {V = V} F))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
where
open FrameL F
open Condition F

thm : ∀ P → F *⊩ P → Frame-cond P
thm P x g w = lemma g-aux ⇒ w⊩P

162

where
Val : Valuation F
Val u a = u ∈ g a
M = model {V = Val} F
open Extended (dec Val) ∈S? ∈SV?
open Truth-lemma (dec Val) ∈S? ∈SV?
w⊩P : M , w ⊩ P
w⊩P = x (λ a b → g b a) w
g-aux : ∀ {w v} → M , w ⊩ var v ⇔ w ∈ g v
g-aux {w} {v} = equivalence (λ { (var x) → x}) var

B.8. GeneralizedVeltmanSemantics/Properties/Luka
It contains the proof that we build an ordinary frame from a generalized model.

module GeneralizedVeltmanSemantics.Properties.Luka where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Data.Empty using (⊥; ⊥-elim)
open import Function using (_$_)
open import Data.Product renaming (_,_ to _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_}; ∅)
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary.PropositionalEquality

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; _◁_; var; ⊤'; ¬'_;
□_; ♢_; _∧_; _∨_; car)
open import Base
open import GeneralizedVeltmanSemantics.Properties
using (module SemanticsProperties-4;

module SemanticsProperties-3;
module SemanticsProperties-L; module PGeneric)

open import GeneralizedFrame
open Trans-conditions
open import GeneralizedFrame.Properties
import OrdinaryFrame as O
import OrdinaryVeltmanSemantics as O
import OrdinaryVeltmanSemantics.Properties as O

private
variable

163

ℓW ℓR ℓS : Level

-- I think an easier transformation would be (W, R, S) |-> (W, R, {
(w, u, v) : for some V, S w u V, and v in V })

module OrdModel
{ℓW ℓR ℓS}
(T : ∀ {ℓW ℓS} → (W : Set ℓW) → REL₃ W W (Pred W ℓW) ℓS → Set (lsuc

ℓW ⊔ ℓS))
{W R S}
(F : Frame {ℓW} {ℓR} {ℓS} W R S T)
(T3 : Trans-3 W S)
(V : W → Pred Var lzero)
where
open Frame F
open PGeneric T
open FrameProperties T F

W' : Set _
W' = W

R' : Rel W' _
R' = R

S' : Rel₃ W' _
S' w x v = ∃[V] (Σ[SwxV ∈ S w x V] (v ≡ proj₁ (T3 SwxV)))

V' : W' → Pred Var lzero
V' = V

f-chain : ∀ {a} → InfiniteChain R' a → InfiniteChain R _
InfiniteChain.b (f-chain x) = InfiniteChain.b x
InfiniteChain.a<b (f-chain x) = InfiniteChain.a<b x
InfiniteChain.tail (f-chain x) = f-chain (InfiniteChain.tail x)

R'-Noetherian : Noetherian R'
R'-Noetherian i = R-noetherian (f-chain i)

F' : O.Frame W' R' S'
F' = O.frame

witness
R-trans
R'-Noetherian
(λ { {w} {u} {v} (V , SwuV , refl) → Sw⊆Rw SwuV , SwuY⊆Rw SwuV

(proj₁ ∘ proj₂ $ T3 SwuV)})
(λ { Rwu → _ , S-quasirefl Rwu , (proj₁ ∘ proj₂ $ T3 (S-quasirefl

Rwu))})
(λ { {w} {i} (V , SwiV , refl) (V' , SwjV' , refl) →

let
j = proj₁ (T3 SwiV)
k = proj₁ (T3 SwjV')

164

Rwk : R w k
Rwk = SwuY⊆Rw SwjV' (proj₁ ∘ proj₂ $ T3 SwjV')
Swkk : S w k { k }
Swkk = S-quasirefl Rwk
Swik : S w i { k }
Swik = S⊆{v}' $ (proj₂ ∘ proj₂ $ T3 SwiV) (S⊆{v}' $ (proj₂ ∘

proj₂ $ T3 SwjV') Swkk)
in _ , Swik , (proj₁ ∘ proj₂ $ T3 Swik)

})
λ { Rwu Ruv → _ , R-Sw-trans Rwu Ruv , (proj₁ ∘ proj₂ $ T3 (R-Sw-trans

Rwu Ruv))}

M' : O.Model W' R' S' V'
M' = O.model F'

module PrefaceTheoremAll
{ℓW ℓR ℓS}
(T : ∀ {ℓW ℓS} → (W : Set ℓW) → REL₃ W W (Pred W ℓW) ℓS → Set (lsuc

ℓW ⊔ ℓS))
{W R S}
(F : Frame {ℓW} {ℓR} {ℓS} W R S T)
(T3 : Trans-3 W S)
(V : W → Pred Var lzero)
where
open Frame F
open OrdModel T F T3 V
open PGeneric T
open FrameProperties T F

M : Model W R S V
M = model {V = V} F

module Theorem
(dec : MultiDecidableModel M)
(dec' : O.DecidableModel M')
(∈S? : Decidable₃ S)
(∈S'? : Decidable₃ S')
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
where

private
open Extended dec ∈S? ∈SV?
module O' = O.Extended dec' ∈S'?

thm⇨ : ∀ {w A} → M , w ⊩ A → M' O., w ⊩ A
thm⇦ : ∀ {w A} → M' O., w ⊩ A → M , w ⊩ A
thm'⇨ : ∀ {w A} → M , w ⊮ A → M' O., w ⊮ A

thm⇦ x = ⊩⇔¬⊮ ⇐ λ {y → O.⊮→¬⊩ (thm'⇨ y) x}

thm⇨ (var x) = O.var x

165

thm⇨ A@(impl x) = O'.⊩↝ ⇐ λ {wA → thm⇨ ((⊩↝ ⇒ A) (thm⇦ wA))}
thm⇨ {w} F@(rhd {D} {E} x) = O'.⊩▷ ⇐
λ { {x} Rwx x⊩D → case (⊩▷ ⇒ F) Rwx (thm⇦ x⊩D) of
λ { (V , SwxV , V⊩E) → proj₁ (T3 SwxV) , (V , SwxV , refl)
, thm⇨ (V⊩E (proj₁ ∘ proj₂ $ T3 SwxV))}}

thm'⇨ (var x) = O.var x
thm'⇨ {w} (impl {A} {B} a b) = O.impl (thm⇨ a) (thm'⇨ b)
thm'⇨ bot = O.bot
thm'⇨ {w} F@(rhd {D} {E} _) = case ⊮▷ ⇒ F of
λ {(x , Rwx , x⊩D , px) → O'.⊮▷ ⇐ (x , Rwx , thm⇨ x⊩D ,

λ { (V , SwxV , refl) →
let k = proj₁ (T3 SwxV)

Rwk : R w k
Rwk = SwuY⊆Rw SwxV (proj₁ ∘ proj₂ $ T3 SwxV)
Swxk : S w x { k }
Swxk = S⊆{v}' $ (proj₂ ∘ proj₂ $ T3 SwxV) (S-quasirefl

Rwk)
in case px _ (_ , refl) Swxk of
λ { (_ , refl , snd) → thm'⇨ snd}})}

B.9. GeneralizedVeltmanSemantics/Properties/M
The frame condition for the M principle.

module GeneralizedVeltmanSemantics.Properties.M where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product using (Σ; proj₁; proj₂; _×_) renaming (_,_ to
,)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_})
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym)

open import Formula
open import GeneralizedVeltmanSemantics
open import Base
open import GeneralizedVeltmanSemantics.Properties
using (module Extended; ⊩¬; ⊮¬; ⊩□; ⊩♢; ⊩MP; ⊩∧; ⊩→¬⊮; ⊮→¬⊩)

166

import Principles as P

private
variable

ℓW ℓR ℓS : Level

M-condition : ∀ {W R S} → FrameL {ℓW} {ℓR} {ℓS} W R S → Set _
M-condition {W = W} {R = R} {S = S} F = ∀ {w u V} → S w u V → Σ 𝕎 λ V'
→ V' ⊆ V × S w u V'

× ∀ {z v'} → v' ∈ V' → R v' z → R u z
where open FrameL F

module M-soundness
{W R S V}
{M : Model {lzero} {lzero} {lzero} W R S V}
(M,_*⊩?_ : MultiDecidableModel M)
(∈S? : Decidable₃ S)
(S? : S-decidable (Model.F M))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y) where

open Model M
open FrameL F
open Extended M,_*⊩?_ ∈S? ∈SV?

⊩M : ∀ {w A B C} → M-condition F → M , w ⊩ A ▷ B ↝ (A ∧ □ C) ▷ (B ∧
□ C)
⊩M {w} {A} {B} {C} cM = ⊩↝ ⇐ λ A▷B → ⊩▷ ⇐ λ { {x} Rwx x⊩A∧□C
→ case ⊩∧ ⇒ x⊩A∧□C of λ { (x⊩A , x⊩□C) → case (⊩▷ ⇒ A▷B) Rwx x⊩A of
λ { (Z , SwxZ , Z⊩B) → case cM SwxZ of
λ { (Z' , Z'⊆Z , SwxZ' , snd) → Z' , SwxZ' , λ {p → ⊩∧ ⇐ (Z⊩B (Z'⊆Z

p) ,
⊩□ ⇐ λ {y → (⊩□ ⇒ x⊩□C) (snd p y)})}}}}}

module M-completeness
{W R S}
{F : FrameL {lzero} {lzero} {lzero} W R S}
(∈S? : Decidable₃ S)
(dec : ∀ V → MultiDecidableModel (model {V = V} F))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
where
open FrameL F

*⊩M : Set₁
*⊩M = P.M (F *⊩_)

pattern a = 0
pattern b = 1
pattern c = 2

⊩M⇒M-condition : *⊩M → M-condition F
⊩M⇒M-condition ⊩M {w} {u} {V} SwuV

167

= case (⊩▷ ⇒ (⊩MP (⊩M Val w) w⊩a▷b)) Rwu u⊩a∧□c of
λ { (Z , SwuZ , Z⊩b∧□c) → Z , (λ {x → [b] ⇒ proj₁ (⊩∧ ⇒ Z⊩b∧□c

x)}) , SwuZ
, λ {x x₁ → [c] ⇒ (⊩□ ⇒ (proj₂ (⊩∧ ⇒ Z⊩b∧□c x))) x₁}}

where
Rwu : R w u
Rwu = Sw⊆Rw SwuV
Val : Valuation F
Val w a = w ≡ u
Val w b = w ∈ V
Val w c = R u w
Val w (suc (suc (suc _))) = ⊥
M = model {V = Val} F
open Extended (dec Val) ∈S? ∈SV?
[a] : ∀ {w} → M , w ⊩ var a ⇔ w ≡ u
[a] = equivalence (λ { (var x) → x}) λ {z → var z}
[b] : ∀ {w} → M , w ⊩ var b ⇔ w ∈ V
[b] = equivalence (λ { (var x) → x}) λ {z → var z}
[c] : ∀ {w} → M , w ⊩ var c ⇔ R u w
[c] = equivalence (λ { (var x) → x}) λ {z → var z}
w⊩a▷b : M , w ⊩ var a ▷ var b
w⊩a▷b = ⊩▷ ⇐ λ { {i} Rwi ia → case [a] ⇒ ia of λ {refl → V , (SwuV

, λ {x → [b] ⇐ x})}}
u⊩a∧□c : M , u ⊩ var a ∧ □ var c
u⊩a∧□c = ⊩∧ ⇐ ([a] ⇐ refl , ⊩□ ⇐ λ x → [c] ⇐ x)

B.10. GeneralizedVeltmanSemantics/Properties/M0

The frame condition for the M0 principle.

module GeneralizedVeltmanSemantics.Properties.M₀ where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product using (Σ; proj₁; proj₂; _×_) renaming (_,_ to
,)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_})
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym)

168

open import Formula
open import GeneralizedVeltmanSemantics
open import Base
open import GeneralizedVeltmanSemantics.Properties

using (module Extended; ⊩¬; ⊮¬; ⊩□; ⊩♢; ⊩MP; ⊩∧; ⊩→¬⊮; ⊮→¬⊩)
import Principles as P

private
variable

ℓW ℓR ℓS : Level

M₀-condition : ∀ {W R S} → FrameL {ℓW} {ℓR} {ℓS} W R S → Set _
M₀-condition {W = W} {R = R} {S = S} F = ∀ {w x y Y} → R w x → R x y →
S w y Y → Σ 𝕎 λ Y'

→ Y' ⊆ Y × S w x Y' × ∀ {y'} z → y' ∈ Y' → R y' z → R x z
where open FrameL F

module M₀-soundness
{W R S V}
{M : Model {lzero} {lzero} {lzero} W R S V}
(M,_*⊩?_ : MultiDecidableModel M)
(∈S? : Decidable₃ S)
(S? : S-decidable (Model.F M))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y) where

open Model M
open FrameL F
open Extended M,_*⊩?_ ∈S? ∈SV?

⊩M₀ : ∀ {w A B C} → M₀-condition F → M , w ⊩ A ▷ B ↝ (♢ A ∧ □ C) ▷
(B ∧ □ C)
⊩M₀ {w} {A} {B} {C} c = ⊩↝ ⇐ λ A▷B → ⊩▷ ⇐ λ {u} Rwu a → case ⊩∧ ⇒ a of

λ { (u♢A , u□C) → case ⊩♢ ⇒ u♢A of λ { (v , Ruv , vA)
→ case (⊩▷ ⇒ A▷B) (R-trans Rwu Ruv) vA of λ { (Y , SwvY , YB)
→ case c Rwu Ruv SwvY of λ { (Y' , Y'⊆Y , SwuY' , snd)
→ Y' , SwuY' , λ { {y'} y'∈Y' → ⊩∧ ⇐ (YB (Y'⊆Y y'∈Y') , (⊩□ ⇐ (λ

{z} Ry'z
→ (⊩□ ⇒ u□C) (snd z y'∈Y' Ry'z))))}}}}}

module M₀-completeness
{W R S}
{F : FrameL {lzero} {lzero} {lzero} W R S}
(∈S? : Decidable₃ S)
(dec : ∀ V → MultiDecidableModel (model {V = V} F))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
where
open FrameL F

*⊩M₀ : Set₁

169

*⊩M₀ = P.M₀ (F *⊩_)

pattern a = 0
pattern b = 1
pattern c = 2

⊩M₀⇒M₀-condition : *⊩M₀ → M₀-condition F
⊩M₀⇒M₀-condition ⊩M₀ {w} {x} {y} {Y} Rwx Rxy SwyY

= case (⊩▷ ⇒ ⊩MP (⊩M₀ Val w) w⊩a▷b) Rwx x⊩♢a∧□c of
λ { (Y' , SwxY' , snd) → Y' , (λ {y → [b] ⇒ proj₁ (⊩∧ ⇒ snd y)})
, SwxY' , (λ { {y'} z y'∈Y' Ry'z → [c] ⇒ (⊩□ ⇒ (proj₂ (⊩∧ ⇒ snd

y'∈Y'))) Ry'z})}
where
Val : Valuation F
Val w a = w ≡ y
Val w b = w ∈ Y
Val w c = R x w
Val w (suc (suc (suc _))) = ⊥
M = model {V = Val} F
open Extended (dec Val) ∈S? ∈SV?
[a] : ∀ {w} → M , w ⊩ var a ⇔ w ≡ y
[a] = equivalence (λ { (var x) → x}) λ {z → var z}
[b] : ∀ {w} → M , w ⊩ var b ⇔ w ∈ Y
[b] = equivalence (λ { (var x) → x}) λ {z → var z}
[c] : ∀ {w} → M , w ⊩ var c ⇔ R x w
[c] = equivalence (λ { (var x) → x}) λ {z → var z}
w⊩a▷b : M , w ⊩ var a ▷ var b
w⊩a▷b = ⊩▷ ⇐ λ {Rwu ua → case [a] ⇒ ua of λ {refl → Y , (SwyY , λ

{x₁ → var x₁})}}
x⊩♢a∧□c : M , x ⊩ ♢ var a ∧ □ var c
x⊩♢a∧□c = ⊩∧ ⇐ (⊩♢ ⇐ (y , Rxy , [a] ⇐ refl) , ⊩□ ⇐ λ {p → [c] ⇐ p})

B.11. GeneralizedVeltmanSemantics/Properties/P0

The frame condition for the P0 principle.

module GeneralizedVeltmanSemantics.Properties.P₀ where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product using (Σ; proj₁; proj₂; _×_) renaming (_,_ to
,)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)

170

open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_})
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym)

open import Formula
open import GeneralizedVeltmanSemantics
open import Base
open import GeneralizedVeltmanSemantics.Properties
using (module Extended; ⊩¬; ⊮¬; ⊩□; ⊩♢; ⊩MP; ⊩∧; ⊩→¬⊮; ⊮→¬⊩)

import Principles as P

private
variable

ℓW ℓR ℓS : Level

P₀-condition : ∀ {ℓZ} {W R S} → FrameL {ℓW} {ℓR} {ℓS} W R S → Set _
P₀-condition {ℓZ = ℓZ} {W = W} {R = R} {S = S} F = ∀ {w x y Y} → R w x
→ R x y → S w y Y →
(Z : Pred W ℓZ)
→ (∀ y' → y' ∈ Y → Satisfiable (Z ∩ R y'))
→ Σ 𝕎 λ Z' → (Z' ⊆ Z) × S x y Z'
where open FrameL F

module P₀-soundness
{W R S V}
{M : Model {lzero} {lzero} {lzero} W R S V}
(M,_*⊩?_ : MultiDecidableModel M)
(∈S? : Decidable₃ S)
(S? : S-decidable (Model.F M))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y) where

open Model M
open FrameL F
open Extended M,_*⊩?_ ∈S? ∈SV?

⊩P₀ : ∀ {w A B} → P₀-condition F → M , w ⊩ A ▷ (♢ B) ↝ □ (A ▷ B)
⊩P₀ {w} {A} {B} c-P₀ = ⊩↝ ⇐ λ A▷♢B → ⊩□ ⇐ λ {x} Rwx → ⊩▷ ⇐ λ {y} Rxy

yA
→ case (⊩▷ ⇒ A▷♢B) (R-trans Rwx Rxy) yA of
λ { (Y , SwyY , snd) → case c-P₀ Rwx Rxy SwyY (M ,_⊩ B)
(λ y' y'∈Y → case ⊩♢ ⇒ snd y'∈Y of λ { (z , Ry'z , zB) → z , zB ,

Ry'z}) of
λ { (Z' , ZB , SxyZ') → Z' , SxyZ' , λ { w' → ZB w'}}
}

module P₀-completeness
{W R S}
{F : FrameL {lzero} {lzero} {lzero} W R S}

171

(∈S? : Decidable₃ S)
(dec : ∀ V → MultiDecidableModel (model {V = V} F))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
where
open FrameL F

*⊩P₀ : Set₁
*⊩P₀ = P.P₀ (F *⊩_)

pattern a = 0
pattern b = 1

⊩P₀⇒P₀-condition : *⊩P₀ → P₀-condition F
⊩P₀⇒P₀-condition ⊩P₀ {w} {x} {y} {Y} Rwx Rxy SwyY Z p =

case (⊩▷ ⇒ x⊩a▷b) Rxy ([a] ⇐ refl) of
λ { (Z' , SxyZ' , Z'⊩b) → Z' , (λ {z → [b] ⇒ (Z'⊩b z)}) , SxyZ'}
where
Val : Valuation F
Val w a = w ≡ y
Val w b = w ∈ Z
Val w (suc (suc _)) = ⊥
M = model {V = Val} F
open Extended (dec Val) ∈S? ∈SV?
[a] : ∀ {w} → M , w ⊩ var a ⇔ w ≡ y
[a] = equivalence (λ { (var x) → x}) λ {z → var z}
[b] : ∀ {w} → M , w ⊩ var b ⇔ w ∈ Z
[b] = equivalence (λ { (var x) → x}) λ {z → var z}
w⊩a▷♢b : M , w ⊩ var a ▷ ♢ var b
w⊩a▷♢b = ⊩▷ ⇐ λ { {u} Rwu u⊩a → case [a] ⇒ u⊩a of
λ { refl → Y , SwyY , λ { {v} v∈Y → case p v v∈Y of
λ { (fst , fst₁ , snd) → ⊩♢ ⇐ (fst , (snd , ([b] ⇐ fst₁)))}}}}

w⊩□a▷b : M , w ⊩ □ (var a ▷ var b)
w⊩□a▷b = ⊩MP (⊩P₀ Val w) w⊩a▷♢b
x⊩a▷b : M , x ⊩ var a ▷ var b
x⊩a▷b = (⊩□ ⇒ w⊩□a▷b) Rwx

B.12. GeneralizedVeltmanSemantics/Properties/R
The frame condition for the R principle.

module GeneralizedVeltmanSemantics.Properties.R where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product using (Σ; proj₁; proj₂; _×_) renaming (_,_ to
,)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)

172

open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_})
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym)

open import Formula
open import GeneralizedVeltmanSemantics
open import Base using (_⇒_; _⇐_; Decidable₃)
open import GeneralizedVeltmanSemantics.Properties
using (module Extended; ⊩¬; ⊮¬; ⊩□; ⊩♢; ⊩MP; ⊩∧; ⊩→¬⊮; ⊮→¬⊩)

import Principles as P

private
variable

ℓW ℓR ℓS : Level

R-condition : ∀ {W R S} → FrameL {ℓW} {ℓR} {ℓS} W R S → Set _
R-condition {W = W} {R = R} {S = S} F = ∀ {w x y Y ℂ} → R w x → R x y
→ S w y Y → IsChoiceSet ℂ x y → Decidable ℂ
→ Σ 𝕎 λ Y' → Y' ⊆ Y × S w x Y' × ∀ {y'} → y' ∈ Y' → ∀ {z} → R y' z →

z ∈ ℂ
where
open FrameL F

module R-soundness
{W R S V}
{M : Model {lzero} {lzero} {lzero} W R S V}
(M,_*⊩?_ : MultiDecidableModel M)
(∈S? : Decidable₃ S)
(S? : S-decidable (Model.F M))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y) where

open Model M
open FrameL F
open Extended M,_*⊩?_ ∈S? ∈SV?

⊩R : ∀ {w A B C} → R-condition F →
M , w ⊩ A ▷ B ↝ (¬' (A ▷ C) ▷ (B ∧ (□ (¬' C))))

⊩R {w} {A} {B} {C} c = ⊩↝ ⇐ λ A▷B → ⊩▷ ⇐ λ {x} Rwx tmp → case ⊩¬ ⇒
tmp of

λ { (rhd (y , Rxy , vA , snd)) → case (⊩▷ ⇒ A▷B) (R-trans Rwx Rxy)
vA of

λ { (Y , SwxY , YB) → case c Rwx Rxy SwxY (Rxy
, λ {Z} SxyZ → case snd Z (Swu-sat SxyZ) of
λ { (inj₁ p) → ⊥-elim (p SxyZ)

173

; (inj₂ (z , zZ , z¬C)) → z , zZ , aux x y ⇐ (⊩¬ ⇐ z¬C , Z , zZ ,
SxyZ)}) (dec x y)

of λ { (Y' , Y'⊆Y , SwxY' , snd) → Y' , SwxY' , λ { {y'} y'∈Y'
→ ⊩∧ ⇐ (YB (Y'⊆Y y'∈Y') , ⊩□ ⇐ λ { {v} Ry'v → proj₁ (aux x y ⇒

snd y'∈Y' Ry'v)})}}}}
where
ℂ : W → W → 𝕎
ℂ x y g with M, g ⊩? ¬' C
... | inj₂ _ = ⊥
... | inj₁ _ with S? x y g
... | inj₁ _ = ⊤
... | inj₂ _ = ⊥
dec : (x y : W) → Decidable (ℂ x y)
dec x y g with M, g ⊩? ¬' C
... | inj₂ _ = no λ z → z
... | inj₁ _ with S? x y g
... | inj₁ _ = yes tt
... | inj₂ _ = no λ z → z
aux : ∀ {g} x y → g ∈ ℂ x y ⇔ (M , g ⊩ ¬' C × Σ 𝕎 λ U → g ∈ U ×

S x y U)
aux {g} x y = equivalence ⇨ ⇦
where ⇨ : g ∈ ℂ x y → (M , g ⊩ ¬' C × Σ 𝕎 λ U → g ∈ U × S x y U)

⇨ p with M, g ⊩? ¬' C
... | inj₂ _ = ⊥-elim p
... | inj₁ k with S? x y g
... | inj₂ _ = ⊥-elim p
... | inj₁ k' = k , k'

⇦ : (M , g ⊩ ¬' C × Σ 𝕎 λ U → g ∈ U × S x y U) → g ∈ ℂ x y
⇦ (p1 , p2) with M, g ⊩? ¬' C
... | inj₂ m1 = ⊮→¬⊩ m1 p1
... | inj₁ m1 with S? x y g
... | inj₁ m2 = tt
... | inj₂ m2 = case p2 of λ { (Z , gZ , SxyZ) → m2 Z

SxyZ gZ}

module R-condition
{W R S}
{F : FrameL {lzero} {lzero} {lzero} W R S}
(S? : Decidable₃ S)
(dec : ∀ V → MultiDecidableModel (model {V = V} F))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
where
open FrameL F
*⊩R : Set₁
*⊩R = P.R (F *⊩_)

pattern p = 0
pattern q = 1
pattern s = 2

⊩R⇒R-condition : *⊩R → R-condition F

174

⊩R⇒R-condition ⊩Ra {w} {x} {y} {Y} {ℂ} Rwx Rxy SwyY (_ , C) ∈ℂ?
= case (⊩▷ ⇒ w⊩G) Rwx (⊩¬ ⇐ x⊮p▷s) of
λ { (Y' , SwxY' , snd) → Y' , (λ {v} v∈ → Y⊩q ⇒ proj₁ (⊩∧ ⇒ (snd

v∈))) , SwxY' ,
λ {y'} y'∈ {z} Ry'z → ℂ⊩¬s ⇒ ((⊩□ ⇒ proj₂ (⊩∧ ⇒ (snd y'∈))) Ry'z)}

where
V : Valuation F
V u p = u ≡ y
V u q = u ∈ Y
V u s = u ∈ ℂ
V w (suc (suc (suc x))) = ⊥
M = model {V = V} F
open Extended (dec V) S? ∈SV?
Y⊩q : ∀ {w'} → M , w' ⊩ var q ⇔ w' ∈ Y
Y⊩q {w'} = equivalence ⇨ ⇦
where
⇨ : M , w' ⊩ var q → Y w'
⇨ (var x) = x
⇦ : Y w' → M , w' ⊩ var q
⇦ x = var x

ℂ⊩¬s : ∀ {w'} → M , w' ⊩ var s ⇔ w' ∈ ℂ
ℂ⊩¬s {w'} = equivalence ⇨ ⇦
where
⇦ : ℂ w' → M , w' ⊩ var s
⇦ x = var x
⇨ : M , w' ⊩ var s → ℂ w'
⇨ (var vr) with ∈ℂ? w'
... | yes ans = ans
... | no z = vr

y⊩p : ∀ {w'} → M , w' ⊩ var p ⇔ w' ≡ y
y⊩p {w'} = equivalence ⇨ ⇦
where ⇨ : M , w' ⊩ var 0 → w' ≡ y

⇨ (var refl) = refl
⇦ : w' ≡ y → M , w' ⊩ var 0
⇦ refl = var refl

w⊩p▷q : M , w ⊩ var p ▷ var q
w⊩p▷q = ⊩▷ ⇐ λ {w'} Rww' w'⊩p → case y⊩p ⇒ w'⊩p of
λ {refl → Y , SwyY , λ {v'} x₁ → var x₁}

w⊩G : M , w ⊩ (¬' (var 0 ▷ ¬' (var 2))) ▷ (var 1 ∧ (□ (var 2)))
w⊩G = ⊩MP (⊩Ra V w) w⊩p▷q
x⊮p▷s : M , x ⊮ var p ▷ (¬' (var s))
x⊮p▷s = rhd (y , Rxy , y⊩p ⇐ refl , λ {Y' sY' → case S? x y Y' of
λ { (yes z) → inj₂ (case C z of (λ { (y' , fst , snd) → y' ,

(fst , impl (var snd) bot)}));
(no z) → inj₁ z}})

B.13. GeneralizedVeltmanSemantics/Properties/R1

The frame condition for the R1 principle.

module GeneralizedVeltmanSemantics.Properties.R¹ where

175

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product using (Σ; proj₁; proj₂; _×_) renaming (_,_ to
,)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_})
open import Relation.Binary using () renaming (Decidable to Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym)

open import Formula
open import GeneralizedVeltmanSemantics
open import Base using (_⇒_; _⇐_; Decidable₃)
open import GeneralizedVeltmanSemantics.Properties
using (module Extended; ⊩¬; ⊮¬; ⊩□; ⊩♢; ⊩MP; ⊩∧; ⊩→¬⊮; ⊮→¬⊩)

open import GeneralizedFrame using (module Predicates)
import Principles as P

private
variable

ℓW ℓR ℓS : Level

R¹-condition : ∀ {W R S} → FrameL {lzero} {lzero} {lzero} W R S → Set _
R¹-condition {W = W} {R = R} {S = S} F = ∀ {w x y z} {𝔸 𝔹 ℂ 𝔻 : 𝕎}
→ R w x → R x y → R y z
→ (∀ {u} → R w u → u ∈ 𝔸 → Σ 𝕎 λ V → S w u V × V ⊆ 𝔹)
→ (∀ {u} → R x u → u ∈ 𝔻 → Σ 𝕎 λ V → S x u V × V ⊆ 𝔸)
→ (∀ {V} → S y z V → Σ W λ v → v ∈ V × v ∈ ℂ)
→ z ∈ 𝔻
→ Σ 𝕎 λ V → V ⊆ 𝔹 × S w x V × R[V] ⊆ ℂ
where open FrameL F

open Predicates F

module R₁-soundness
{W R S V}
{M : Model {lzero} {lzero} {lzero} W R S V}
(M,_*⊩?_ : MultiDecidableModel M)
(∈S? : Decidable₃ S)
(S? : S-decidable (Model.F M))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y) where

open Model M

176

open FrameL F
open Extended M,_*⊩?_ ∈S? ∈SV?

⊩R¹ : ∀ {w A B C D} → R¹-condition F
→ M , w ⊩ A ▷ B ↝ (♢ (D ◁ C) ∧ (D ▷ A)) ▷ (B ∧ □ C)

⊩R¹ {w} {A} {B} {C} {D} c = ⊩↝ ⇐ λ w⊩A▷B → ⊩▷ ⇐ λ { {x} Rwx x⊩∧ →
case ⊩∧ ⇒ x⊩∧ of λ { (x⊩♢D◁C , x⊩D▷A) → case ⊩♢ ⇒ x⊩♢D◁C of
λ { (y , Rxy , y⊩D◁C) → case ⊩◁ ⇒ y⊩D◁C of
λ { (z , Ryz , z⊩D , pz) → case c {𝔸 = 𝔸} {𝔹 = 𝔹} {𝔻 = 𝔻} Rwx Rxy

Ryz
(λ {u} Rwu u∈𝔸 → case (⊩▷ ⇒ w⊩A▷B) Rwu (∈[⊩ A] ⇒ u∈𝔸) of λ { (V ,

SwuV , V⊩B)
→ V , SwuV , λ {z → ∈[⊩ B] ⇐ V⊩B z}}) (λ {u} Rxu uD → case (⊩▷ ⇒

x⊩D▷A) Rxu (∈[⊩ D] ⇒ uD) of
λ { (V , SxuV , V⊩A) → V , SxuV , λ {v∈V → ∈[⊩ A] ⇐ V⊩A v∈V}})

(λ { {V} SyzV → case pz SyzV of
λ { (v , v∈V , vC) → v , v∈V , (∈K y z ⇐ (V , SyzV , v∈V , vC))}})

(∈[⊩ D] ⇐ z⊩D) of
λ { (V , V⊆𝔹 , SwxV , R[V]⊆K) → V , SwxV , λ { {v} v' → ⊩∧ ⇐ (∈[⊩ B

] ⇒ V⊆𝔹 v' , ⊩□ ⇐
λ { {u} Rvu → case ∈K y z ⇒ R[V]⊆K (v , v' , Rvu) of
λ { (_ , _ , _ , snd) → snd}})}}}}}}
where
K : (y z : W) → 𝕎
K y z u with S? y z u
... | inj₂ _ = ⊥
... | inj₁ _ with M, u ⊩? C
... | inj₁ _ = ⊤
... | inj₂ _ = ⊥
∈K : ∀ y z {u} → u ∈ (K y z) ⇔ Σ 𝕎 λ V → S y z V × u ∈ V × M , u ⊩ C
∈K y z {u} = equivalence ⇨ ⇦

where
⇨ : u ∈ (K y z) → Σ 𝕎 λ V → S y z V × u ∈ V × M , u ⊩ C
⇨ x with S? y z u
... | inj₁ (V , uV , SyzV) with M, u ⊩? C
... | inj₁ p = V , SyzV , uV , p
... | inj₂ _ = ⊥-elim x
⇦ : (Σ 𝕎 λ V → S y z V × u ∈ V × M , u ⊩ C) → u ∈ (K y z)
⇦ (V , SyzV , uV) with S? y z u
... | inj₂ p = p V SyzV (proj₁ uV)
... | inj₁ p with M, u ⊩? C
... | inj₁ p' = tt
⇦ (V , SyzV , fst , snd) | inj₁ p | inj₂ p' = ⊮→¬⊩ p' snd

K∈𝒞 : {y z : W} → R y z → (∀ {V} → S y z V → Σ W (λ b → b ∈ V × M ,
b ⊩ C)) → IsChoiceSet (K y z) y z

K∈𝒞 {y} {z} Ryz p = Ryz , λ { {Y} SyzY → case p SyzY of λ { (b ,
b∈V , bC) → b , b∈V , ∈K y z ⇐ (Y , SyzY , b∈V , bC)}}

𝔸 𝔹 𝔻 : 𝕎
𝔸 = [⊩ A]
𝔹 = [⊩ B]
𝔻 = [⊩ D]

177

module R₁-completeness
{W R S}
{F : FrameL {lzero} {lzero} {lzero} W R S}
(∈S? : Decidable₃ S)
(dec : ∀ V → MultiDecidableModel (model {V = V} F))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
where
open FrameL F
*⊩R¹ : Set₁
*⊩R¹ = P.R¹ (F *⊩_)

pattern a = 0
pattern b = 1
pattern c = 2
pattern d = 3

⊩R¹⇒R¹-condition : *⊩R¹ → R¹-condition F
⊩R¹⇒R¹-condition ⊩R¹ {w} {x} {y} {z} {𝔸} {𝔹} {ℂ} {𝔻}
Rwx Rxy Ryz ∈𝔸 ∈𝔻 [d◁c] z∈𝔻 = case (⊩▷ ⇒ ⊩MP w⊩R¹ w⊩a▷b) Rwx (⊩∧ ⇐

(x⊩♢d◁c , x⊩d▷a)) of
λ { (V , SwxV , V⊩b∧□c) → V , (λ {p → [b] ⇒ proj₁ (⊩∧ ⇒ V⊩b∧□c p)})

, SwxV ,
λ { {h} (v , v∈V , Rv) → [c] ⇒ (⊩□ ⇒ proj₂ (⊩∧ ⇒ V⊩b∧□c v∈V)) Rv}}
where
Val : Valuation F
Val y a = y ∈ 𝔸
Val y b = y ∈ 𝔹
Val y c = y ∈ ℂ
Val y d = y ∈ 𝔻
Val y (suc (suc (suc (suc x)))) = ⊥
M = model {V = Val} F
[a] : ∀ {u} → M , u ⊩ var a ⇔ u ∈ 𝔸
[a] {u} = equivalence (λ { (var x) → x}) (λ x₁ → var x₁)
[b] : ∀ {u} → M , u ⊩ var b ⇔ u ∈ 𝔹
[b] {u} = equivalence (λ { (var x) → x}) (λ x₁ → var x₁)
[c] : ∀ {u} → M , u ⊩ var c ⇔ u ∈ ℂ
[c] {u} = equivalence (λ { (var x) → x}) (λ x₁ → var x₁)
[d] : ∀ {u} → M , u ⊩ var d ⇔ u ∈ 𝔻
[d] {u} = equivalence (λ { (var x) → x}) (λ x₁ → var x₁)
open Extended (dec Val) ∈S? ∈SV?
w⊩R¹ : M , w ⊩ var a ▷ var b ↝ (♢ (var d ◁ var c) ∧ (var d ▷ var

a)) ▷ (var b ∧ □ var c)
w⊩R¹ = ⊩R¹ Val w
w⊩a▷b : M , w ⊩ var a ▷ var b
w⊩a▷b = ⊩▷ ⇐ λ { {u} Rwu u⊩a →
case ∈𝔸 Rwu ([a] ⇒ u⊩a) of λ { (V , SwuV , V⊆𝔹)
→ V , SwuV , λ {z → [b] ⇐ V⊆𝔹 z}}}

y⊩d◁c : M , y ⊩ var d ◁ var c

178

y⊩d◁c = ⊩◁ ⇐ (z , Ryz , [d] ⇐ z∈𝔻 , λ { {V} SyzV → case [d◁c] SyzV
of λ { (v , v∈V , v∈ℂ) → v , v∈V , [c] ⇐ v∈ℂ}})

x⊩d▷a : M , x ⊩ var d ▷ var a
x⊩d▷a = ⊩▷ ⇐ λ { {u} Rxu ud → case ∈𝔻 Rxu ([d] ⇒ ud) of λ { (V ,

SxuV , snd) → V , SxuV , λ {i → [a] ⇐ snd i}}}
x⊩♢d◁c : M , x ⊩ ♢ (var d ◁ var c)
x⊩♢d◁c = ⊩♢ ⇐ (y , Rxy , y⊩d◁c)

B.14. GeneralizedVeltmanSemantics/Properties/R2

The frame condition for the R2 principle.

module GeneralizedVeltmanSemantics.Properties.R² where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product using (Σ; proj₁; proj₂; _×_) renaming (_,_ to
,)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_})
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym)

open import Formula
open import GeneralizedVeltmanSemantics
open import Base using (_⇒_; _⇐_; Decidable₃)
open import GeneralizedVeltmanSemantics.Properties
using (module Extended; ⊩¬; ⊮¬; ⊩□; ⊩♢; ⊩MP; ⊩∧; ⊩→¬⊮; ⊮→¬⊩)

open import GeneralizedFrame using (module Predicates)
import Principles as P

private
variable

ℓW ℓR ℓS : Level

R²-condition : ∀ {W R S} → FrameL {lzero} {lzero} {lzero} W R S → Set _
R²-condition {W = W} {R = R} {S = S} F =
∀ {w x y z s} {𝔸 𝔹 ℂ 𝔻 𝔼 : 𝕎}
→ R w x → R x y → R y z → R z s
→ (∀ {u} → R w u → u ∈ 𝔸 → Σ 𝕎 λ V → S w u V × V ⊆ 𝔹)
→ (∀ {u} → R x u → u ∈ 𝔼 → Σ 𝕎 λ V → S x u V × V ⊆ 𝔸)

179

→ (∀ {u} → R y u → u ∈ 𝔻 → Σ 𝕎 λ V → S y u V × V ⊆ 𝔼)
→ (∀ {V} → S z s V → Σ W λ v → v ∈ V × v ∈ ℂ)
→ s ∈ 𝔻
→ Σ 𝕎 λ V → S w x V × V ⊆ 𝔹 × R[V] ⊆ ℂ
where open FrameL F

open Predicates F

module R²-soundness
{W R S V}
{M : Model {lzero} {lzero} {lzero} W R S V}
(M,_*⊩?_ : MultiDecidableModel M)
(∈S? : Decidable₃ S)
(S? : S-decidable (Model.F M))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y) where

open Model M
open FrameL F
open Extended M,_*⊩?_ ∈S? ∈SV?

⊩R²-aux : ∀ {A B C D E w x y z s}
→ R²-condition F
→ R w x → R x y → R y z → R z s
→ M , w ⊩ A ▷ B
→ M , x ⊩ E ▷ A
→ M , y ⊩ D ▷ E
→ M , s ⊩ D
→ (∀ {V} → S z s V → Satisfiable (V ∩ (M ,_⊩ C)))
→ Σ 𝕎 λ Y → S w x Y × Y ⊆ M ,_⊩ B ∧ □ C

⊩R²-aux {A} {B} {C} {D} {E} cond Rwx Rxy Ryz Rzs w⊩A▷B x⊩E▷A y⊩D▷E
s⊩D p

= case cond Rwx Rxy Ryz Rzs
(aux w⊩A▷B) (aux x⊩E▷A) (aux y⊩D▷E)
(aux-choice p) (∈[⊩ D] ⇐ s⊩D) of
λ { (Y , SwxY , Y⊆𝔹 , snd) → Y , SwxY , λ { {e} i → ⊩∧ ⇐ (∈[⊩ B] ⇒

Y⊆𝔹 i , ⊩□ ⇐ λ { {t} j → ∈[⊩ C] ⇒ snd (e , i , j)})} }
where
-- the following function is general enough to be declared outside

this module.
aux : ∀ {A B w u} → M , w ⊩ A ▷ B → R w u → u ∈ [⊩ A] → Σ 𝕎 λ V →

S w u V × V ⊆ [⊩ B]
aux {A} {B} w⊩A▷B Rwu u∈[A] = case (⊩▷ ⇒ w⊩A▷B) Rwu (∈[⊩ A] ⇒

u∈[A]) of
λ { (V , SwuV , snd) → V , SwuV , λ {x₁ → ∈[⊩ B] ⇐ snd x₁}}

aux-choice : ∀ {A w x} → (∀ {V} → S w x V → Satisfiable (V ∩ (M ,_⊩
A))) → ∀ {V} → S w x V → Satisfiable (V ∩ [⊩ A])

aux-choice {A} p SwxV = case p SwxV of λ { (k , fst , snd) → k ,
fst , ∈[⊩ A] ⇐ snd }

⊩R² : ∀ {w A B C D E} → R²-condition F
→ M , w ⊩ A ▷ B ↝ (♢ ((D ▷ E) ∧ ♢ (¬' (D ▷ ¬' C))) ∧ (E ▷ A)) ▷ (B

∧ □ C)

180

⊩R² {w} {A} {B} {C} {D} {E} c = ⊩↝ ⇐ λ {w⊩A▷B → ⊩▷ ⇐
λ { {x} Rwx x⊩ → case ⊩∧ ⇒ x⊩ of λ { (x⊩♢ , x⊩E▷A) → case ⊩♢ ⇒ x⊩♢

of
λ { (y , Rxy , y⊩) → case ⊩∧ ⇒ y⊩ of λ { (y⊩D▷E , y⊩♢) → case ⊩♢ ⇒

y⊩♢ of
λ { (z , Ryz , z⊩) → case ⊩◁ ⇒ z⊩ of λ { (s , Rzs , s⊩D , snd)
→ ⊩R²-aux c Rwx Rxy Ryz Rzs w⊩A▷B x⊩E▷A y⊩D▷E s⊩D snd}}}}}}}

module R²-completeness
{W R S}
{F : FrameL {lzero} {lzero} {lzero} W R S}
(∈S? : Decidable₃ S)
(dec : ∀ V → MultiDecidableModel (model {V = V} F))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
where
open FrameL F

*⊩R² : Set₁
*⊩R² = P.R² (F *⊩_)

pattern a = 0
pattern b = 1
pattern c = 2
pattern d = 3
pattern e = 4

⊩R²⇒R²-condition : *⊩R² → R²-condition F
⊩R²⇒R²-condition ⊩R² {w} {x} {y} {z} {s} {𝔸} {𝔹} {ℂ} {𝔻} {𝔼}
Rwx Rxy Ryz Rzs 𝔸▷𝔹 𝔼▷𝔸 𝔻▷𝔼 pℂ s∈𝔻

= case (⊩▷ ⇒ ⊩MP w⊩R² w⊩a▷b) Rwx (⊩∧ ⇐ (⊩♢ ⇐ (y , Rxy , ⊩∧ ⇐
(y⊩d▷e , ⊩♢ ⇐ (z , Ryz , z⊩¬d▷¬c))) , x⊩e▷a)) of
λ { (V , SwxV , snd) → V , SwxV , (λ {i → [b] ⇒ proj₁ (⊩∧ ⇒ snd

i)}) ,
λ { (u , uV , Rui) → [c] ⇒ (⊩□ ⇒ (proj₂ (⊩∧ ⇒ snd uV))) Rui}}

where
Val : Valuation F
Val y a = y ∈ 𝔸
Val y b = y ∈ 𝔹
Val y c = y ∈ ℂ
Val y d = y ∈ 𝔻
Val y e = y ∈ 𝔼
Val y (suc (suc (suc (suc (suc x))))) = ⊥
M = model {V = Val} F
[a] : ∀ {u} → M , u ⊩ var a ⇔ u ∈ 𝔸
[a] {u} = equivalence (λ { (var x) → x}) (λ x₁ → var x₁)
[b] : ∀ {u} → M , u ⊩ var b ⇔ u ∈ 𝔹
[b] {u} = equivalence (λ { (var x) → x}) (λ x₁ → var x₁)
[c] : ∀ {u} → M , u ⊩ var c ⇔ u ∈ ℂ
[c] {u} = equivalence (λ { (var x) → x}) (λ x₁ → var x₁)
[d] : ∀ {u} → M , u ⊩ var d ⇔ u ∈ 𝔻

181

[d] {u} = equivalence (λ { (var x) → x}) (λ x₁ → var x₁)
[e] : ∀ {u} → M , u ⊩ var e ⇔ u ∈ 𝔼
[e] {u} = equivalence (λ { (var x) → x}) (λ x₁ → var x₁)
open Extended (dec Val) ∈S? ∈SV?
w⊩R² : M , w ⊩ var a ▷ var b ↝ (♢ ((var d ▷ var e) ∧ ♢ (¬' (var d

▷ ¬' var c))) ∧
(var e ▷ var a)) ▷ (var b ∧ □ var c)

w⊩R² = ⊩R² Val w
w⊩a▷b : M , w ⊩ var a ▷ var b
w⊩a▷b = [⊩▷] [a] [b] 𝔸▷𝔹
x⊩e▷a : M , x ⊩ var e ▷ var a
x⊩e▷a = [⊩▷] [e] [a] 𝔼▷𝔸
y⊩d▷e : M , y ⊩ var d ▷ var e
y⊩d▷e = [⊩▷] [d] [e] 𝔻▷𝔼
z⊩¬d▷¬c : M , z ⊩ ¬' (var d ▷ ¬' var c)
z⊩¬d▷¬c = ⊩◁ ⇐ (s , Rzs , var s∈𝔻 , λ {SzsV → case pℂ SzsV of
λ { (s' , s'∈V , s'∈ℂ) → s' , s'∈V , [c] ⇐ s'∈ℂ}})

B.15. GeneralizedVeltmanSemantics/Properties/Rn

The frame condition for the Rn principle.

module GeneralizedVeltmanSemantics.Properties.Rⁿ where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero; _-_)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Nat.Base using (_≤_; _<_; s≤s; z≤n)
open import Data.Fin using (Fin; zero; suc; fromℕ; inject₁; _ℕ-_; toℕ;
ℕ-ℕ; fromℕ<)
open import Data.Fin.Properties using (toℕ‿ℕ-)
open import Data.Nat.Properties using (≤-step; ≤-pred; ≤-reflexive;
≤-irrelevant; m∸n≤m;

<⇒≤; <-cmp; _<?_; 1+n≰n; n≤1+n; ≰⇒>; _≟_; ≤-antisym; ≤-trans; _≤?_)
open import Data.Product renaming (_,_ to _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary using (REL; Rel; Transitive; tri<; tri>;
tri≈)
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym; cong;

subst₂)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_})

182

open import Formula
open import GeneralizedVeltmanSemantics
open import Base using (_⇒_; _⇐_; Decidable₃; subst₃)
open import GeneralizedVeltmanSemantics.Properties

using (module Extended; ⊩¬; ⊮¬; ⊩□; ⊩♢; ⊩MP; ⊩∧; ⊩→¬⊮; ⊮→¬⊩)
open import GeneralizedVeltmanSemantics.Properties.R using (R-condition)
import Principles as P
open import Principles using (RⁿU)
open import GeneralizedFrame using (module Predicates)

private
variable

ℓW ℓR ℓS : Level

module _
{W R S}
(F : FrameL {lzero} {lzero} {lzero} W R S)
where
open FrameL F
open Predicates F

Rⁿ-condition : Nat → Set _
Rⁿ-condition zero = R-condition F
Rⁿ-condition (suc n) =

∀ {w y z : W} {𝔸 𝔹 ℂ : 𝕎} (x : (i : Nat) → {i < suc n} → W) (𝔻 :
(i : Nat) → i ≤ n → 𝕎)

→ R w (x n {s≤s (≤-reflexive refl)})
→ R (x 0 {s≤s z≤n}) y
→ R y z
→ z ∈ 𝔻 zero z≤n
→ ((i : Nat) → (i<n : i < n) → R (x (suc i) {s≤s i<n}) (x i {s≤s

(<⇒≤ i<n)}))
→ (∀ {u} → R w u → u ∈ 𝔸 → ∃[V] (S w u V × V ⊆ 𝔹))
→ (∀ {u} → R (x n {s≤s (≤-reflexive refl)}) u → u ∈ 𝔻 n (≤-reflexive

refl)
→ Σ 𝕎 λ V → S (x n {s≤s (≤-reflexive refl)}) u V × V ⊆ 𝔸)

→ ((i : Nat) → (i<n : i < n) → {u : W} → R (x i {s≤s (<⇒≤ i<n)}) u
→ u ∈ 𝔻 i (<⇒≤ i<n)
→ ∃[V] (S (x i {s≤s (<⇒≤ i<n)}) u V × V ⊆ 𝔻 (suc i) i<n))

→ (∀ {V} → S y z V → Satisfiable (V ∩ ℂ))
→ ∃[V] (V ⊆ 𝔹 × S w (x n {s≤s (≤-reflexive refl)}) V × R[V]

⊆ ℂ)

extend : ∀ {ℓ} {A : Set ℓ} {n} → A → (f : (i : Nat) → {i < n} → A) →
(i : Nat) → {i < suc n} → A
extend {l} {_} {n} x f i {p} with i <? n
... | yes z = f i {z}
... | no z = x

extend-last : ∀ {ℓ} {A : Set ℓ} {n} → (x : A) → (f : (i : Nat) → {i <

183

n} → A) → extend x f n {≤-reflexive refl} ≡ x
extend-last {_} {_} {n} x f with n <? n
... | yes z = ⊥-elim (1+n≰n z)
... | no z = refl

module Rⁿ-soundness
{W R S V}
{M : Model {lzero} {lzero} {lzero} W R S V}
(M,_*⊩?_ : MultiDecidableModel M)
(∈S? : Decidable₃ S)
(S? : S-decidable (Model.F M))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y) where

open Model M
open FrameL F
open Extended M,_*⊩?_ ∈S? ∈SV?

⊩Rⁿ : ∀ {n w} → Rⁿ-condition F (suc n) → P.Rⁿ (suc n) (M , w ⊩_)
⊩Rⁿ {n} {w} cond {A} {B} {C} D = ⊩↝ ⇐ λ { w⊩A▷B → ⊩▷ ⇐

λ { {x} Rwx x⊩∧ → case ⊩∧ ⇒ x⊩∧ of
λ { (x⊩Un , x⊩Dn▷A) → case ⊩U n (≤-reflexive refl) x⊩Un of
λ { (y , z , xs , Ryz , Rx₀y , Rxs , xsn≡x , xs⊩U , xs⊩D , ¬D▷¬C ,

zD)
→ case cond xs (λ {i p → [⊩ D i {s≤s p}]}) (subst (R w) (sym

xsn≡x) Rwx)
Rx₀y Ryz (∈[⊩ D 0 {s≤s z≤n}] ⇐ subst (λ p → M , z ⊩ D 0 {p})

(≤-irrelevant _ _) zD) Rxs
(λ {Rwu uA → case (⊩▷ ⇒ w⊩A▷B) Rwu (∈[⊩ A] ⇒ uA) of
λ { (V , SwuV , V⊩B) → V , SwuV , λ {p → ∈[⊩ B] ⇐ V⊩B p}}})
(λ { {u} Rxu u∈𝔻 → case (⊩▷ ⇒ x⊩Dn▷A) (subst (λ x → R x u)

xsn≡x Rxu)
(∈[⊩ D n {s≤s (≤-reflexive refl)}] ⇒ u∈𝔻) of
λ { (V , SwxV , V⊩A) → V , subst (λ x → S x u V) (sym xsn≡x)

SwxV ,
λ {∈V → ∈[⊩ A] ⇐ V⊩A ∈V}}})
(λ {j j<n {u} Rxsju u⊩Di → case (⊩▷ ⇒ xs⊩D j j<n) Rxsju
(∈[⊩ D j {_}] ⇒ subst (λ {p → [⊩ D j {p}] u}) (≤-irrelevant _

_) u⊩Di) of
λ { (V , SjuV , V⊩Dj) → V , SjuV , λ { {v} ∈V → ∈[⊩ D (suc j)]

⇐ subst (λ p → M , v ⊩ D (suc j) {p}) (≤-irrelevant _ _)
(V⊩Dj ∈V)}}})

(λ {SyzV → case ¬D▷¬C SyzV of

λ { (c , snd , cC) → c , snd , (∈[⊩ C] ⇐ cC)}})
of λ { (V , V⊆𝔹 , Swx , RV⊆ℂ) → V , subst (λ x → S w x V) xsn≡x

Swx
, λ {∈V → ⊩∧ ⇐ ((∈[⊩ B] ⇒ V⊆𝔹 ∈V) , ⊩□ ⇐
λ {Rxv → ∈[⊩ C] ⇒ RV⊆ℂ (_ , ∈V , Rxv)})}}}}}}

where
⊩U : ∀ {x} iu → (i≤n : iu ≤ n)
→ M , x ⊩ RⁿU n iu {i≤n} {C} {D}

184

→ Σ W λ y → Σ W λ z
→ Σ ((j : Nat) → {j < suc iu} → W) λ xs
→ R y z
× (R (xs 0 {s≤s z≤n}) y)
× (∀ j → (j<i : j < iu) → R (xs (suc j) {s≤s j<i}) (xs j {s≤s

(<⇒≤ j<i)}))
× xs iu {≤-reflexive refl} ≡ x
× (∀ j → (j≤i : j ≤ iu) → M , xs j {s≤s j≤i} ⊩ RⁿU n j {≤-trans

j≤i i≤n} {C} {D})
× (∀ j → (j<i : j < iu) → M , xs j {s≤s (<⇒≤ j<i)} ⊩ D j {s≤s

(≤-trans (<⇒≤ j<i) i≤n)} ▷ D (suc j) {s≤s (≤-trans j<i i≤n)})
× (∀ {V} → S y z V → Satisfiable (V ∩ (M ,_⊩ C)))
× M , z ⊩ D 0 {s≤s z≤n}

⊩U {x} zero i≤n x⊩ = case ⊩♢ ⇒ x⊩ of
λ { (y , Rxy , y⊩) → case ⊩◁ ⇒ y⊩ of λ { (z , Ryz , z⊩D , pD)
→ y , z , (λ {_ → x}) , Ryz , Rxy , (λ {j ()}) , refl ,
(λ { .0 z≤n → subst (λ p → M , x ⊩ ♢ (¬' (D zero {p} ▷ ¬' C)))
(≤-irrelevant _ _) x⊩ }) ,
(λ {_ ()}) ,
(λ {k → pD k }) , subst (λ p → M , z ⊩ D 0 {p})

(≤-irrelevant _ _) z⊩D
}}

⊩U {x} (suc i) i≤n x⊩ = case ⊩♢ ⇒ x⊩ of λ { (x' , Rxx' , x'⊩) →
case ⊩∧ ⇒ x'⊩ of

λ { (x'⊩D , x'⊩U) → case ⊩U i (≤-pred (≤-step i≤n)) x'⊩U of
λ { (y , z , xs , Ryz , Rx₀y , Rs , xsi≡x' , xs⊩U , xs⊩D , ¬D▷¬C ,

z⊩D)
→ y , z , extend x xs , Ryz , Rx₀y ,
R-aux xs Rs (subst (R x) (sym xsi≡x') Rxx') ,
extend-last x xs , ⊩U-aux xs xs⊩U , ⊩D-aux xs (subst (λ p → M

, p ⊩ D i ▷ D (suc i)) (sym xsi≡x') x'⊩D) xs⊩D ,
(λ {z → ¬D▷¬C z}) , z⊩D
}}}
where
⊩D-aux : (xs : (j : Nat) → {j < suc i} → W)

(as : M , xs i ⊩ D i ▷ D (suc i))
(⊩D : (j : Nat) → (j<i : j < i) → M , xs j ⊩ D j ▷ D (suc j))
(j : Nat) (j<i : j < suc i)
→ M , extend x xs j {s≤s (<⇒≤ j<i)} ⊩ D j ▷ D (suc j)

⊩D-aux xs xj⊩D ⊩D j j<si with j <? suc i
... | no a = ⊥-elim (a j<si)
... | yes _ with j <? i
... | yes j<i = subst₃ (λ p p1 p2 → M , xs j {p} ⊩ D j {p1} ▷

D (suc j) {p2})
(≤-irrelevant _ _) (≤-irrelevant _ _) (≤-irrelevant _ _)

(⊩D j j<i)
... | no a with j ≟ i
... | yes refl = subst₃ (λ p p1 p2 → M , xs j {p} ⊩ D j {p1} ▷

D (suc j) {p2})

185

(≤-irrelevant _ _) (≤-irrelevant _ _) (≤-irrelevant _ _)
xj⊩D

... | no y = ⊥-elim (y (≤-antisym (≤-pred j<si) (≤-pred (≰⇒>
a))))

⊩U-aux : (xs : (j : Nat) → {j < suc i} → W)
(xs⊩U : (j : Nat) (j≤i : j ≤ i) → M , xs j {s≤s j≤i} ⊩ RⁿU n

j)
(j : Nat) (j≤i : j ≤ suc i)
→ M , extend x xs j {s≤s j≤i} ⊩ RⁿU n j {≤-trans j≤i i≤n} {C}

{D}
⊩U-aux xs xs⊩U j j≤i with j <? suc i
... | yes y = subst₂ (λ p1 p2 → M , xs j {p1} ⊩ RⁿU n j {p2})

(≤-irrelevant _ _) (≤-irrelevant _ _) (xs⊩U j (≤-pred y))
... | no y with j ≟ suc i
... | yes refl = subst (λ p → M , x ⊩ RⁿU n j {p} {C} {D})

(≤-irrelevant _ _) x⊩
... | no n = ⊥-elim (n (≤-antisym j≤i (≰⇒> (λ z → y (s≤s z)))))
R-aux : (xs : (j : Nat) → {j < suc i} → W) (Rs : (j : Nat) (j<i

: j < i)
→ R (xs (suc j) {s≤s j<i}) (xs j {s≤s (<⇒≤ j<i)}))
→ R x (xs i {s≤s (≤-reflexive refl)})
→ (j : Nat) (j<i : j < suc i)
→ R (extend x xs (suc j) {s≤s j<i}) (extend x xs j {s≤s (<⇒≤

j<i)})
R-aux xs Rs Rxx' j (s≤s j<i) with j <? suc i
... | (no b) = ⊥-elim (b (s≤s j<i))
... | (yes b) with suc j <? suc i
... | (yes a) = subst₂ R xs-irrel xs-irrel (Rs j (≤-pred a))

where
xs-irrel : ∀ {i p1 p2} → xs i {p1} ≡ xs i {p2}
xs-irrel {i} {p1} {p2} = cong (λ p → xs i {p}) (≤-irrelevant

p1 p2)
... | (no a) with j ≟ i
... | (yes refl) = subst (λ p → R x (xs j {p})) (≤-irrelevant

_ _) Rxx'
... | (no n) = ⊥-elim (case ≰⇒> a of (λ { (s≤s (s≤s z)) → n

(≤-antisym j<i z)}))

module Rⁿ-completeness
{W R S}
{F : FrameL {lzero} {lzero} {lzero} W R S}
(∈S? : Decidable₃ S)
(dec : ∀ V → MultiDecidableModel (model {V = V} F))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
where
open FrameL F

*⊩Rⁿ : Nat → Set₁
*⊩Rⁿ n = P.Rⁿ n (F *⊩_)

pattern a = 0

186

pattern b = 1
pattern c = 2
pattern d i = suc (suc (suc i))

⊩Rⁿ⇒Rⁿ-condition : (n : Nat) → *⊩Rⁿ (suc n) → Rⁿ-condition F (suc n)
⊩Rⁿ⇒Rⁿ-condition n ⊩Rⁿ {w} {y} {z} {𝔸} {𝔹} {ℂ}

xs 𝔻 Rwxn Rx0y Ryz z∈𝔻₀ Rxs w⊩𝔸▷𝔹 xn⊩D▷A xs⊩D y⊩D◁C
= case (⊩▷ ⇒ ⊩MP (⊩Rⁿ D Val w) w⊩a▷b) Rwxn (⊩∧ ⇐ (xs⊩U n , xn⊩d▷a))

of
λ { (V , SwxnV , V⊩b∧□c) → V , (λ {x → [b] ⇒ proj₁ (⊩∧ ⇒ V⊩b∧□c

x)})
, SwxnV , (λ { (v , v∈V , Rvx) → [c] ⇒ (⊩□ ⇒ proj₂ (⊩∧ ⇒ V⊩b∧□c

v∈V)) Rvx})}
where
Val : Valuation F
Val u a = u ∈ 𝔸
Val u b = u ∈ 𝔹
Val u c = u ∈ ℂ
Val u (d j) with j ≤? n
... | yes j≤n = u ∈ 𝔻 j j≤n
... | no ¬j≤n = ⊥
M = model {V = Val} F
D : (j : Nat) {_ : j < suc n} → Fm
D j = var (d j)
open Extended (dec Val) ∈S? ∈SV?
[a] : ∀ {u} → M , u ⊩ var a ⇔ u ∈ 𝔸
[a] {u} = equivalence (λ { (var x) → x}) (λ x₁ → var x₁)
[b] : ∀ {u} → M , u ⊩ var b ⇔ u ∈ 𝔹
[b] {u} = equivalence (λ { (var x) → x}) (λ x₁ → var x₁)
[c] : ∀ {u} → M , u ⊩ var c ⇔ u ∈ ℂ
[c] {u} = equivalence (λ { (var x) → x}) (λ x₁ → var x₁)
[d] : ∀ j {j≤n u} → M , u ⊩ var (d j) ⇔ u ∈ 𝔻 j j≤n
[d] j {j≤n} {u} = equivalence ⇨ λ x → var (⇦ x)

where
⇨ : M , u ⊩ var (d j) → 𝔻 j j≤n u
⇨ (var x) with j ≤? n
... | yes p = subst (λ p → 𝔻 j p u) (≤-irrelevant _ _) x
... | no _ = ⊥-elim x
⇦ : 𝔻 j j≤n u → d j ∈ Val u
⇦ x with j ≤? n
... | yes p = subst (λ p → 𝔻 j p u) (≤-irrelevant _ _) x
... | no p = ⊥-elim (p j≤n)

w⊩a▷b : M , w ⊩ var a ▷ var b
w⊩a▷b = [⊩▷] [a] [b] w⊩𝔸▷𝔹
x⊩d▷a : M , xs n {≤-reflexive refl} ⊩ var (d n) ▷ var a
x⊩d▷a = [⊩▷] ([d] n) [a] xn⊩D▷A
xn⊩d▷a : M , xs n ⊩ var (d n) ▷ var a
xn⊩d▷a = [⊩▷] ([d] n) [a] xn⊩D▷A
xs⊩U : ∀ j {j<sn j≤n} → M , xs j {j<sn} ⊩ RⁿU n j {j≤n} {var c} {D}
xs⊩U zero {j<sn} {j≤n} = ⊩♢ ⇐ (y , (subst (λ p → R (xs zero {p})

187

y) (≤-irrelevant _ _) Rx0y)
, ⊩◁ ⇐ (z , Ryz , ([d] 0 ⇐ z∈𝔻₀) , λ {SyzV → case y⊩D◁C SyzV of
λ { (v , v∈V , v∈ℂ) → v , v∈V , ([c] ⇐ v∈ℂ)}}))

xs⊩U (suc j) {j<sn} {j≤n} = ⊩♢ ⇐ (xs j {s≤s (<⇒≤ j≤n)} , (subst₂
(λ p p' →

R (xs (suc j) {p}) (xs j {p'})) (≤-irrelevant _ _) (≤-irrelevant
_ _) (Rxs j j≤n))

, ⊩∧ ⇐ ([⊩▷] ([d] j) ([d] _) (xs⊩D j j≤n) , xs⊩U j))

B.16. GeneralizedVeltmanSemantics/Properties/R1

The frame condition for the R1 principle.

module GeneralizedVeltmanSemantics.Properties.R₁ where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product renaming (_,_ to _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_})
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym)

open import Formula
open import GeneralizedVeltmanSemantics
open import Base using (_⇒_; _⇐_; Decidable₃)
open import GeneralizedVeltmanSemantics.Properties
using (module Extended; ⊩¬; ⊮¬; ⊩□; ⊩♢; ⊩MP; ⊩∧; ⊩→¬⊮)

import Principles as P
open import GeneralizedFrame using (module Predicates)

private
variable

ℓW ℓR ℓS : Level

R₁-condition : ∀ {W R S} → FrameL {lzero} {lzero} {lzero} W R S → Set _
R₁-condition {W = W} {R = R} {S = S} F =
∀ {w x u V C 𝔼} → R w x → R x u → S w u V → IsChoiceSet C x u
→ ∃[V'] (V' ⊆ V × S w x V' × R[V'] ⊆ C ×
(∀ {v c} → v ∈ V' → c ∈ C → (∃[U] (U ⊆ R⁻¹ x [𝔼] × R v c × S x

c U))

188

→ (∃[𝔼'] (𝔼' ⊆ 𝔼 × S v c 𝔼'))))
where open FrameL F

open Predicates F

module R₁-soundness
{W R S V}
{M : Model {lzero} {lzero} {lzero} W R S V}
(M,_*⊩?_ : MultiDecidableModel M)
(∈S? : Decidable₃ S)
(S? : S-decidable (Model.F M))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y) where

open Model M
open FrameL F
open Extended M,_*⊩?_ ∈S? ∈SV?

⊩R₁ : ∀ {w A B C E D} → S-decidable F → R₁-condition F
→ M , w ⊩ A ▷ B ↝ (A ◁ C ∧ D ▷ ♢ E) ▷ (B ∧ □ C ∧ D ▷ E)

⊩R₁ {w} {A} {B} {C} {E} S-dec c = ⊩↝ ⇐ λ A▷B → ⊩▷ ⇐ λ {x} Rwx t →
case ⊩∧ ⇒ t of

λ { (t1 , D▷♢E) → case ⊩¬ ⇒ t1 of λ { (rhd (u , Rxu , uA , A◁C))
→ case (⊩▷ ⇒ A▷B) (R-trans Rwx Rxu) uA of λ { (V , SwuV , VB) →
case Swu-sat SwuV of λ { (_ , _) →
case c {𝔼 = Γ} Rwx Rxu SwuV (𝒞 x u A◁C Rxu)
of λ { (V' , V'⊆V , SwxV' , R[V']⊆Γ , cond) → V' , (SwxV' , λ { {v'}

v'∈V'
→ ⊩∧ ⇐ (VB (V'⊆V v'∈V') , (⊩∧ ⇐ (⊩□ ⇐ (λ {h} Rv'h →
case ∈K x u h ⇒ (R[V']⊆Γ (v' , v'∈V' , Rv'h)) of
λ { (_ , _ , _ , hC) → hC})
, ⊩▷ ⇐ λ { {c} Rv'c cD → let c∈Γ = R[V']⊆Γ (v' , v'∈V' , Rv'c) in
case (⊩▷ ⇒ D▷♢E) (K⊆Rx x u c∈Γ) cD
of λ { (U , SxcU , U♢E) → case cond v'∈V' c∈Γ (U , (λ {u} uU → case

⊩♢ ⇒ U♢E uU of
λ { (e , Ru'e , e⊩E) → (e , (inE ⇐ e⊩E , Ru'e)) , SwuY⊆Rw SxcU uU

}) , Rv'c , SxcU) of
λ { (Γ' , Γ'⊆Γ , Sv'cΓ') → Γ' , Sv'cΓ' , λ { {e} z → inE ⇒ Γ'⊆Γ

z}}}})))})}}}}}
where
Γ : 𝕎
Γ = [⊩ E]
inE : ∀ {e} → e ∈ Γ ⇔ (M , e ⊩ E)
inE = ∈[⊩ E]
K : (x u : W) → 𝕎
K x u y with S-dec x u y
... | inj₂ _ = ⊥
... | inj₁ _ with M, y ⊩? C
... | inj₁ _ = ⊤
... | inj₂ _ = ⊥
∈K : (x u y : W) → y ∈ K x u ⇔ Σ 𝕎 λ Z → y ∈ Z × S x u Z × M , y

⊩ C
∈K x u y = equivalence ⇨ ⇦

189

where
⇨ : y ∈ K x u → Σ 𝕎 λ Z → y ∈ Z × S x u Z × M , y ⊩ C
⇨ _ with S-dec x u y
... | inj₁ (Y , yY , SxuY) with M, y ⊩? C
... | inj₁ x = Y , yY , SxuY , x
⇦ : (Σ 𝕎 λ Z → y ∈ Z × S x u Z × M , y ⊩ C) → y ∈ K x u
⇦ (Z , y∈Z , SxuZ , yC) with S-dec x u y
... | inj₂ p = p Z SxuZ y∈Z
... | inj₁ p with M, y ⊩? C
... | inj₁ _ = tt
... | inj₂ p' = ⊩→¬⊮ yC p'

K⊆Rx : (x u : W) → K x u ⊆ R x
K⊆Rx x u {z} z∈Γ = case ∈K x u z ⇒ z∈Γ of λ { (Z , z∈Z , SxuZ ,

_) → SwuY⊆Rw SxuZ z∈Z}
𝒞 : (x u : W)

→ ((Y : W → Set) → Satisfiable Y → ¬ S x u Y ⊎ Satisfiable (Y
∩ (M ,_⊮ ¬' C)))

→ R x u → IsChoiceSet (K x u) x u
𝒞 x u s Rxu = Rxu , (λ {Y} SxuY → case s Y (Swu-sat SxuY) of

λ { (inj₁ x) → ⊥-elim (x SxuY) ; (inj₂ (c , c∈Y , c⊩C)) → c ,
c∈Y ,

∈K x u c ⇐ (Y , c∈Y , SxuY , ⊮¬ ⇒ c⊩C)})

module R₁-completeness
{W R S}
{F : FrameL {lzero} {lzero} {lzero} W R S}
(∈S? : Decidable₃ S)
(dec : ∀ V → MultiDecidableModel (model {V = V} F))
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
where
open FrameL F
open Predicates F

*⊩R₁ : Set₁
*⊩R₁ = P.R₁ (F *⊩_)

pattern a = 0
pattern b = 1
pattern c = 2
pattern d = 3
pattern e = 4

¬R₁-condition : Set _
¬R₁-condition = Σ W λ w → Σ W λ x → Σ W λ u → Σ 𝕎 λ V → Σ 𝕎 λ C → Σ

𝕎 λ E →
R w x × R x u × S w u V × IsChoiceSet C x u × E ⊆ R x ×

let 𝒱 U = U ⊆ V × S w x U × R[U] ⊆ C in
Σ (∀ {V' : 𝕎} → V' ∈ 𝒱 → Σ W λ vu → Σ W λ cu → Σ 𝕎 λ Zu
→ vu ∈ V' × cu ∈ C × R vu cu × Zu ⊆ R⁻¹ x [E] × S x cu Zu

× (∀ 𝔼' → 𝔼' ⊆ E → ¬ S vu cu 𝔼'))

190

λ p →
let ∈𝒱⇒ : ∀ {U} → U ∈ 𝒱 → Σ W λ vu → Σ W λ cu → Σ 𝕎 λ Zu

→ R vu cu × Zu ⊆ R⁻¹ x [E] × S x cu Zu
× (∀ 𝔼' → 𝔼' ⊆ E → ¬ S vu cu 𝔼')

∈𝒱⇒ {U} h = case p h of
λ { (vu , cu , Zu , fst , snd , a1 , a2 , a3 , a4) → vu , cu

, Zu , a1 , (λ {x → a2 x}) ,
a3 , a4}

cu : ∀ {U} → U ∈ 𝒱 → W
cu u = case ∈𝒱⇒ u of λ { (vu , cu , zu , snd) → cu}

in
(∀ (w : W) → (Σ 𝕎 λ U → Σ (U ∈ 𝒱) λ U∈𝒱 → cu U∈𝒱 ≡ w)
⊎ (∀ {U} → (U∈𝒱 : U ∈ 𝒱) → ¬ (cu U∈𝒱 ≡ w)))

⊩R₁⇒R₁-condition : *⊩R₁ → ¬ ¬R₁-condition
⊩R₁⇒R₁-condition R₁ (w , x , u , V , C , E , Rwx , Rxu , SwuV , (_ ,

choice) , E⊆Rx , p , t)
= case ⊩MP ⊩r1 w⊩a▷b of λ { s → case (⊩▷ ⇒ s) Rwx (⊩∧ ⇐ (x⊩a◁c ,

x⊩d▷♢e)) of
λ { (U , SwxU , U⊩b∧□c∧c▷d) →
let
U∈𝒱 : U ∈ 𝒱
U∈𝒱 = ∈𝒱' SwxU

(λ z → proj₁ (⊩∧ ⇒ U⊩b∧□c∧c▷d z))
λ z → proj₁ (⊩∧ ⇒ proj₂ (⊩∧ ⇒ U⊩b∧□c∧c▷d z))

vu∈U = proj₁ (proj₂ (proj₂ (proj₂ (p U∈𝒱))))
Rvc = proj₁ (proj₂ (proj₂ (proj₂ (proj₂ (proj₂ (p U∈𝒱))))))
¬Svc𝔼 = proj₂ (proj₂ (proj₂ (proj₂ (proj₂ (proj₂ (proj₂ (proj₂

(p U∈𝒱))))))))
in

case (⊩▷ ⇒ proj₂ (⊩∧ ⇒ (proj₂ (⊩∧ ⇒ U⊩b∧□c∧c▷d vu∈U)))) Rvc
([d] ⇐ (U , U∈𝒱 , refl)) of
λ { (𝔼' , Svc𝔼' , 𝔼'⊩E) → ¬Svc𝔼 𝔼' (λ {e∈𝔼' → [e] ⇒ 𝔼'⊩E

e∈𝔼'}) Svc𝔼'}}}
where
r1 : Fm
r1 = (var a ▷ var b) ↝ (((var a ◁ var c) ∧ var d ▷ ♢ var e)
▷ (var b ∧ □ var c ∧ (var d ▷ var e)))

𝒱 : Pred 𝕎 _
𝒱 U = U ⊆ V × S w x U × R[U] ⊆ C
Val : Valuation F
Val i a = i ≡ u
Val i b = i ∈ V
Val i c = i ∈ C
Val i e = i ∈ E
Val i d with t i
... | inj₁ x = ⊤
... | inj₂ x = ⊥
Val i (suc (suc (suc (suc (suc _))))) = ⊥
M = model {V = Val} F
⊩r1 : M , w ⊩ r1

191

⊩r1 = R₁ Val w
∈𝒱 : ∀ {U} → U ∈ 𝒱 → Σ W λ vu → Σ W λ cu → Σ 𝕎 λ Zu

→ R vu cu × Zu ⊆ R⁻¹ x [E] × S x cu Zu
× (∀ 𝔼' → 𝔼' ⊆ E → ¬ S vu cu 𝔼')

∈𝒱 {U} h with p h
... | (vu , cu , zu , fst , snd , a1 , a2 , a3) = vu , cu , zu , a1

, a2 , a3
vu : ∀ {U} → U ∈ 𝒱 → W
vu u = proj₁ (∈𝒱 u)
cu : ∀ {U} → U ∈ 𝒱 → W
cu u = proj₁ (proj₂ (∈𝒱 u))
Zu : ∀ {U} → U ∈ 𝒱 → 𝕎
Zu u = proj₁ (proj₂ (proj₂ (∈𝒱 u)))
Rvucu : ∀ {U} → (U∈𝒱 : U ∈ 𝒱) → R (vu U∈𝒱) (cu U∈𝒱)
Rvucu p = proj₁ (proj₂ (proj₂ (proj₂ (∈𝒱 p))))
Zu⊆R⁻¹ₓ[E] : ∀ {U} → (U∈𝒱 : U ∈ 𝒱) → Zu U∈𝒱 ⊆ R⁻¹ x [E]
Zu⊆R⁻¹ₓ[E] U∈𝒱 = proj₁ (proj₂ (proj₂ (proj₂ (proj₂ (∈𝒱 U∈𝒱)))))
SxcuZu : ∀ {U} → (U∈𝒱 : U ∈ 𝒱) → S x (cu U∈𝒱) (Zu U∈𝒱)
SxcuZu U∈𝒱 = proj₁ (proj₂ (proj₂ (proj₂ (proj₂ (proj₂ (∈𝒱 U∈𝒱))))))
open Extended (dec Val) ∈S? ∈SV?
[a] : ∀ {y} → M , y ⊩ var a ⇔ y ≡ u
[a] = equivalence (λ {(var x) → x}) (λ x₁ → var x₁)
[b] : ∀ {y} → M , y ⊩ var b ⇔ y ∈ V
[b] = equivalence (λ {(var z) → z}) λ x₁ → var x₁
[c] : ∀ {y} → M , y ⊩ var c ⇔ y ∈ C
[c] = equivalence (λ {(var z) → z}) λ x₁ → var x₁
[e] : ∀ {y} → M , y ⊩ var e ⇔ y ∈ E
[e] = equivalence (λ {(var z) → z}) λ x₁ → var x₁
[d] : ∀ {y} → M , y ⊩ var d ⇔ Σ 𝕎 λ U → Σ (U ∈ 𝒱) λ U∈𝒱 → cu U∈𝒱

≡ y
[d] {y} = equivalence ⇨ λ x₁ → var (⇦ x₁)
where
⇨ : M , y ⊩ var d → Σ 𝕎 (λ U → Σ (U ∈ 𝒱) (λ U∈𝒱 → cu U∈𝒱 ≡ y))
⇨ (var x) with t y
... | inj₁ x₁ = x₁
⇦ : Σ 𝕎 (λ U → Σ (U ∈ 𝒱) (λ U∈𝒱 → cu U∈𝒱 ≡ y)) → d ∈ Val y
⇦ x with t y
... | inj₁ x₁ = tt
⇦ (U , U∈𝒱 , ref) | inj₂ r = case r U∈𝒱 of λ {z → z ref}

w⊩a▷b : M , w ⊩ var a ▷ var b
w⊩a▷b = ⊩▷ ⇐ λ { {y} Rwy ya → case [a] ⇒ ya of λ { refl → V , SwuV

, λ {x → [b] ⇐ x}}}
x⊩a◁c : M , x ⊩ var a ◁ var c
x⊩a◁c = ⊩¬ ⇐ (⊮▷ ⇐ (u , (Rxu , ([a] ⇐ refl , λ {Y (s , s∈Y) SxuY →
case choice SxuY of λ { (c' , c∈Y , c∈C) → c' , (c∈Y , ⊮¬ ⇐ ([c]

⇐ c∈C))}}))))
𝒱⊩b : ∀ {U} → U ∈ 𝒱 → U ⊆ (M ,_⊩ var b)
𝒱⊩b {U} (U⊆V , _) {u'} u'∈U = [b] ⇐ U⊆V u'∈U
𝒱⊩□c : ∀ {U} → U ∈ 𝒱 → U ⊆ M ,_⊩ □ var c
𝒱⊩□c {U} (_ , _ , R[U]⊆C) {u'} u'∈U = ⊩□ ⇐ λ { {z} Ru'z → [c] ⇐

R[U]⊆C (u' , u'∈U , Ru'z)}

192

∈𝒱' : ∀ {U} → S w x U → U ⊆ M ,_⊩ var b → U ⊆ M ,_⊩ □ var c → U ∈ 𝒱
∈𝒱' {U} SwxU Ub U□c = (λ z → [b] ⇒ (Ub z)) , SwxU , λ { (c' , c'∈U

, Rcy)
→ [c] ⇒ (⊩□ ⇒ U□c c'∈U) Rcy}

x⊩d▷♢e : M , x ⊩ var d ▷ ♢ (var e)
x⊩d▷♢e = ⊩▷ ⇐ λ { {y} Rxy y⊩d → case [d] ⇒ y⊩d of
λ { (U , U∈𝒱 , refl) → Zu U∈𝒱 , SxcuZu U∈𝒱 ,
λ { ∈Zu → case Zu⊆R⁻¹ₓ[E] U∈𝒱 ∈Zu of λ { ((e' , e'∈E , Rye) ,

Rxe') → ⊩♢ ⇐ (e' , Rye , [e] ⇐ e'∈E)}} }}

B.17. GeneralizedVeltmanSemantics/Properties/Verbrugge
module GeneralizedVeltmanSemantics.Properties.Verbrugge where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Data.Empty using (⊥; ⊥-elim)
open import Function using (_$_)
open import Data.Product renaming (_,_ to _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_}; ∅)
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym; subst₂)

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; _◁_; var; ⊤'; ¬'_;
□_; ♢_; _∧_; _∨_; car)
open import Base
open import GeneralizedVeltmanSemantics.Properties
using (module SemanticsProperties-4;

module SemanticsProperties-3;
module SemanticsProperties-L; module PGeneric)

open import GeneralizedFrame
open import GeneralizedFrame.Properties
import OrdinaryFrame as O
import OrdinaryVeltmanSemantics as O
import OrdinaryVeltmanSemantics.Properties as O

private
variable

ℓW ℓR ℓS : Level

193

module OrdModel
{ℓW ℓR ℓS}
(T : ∀ {ℓW ℓS} → (W : Set ℓW) → REL₃ W W (Pred W ℓW) ℓS → Set (lsuc

ℓW ⊔ ℓS))
{W R S}
(F : Frame {ℓW} {ℓR} {ℓS} W R S T)
(V : W → Pred Var lzero)
where
open Frame F
open PGeneric T

W' : Set _
W' = ∃[x]

(Σ[A ∈ (Pred (W × W) (lsuc ℓW ⊔ ℓS ⊔ ℓR))]
((∀ {u v} → (u , v) ∈ A → ∃[Y] (S u x Y × v ∈ Y))
× (∀ {u V} → S u x V → ∃[v] (v ∈ V × (u , v) ∈ A))))

Amax : W → Pred (W × W) _
Amax x (w , v) = Σ 𝕎 λ C → S w x C × v ∈ C × (⊥ → R v v)

R' : Rel W' _
R' (x , A , _) (y , B , _) = R x y × (∀ {w z} → R w x → (w , z) ∈ B →

(w , z) ∈ A)

S' : Rel₃ W' _
S' w'@(w , C , _) x'@(x , A , _) y'@(y , B , _) =

R' w' x' × R' w' y' × (∀ {v} → (w , v) ∈ B → (w , v) ∈ A)

fmax : W → W'
fmax w = w , Amax w , (λ { (C , SuwC , v∈C , _) → C , SuwC , v∈C})
, λ {SuwV → (proj₁ (Swu-sat SuwV)) , ((proj₂ (Swu-sat SuwV)) ,
(_ , (SuwV , (proj₂ (Swu-sat SuwV) , ⊥-elim))))}

module W' where
x : W' → W
x = proj₁

A : W' → Pred (W × W) _
A = proj₁ ∘ proj₂

p1 : (w' : W')
→ (∀ {u v} → (u , v) ∈ (A w') → Σ 𝕎 λ Y → S u (proj₁ w') Y × v

∈ Y)
p1 = proj₁ ∘ proj₂ ∘ proj₂

p2 : (w' : W') → ∀ {u V} → S u (x w') V → Σ W λ v → v ∈ V × (u , v)
∈ (A w')

p2 = proj₂ ∘ proj₂ ∘ proj₂

x∘f≡id : ∀ w → x (fmax w) ≡ w

194

x∘f≡id w = refl

V' : W' → Pred Var lzero
V' w' v = v ∈ V (W'.x w')

f-chain : ∀ {a} → InfiniteChain R' a → InfiniteChain R _
InfiniteChain.b (f-chain x) = W'.x (InfiniteChain.b x)
InfiniteChain.a<b (f-chain x) = proj₁ (InfiniteChain.a<b x)
InfiniteChain.tail (f-chain x) = f-chain (InfiniteChain.tail x)

R'-Noetherian : Noetherian R'
R'-Noetherian i = R-noetherian (f-chain i)

F' : O.Frame W' R' S'
F' = O.frame

(fmax witness)
(λ { {u} {v} (x , A) (y , B) → R-trans x y ,
λ { {v1} {v2} Rwx wz∈A → A Rwx (B (R-trans Rwx x) wz∈A)}})
R'-Noetherian
(λ { (fst , fst₁ , snd) → fst , fst₁})
(λ { {w} {z} (Rwz , snd) →
(Rwz , λ { {u} {v} Ruw W'Auv → snd Ruw W'Auv}) , (Rwz , snd) , λ z

→ z})
(λ { ((Rwi , snd1) , _ , snd) (_ , (a , snd3))
→ (Rwi ,
λ {x x₁ → snd1 x x₁}) , a , λ { x → snd (snd3 x)}})

λ { (fst , snd) (fst₁ , B) → (fst , snd) ,
(R-trans fst fst₁ , λ {x y → snd x (B (R-trans x fst) y)}) , B fst}

M' : O.Model W' R' S' V'
M' = O.model F'

module PrefaceTheoremAll
{ℓW ℓR ℓS}
(T : ∀ {ℓW ℓS} → (W : Set ℓW) → REL₃ W W (Pred W ℓW) ℓS → Set (lsuc

ℓW ⊔ ℓS))
{W R S}
(F : Frame {ℓW} {ℓR} {ℓS} W R S T)
(V : W → Pred Var lzero)
where
open OrdModel T F V
open Frame F
open PGeneric T

M : Model W R S V
M = model {V = V} F

lemma⇨-type : Set _
lemma⇨-type =

∀ {w x Y} → S w x Y →
Σ _ λ y → y ∈ Y

195

× (∀ {b V} → S b y V
→ Σ _ λ v → v ∈ V
-- (1)
× (b ≡ w → S b x { v })
-- (2)
× (R b w → S b w { v }))

lemma⇦-type : Set _
lemma⇦-type =

∀ {w b x V} → R w x → S b x V →
Σ _ λ v → v ∈ V
-- (1)
× (b ≡ w → S b x { v })
-- (2)
× (R b w → S b w { v })

module Theorem
(dec : MultiDecidableModel M)
(dec' : O.DecidableModel M')
(∈S? : Decidable₃ S)
(∈S'? : Decidable₃ S')
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
(lemma⇨ : lemma⇨-type)
(lemma⇦ : lemma⇦-type)
where

private
open Extended dec ∈S? ∈SV?
module O' = O.Extended dec' ∈S'?

thm⇨ : ∀ {w C A} → M , w ⊩ A → M' O., w , C ⊩ A
thm⇦ : ∀ {w C A} → M' O., w , C ⊩ A → M , w ⊩ A
thm'⇨ : ∀ {w C A} → M , w ⊮ A → M' O., w , C ⊮ A

thm⇦ x = ⊩⇔¬⊮ ⇐ λ {y → O.⊮→¬⊩ (thm'⇨ y) x}

thm⇨ (var x) = O.var x
thm⇨ A@(impl _) = O'.⊩↝ ⇐ λ {wA → thm⇨ ((⊩↝ ⇒ A) (thm⇦ wA))}
thm⇨ {w} {C'@(C , Cp1 , Cp2)} F@(rhd {D} {E} xl) = O'.⊩▷ ⇐
λ { {xA} R'wx@(Rwx , Rwx∈) x⊩D

→ case (⊩▷ ⇒ F) Rwx (thm⇦ x⊩D) of
λ { (V , SwxV , V⊩E) →
let

l = lemma⇨ SwxV
y = proj₁ l
y∈V = (proj₁ ∘ proj₂) l
lemma2 = (proj₂ ∘ proj₂) l
x = W'.x xA
Rwy : R w y
Rwy = SwuY⊆Rw SwxV y∈V
A = W'.A xA

196

B = λ { (u , v) → (Σ _ λ Y
→ S u y Y × v ∈ Y) × (u ≡ w → (w , v) ∈ A) × (R u w →

(u , v) ∈ C) }
yB∈W' : W'
yB∈W' = y , B ,
(λ { {u} {v} ((Y , SuyY , v∈Y) , _) → Y , SuyY , v∈Y}) ,
λ { {b} {V} SbyV →

let l2 = lemma2 SbyV
v = proj₁ l2
v∈V = (proj₁ ∘ proj₂) l2
lemma-1 = (proj₁ ∘ proj₂ ∘ proj₂) l2
lemma-2 = (proj₂ ∘ proj₂ ∘ proj₂) l2

in _ , v∈V , (_ , (SbyV , v∈V))
, (λ { refl → let

Swxv : S w x { v }
Swxv = lemma-1 refl

in case W'.p2 xA Swxv of λ { (_ , refl , snd) →
snd} })

, λ { Rbw → let
Sbwz : S b w { v }
Sbwz = lemma-2 Rbw
bv∈C : (b , v) ∈ C
bv∈C = case Cp2 Sbwz of
λ { (_ , refl , snd) → snd}

in bv∈C} }
l1 : ∀ {v} → (w , v) ∈ B → (w , v) ∈ A
l1 wv∈B = proj₁ (proj₂ wv∈B) refl
l2 : ∀ {b z} → R b w → (b , z) ∈ B → (b , z) ∈ C
l2 {b} {z} Rbw bz∈B = (proj₂ ∘ proj₂) bz∈B Rbw
R'wy : R' (w , C') yB∈W'
R'wy = Rwy , (λ {Rbw ∈B → l2 Rbw ∈B})

in
yB∈W' , (R'wx , R'wy , λ {z → l1 z})
, thm⇨ (V⊩E y∈V)
}}

thm'⇨ (var x) = O.var x
thm'⇨ {w} {C} (impl {A} {B} a b) = O.impl (thm⇨ a) (thm'⇨ b)
thm'⇨ bot = O.bot
thm'⇨ {w} {C'@(C , Cp1 , Cp2)} F@(rhd {D} {E} _) = case ⊮▷ ⇒ F of

λ { (x , Rwx , x⊩D , px)
→ let A = λ { (u , v) →

(Σ _ λ Y → S u x Y × v ∈ Y) × (u ≡ w → M , v ⊮ E) × (R
u w → (u , v) ∈ C)}

xA∈W' : W'
xA∈W' = x , A ,
(λ { ((V , SuxV , v∈V) , _) → _ , SuxV , v∈V}) ,
λ { {b} {V} SbxV →

let l = lemma⇦ Rwx SbxV
v = proj₁ l
v∈V : v ∈ V

197

v∈V = proj₁ ∘ proj₂ $ l
l1 = proj₁ ∘ proj₂ ∘ proj₂ $ l
l2 = proj₂ ∘ proj₂ ∘ proj₂ $ l

in
_ , (v∈V , (_ , (SbxV , v∈V))

, (λ { refl →
let

Swxv : S b x { v }
Swxv = l1 refl

in case px _ (_ , refl) Swxv of
λ { (_ , refl , l) → l}

}) , λ { Rbw →
let

Suwv : S b w { v }
Suwv = l2 Rbw
uv∈C : (b , v) ∈ C
uv∈C = case Cp2 Suwv of λ { (_ , refl , p) → p}

in uv∈C})}
R'wx : R' (w , C') xA∈W'
R'wx = Rwx , (λ { {b} Rbw bz∈A → (proj₂ ∘ proj₂) bz∈A

Rbw})
in O'.⊮▷ ⇐ (xA∈W' , R'wx , thm⇨ x⊩D , λ { {yB@(y , B , B1 ,

B2)}
S'wxy →
let

Rwy : R w y
Rwy = (proj₁ ∘ proj₁ ∘ proj₂) S'wxy
Swyy : S w y { y }
Swyy = S-quasirefl Rwy
wy∈B : (w , y) ∈ B
wy∈B = case B2 Swyy of

λ { (_ , refl , snd) → snd}
wy∈A : (w , y) ∈ A
wy∈A = (proj₂ ∘ proj₂) S'wxy wy∈B

in thm'⇨ ((proj₁ ∘ proj₂) wy∈A refl)})}

theorem : ∀ {w C A} → M , w ⊩ A ⇔ M' O., w , C ⊩ A
theorem = equivalence thm⇨ thm⇦

module Theorem-4
{W R S}
(F : Frame4 {ℓW} {ℓR} {ℓS} W R S)
(V : W → Pred Var lzero)
where
open Frame4 F
open SemanticsProperties-4

open Trans-conditions using (Trans-4)
open OrdModel {ℓW} {ℓR} {ℓS} Trans-4 F V
open PrefaceTheoremAll Trans-4 F V

198

lemma⇦ : lemma⇦-type
lemma⇦ {w} {b} {x} {V} Rwx SbxV =

let
qt = quasitrans SbxV
v = proj₁ qt
v∈V = proj₁ (proj₂ qt)
transv : ∀ {Y} → S b v Y → S b x Y
transv = proj₂ (proj₂ qt)

in v , v∈V
-- (1)
, (
let
Rbv : R b v
Rbv = SwuY⊆Rw SbxV v∈V
Swvv : S b v { v }
Swvv = S-quasirefl Rbv
Swxv : S b x { v }
Swxv = transv Swvv
in const Swxv)

-- (2)
, λ { Rbw →

let
Ruv : R b v
Ruv = SwuY⊆Rw SbxV v∈V
Suvv : S b v { v }
Suvv = S-quasirefl Ruv
Suxv : S b x { v }
Suxv = transv Suvv
Suwx : S b w { x }
Suwx = R-Sw-trans Rbw Rwx
transx : ∀ {Y} → S b x Y → S b w Y
transx {Y} = case quasitrans Suwx of
λ { (_ , refl , p) → p}

Sbwv : S b w { v }
Sbwv = transx Suxv

in Sbwv}

lemma⇨ : lemma⇨-type
lemma⇨ {w} {x} {Y} SwxY =

let
qt = quasitrans SwxY
y = proj₁ qt
y∈V = (proj₁ ∘ proj₂) qt
Rwy : R w y
Rwy = SwuY⊆Rw SwxY (proj₁ (proj₂ qt))
transy : ∀ {V} → S w y V → S w x V
transy = (proj₂ ∘ proj₂) qt

in y , y∈V ,
(λ {b} {V} SbyV →

let v∈V = (proj₁ ∘ proj₂) (quasitrans SbyV)
v = proj₁ (quasitrans SbyV)

199

transv : ∀ {V} → S b v V → S b y V
transv = (proj₂ ∘ proj₂) (quasitrans SbyV)

in v , v∈V ,
-- (1)
(λ {refl →
let

SwxV : S w x V
SwxV = transy SbyV
Rwv : R w v
Rwv = SwuY⊆Rw SwxV v∈V
Swvv : S w v { v }
Swvv = S-quasirefl Rwv
Swxv : S w x { v }
Swxv = (transy ∘ transv) Swvv

in Swxv
})

-- (2)
, λ { Rbw →

let
Sbyz : S b w { y }
Sbyz = R-Sw-trans Rbw Rwy
transy : ∀ {Y} → S b y Y → S b w Y
transy {Y} = case quasitrans Sbyz of
λ { (_ , refl , a) → a {Y} }

SbwY : S b w V
SbwY = transy SbyV
transv : ∀ {V} → S b v V → S b y V
transv = (proj₂ ∘ proj₂) (quasitrans SbyV)
Sbvv : S b v { v }
Sbvv = S-quasirefl (SwuY⊆Rw SbwY v∈V)
Sbwv : S b w { v }
Sbwv = (transy ∘ transv) Sbvv

in Sbwv
})

module _
(dec : MultiDecidableModel M)
(dec' : O.DecidableModel M')
(∈S? : Decidable₃ S)
(∈S'? : Decidable₃ S')
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
where
open Theorem dec dec' ∈S? ∈S'? ∈SV? lemma⇨ lemma⇦

module Theorem-3
{W R S}
(F : Frame3 {ℓW} {ℓR} {ℓS} W R S)
(V : W → Pred Var lzero)
where
open Frame3 F

200

open SemanticsProperties-3

open Trans-conditions using (Trans-3)
open OrdModel {ℓW} {ℓR} {ℓS} Trans-3 F V
open PrefaceTheoremAll Trans-3 F V
open FrameProperties Trans-3 F

lemma⇦ : lemma⇦-type
lemma⇦ {w} {b} {x} {V} Rwx SbxV =

let
qt = quasitrans SbxV
v = proj₁ qt
v∈V = proj₁ (proj₂ qt)
transv : ∀ {Y} → S b v Y → Σ 𝕎 λ V' → V' ⊆ Y × S b x V'
transv = proj₂ (proj₂ qt)

in v , v∈V
-- (1)
, (
let

Rbv : R b v
Rbv = SwuY⊆Rw SbxV v∈V
Swvv : S b v { v }
Swvv = S-quasirefl Rbv
Swxv : S b x { v }
Swxv = case transv Swvv of

λ { (v' , v'⊆{v} , l) → S-ext l v'⊆{v}
λ { refl → case Swu-sat l of
λ { (_ , snd) → case v'⊆{v} snd of λ {refl → snd}}}}

in const Swxv)
-- (2)
, λ { Rbw →

let
Ruv : R b v
Ruv = SwuY⊆Rw SbxV v∈V
Suvv : S b v { v }
Suvv = S-quasirefl Ruv
Suxv : S b x { v }
Suxv = uncurry S⊆{v} (proj₂ (transv Suvv))
Suwx : S b w { x }
Suwx = R-Sw-trans Rbw Rwx
transx : ∀ {Y} → S b x Y → Σ 𝕎 λ Y' → Y' ⊆ Y × S b w Y'
transx {Y} = case quasitrans Suwx of
λ { (_ , refl , p) → p}

Sbwv : S b w { v }
Sbwv = uncurry S⊆{v} (proj₂ (transx Suxv))

in Sbwv}

lemma⇨ : lemma⇨-type
lemma⇨ {w} {x} {Y} SwxY =
let
qt = quasitrans SwxY

201

y = proj₁ qt
y∈V = (proj₁ ∘ proj₂) qt
Rwy : R w y
Rwy = SwuY⊆Rw SwxY (proj₁ (proj₂ qt))
transy : ∀ {u} → S w y { u } → S w x { u }
transy Sbvy = uncurry S⊆{v} ∘ proj₂ ∘ (proj₂ ∘ proj₂) qt $ Sbvy

in y , y∈V ,
(λ {b} {V} SbyV →

let v∈V = (proj₁ ∘ proj₂) (quasitrans SbyV)
v = proj₁ (quasitrans SbyV)
transv : ∀ {u} → S b v { u } → S b y { u }

transv Sbvy = uncurry S⊆{v} ∘ proj₂ ∘ (proj₂ ∘ proj₂ $ quasitrans
SbyV) $ Sbvy

in v , v∈V ,
-- (1)
(λ {refl →

let
Rwv : R w v
Rwv = SwuY⊆Rw SbyV v∈V
Swvv : S w v { v }
Swvv = S-quasirefl Rwv
Swxv : S w x { v }
Swxv = (transy ∘ transv) Swvv

in Swxv
})

-- (2)
, λ { Rbw →

let
Sbyz : S b w { y }
Sbyz = R-Sw-trans Rbw Rwy
transy : ∀ {u} → S b y { u } → S b w { u }
transy {Y} Sbyu = case quasitrans Sbyz of

λ { (_ , refl , a) → uncurry S⊆{v} ∘ proj₂ $ a Sbyu }
Rbv : R b v
Rbv = SwuY⊆Rw SbyV v∈V
Sbvv : S b v { v }
Sbvv = S-quasirefl Rbv
Sbwv : S b w { v }
Sbwv = (transy ∘ transv) Sbvv

in Sbwv
})

module _
(dec : MultiDecidableModel M)
(dec' : O.DecidableModel M')
(∈S? : Decidable₃ S)
(∈S'? : Decidable₃ S')
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
where
open Theorem dec dec' ∈S? ∈S'? ∈SV? lemma⇨ lemma⇦

202

B.18. GeneralizedVeltmanSemantics/Properties/Vukovic
This file contains the unfinished proof of proposition 2.8 in [41].

module GeneralizedVeltmanSemantics.Properties.Vukovic where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Data.Empty using (⊥; ⊥-elim)
open import Function using (_$_)
open import Data.Product renaming (_,_ to _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_}; ∅)
open import Relation.Binary using () renaming (Decidable to Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym; subst₂; _≢_)

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; _◁_; var; ⊤'; ¬'_;
□_; ♢_; _∧_; _∨_; car)
open import Base
open import GeneralizedVeltmanSemantics.Properties using (module SemanticsProperties-
4; module SemanticsProperties-L; module PGeneric)
open import GeneralizedFrame
open import GeneralizedFrame.Properties
import OrdinaryFrame as O
import OrdinaryVeltmanSemantics as O
import OrdinaryVeltmanSemantics.Properties as O

private
variable

ℓW ℓR ℓS : Level

module OrdModel
{ℓW ℓR ℓS}
(T : ∀ {ℓW ℓS} → (W : Set ℓW) → REL₃ W W (Pred W ℓW) ℓS → Set (lsuc

ℓW ⊔ ℓS))
{W R S}
(F : Frame {ℓW} {ℓR} {ℓS} W R S T)
(V : W → Pred Var lzero)
where
open Frame F
open PGeneric T

W' : Set (lsuc (lsuc ℓW ⊔ ℓR ⊔ ℓS))

203

W' = ∃[v]
(Σ[A ∈ (Pred (W × W) (lsuc ℓW ⊔ ℓS ⊔ ℓR))]
((∀ {x V} → S x v V → Σ[V' ∈ 𝕎]

(∃[y] (y ∈ V' × V' ⊆ R x × V ⊆ V' × (x , y) ∈ A)))
× (∀ {x y} → (x , y) ∈ A → ∃[V] (S x v V × y ∈ V))
× (∀ {u} → R u v → (u , v) ∈ A)))

R' : Rel W' (lsuc ℓW ⊔ ℓR ⊔ ℓS)
R' (w , A , _) (u , B , _) = R w u × (∀ {x} → R x w → ∀ {y} → (x , y)

∈ B → (x , y) ∈ A)

S' : Rel₃ W' (lsuc ℓW ⊔ ℓR ⊔ ℓS)
S' w'@(w , A , _) u'@(u , B , _) v'@(v , C , _) =
R' w' u' × R' w' v' × (∀ {y} → (w , y) ∈ C → (w , y) ∈ B)

module W' where
v : W' → W
v = proj₁

A : W' → Pred (W × W) _
A = proj₁ ∘ proj₂

p1 : (w' : W')
→ ∀ {x V} → S x (v w') V
→ ∃[V'] (∃[y]
(y ∈ V' × V' ⊆ R x × V ⊆ V' × (x , y) ∈ A w'))

p1 = proj₁ ∘ proj₂ ∘ proj₂

p2 : (w' : W') → ∀ {x y} → (x , y) ∈ A w'
→ Σ 𝕎 λ V → S x (v w') V × y ∈ V

p2 = proj₁ ∘ proj₂ ∘ proj₂ ∘ proj₂

p3 : (w' : W') → ∀ {x} → R x (v w') → (x , v w') ∈ A w'
p3 = proj₂ ∘ proj₂ ∘ proj₂ ∘ proj₂

Amax : W → Pred (W × W) (lsuc ℓW ⊔ ℓS ⊔ ℓR)
Amax w (x , y) = Σ 𝕎 (λ V → S x w V × V y × (⊥ → R x x))

fmax : W → W'
fmax w = w , Amax w ,

(λ { {x} {V} SxwV → V , (proj₁ (Swu-sat SxwV) , (proj₂ (Swu-sat
SxwV)

, ((λ {∈V → SwuY⊆Rw SxwV ∈V}) , ((λ z → z) , (_ , SxwV
, proj₂ (Swu-sat SxwV) , ⊥-elim)))))})

, (λ {(a , b , c , _) → a , b , c})
, λ { Ruw → _ , S-quasirefl Ruw , refl , ⊥-elim}

Val' : W' → Pred Var lzero
Val' w' v = v ∈ V (W'.v w')

f-chain : ∀ {a} → InfiniteChain R' a → InfiniteChain R _

204

InfiniteChain.b (f-chain x) = W'.v (InfiniteChain.b x)
InfiniteChain.a<b (f-chain x) = proj₁ (InfiniteChain.a<b x)
InfiniteChain.tail (f-chain x) = f-chain (InfiniteChain.tail x)

R'-Noetherian : Noetherian R'
R'-Noetherian i = R-noetherian (f-chain i)

F' : O.Frame W' R' S'
F' = O.frame

(fmax witness)
(λ { (Rab , p1) (Rbc , p2) → (R-trans Rab Rbc) ,
(λ {Rxi z → p1 Rxi (p2 (R-trans Rxi Rab) z) })})

R'-Noetherian
(λ { (R'wu , R'wv , _) → R'wu , R'wv})
(λ {R'wu → R'wu , R'wu , (λ {x → x})})
(λ { (a , (pij , b)) ((_ , rjk) , (c , pjk)) → a , c
, λ {x → b (pjk x)}})

λ {R'wu@(Rwu , pwu) R'uv@(Ruv , puv) → R'wu , (R-trans Rwu Ruv ,
λ { {b} Rbw by∈ → pwu Rbw (puv (R-trans Rbw Rwu) by∈)})

, λ {x → puv Rwu x}}

M' : O.Model W' R' S' Val'
M' = O.model F'

module PrefaceTheoremAll
{ℓW ℓR ℓS}
{W R S}
(F : FrameL {ℓW} {ℓR} {ℓS} W R S)
(V : W → Pred Var lzero)
where
T = Trans-conditions.Trans-L
open OrdModel T F V
open Frame F
open PGeneric T

M : Model W R S V
M = model {V = V} F

module Theorem
(dec : MultiDecidableModel M)
(dec' : O.DecidableModel M')
(R? : Decidable₂ R)
(∈S? : Decidable₃ S)
(∈S'? : Decidable₃ S')
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
(_≡?_ : Decidable₂ (_≡_ {_} {W}))
(monotone : ∀ {w u} {V Z : 𝕎} → S w u V → V ⊆ Z → Z ⊆ R w → S w u Z)
(quasitrans : Trans-conditions.Trans-L W S)
where

private

205

open Extended dec ∈S? ∈SV?
module O' = O.Extended dec' ∈S'?

thm⇨ : ∀ {w C A} → M , w ⊩ A → M' O., w , C ⊩ A
thm⇦ : ∀ {w C A} → M' O., w , C ⊩ A → M , w ⊩ A
thm'⇨ : ∀ {w C A} → M , w ⊮ A → M' O., w , C ⊮ A

thm⇦ x = ⊩⇔¬⊮ ⇐ λ {y → O.⊮→¬⊩ (thm'⇨ y) x}

module F
(V0 V : 𝕎)
(v0 u w : W)
(v0∈V0 : v0 ∈ V0)
(SwuV0 : S w u V0)
(Swv0V : S w v0 V)
where
f : ∀ {v} → v ∈ V0 → Σ _ λ Vv → S w v Vv
f {v} v∈V0 with v ≡? v0
... | (yes refl) = V , Swv0V
... | (no n) = { v } , S-quasirefl (SwuY⊆Rw SwuV0 v∈V0)

f≡v0 : ∀ {v} → v ∈ V → v ∈ proj₁ (f v0∈V0)
f≡v0 {v} v∈V with v0 ≡? v0
... | yes refl = v∈V
... | no n = ⊥-elim (n refl)

-- thm⇨ = {!!}
thm⇨ (var x) = O.var x
thm⇨ A@(impl _) = O'.⊩↝ ⇐ λ {wA → thm⇨ ((⊩↝ ⇒ A) (thm⇦ wA))}
thm⇨ {w} {A'@(A , Ap1 , Ap2 , Ap3)} D▷E@(rhd {D} {E} xl) = O'.⊩▷ ⇐

λ { {𝔹@(u , B , _)} R'wu@(Rwu , Rwu∈) u⊩D
→ case (⊩▷ ⇒ D▷E) Rwu (thm⇦ u⊩D) of
λ { (V0 , SwuV0 , V0⊩E) →

let v0 = proj₁ (Swu-sat SwuV0)
v0∈V0 = proj₂ (Swu-sat SwuV0)
𝔸 = w , A'
C : Pred (W × W) (lsuc ℓW ⊔ ℓS ⊔ ℓR)
C = λ { (x , y) →

(y ≡ v0 × R x v0) ⊎
(w ≡ x × (w , y) ∈ B × Σ _ λ V' → S x v0 V' × y ∈ V') ⊎
(¬ (R x w) × w ≢ x × Σ _ λ V' → S x v0 V' × y ∈ V') ⊎
R x w × (x , y) ∈ A × Σ _ λ V' → S x v0 V' × y ∈ V'}

V0-v = V0 ∩ λ x → x ≢ v0
ℂ : W'
ℂ = v0 , C
, (λ {x} {V} Sxv0V →
let

case-w≡x : w ≡ x → Σ 𝕎 λ V' → Σ _ λ y →
y ∈ V' × V' ⊆ R x × V ⊆ V' × (x , y) ∈ C

case-w≡x = λ {refl →
let

206

open F V0 V v0 u w v0∈V0 SwuV0 Sxv0V
SwuV∪V0-v0 = quasitrans SwuV0 f
pB = W'.p1 𝔹 SwuV∪V0-v0
V' = proj₁ pB
y = proj₁ ∘ proj₂ $ pB
y∈V' : y ∈ V'
y∈V' = proj₁ ∘ proj₂ ∘ proj₂ $ pB
V'⊆Rx : V' ⊆ R x
V'⊆Rx = proj₁ ∘ proj₂ ∘ proj₂ ∘ proj₂ $ pB
V∪V0-v0⊆V' : _ ⊆ V'
V∪V0-v0⊆V' = proj₁ ∘ proj₂ ∘ proj₂ ∘ proj₂ ∘ proj₂

$ pB
wy∈B : (w , y) ∈ B
wy∈B = proj₂ ∘ proj₂ ∘ proj₂ ∘ proj₂ ∘ proj₂ $ pB
pB2 = W'.p2 𝔹 wy∈B
V⊆V' : V ⊆ V'
V⊆V' = λ {∈V → V∪V0-v0⊆V' (v0 , v0∈V0 , f≡v0 ∈V)}
Swv0⋃ : S w v0 _
Swv0⋃ = monotone Sxv0V (λ { {v} v∈V → v0 , v0∈V0 ,

f≡v0 v∈V})
λ {z → V'⊆Rx (V∪V0-v0⊆V' z)}

Swv0V' : S w v0 V'
Swv0V' = monotone Swv0⋃ V∪V0-v0⊆V' V'⊆Rx
wy∈C : (w , y) ∈ C

wy∈C = inj₂ (inj₁ (refl , wy∈B , _ , Swv0V' , y∈V'))
in V' , y , y∈V' , V'⊆Rx , V⊆V' , wy∈C}

case-w≠x : w ≢ x → ¬ R x w → Σ 𝕎 λ V' → Σ _ λ y →
y ∈ V' × V' ⊆ R x × V ⊆ V' × (x , y) ∈ C

case-w≠x = λ {w≠x ¬Rwx →
let

V⊆C : V ⊆ λ {y → (x , y) ∈ C}
V⊆C = λ { {y} y∈V → inj₂ (inj₂ (inj₁

(¬Rwx , (w≠x , V , Sxv0V , y∈V))))}
y∈V = proj₂ $ Swu-sat Sxv0V

in V , _ , y∈V , SwuY⊆Rw Sxv0V , (λ i → i) , V⊆C y∈V}
case-Rxw : R x w → Σ 𝕎 λ V' → Σ _ λ y →

y ∈ V' × V' ⊆ R x × V ⊆ V' × (x , y) ∈ C
case-Rxw = λ { Rxw →

let
Rwv0 = SwuY⊆Rw SwuV0 v0∈V0
Sxwv0 : S x w { v0 }
Sxwv0 = R-Sw-trans Rxw Rwv0
SwxV : S x w V

SwxV = S-ext (quasitrans Sxwv0 λ {refl → _ , Sxv0V})
(λ { (_ , refl , p) → p})
λ {v∈V → v0 , refl , v∈V}

p = W'.p1 𝔸 SwxV
V' = proj₁ p
y∈V' = proj₁ ∘ proj₂ ∘ proj₂ $ p
V'⊆Rx = proj₁ ∘ proj₂ ∘ proj₂ ∘ proj₂ $ p
V⊆V' = proj₁ ∘ proj₂ ∘ proj₂ ∘ proj₂ ∘ proj₂ $ p

207

xy∈A : (x , _) ∈ A
xy∈A = proj₂ ∘ proj₂ ∘ proj₂ ∘ proj₂ ∘ proj₂ $ p
SxwV' : S x v0 V'
SxwV' = monotone Sxv0V V⊆V' V'⊆Rx

in V' , _ , y∈V' , V'⊆Rx , V⊆V'
, inj₂ (inj₂ (inj₂ (Rxw , xy∈A , (_ , (SxwV' ,

y∈V')))))}
in
case w ≡? x , R? x w of

λ { (yes refl , _) → case-w≡x refl
; (no w≠x , no ¬Rxw) → case-w≠x w≠x ¬Rxw
; (no w≠x , yes Rxw) → case-Rxw Rxw })

, (λ { (inj₁ (refl , Rxv0)) → _ , S-quasirefl Rxv0 , refl ;
(inj₂ (inj₁ (refl , wy∈ , V , Sxv0V , ∈V))) → _ , Sxv0V

, ∈V ;
(inj₂ (inj₂ (inj₁ (¬Rxw , w≠x , V , Sxv0V , ∈V)))) → _

, Sxv0V , ∈V ;
(inj₂ (inj₂ (inj₂ (Rxw , ∈A , V , Sxv0V , ∈V)))) → _ ,

Sxv0V , ∈V})
, λ { Rxv0 → inj₁ (refl , Rxv0)}

Rwv0 : R w v0
Rwv0 = SwuY⊆Rw SwuV0 v0∈V0
C→A : ∀ {x y} → R x w → (x , y) ∈ C → (x , y) ∈ A
C→A = λ { {x} {y} Rxw xy∈C@(inj₁ (refl , Rxv0))

→ case W'.p2 ℂ xy∈C of λ { (V , SV , ∈V) → {!Ap3!}} ;
Rxw (inj₂ (inj₁ (refl , wy∈B , _))) → ⊥-elim (R-Irreflexive

{F = F} refl Rxw) ;
Rxw (inj₂ (inj₂ (inj₁ x))) → ⊥-elim (proj₁ x Rxw) ;
Rxw (inj₂ (inj₂ (inj₂ (_ , xy∈A , _)))) → xy∈A }

wv0∈B : (w , v0) ∈ B
wv0∈B = {!!}
C→B : ∀ {y} → (w , y) ∈ C → (w , y) ∈ B
C→B = λ { {y} xy∈C@(inj₁ (refl , Rwv0)) → wv0∈B ;
(inj₂ (inj₁ (refl , wy∈B , _))) → wy∈B ;
(inj₂ (inj₂ (inj₁ (_ , w≠w , _)))) → ⊥-elim (w≠w refl) ;
(inj₂ (inj₂ (inj₂ (Rww , _)))) → ⊥-elim (R-Irreflexive

{F = F} refl Rww) }
R'AB : R' 𝔸 𝔹
R'AB = Rwu , Rwu∈
R'AC : R' 𝔸 ℂ
R'AC = Rwv0 , (λ { {x} Rxw xy∈C → C→A Rxw xy∈C})

in ℂ , ((R'AB , R'AC , λ {x → C→B x}) , thm⇨ (V0⊩E v0∈V0))
}}

thm'⇨ (var x) = O.var x
thm'⇨ {w} {C} (impl {A} {B} a b) = O.impl (thm⇨ a) (thm'⇨ b)
thm'⇨ bot = O.bot
thm'⇨ {w} {A , Ap1 , Ap2} DE@(rhd {D} {E} _) = case ⊮▷ ⇒ DE of

λ { (u , Rwu , u⊩D , pu) →
let open Aux u Rwu u⊩D (λ {SV → pu _ (Swu-sat SV) SV})
in O'.⊮▷ ⇐ (𝔹 , {!!})

208

}
where
module Aux

(u : W)
(Rwu : R w u)
(u⊩D : M , u ⊩ D)
(pu : ∀ {V} → S w u V → Satisfiable (V ∩ (M ,_⊮ E)))
where
B : Pred (W × W) (lsuc ℓW ⊔ ℓS ⊔ ℓR)
B (x , y) =

(y ≡ u × R x u)
⊎ (w ≡ x × M , y ⊮ E × Σ 𝕎 λ V → S w u V × y ∈ V)
⊎ (¬ R x w × w ≢ x × Σ 𝕎 λ V → S x u V × y ∈ V)
⊎ (R x w × (x , y) ∈ A × Σ 𝕎 λ V → S x u V × y ∈ V)

p2 : ∀ {x y} → (x , y) ∈ B → Σ 𝕎 λ V → S x u V × y ∈ V
p2 (inj₁ (refl , Rxu)) = _ , S-quasirefl Rxu , refl

p2 (inj₂ (inj₁ (refl , y⊮E , V , SwuV , y∈V))) = V , SwuV , y∈V
p2 (inj₂ (inj₂ (inj₁ (¬Rxw , x≠w , V , SxuV , y∈V)))) = V ,

SxuV , y∈V
p2 (inj₂ (inj₂ (inj₂ (Rxw , xy∈A , V , SxuV , y∈V)))) = V ,

SxuV , y∈V
p1 : ∀ {x V} → S x u V → Σ 𝕎 λ V' → Σ W λ y

→ y ∈ V' × V' ⊆ R x × V ⊆ V' × (x , y) ∈ B
p1 {x} {V} SxuV with w ≡? x
... | yes refl = case pu SxuV of

λ { (y , y∈V , yE) → V , _ , y∈V , (λ {z → SwuY⊆Rw SxuV z
}) , (λ {z → z})

, inj₂ (inj₁ (refl , yE , _ , SxuV , y∈V))}
... | no w≠x with R? x w

... | no ¬Rxw = V , _ , (proj₂ (Swu-sat SxuV) , (λ {z → SwuY⊆Rw
SxuV z })

, (λ {z → z})
, (inj₂ (inj₂ (inj₁ (¬Rxw , (w≠x , (_ , (SxuV , (proj₂

(Swu-sat SxuV))))))))))
... | yes Rxw = V' , y , y∈V' , (λ {z → V'⊆Rx z}) , (λ {z →

V⊆V' z})
, inj₂ (inj₂ (inj₂ (Rxw , (xy∈A , _ , (SxuV' , y∈V')))))
where
SxwV : S x w V
SxwV = S-trans Rxw Rwu SxuV
where open FrameLProperties F

p : Σ 𝕎 λ V' → Σ _ λ y
→ y ∈ V' × V' ⊆ R x × V ⊆ V' × (x , y) ∈ A

p = Ap1 SxwV
V' = proj₁ p
y = proj₁ ∘ proj₂ $ p
y∈V' = proj₁ ∘ proj₂ ∘ proj₂ $ p
V'⊆Rx = proj₁ ∘ proj₂ ∘ proj₂ ∘ proj₂ $ p
V⊆V' = proj₁ ∘ proj₂ ∘ proj₂ ∘ proj₂ ∘ proj₂ $ p
xy∈A = proj₂ ∘ proj₂ ∘ proj₂ ∘ proj₂ ∘ proj₂ $ p
SxuV' : S x u V'

209

SxuV' = monotone SxuV V⊆V' V'⊆Rx
𝔹 : W'
𝔹 = u , B
, p1
, p2
, inj₁ ∘ (refl ,_)

c0 : ∀ {x} → R x w → R x u → (x , u) ∈ A
c0 Rxw Rxu = case Ap1 (R-Sw-trans Rxw Rwu) of
λ { (V' , y , y∈V' , V'⊆Rx , u⊆V' , xy∈A) → {!!}}

l1 : ∀ {x y} → R x w → (x , y) ∈ B → (x , y) ∈ A
l1 Rxw (inj₁ (refl , Rxu)) = c0 Rxw Rxu
l1 Rxw (inj₂ (inj₁ (refl , snd))) = ⊥-elim (R-Irreflexive {F

= F} refl Rxw)
l1 Rxw (inj₂ (inj₂ (inj₁ x))) = ⊥-elim (proj₁ x Rxw)
l1 Rxw (inj₂ (inj₂ (inj₂ y))) = proj₁ ∘ proj₂ $ y

theorem : ∀ {w C A} → M , w ⊩ A ⇔ M' O., w , C ⊩ A
theorem = equivalence thm⇨ thm⇦

B.19. GeneralizedVeltmanSemantics/Properties
module GeneralizedVeltmanSemantics.Properties where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product using (Σ; proj₁; proj₂; _×_) renaming (_,_ to
,)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_})
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; _◁_; var; ⊤'; ¬'_;
□_; ♢_; _∧_; _∨_; car)
import GeneralizedVeltmanSemantics as G
open import GeneralizedFrame using (module Trans-conditions)
open import Base
import Principles as P

module PGeneric
(T : ∀ {ℓW ℓS} (W : Set ℓW) → REL₃ W W (Pred W ℓW) ℓS → Set (lsuc ℓW

210

⊔ ℓS))
where
open G.Generic T public

R-Irreflexive : ∀ {ℓW ℓR ℓS W R S T} → {F : G.Frame {ℓW} {ℓR} {ℓS} W
R S T} → Irreflexive _≡_ R
R-Irreflexive {F = F} {x} refl Rxx = R-noetherian (infiniteRefl Rxx)

where open G.Frame F

module _
{ℓW ℓR ℓS}
{W R S V}
{M : Model {ℓW} {ℓR} {ℓS} W R S V} where
open Model M
open G.Frame F

⊩⊥ : ∀ {w} → ¬ (M , w ⊩ ⊥')
⊩⊥ = λ ()

⊮→¬⊩ : ∀ {w A} → M , w ⊮ A → ¬ (M , w ⊩ A)
⊮→¬⊩ (var x) (var x₁) = x x₁
⊮→¬⊩ (impl x a) (impl (inj₁ x₁)) = ⊮→¬⊩ x₁ x
⊮→¬⊩ (impl x a) (impl (inj₂ y)) = ⊮→¬⊩ a y
⊮→¬⊩ (rhd (u , Rwu , fst , snd)) (rhd z) with z Rwu
... | inj₁ x = ⊮→¬⊩ x fst
... | inj₂ (Y , SwuY , p)
= case snd Y (Swu-sat SwuY) of
λ { (inj₁ x) → x SwuY ; (inj₂ (y , w , z))
→ ⊮→¬⊩ z (p w)}

⊩→¬⊮ : ∀ {w A} → M , w ⊩ A → ¬ (M , w ⊮ A)
⊩→¬⊮ x y = ⊮→¬⊩ y x

⊩MP : ∀ {w A B} → M , w ⊩ A ↝ B → M , w ⊩ A → M , w ⊩ B
⊩MP (impl (inj₁ x)) y = ⊥-elim (⊩→¬⊮ y x)
⊩MP (impl (inj₂ x)) y = x

⊩¬ : ∀ {w A} → (M , w ⊩ ¬' A) ⇔ (M , w ⊮ A)
⊩¬ {w} {A} = equivalence ⇨ ⇦
where ⇨ : M , w ⊩ ¬' A → M , w ⊮ A

⇨ (impl (inj₁ x)) = x
⇦ : M , w ⊮ A → M , w ⊩ ¬' A
⇦ (var x) = impl (inj₁ (var x))
⇦ (impl x x₁) = impl (inj₁ (impl x x₁))
⇦ (rhd x) = impl (inj₁ (rhd x))
⇦ bot = impl (inj₁ bot)

⊩⊤ : ∀ {w} → M , w ⊩ ⊤'
⊩⊤ = impl (inj₁ bot)

⊮⊤ : ∀ {w} → ¬ (M , w ⊮ ⊤')

211

⊮⊤ (impl x x₁) = ⊩→¬⊮ x x₁

⊮¬ : ∀ {w A} → M , w ⊮ ¬' A ⇔ M , w ⊩ A
⊮¬ {w} {A} = equivalence ⇨ ⇦
where
⇨ : M , w ⊮ ¬' A → M , w ⊩ A
⇨ (impl x x₁) = x
⇦ : M , w ⊩ A → M , w ⊮ ¬' A
⇦ x = impl x bot

⊩¬¬ : ∀ {w A} → M , w ⊩ ¬' ¬' A ⇔ M , w ⊩ A
⊩¬¬ {w} {A} = equivalence ⇨ ⇦
where
⇨ : M , w ⊩ ¬' ¬' A → M , w ⊩ A
⇨ (impl (inj₁ (impl x x₁))) = x
⇦ : M , w ⊩ A → M , w ⊩ ¬' ¬' A
⇦ x = impl (inj₁ (impl x bot))

⊮¬¬ : ∀ {w A} → M , w ⊮ ¬' ¬' A ⇔ M , w ⊮ A
⊮¬¬ {w} {A} = equivalence ⇨ ⇦
where
⇨ : M , w ⊮ ¬' ¬' A → M , w ⊮ A
⇨ x = ⊩¬ ⇒ (⊮¬ ⇒ x)
⇦ : M , w ⊮ A → M , w ⊮ ¬' ¬' A
⇦ x = ⊮¬ ⇐ (⊩¬ ⇐ x)

⊩∧ : ∀ {w A B} → M , w ⊩ A ∧ B ⇔ (M , w ⊩ A × M , w ⊩ B)
⊩∧ {w} {A} {B} = equivalence ⇨ ⇦
where
⇨ : M , w ⊩ A ∧ B → M , w ⊩ A × M , w ⊩ B
⇨ (impl (inj₁ (impl x (impl x₁ y)))) = x , x₁
⇦ : M , w ⊩ A × M , w ⊩ B → M , w ⊩ A ∧ B
⇦ (fst , snd) = impl (inj₁ (impl fst (impl snd bot)))

⊮∧ : ∀ {w A B} → M , w ⊮ A ∧ B ⇔ (M , w ⊮ A ⊎ M , w ⊮ B)
⊮∧ {w} {A} {B} = equivalence ⇨ ⇦
where
⇨ : M , w ⊮ A ∧ B → (M , w ⊮ A ⊎ M , w ⊮ B)
⇨ (impl (impl (inj₁ x)) x₁) = inj₁ x
⇨ (impl (impl (inj₂ (impl (inj₁ x)))) x₁) = inj₂ x
⇦ : (M , w ⊮ A ⊎ M , w ⊮ B) → M , w ⊮ A ∧ B
⇦ (inj₁ x) = impl (impl (inj₁ x)) bot
⇦ (inj₂ y) = impl (impl (inj₂ (⊩¬ ⇐ y))) bot

⊩∨ : ∀ {w A B} → M , w ⊩ A ∨ B ⇔ (M , w ⊩ A ⊎ M , w ⊩ B)
⊩∨ {w} {A} {B} = equivalence ⇨ ⇦
where
⇨ : M , w ⊩ A ∨ B → (M , w ⊩ A ⊎ M , w ⊩ B)
⇨ (impl (inj₁ (impl x x₁))) = inj₁ x
⇨ (impl (inj₂ y)) = inj₂ y
⇦ : (M , w ⊩ A ⊎ M , w ⊩ B) → M , w ⊩ A ∨ B

212

⇦ (inj₁ x) = impl (inj₁ (⊮¬ ⇐ x))
⇦ (inj₂ y) = impl (inj₂ y)

⊩□ : ∀ {w A} → M , w ⊩ □ A ⇔ (∀ {v} → R w v → M , v ⊩ A)
⊩□ {w} {A} = equivalence ⇨ ⇦
where
⇨ : M , w ⊩ □ A → (∀ {v} → R w v → M , v ⊩ A)
⇨ (rhd f) wRv with f wRv
... | (inj₁ x) = ⊮¬ ⇒ x
... | inj₂ (Y , SwvY , x) = case Swu-sat SwvY of
λ { (u , snd) → ⊥-elim (⊩⊥ (x snd)) }

⇦ : (∀ {v} → R w v → M , v ⊩ A) → M , w ⊩ □ A
⇦ x = rhd λ wRu → inj₁ (⊮¬ ⇐ (x wRu))

⊮□ : ∀ {w A} → M , w ⊮ □ A ⇔ (Σ (W) λ u → R w u × M , u ⊮ A)
⊮□ {w} {A} = equivalence ⇨ ⇦
where
⇨ : M , w ⊮ □ A → (Σ (W) λ u → R w u × M , u ⊮ A)
⇨ (rhd (u , wRu , u⊩¬A , snd)) = u , wRu , ⊩¬ ⇒ u⊩¬A
⇦ : (Σ W λ u → R w u × M , u ⊮ A) → M , w ⊮ □ A
⇦ (u , wRu , u⊮A) = rhd (u , (wRu , ⊩¬ ⇐ u⊮A
, λ { Y (v , p) → inj₂ (v , p , bot)}))

⊩♢ : ∀ {w A} → M , w ⊩ ♢ A ⇔ (Σ (W) λ u → R w u × M , u ⊩ A)
⊩♢ {w} {A} = equivalence ⇨ ⇦

where
⇨ : M , w ⊩ ♢ A → Σ W λ u → R w u × M , u ⊩ A
⇨ (impl (inj₁ (rhd (u , m , u⊩¬¬A , snd)))) = u , m , ⊩¬¬ ⇒ u⊩¬¬A
⇦ : (Σ W λ u → R w u × M , u ⊩ A) → M , w ⊩ ♢ A
⇦ (u , wRu , snd) = impl (inj₁ (rhd (u , (wRu , ⊩¬¬ ⇐ snd , λ _ s

→ inj₂ (proj₁ s , proj₂ s , bot)))))

⊮♢ : ∀ {w A} → M , w ⊮ ♢ A ⇔ (∀ {u} → R w u → M , u ⊮ A)
⊮♢ {w} {A} = equivalence ⇨ ⇦
where
⇨ : M , w ⊮ ♢ A → (∀ {u} → R w u → M , u ⊮ A)
⇨ (impl (rhd x) y) wRu with x wRu
... | inj₁ z = ⊮¬¬ ⇒ z
... | inj₂ (Y , z , k) = ⊥-elim (⊩⊥ (k (proj₂ (Swu-sat z))))
⇦ : (∀ {u} → R w u → M , u ⊮ A) → M , w ⊮ ♢ A
⇦ x = impl (rhd (λ wRu → inj₁ (⊮¬¬ ⇐ (x wRu)))) bot

⊩4' : ∀ {w A} → M , w ⊩ □ A → M , w ⊩ □ □ A
⊩4' (rhd x) = ⊩□ ⇐ λ {u} wRu → rhd (λ {v} uRv →
case x {v} (R-trans wRu uRv) of λ { (inj₁ x) → inj₁ x

; (inj₂ (Y , SY , snd)) → ⊥-elim (⊩⊥ (snd (proj₂ (Swu-sat
SY))))})

⊩↝⇨ : ∀ {w A B} → M , w ⊩ A ↝ B → (M , w ⊩ A → M , w ⊩ B)
⊩↝⇨ (impl (inj₁ x)) y = ⊥-elim (⊮→¬⊩ x y)
⊩↝⇨ (impl (inj₂ b)) y = b

213

module Extended
(M,_*⊩?_ : MultiDecidableModel M)
(∈S? : Decidable₃ S)
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y) where

infix 5 M,_⊩?_
M,_⊩?_ : DecidableModel M
M,_⊩?_ = SingleDecidableModel M,_*⊩?_

open Model M

[⊩_] : Fm → 𝕎
[⊩ A] y with M, y ⊩? A
... | inj₁ p = ⊤ × (⊥ → W)
... | inj₂ p = ⊥ × (⊥ → W)

∈[⊩_] : ∀ {y} A → y ∈ [⊩ A] ⇔ M , y ⊩ A
∈[⊩_] {y} A = equivalence ⇨ ⇦
where
⇨ : y ∈ [⊩ A] → M , y ⊩ A
⇨ x with M, y ⊩? A
... | inj₁ k = k
⇦ : M , y ⊩ A → y ∈ [⊩ A]
⇦ fst with M, y ⊩? A
... | inj₁ x = tt , λ ()
... | inj₂ y = ⊩→¬⊮ fst y , λ ()

⊩↝ : ∀ {w A B} → M , w ⊩ A ↝ B ⇔ (M , w ⊩ A → M , w ⊩ B)
⊩↝ {w} {A} {B} = equivalence ⊩↝⇨ ⇦
where
⇦ : (M , w ⊩ A → M , w ⊩ B) → M , w ⊩ A ↝ B
⇦ x with M, w ⊩? A
... | inj₁ z = impl (inj₂ (x z))
... | inj₂ y = impl (inj₁ y)

-- ⊮↝ : ∀ {w A B} → M , w ⊮ A ↝ B ⇔ (M , w ⊩ A × M , w ⊮ B)
-- ⊮↝ {w} {A} {B} = equivalence ⇨ ⇦
-- where
-- ⇨ : M , w ⊮ A ↝ B → (M , w ⊩ A × M , w ⊮ B)
-- ⇨ x = {!!}
-- ⇦ : (M , w ⊩ A × M , w ⊮ B) → M , w ⊮ A ↝ B
-- ⇦ = {!!}

⊩▷ : ∀ {w A B} → M , w ⊩ A ▷ B ⇔
(∀ {u} → R w u → M , u ⊩ A → Σ 𝕎 λ Y → S w u Y × Y ⊆ M ,_⊩ B)

⊩▷ {w} {A} {B} = equivalence ⇨ ⇦
where
⇨ : M , w ⊩ A ▷ B → (∀ {u} → R w u → M , u ⊩ A

→ Σ 𝕎 λ Y
→ S w u Y × Y ⊆ M ,_⊩ B)

214

⇨ (rhd x) {u} wRu uA with x wRu
⇨ (rhd x) {u} wRu uA | inj₁ z = ⊥-elim (⊩→¬⊮ uA z)
⇨ (rhd x) {u} wRu uA | inj₂ (fst , fst₁ , snd) = fst , (fst₁ ,

snd)
⇦ : (∀ {u} → R w u → M , u ⊩ A → Σ 𝕎 λ Y → S w u Y

× Y ⊆ M ,_⊩ B) → M , w ⊩ A ▷ B
⇦ x = rhd (λ {u} wRu → [(λ x₁ → inj₂ (x wRu x₁)) , inj₁] (M,

u ⊩? A))

⊮▷ : ∀ {w A B} → M , w ⊮ A ▷ B ⇔
Σ W (λ u → R w u × M , u ⊩ A × ∀ Y → Satisfiable Y → S w u Y →

(Satisfiable (Y ∩ (M ,_⊮ B))))
⊮▷ {w} {A} {B} = equivalence ⇨ ⇦
where
⇨ : M , w ⊮ A ▷ B → Σ W (λ u → R w u × M , u ⊩ A × ((Y : 𝕎) →

Satisfiable Y → S w u Y → Satisfiable (Y ∩ (M ,_⊮ B))))
⇨ (rhd (u , Rwu , uA , snd)) = u , Rwu , uA , (λ {Y x x₁ → case

snd Y x of
λ { (inj₁ x) → ⊥-elim (x x₁) ; (inj₂ y) → y}})

⇦ : Σ W (λ u → R w u × M , u ⊩ A × ((Y : 𝕎) →
Satisfiable Y → S w u Y → Satisfiable (Y ∩ (M ,_⊮ B)))) →

M , w ⊮ A ▷ B
⇦ (u , Rwu , uA , snd) = rhd (u , Rwu , uA , λ Y x → case ∈S? w

u Y of
λ { (yes p) → inj₂ (snd Y x p) ; (no p) → inj₁ p})

⊩◁ : ∀ {w A B} → M , w ⊩ A ◁ B ⇔ Σ W λ x → R w x × M , x ⊩ A × ∀
{V} → S w x V → Σ W λ b → b ∈ V × M , b ⊩ B

⊩◁ {w} {A} {B} = equivalence ⇨ ⇦
where
⇨ : M , w ⊩ A ◁ B → Σ W λ x → R w x × M , x ⊩ A × ∀ {V} → S w x

V → Σ W λ b → b ∈ V × M , b ⊩ B
⇨ A◁B = case ⊩¬ ⇒ A◁B of λ {z → case ⊮▷ ⇒ z of

λ { (u , Rwu , uA , snd) → u , Rwu , uA , λ {V} SwuV → case
snd V (Swu-sat SwuV) SwuV of

λ { (b , fst , snd) → b , (fst , (⊮¬ ⇒ snd)) }}}
⇦ : (Σ W λ x → R w x × M , x ⊩ A × ∀ {V} → S w x V → Σ W λ b →

b ∈ V × M , b ⊩ B) → M , w ⊩ A ◁ B
⇦ (u , Rwu , uA , p) = ⊩¬ ⇐ (⊮▷ ⇐ (u , Rwu , uA , (λ Y satY SwuY

→ case p SwuY of
λ { (y , y∈Y , yB) → y , (y∈Y , ⊮¬ ⇐ yB)})))

⊩4 : ∀ {w A} → M , w ⊩ □ A ↝ □ □ A
⊩4 = ⊩↝ ⇐ ⊩4'

⊩⇔¬⊮ : ∀ {w A} → M , w ⊩ A ⇔ (¬ M , w ⊮ A)
⊩⇔¬⊮ {w} {A} = equivalence ⊩→¬⊮ ⇦

where
⇦ : (M , w ⊮ A → ⊥) → M , w ⊩ A
⇦ x = [id , (λ y → ⊥-elim (x y))] (M, w ⊩? A)

215

⊮⇔¬⊩ : ∀ {w A} → M , w ⊮ A ⇔ (¬ M , w ⊩ A)
⊮⇔¬⊩ {w} {A} = equivalence ⊮→¬⊩ ⇦
where
⇦ : ¬ M , w ⊩ A → M , w ⊮ A
⇦ x = [(λ y → ⊥-elim (x y)) , id] (M, w ⊩? A)

⊩K : ∀ {w A B} → M , w ⊩ □ (A ↝ B) ↝ □ A ↝ □ B
⊩K {w} {A} {B} = ⊩↝ ⇐ λ x → ⊩↝ ⇐ λ y → ⊩□ ⇐
λ {u} wRu → ⊩MP ((⊩□ ⇒ x) wRu) ((⊩□ ⇒ y) wRu)

⊩J1 : ∀ {w A B} → M , w ⊩ □ (A ↝ B) ↝ A ▷ B
⊩J1 {w} {A} {B} = ⊩↝ ⇐ λ x → rhd λ { {u} Rwu → case M, u ⊩? A of

λ { (inj₁ k) → inj₂ ({ u } , S-quasirefl Rwu ,
λ {refl → ⊩MP ((⊩□ ⇒ x) Rwu) k})
; (inj₂ y) → inj₁ y}}

⊩J3 : ∀ {w A B C} → M , w ⊩ A ▷ C ∧ B ▷ C ↝ (A ∨ B) ▷ C
⊩J3 {w} {A} {B} {C} = ⊩↝ ⇐ λ x → ⊩▷ ⇐ λ Rwu uA∨B → case ⊩∧ ⇒ x of

λ {(a , b) → case ⊩∨ ⇒ uA∨B of
λ { (inj₁ uA) → (⊩▷ ⇒ a) Rwu uA ;
(inj₂ uB) → (⊩▷ ⇒ b) Rwu uB} }

⊩J4 : ∀ {w A B} → M , w ⊩ A ▷ B ↝ ♢ A ↝ ♢ B
⊩J4 = ⊩↝ ⇐ λ x → ⊩↝ ⇐ λ y → ⊩♢ ⇐ (case ⊩♢ ⇒ y of

λ { (u , Rwu , snd) → case (⊩▷ ⇒ x) Rwu snd of
λ { (Y , SwuY , YB) → case Swu-sat SwuY of
λ { (v , vY) → v , SwuY⊆Rw SwuY vY , YB vY}}})

⊩J5 : ∀ {w A} → M , w ⊩ ♢ A ▷ A
⊩J5 = ⊩▷ ⇐ λ {u} Rwu u⊩♢A → case ⊩♢ ⇒ u⊩♢A of

λ { (v , Ruv , vA) → { v } , R-Sw-trans Rwu Ruv
, λ {refl → vA}}

[⊩▷] : ∀ {A B w} {𝔸 𝔹 : 𝕎}
→ (∀ {u} → M , u ⊩ A ⇔ u ∈ 𝔸)
→ (∀ {u} → M , u ⊩ B ⇔ u ∈ 𝔹)
→ (∀ {u} → R w u → u ∈ 𝔸 → Σ 𝕎 λ V → S w u V × V ⊆ 𝔹)
→ M , w ⊩ A ▷ B

[⊩▷] [A] [B] A▷B = ⊩▷ ⇐ λ { {u} Rwu u⊩A → case A▷B Rwu ([A] ⇒
u⊩A) of

λ { (V , SwuV , V⊆𝔹) → V , SwuV , (λ {z → [B] ⇐ V⊆𝔹 z})}}

module Properties-Trans where

Trans-4 Trans-7 Trans-8 Trans-3 : Set _
Trans-4 = ∀ {x u Y} → S x u Y → Σ W λ y → Σ (y ∈ Y) λ y∈Y → ∀

{Y'} → S x y Y' → S x u Y'

Trans-7 = ∀ {u x y Y Y'} → S x u Y → y ∈ Y → S x y Y' → y ∉ Y'

216

→ Σ 𝕎 λ Y'' → Y'' ⊆ Y' × S x u Y''

Trans-8 = ∀ {u x y Y Y'} → S x u Y → y ∈ Y → S x y Y' → y ∉ Y'
→ S x u Y'

Trans-3 = ∀ {x u Y} → S x u Y → Σ W λ y → Σ (y ∈ Y) λ y∈Y → ∀
{Y'} → S x y Y' → Σ 𝕎 λ Y''

→ Y'' ⊆ Y' × S x u Y''

4⇒3 : Trans-4 → Trans-3
4⇒3 t SxuY = case t SxuY of λ { (y , fst₁ , snd) → y , fst₁ ,

λ { {Y'} SxyY' → Y' , (λ x → x) , snd SxyY'}}

⊩J2-T3 : ∀ {w A B C} → Trans-3 → M , w ⊩ (A ▷ B ∧ B ▷ C) ↝ A ▷ C
⊩J2-T3 {w} {A} {B} {C} t = ⊩↝ ⇐ λ x → ⊩▷ ⇐ λ {u} Rwu uA → case

⊩∧ ⇒ x of
λ { (A▷B , B▷C) → case (⊩▷ ⇒ A▷B) Rwu uA of
λ { (Y , SwuY , YB) → case t SwuY of
λ { (y , y∈Y , snd) → case (⊩▷ ⇒ B▷C) (SwuY⊆Rw SwuY y∈Y)

(YB y∈Y) of
λ { (Y' , SwyY' , Y'⊩C) → case snd SwyY' of
λ { (Y'' , Y''⊆Y' , SwuY'') → Y'' , SwuY'' , λ {x₁ → Y'⊩C

(Y''⊆Y' x₁)}}}}}}

⊩J2-T4 : ∀ {w A B C} → Trans-4 → M , w ⊩ (A ▷ B ∧ B ▷ C) ↝ A ▷ C
⊩J2-T4 {w} {A} {B} {C} t = ⊩J2-T3 (4⇒3 t)

-- NOTE: you must avoid using S-quasitrans in this proof! this
is hacky and

-- unelegant, but doing it properly would require a lot of work.
⊩J2-T8 : ∀ {w A B C} → Trans-8 → M , w ⊩ (A ▷ B ∧ B ▷ C) ↝ A ▷ C
⊩J2-T8 {w} {A} {B} {C} t = ⊩↝ ⇐ λ x → ⊩▷ ⇐ λ {u} Rwu uA → case

⊩∧ ⇒ x of
λ { (A▷B , B▷C) → case (⊩▷ ⇒ A▷B) Rwu uA of
λ { (Y , SwuY , YB) → case M, Y *⊩? C of
λ { (inj₁ x) → Y , SwuY , λ {x₁ → x x₁} ;
(inj₂ (y , y∈Y , y⊮C)) → case (⊩▷ ⇒ B▷C) (SwuY⊆Rw SwuY y∈Y)

(YB y∈Y) of
λ { (Y' , SwyY' , Y'⊆C) → Y' , t SwuY y∈Y SwyY' (λ {y∈Y' →

⊮→¬⊩ y⊮C (Y'⊆C y∈Y')}) ,
λ {x₁ → Y'⊆C x₁}}}}}

module Extended2
{ℓW ℓR ℓS}
{W R S V}
{M : Model {ℓW} {ℓR} {ℓS} W R S V}
(M,_*⊩?_ : MultiDecidableModel M)
(∈S? : Decidable₃ S)
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y) where

infix 5 M,_⊩?_

217

M,_⊩?_ : DecidableModel M
M,_⊩?_ = SingleDecidableModel M,_*⊩?_

open Model M
open Extended M,_*⊩?_ ∈S? ∈SV?
open G.Frame F

L-chain : ∀ {w u A} → R w u → M , u ⊮ A → M , w ⊩ □ (□ A ↝ A) →
InfiniteChain R w

InfiniteChain.b (L-chain {w} {u} Rwu uA uF) = u
InfiniteChain.a<b (L-chain {w} {u} Rwu uA uF) = Rwu
InfiniteChain.tail (L-chain {w} {u} Rwu uA uF) =
case (⊩□ ⇒ uF) Rwu of
λ { (impl (inj₁ x)) → case ⊮□ ⇒ x of
λ { (v , Ruv , vA) → L-chain Ruv vA ((⊩□ ⇒ ⊩4' uF) Rwu)}

; (impl (inj₂ y)) → ⊥-elim (⊩→¬⊮ y uA) }

⊩L : ∀ {w A} → M , w ⊩ □ (□ A ↝ A) ↝ □ A
⊩L {w} {A} = ⊩↝ ⇐ λ x → ⊩□ ⇐ λ {u} Rwu → ⊩⇔¬⊮ ⇐
λ ¬A → R-noetherian (L-chain Rwu ¬A x)

module _ where
open PGeneric Trans-conditions.Trans-L
module ExtendedT2

{ℓW ℓR ℓS}
{W R S V}
{M : Model {ℓW} {ℓR} {ℓS} W R S V}
(M,_*⊩?_ : MultiDecidableModel M)
(∈S? : Decidable₃ S)
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
where
open Extended M,_*⊩?_ ∈S? ∈SV?
open Model M
open G.Frame F

⊩J2 : ∀ {w A B C} → M , w ⊩ (A ▷ B ∧ B ▷ C) ↝ A ▷ C
⊩J2 {w} {A} {B} {C} = ⊩↝ ⇐ λ x → ⊩▷ ⇐ λ {u} Rwu uA → case ⊩∧ ⇒ x of

λ { (A▷B , B▷C) → case (⊩▷ ⇒ A▷B) Rwu uA of
λ { (Y , SwuY , YB) → case M, Y *⊩? C of
λ { (inj₁ x) → Y , SwuY , λ { {v} k → x k}
; (inj₂ (v , v∈Y , v¬C)) → case (⊩▷ ⇒ B▷C) (SwuY⊆Rw SwuY v∈Y) (YB

v∈Y) of
λ { (Z , SwvZ , ZC) → _ , let
f : ∀ {y} → y ∈ Y → Σ 𝕎 λ Z → S w y Z × Z ⊆ M ,_⊩ C
f {y} y∈Y = case (⊩▷ ⇒ B▷C) (SwuY⊆Rw SwuY y∈Y) (YB y∈Y) of

λ { (Zy , fst , snd) → Zy , fst , λ {z → snd z}}
f' : ∀ {y} → y ∈ Y → Σ 𝕎 λ Z → S w y Z
f' y∈Y = proj₁ (f y∈Y) , (proj₁ (proj₂ (f y∈Y))) in
quasitrans SwuY f' , λ { {x} (y , y∈Y , x∈Z) → proj₂ (proj₂ (f

y∈Y)) x∈Z}}}}}

218

module _ where
open PGeneric Trans-conditions.Trans-L public
open ExtendedT2 public

module SemanticsProperties-4 = PGeneric Trans-conditions.Trans-4
module SemanticsProperties-3 = PGeneric Trans-conditions.Trans-3
module SemanticsProperties-L = PGeneric Trans-conditions.Trans-L

B.20. GeneralizedVeltmanSemantics
module _ where

open import Agda.Builtin.Nat using (Nat; suc; _+_)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.List using (List)
open import Data.List.Relation.Unary.All using (All)
open import Data.Product
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function using (_∘_; case_of_)
open import Relation.Binary using (REL; Rel; Transitive; Reflexive)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl)
open import Relation.Nullary using (¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; {_}; _∩_;
⊆; Satisfiable)

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; var; ¬'_)
open import Base using (Noetherian; REL₃; Rel₃)
open import GeneralizedFrame using (FrameL; Frame; module Trans-conditions)
public

module Generic
(T : ∀ {ℓW ℓS} (W : Set ℓW) → REL₃ W W (Pred W ℓW) ℓS → Set (lsuc ℓW

⊔ ℓS))
where

Valuation : ∀ {ℓW ℓR ℓS W R S} → Frame {ℓW} {ℓR} {ℓS} W R S T → Set
(lsuc lzero ⊔ ℓW)

Valuation {W = W} F = REL W Var lzero

record Model
{ℓW ℓR ℓS}
(W : Set ℓW)
(R : Rel W ℓR)
(S : REL₃ _ _ _ ℓS)
(V : REL W Var lzero)
: Set (lsuc ℓW ⊔ ℓR ⊔ ℓS) where
constructor model
field
F : Frame {ℓW} {ℓR} {ℓS} W R S T

219

infix 5 _,_⊮_
data _,_⊮_ {ℓW ℓR ℓS W R S V} (M : Model {ℓW} {ℓR} {ℓS} W R S V) (w

: W)
: Fm → Set (lsuc ℓW ⊔ ℓR ⊔ ℓS)

infix 5 _,_⊩_
data _,_⊩_ {ℓW ℓR ℓS W R S V} (M : Model {ℓW} {ℓR} {ℓS} W R S V) (w

: W) : Fm → Set (lsuc ℓW ⊔ ℓR ⊔ ℓS)

data _,_⊩_ {ℓW} {ℓR} {ℓS} {W} {R} {S} {V} M w where
var : ∀ {a : Var} → a ∈ V w → M , w ⊩ var a
impl : ∀ {A B} → M , w ⊮ A ⊎ M , w ⊩ B → M , w ⊩ A ↝ B
rhd : ∀ {A B} →
(∀ {u} → R w u → M , u ⊮ A ⊎ (∃[Y] (S w u Y × (Y ⊆ M ,_⊩ B))))
→ M , w ⊩ A ▷ B

data _,_⊮_ {ℓW} {ℓR} {ℓS} {W} {R} {S} {V} M w where
var : ∀ {a : Var} → a ∉ V w → M , w ⊮ var a
impl : ∀ {A B} → M , w ⊩ A → M , w ⊮ B → M , w ⊮ A ↝ B
rhd : ∀ {A B} →
∃[u] (R w u × M , u ⊩ A
× ∀ Y → Satisfiable Y → (¬ S w u Y) ⊎ (Satisfiable (Y ∩ (M ,_⊮

B))))
→ M , w ⊮ A ▷ B

bot : M , w ⊮ ⊥'

DecidableModel : ∀ {ℓW ℓR ℓS W R S V} → Model {ℓW} {ℓR} {ℓS} W R S V
→ Set (lsuc ℓW ⊔ ℓR ⊔ ℓS)

DecidableModel M = ∀ w A → M , w ⊩ A ⊎ M , w ⊮ A

MultiDecidableModel : ∀ {ℓW ℓR ℓS W R S V} → Model {ℓW} {ℓR} {ℓS} W
R S V

→ Set (lsuc ℓW ⊔ ℓR ⊔ ℓS ⊔ lsuc ℓW)
MultiDecidableModel {ℓW = ℓW} {W = W} M =

∀ (Y : Pred W ℓW) A → Y ⊆ M ,_⊩ A ⊎ Satisfiable (Y ∩ (M ,_⊮ A))

SingleDecidableModel : ∀ {ℓW ℓR ℓS W R S V} → {M : Model {ℓW} {ℓR}
{ℓS} W R S V}

→ MultiDecidableModel M → DecidableModel M
SingleDecidableModel x w A = case x { w } A of
λ { (inj₁ x) → inj₁ (x refl) ; (inj₂ (u , refl , snd)) → inj₂ snd}

S-decidable : ∀ {ℓW ℓR ℓS W R S} → (F : Frame {ℓW} {ℓR} {ℓS} W R S
T)

→ Set (lsuc ℓW ⊔ ℓS)
S-decidable {S = S} F = ∀ x y u → (Σ 𝕎 λ U → u ∈ U × S x y U) ⊎ (∀ U

→ S x y U → u ∉ U)
where open Frame F

-- Frame validity
infix 5 _*⊩_

220

*⊩ : ∀ {ℓW ℓR ℓS W R S} → Frame {ℓW} {ℓR} {ℓS} W R S T → Fm → Set
(lsuc ℓW ⊔ ℓR ⊔ ℓS)

F *⊩ A = ∀ val w → model {V = val} F , w ⊩ A

infix 5 _*⊮_
*⊮ : ∀ {ℓW ℓR ℓS W R S} → Frame {ℓW} {ℓR} {ℓS} W R S T → Fm → Set

(lsuc ℓW ⊔ ℓR ⊔ ℓS)
F *⊮ A = Σ (Valuation F × _) λ { (val , w) → model {V = val} F , w ⊮

A}
where open Frame F

,⊩*_ : ∀ {ℓW ℓR ℓS W R S V} → (M : Model {ℓW} {ℓR} {ℓS} W R S V)
(w : W) → List Fm → Set _

M , w ⊩* Π = All (M , w ⊩_) Π

module _ where open Generic Trans-conditions.Trans-L public

module T1 where open Generic Trans-conditions.Trans-1 public
module T2 where open Generic Trans-conditions.Trans-2 public
module T3 where open Generic Trans-conditions.Trans-3 public
module T4 where open Generic Trans-conditions.Trans-4 public
module T5 where open Generic Trans-conditions.Trans-5 public
module T6 where open Generic Trans-conditions.Trans-6 public
module T7 where open Generic Trans-conditions.Trans-7 public
module T8 where open Generic Trans-conditions.Trans-6 public

B.21. IL
module IL where

open import OrdinaryVeltmanSemantics using (Model; _,_⊩_; impl)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.List using (List; []; _∷_)
open import Data.List.Membership.Propositional using (_∈_)

open import Formula using (Fm; _▷_; _↝_; □_; _∧_; _∨_; ♢_; ¬'_; ⊥')

infix 5 _⊢_
data _⊢_ (Π : List Fm) : Fm → Set where

Ax : ∀ {A} → A ∈ Π → Π ⊢ A
-- classical axioms
C1 : ∀ {A B} → Π ⊢ A ↝ (B ↝ A)
C2 : ∀ {A B C} → Π ⊢ (A ↝ (B ↝ C)) ↝ ((A ↝ B) ↝ (A ↝ C))
C3 : ∀ {A B} → Π ⊢ (¬' A ↝ ¬' B) ↝ (B ↝ A)
-- other axioms
K : ∀ {A B} → Π ⊢ (□ (A ↝ B)) ↝ (□ A ↝ □ B)
L : ∀ {A} → Π ⊢ □ (□ A ↝ A) ↝ □ A
J1 : ∀ {A B} → Π ⊢ □ (A ↝ B) ↝ A ▷ B
J2 : ∀ {A B C} → Π ⊢ A ▷ B ∧ B ▷ C ↝ A ▷ C
J3 : ∀ {A B C} → Π ⊢ (A ▷ C ∧ B ▷ C) ↝ (A ∨ B) ▷ C

221

J4 : ∀ {A B} → Π ⊢ A ▷ B ↝ ♢ A ↝ ♢ B
J5 : ∀ {A} → Π ⊢ ♢ A ▷ A
MP : ∀ {A B} → Π ⊢ A ↝ B → Π ⊢ A → Π ⊢ B
nec : ∀ {A} → [] ⊢ A → Π ⊢ □ A

B.22. IL/Edsl
module IL.Edsl where

import Agda.Builtin.Unit as U
import Data.Empty as Empty
import Data.Fin as Fin
import Data.List as Lst
import Data.Maybe as M
import Function as Fun
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≢_)
open import Relation.Nullary
open Eq using (_≡_; refl; subst)
open Fin using (Fin; inject+; fromℕ; inject₁; zero; suc; #_)
open Fun using (id)
open Lst using (List; []; _∷_)
open M using (nothing; just; Maybe)
open import Agda.Builtin.Equality
open import Agda.Builtin.FromNat
open import Data.List.Relation.Unary.Any using () renaming (here to
here'; there to there')
open import Agda.Builtin.Nat
open import Data.Bool using (true; false) renaming (_∨_ to _||_ ; _∧_
to _&_)
open import Data.Nat using (_≤?_)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.Product
open import Formula
open import IL

instance
NumNat : Number Nat
NumNat .Number.Constraint _ = U.⊤
NumNat .Number.fromNat m = m

pattern _! a = var a

here : ∀ {A : Fm} {Σ : List Fm} → A ∈ (A ∷ Σ)
here {A} {Σ} = here' refl

there : ∀ {A : Fm} {Σ B} → A ∈ Σ → A ∈ (B ∷ Σ)
there x = there' x

! : ∀ {A : Set} → (L : List A) → (i : Nat) → Maybe A
[] ! _ = nothing

222

(x ∷ l) ! zero = just x
(x ∷ l) ! suc i = l ! i

makeMember : ∀ {Σ i A} → Σ ! i ≡ just A → A ∈ Σ
makeMember {a ∷ l} {zero} refl = here
makeMember {a ∷ l} {suc i} x = there (makeMember {l} {i} x)

instance
NumMember : ∀ {A Σ} → Number (A ∈ Σ)
NumMember {A} {Σ} .Number.Constraint i = Σ ! i ≡ just A
NumMember {A} {Σ} .Number.fromNat i {{p}} = makeMember p

≤ : (m n : Nat) → Set
zero ≤ n = U.⊤
suc m ≤ zero = Empty.⊥
suc m ≤ suc n = m ≤ n

fromN≤ : (m n : Nat) → m ≤ n → Fin (suc n)
fromN≤ zero _ _ = zero
fromN≤ (suc _) zero ()
fromN≤ (suc m) (suc n) p = suc (fromN≤ m n p)

instance
NumFin : ∀ {n} → Number (Fin (suc n))
NumFin {n} .Number.Constraint m = m ≤ n
NumFin {n} .Number.fromNat m {{m≤n}} = fromN≤ m n m≤n

data Single {A : Set} : A → Set where
single : (n : A) → Single n

instance
NumSing : ∀ {n} → Number (Single {Nat} n)
NumSing {n} .Number.Constraint m = n ≡ m
NumSing .Number.fromNat m ⟦ refl ⟧ = single m

data HilbertProof : List Fm → Fm → Nat → Set
lookup-all : ∀ {Σ A n} → HilbertProof Σ A n → Fin (suc n) → List Fm ×
(Fm × Nat)
lookup-may : ∀ {Σ A n} → HilbertProof Σ A n → Nat → Maybe Fm

lookup : ∀ {Σ A n} → HilbertProof Σ A n → Fin (suc n) → Fm
lookup H i = proj₁ (proj₂ (lookup-all H i))

compile-instr : ∀ {n Σ A} → (H : HilbertProof Σ A n) → (i : Fin (suc
n)) → Σ ⊢ lookup H i

data HilbertRef {Σ A n} (H : HilbertProof Σ A n) (fB : Fm) (f : Fm →
Fm) : Set where

ref : (i : Nat) → M.map f (lookup-may H i) ≡ just fB → HilbertRef H
fB f

223

data HilbertProof where
begin : ∀ {Σ A} → Σ ⊢ A → HilbertProof Σ A 0
by : ∀ {Σ A B n} → Σ ⊢ B → HilbertProof Σ A n → HilbertProof Σ B (suc

n)
Ax : ∀ {Σ B n} → (A : Fm) → HilbertProof Σ B n → HilbertProof (A ∷

Σ) A (suc n)
nec : ∀ {Σ n □A C} (H : HilbertProof [] C n) (i : HilbertRef H (□A)

□_)
→ HilbertProof Σ (□A) (suc n)

MP : ∀ {n Σ A B C} (H : HilbertProof Σ C n) → HilbertRef H (A ↝ B)
id → HilbertRef H A id → HilbertProof Σ B (suc n)

lookup-all {Σ} {A} {n} x zero = Σ , A , n
lookup-all (by x H) (suc i) = lookup-all H i
lookup-all (MP {A} {B} H i' j') (suc i) = lookup-all H i
lookup-all (begin x) (suc ())
lookup-all (Ax x y) (suc h) = lookup-all y h
lookup-all (nec H j) (suc i) = lookup-all H i

-- nothing if the result would be a negative number
-≥ : (n m : Nat) → Maybe (Fin (suc n))
n -≥ zero = just (fromℕ n)
zero -≥ suc m = nothing
suc n -≥ suc m = M.map inject₁ (n -≥ m)

lookup-may {Σ} {A} {n} H i = M.map (lookup H) (n -≥ i)

is-just-map : ∀ {A B : Set} {may : Maybe A} {f : A → B}
→ M.is-just (M.map f may) ≡ M.is-just may

is-just-map {A} {B} {just _} = refl
is-just-map {A} {B} {nothing} = refl

-≥-is-just : ∀ {n i} → M.is-just (n -≥ i) ≡ true → i ≤ n
-≥-is-just {zero} {zero} x = U.tt
-≥-is-just {suc n} {zero} x = U.tt
-≥-is-just {suc n} {suc i} x = -≥-is-just {n} {i} (Eq.trans (Eq.sym
is-just-map) x)

is-just-≡ : ∀ {A : Set} {a : Maybe A} {b} → a ≡ just b → M.is-just a ≡
true
is-just-≡ {_} {just _} x = refl

subst-⊢ : ∀ {Σ A A'} → A ≡ A' → Σ ⊢ A → Σ ⊢ A'
subst-⊢ {Σ} x y = subst (λ x → Σ ⊢ x) x y

l-weakening : {Σ : List Fm} {A B : Fm} (Π : Σ ⊢ A) → (B ∷ Σ) ⊢ A
l-weakening (Ax x) = Ax (there x)
l-weakening C1 = C1
l-weakening C2 = C2
l-weakening C3 = C3
l-weakening K = K

224

l-weakening L = L
l-weakening J1 = J1
l-weakening J2 = J2
l-weakening J3 = J3
l-weakening J4 = J4
l-weakening J5 = J5
l-weakening (MP A B) = MP (l-weakening A) (l-weakening B)
l-weakening (nec k) = nec k

l-weakening[] : {Σ : List Fm} {A : Fm} (Π : [] ⊢ A) → Σ ⊢ A
l-weakening[] C1 = C1
l-weakening[] C2 = C2
l-weakening[] C3 = C3
l-weakening[] K = K
l-weakening[] L = L
l-weakening[] J1 = J1
l-weakening[] J2 = J2
l-weakening[] J3 = J3
l-weakening[] J4 = J4
l-weakening[] J5 = J5
l-weakening[] (MP a b) = MP (l-weakening[] a) (l-weakening[] b)
l-weakening[] (nec p) = nec p

A↝A : ∀ {Σ A} → Σ ⊢ A ↝ A
A↝A {Σ} {A} = MP (MP C2 C1) (C1 {B = A})

injective-just : ∀ {A : Set} {a b : A} → just a ≡ just b → a ≡ b
injective-just refl = refl

-Fin : (n m : Nat) → Fin (suc n)
n -Fin zero = fromℕ n
zero -Fin suc m = zero
suc n -Fin suc m = inject₁ (n -Fin m)

lookup-may-just : ∀ {n i A B Σ} {H : HilbertProof Σ B n}
→ lookup-may H i ≡ just A
→ lookup H (n -Fin i) ≡ A

lookup-may-just {n} {i} {A} {_} {Σ} {H} p = injective-just p'
where

aux-i≤n : ∀ {n i Σ A B} {H : HilbertProof Σ B n} → lookup-may H i
≡ just A → i ≤ n

aux-i≤n {n} {i} x = -≥-is-just {n} {i} (Eq.trans (Eq.sym is-just-map)
(is-just-≡ x))

aux--≥ : ∀ {n i} → i ≤ n → n -≥ i ≡ just (n -Fin i)
aux--≥ {n} {zero} x = refl
aux--≥ {suc n} {suc i} x = Eq.cong (M.map inject₁) (aux--≥ {n} {i}

x)
i≤n : i ≤ n
i≤n = aux-i≤n {n} {i} p
n-i-just : n -≥ i ≡ just (n -Fin i)
n-i-just = aux--≥ {n} {i} i≤n

225

p-rewrite : ∀ {n i B Σ} {H : HilbertProof Σ B n}
→ n -≥ i ≡ just (n -Fin i)
→ M.map (lookup H) (n -≥ i) ≡ just A
→ M.map (lookup H) (just (n -Fin i)) ≡ just A

p-rewrite x p rewrite x = p
p' : just (lookup H (n -Fin i)) ≡ just A
p' rewrite (p-rewrite {n} {i} n-i-just p) = refl

compile-nec-aux : ∀ {A : Set} {m : Maybe Fm} {a : Fm} {f} → M.map f m
≡ just a

→ (∀ {b} → (f b ≢ a)) → A
compile-nec-aux {A} {m} {a} {f} x k = Empty.⊥-elim (k (injective-just

(subst (λ {z → M.map f z ≡ just a}) (proj₂ (aux {m = m} x)) x)))
where aux : ∀ {m} → M.map f m ≡ just a → Σ _ λ b → m ≡ just b

aux {just i} x = i , refl

compile-nec : ∀ {□A n C Σ}
→ (H : HilbertProof [] C n) → HilbertRef H □A □_ → Σ ⊢ □A

compile-nec {v !} H (ref i x) = absurd! {_} {lookup-may H i} {v} x
where
absurd! : ∀ {A : Set} {a b} → M.map □_ a ≡ just (b !) → A
absurd! {_} {just y} {b} x with injective-just (Eq.sym x)
... | ()

compile-nec {a ↝ b} H (ref i x) = absurd↝ {_} {lookup-may H i} {a} {b}
x

where
absurd↝ : ∀ {A : Set} {a b c} → M.map □_ a ≡ just (b ↝ c) → A
absurd↝ {A} {just y} {b} x with injective-just (Eq.sym x)
... | ()

compile-nec {⊥'} H (ref i x) = absurd⊥ {_} {lookup-may H i} x
where
absurd⊥ : ∀ {A : Set} {a} → M.map □_ a ≡ just ⊥' → A
absurd⊥ {_} {just y} x with injective-just (Eq.sym x)
... | ()

compile-nec {(A ↝ ⊥') ▷ ⊥'} {n} H (ref i x) =
nec (subst-⊢ (lookup-may-just {n} {i} (aux□ x)) (compile-instr H (n

-Fin i)))
where
aux□ : ∀ {a b} → M.map □_ a ≡ just (¬' b ▷ ⊥') → a ≡ just b
aux□ {just a} refl = refl

compile-nec {(_ !) ▷ ⊥'} H (ref i x) = compile-nec-aux {m = lookup-may
H i} x λ ()
compile-nec {⊥' ▷ ⊥'} H (ref i x) = compile-nec-aux {m = lookup-may H
i} x λ ()
compile-nec {(A ↝ (_ !)) ▷ ⊥'} H (ref i x) = compile-nec-aux {m =
lookup-may H i} x λ ()
compile-nec {(A ↝ B ↝ C) ▷ ⊥'} H (ref i x) = compile-nec-aux {m =
lookup-may H i} x λ ()
compile-nec {(A ↝ B ▷ C) ▷ ⊥'} H (ref i x) = compile-nec-aux {m =
lookup-may H i} x λ ()
compile-nec {(A ▷ B) ▷ ⊥'} H (ref i x) = compile-nec-aux {m = lookup-may

226

H i} x λ ()
compile-nec {A ▷ (_ !)} H (ref i x) = compile-nec-aux {m = lookup-may
H i} x λ ()
compile-nec {A ▷ (B ↝ C)} H (ref i x) = compile-nec-aux {m = lookup-may
H i} x λ ()
compile-nec {A ▷ (C ▷ D)} H (ref i x) = compile-nec-aux {m = lookup-may
H i} x λ ()

compile-mp : ∀ {A B n Σ C}
→ (H : HilbertProof Σ C n) → HilbertRef H (A ↝ B) id → HilbertRef H

A id
→ Σ ⊢ B

compile-mp {A} {B} {n} {Σ} H (ref i pi) (ref j pj) = MP Σ⊢A↝B Σ⊢A
where
map-id : ∀ {A : Set} {may : Maybe A} → M.map id may ≡ may
map-id {A} {just x₁} = refl
map-id {A} {nothing} = refl
pi' : lookup-may H i ≡ just (A ↝ B)
pi' = Eq.trans (Eq.sym map-id) pi
pj' : lookup-may H j ≡ just A
pj' = Eq.trans (Eq.sym map-id) pj
Σ⊢A : Σ ⊢ A
Σ⊢A = subst-⊢ (lookup-may-just {n} {j} pj') (compile-instr H (n -Fin

j))
Σ⊢A↝B : Σ ⊢ A ↝ B
Σ⊢A↝B = subst-⊢ (lookup-may-just {n} {i} pi') (compile-instr H (n

-Fin i))

compile-instr (begin x) zero = x
compile-instr (begin x) (suc ())
compile-instr (by x H) zero = x
compile-instr (by x H) (suc i) = compile-instr H i
compile-instr (MP {n} H i j) zero = compile-mp H i j
compile-instr (MP H _ _) (suc l) = compile-instr H l
compile-instr (Ax A x) zero = Ax here
compile-instr (Ax A H) (suc i) = l-weakening (compile-instr H i)
compile-instr {suc n} {Σ} (nec {Σ} {n} {_} {□A} H i) zero = compile-nec
H i
compile-instr (nec {_} {n} H i) (suc j) = l-weakening[] (compile-instr
H j)

compile : ∀ {n Σ A} → HilbertProof Σ A n → Σ ⊢ A
compile H = compile-instr H zero

injective-□ : ∀ {A B} → □ A ≡ □ B → A ≡ B
injective-□ refl = refl

instance
NumHilbertRef : ∀ {A Σ n} {H : HilbertProof Σ A n} {fB} {f} → Number

(HilbertRef H fB f)
NumHilbertRef {A} {Σ} {n} {H} {fB} {f} .Number.Constraint t = M.map

227

f (lookup-may H t) ≡ just fB
NumHilbertRef {A} {Σ} {n} {H} .Number.fromNat t ⟦ x ⟧ = ref t x

begin[_]_By_ : ∀ {Σ} → Single {Nat} 0 → (B : Fm) → Σ ⊢ B → HilbertProof
Σ B 0
begin[z] B By p = begin p

infixl 10 _[_]_By_
[]_By_ : ∀ {Σ C n} → (H : HilbertProof Σ C n) → Single {Nat} (suc n)
→ (B : Fm) → Σ ⊢ B → HilbertProof Σ B (suc n)
H [n] B By p = by p H

infixl 10 _[_]_ByNec_
[]_ByNec_ : ∀ {C n}

→ (H : HilbertProof [] C n) → Single {Nat} (suc n)
→ (□B : Fm) → HilbertRef H □B □_
→ HilbertProof [] □B (suc n)

H [i] □A ByNec ix = nec H ix

infixl 10 _[_]_ByMP_,_
[]_ByMP_,_ : ∀ {Σ C A n} → (H : HilbertProof Σ C n) → Single {Nat}
(suc n)

→ (B : Fm) (i : HilbertRef H (A ↝ B) id) (j : HilbertRef H A id) →
HilbertProof Σ B (suc n)
H [n] B ByMP i , j = MP H i j

infix 0 _■
_■ : ∀ {n Σ A} → (H : HilbertProof Σ A n) → Σ ⊢ A
H ■ = compile H

⊢A↝A : ∀ {A} → [] ⊢ A ↝ A
⊢A↝A {A} =

begin[0] (A ↝ ((A ↝ A) ↝ A)) ↝ ((A ↝ (A ↝ A)) ↝ (A ↝ A)) By C2
[1] A ↝ ((A ↝ A) ↝ A) By C1
[2] A ↝ (A ↝ A) By C1
[3] (A ↝ (A ↝ A)) ↝ A ↝ A ByMP 0 , 1
[4] A ↝ A ByMP 3 , 2
■

⊢A▷A : ∀ {A} → [] ⊢ A ▷ A
⊢A▷A {A} =
begin[0] A ↝ A By ⊢A↝A

[1] □ (A ↝ A) ByNec 0
[2] □ (A ↝ A) ↝ (A ▷ A) By J1
[3] A ▷ A ByMP 2 , 1
■

⊢A▷A' : ∀ {A} → HilbertProof [] (A ▷ A) 3
⊢A▷A' {A} =
begin[0] A ↝ A By ⊢A↝A

[1] □ (A ↝ A) ByNec 0

228

[2] □ (A ↝ A) ↝ (A ▷ A) By J1
[3] A ▷ A ByMP 2 , 1

B.23. IL/Properties
module IL.Properties where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.List using (map; List; []; _∷_)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Relation.Binary using (REL; Rel; Transitive)
import Data.List.Relation.Unary.Any as Any
open import Data.Product using (Σ; proj₁; proj₂; _×_) renaming (_,_ to
,)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Unary using (Pred; Decidable)
open import Data.List.Relation.Unary.Any using () renaming (here to
here'; there to there')

import GeneralizedVeltmanSemantics as G
open import Base using (_⇒_; _⇐_; Decidable₃; Rel₃; REL₃)
open import Classical using () renaming (_⊢_ to _⊢c_; Fm to Fmc)
open import Formula using (Fm; _▷_; _↝_; □_; _∧_; _∨_; _↔_; ♢_; ¬'_;
⊥'; ⊤'; Var)
open import IL
import OrdinaryVeltmanSemantics as O

here : ∀ {A : Fm} {Σ : List Fm} → A ∈ (A ∷ Σ)
here {A} {Σ} = here' refl

there : ∀ {A : Fm} {Σ B} → A ∈ Σ → A ∈ (B ∷ Σ)
there x = there' x

fmc : Fmc → Fm
fmc (Fmc.var x) = Fm.var x
fmc Fmc.⊥' = ⊥'
fmc (x Fmc.↝ y) = (fmc x) ↝ fmc y

weak : ∀ {A B Π} → Π ⊢ A → (B ∷ Π) ⊢ A
weak (_⊢_.Ax x) = _⊢_.Ax (there x)
weak C1 = C1
weak C2 = C2
weak C3 = C3
weak K = K

229

weak L = L
weak J1 = J1
weak J2 = J2
weak J3 = J3
weak J4 = J4
weak J5 = J5
weak (MP x y) = MP (weak x) (weak y)
weak (nec x) = nec x

⊢c→⊢ : ∀ {A Π} → Π ⊢c A → map fmc Π ⊢ fmc A
⊢c→⊢ _⊢c_.C1 = C1
⊢c→⊢ _⊢c_.C2 = C2
⊢c→⊢ _⊢c_.C3 = C3
⊢c→⊢ (_⊢c_.MP x x₁) = MP (⊢c→⊢ x) (⊢c→⊢ x₁)
⊢c→⊢ (_⊢c_.Ax (Any.here refl)) = _⊢_.Ax here
⊢c→⊢ (_⊢c_.Ax (Any.there x)) = weak (⊢c→⊢ (_⊢c_.Ax x))

val : (Var → Fm) → Fm → Fm
val f (Fm.var v) = f v
val f ⊥' = ⊥'
val f (a ↝ b) = val f a ↝ val f b
val f (a ▷ b) = val f a ▷ val f b

-- structurality of ⊢
⊢struct : ∀ {A Π} → (f : Var → Fm) → Π ⊢ A → map (val f) Π ⊢ val f A
⊢struct f (Ax (here' refl)) = Ax here
⊢struct f (Ax (there' x)) = weak (⊢struct f (Ax x))
⊢struct f C1 = C1
⊢struct f C2 = C2
⊢struct f C3 = C3
⊢struct f K = K
⊢struct f L = L
⊢struct f J1 = J1
⊢struct f J2 = J2
⊢struct f J3 = J3
⊢struct f J4 = J4
⊢struct f J5 = J5
⊢struct f (MP x x₁) = MP (⊢struct f x) (⊢struct f x₁)
⊢struct f (nec x) = nec (⊢struct f x)

deduction : ∀ {Π A B} → Π ⊢ A ↝ B ⇔ (A ∷ Π) ⊢ B
deduction = equivalence ⇨ ⇦

where
⇦ : ∀ {Π A B} → (A ∷ Π) ⊢ B → Π ⊢ A ↝ B
⇦ {_} {A} {B} (Ax (here' refl)) = MP (MP C2 C1) (C1 {_} {_} {⊥'})
⇦ (Ax (there' x)) = MP C1 (Ax x)
⇦ C1 = MP C1 C1
⇦ C2 = MP C1 C2
⇦ C3 = MP C1 C3
⇦ K = MP C1 K
⇦ L = MP C1 L

230

⇦ J1 = MP C1 J1
⇦ J2 = MP C1 J2
⇦ J3 = MP C1 J3
⇦ J4 = MP C1 J4
⇦ J5 = MP C1 J5
⇦ (MP x y) = MP (MP C2 (⇦ x)) (⇦ y)
⇦ (nec x) = MP C1 (nec x)
⇨ : ∀ {Π A B} → Π ⊢ A ↝ B → (A ∷ Π) ⊢ B
⇨ x = MP (weak x) (Ax here)

cut : ∀ {Π A B} → Π ⊢ B → (B ∷ Π) ⊢ A → Π ⊢ A
cut x (Ax (here' refl)) = x
cut x (Ax (there' z)) = Ax z
cut x C1 = C1
cut x C2 = C2
cut x C3 = C3
cut x K = K
cut x L = L
cut x J1 = J1
cut x J2 = J2
cut x J3 = J3
cut x J4 = J4
cut x J5 = J5
cut x (MP y y₁) = MP (cut x y) (cut x y₁)
cut x (nec y) = nec y

⊢A↝A : ∀ {A Π} → Π ⊢ A ↝ A
⊢A↝A = deduction ⇐ (Ax here)

A↝A : ∀ {Π A} → Π ⊢ A ↝ A
A↝A {Π} {A} = MP (MP (C2 {Π} {A} {A ↝ A} {A}) (C1 {Π} {A} {A ↝ A})) (C1
{Π} {A} {A})

⊢A↝A' : ∀ {A Π} → Π ⊢ A ↝ A
⊢A↝A' {A} = MP (MP C2 C1) (C1 {B = A})

⊢A▷A : ∀ {A Π} → Π ⊢ A ▷ A
⊢A▷A {A} = MP J1 (nec ⊢A↝A)

trans : ∀ {A B C Π} → Π ⊢ (A ↝ B) ↝ (B ↝ C) ↝ A ↝ C
trans {A} {B} {C} = deduction ⇐ (deduction ⇐ (deduction ⇐ (MP (Ax (there
here))

(MP (Ax (there (there here))) (Ax here)))))

⊢⟦A↝B⟧↝⟦B↝C⟧↝A↝C : ∀ {A B C Π} → Π ⊢ (A ↝ B) ↝ (B ↝ C) ↝ A ↝ C
⊢⟦A↝B⟧↝⟦B↝C⟧↝A↝C = trans

⊢A↝¬¬A : ∀ {Π A} → Π ⊢ A ↝ ¬' ¬' A
⊢A↝¬¬A = deduction ⇐ (deduction ⇐ (MP (Ax here) (Ax (there here))))

⊢¬¬A↝A : ∀ {A Π} → Π ⊢ (¬' ¬' A) ↝ A

231

⊢¬¬A↝A {A} = MP C3 ⊢A↝¬¬A

⊢⟦A↝B⟧↝¬B↝¬A : ∀ {A B Π} → Π ⊢ (A ↝ B) ↝ ¬' B ↝ ¬' A
⊢⟦A↝B⟧↝¬B↝¬A = deduction ⇐ (deduction ⇐ (deduction ⇐ (MP (Ax (there
here))

(MP (Ax (there (there here))) (Ax here)))))

⊢A↝⊤ : ∀ {Π A} → Π ⊢ A ↝ ⊤'
⊢A↝⊤ = deduction ⇐ (deduction ⇐ (Ax here))

⊢⊥↝A : ∀ {Π A} → Π ⊢ ⊥' ↝ A
⊢⊥↝A = MP C3 ⊢A↝⊤

⊢¬A↝A↝B : ∀ {A B Π} → Π ⊢ ¬' A ↝ A ↝ B
⊢¬A↝A↝B = MP (MP C2 (MP C1 C3)) C1

⊢↝ : ∀ {A B Π} → (Π ⊢ ¬' A ⊎ Π ⊢ B) → Π ⊢ A ↝ B
⊢↝ (inj₁ x) = MP C3 (MP C1 x)
⊢↝ (inj₂ y) = MP C1 y

⊢A∧B↝A : ∀ {Π A B} → Π ⊢ A ∧ B ↝ A
⊢A∧B↝A = MP (MP trans (MP ⊢⟦A↝B⟧↝¬B↝¬A ⊢¬A↝A↝B)) ⊢¬¬A↝A

⊢A∧B↝B : ∀ {Π A B} → Π ⊢ A ∧ B ↝ B
⊢A∧B↝B = MP (MP trans (MP ⊢⟦A↝B⟧↝¬B↝¬A C1)) ⊢¬¬A↝A

⊢⟦A↝B↝C⟧↝B↝A↝C : ∀ {A B C Π} → Π ⊢ (A ↝ B ↝ C) ↝ B ↝ A ↝ C
⊢⟦A↝B↝C⟧↝B↝A↝C = deduction ⇐ (deduction ⇐ (deduction ⇐ (cut

(MP (Ax (there (there here))) (Ax here)) (MP (Ax here)
(Ax (there (there here)))))))

⊢A↝B↝A∧B : ∀ {Π A B} → Π ⊢ A ↝ B ↝ A ∧ B
⊢A↝B↝A∧B = deduction ⇐ (deduction ⇐ (deduction ⇐ (cut (MP (Ax here)

(Ax (there (there here)))) (MP (Ax here)
(Ax (there (there here)))))))

⊢∧ : ∀ {Π A B} → Π ⊢ A ∧ B ⇔ (Π ⊢ A × Π ⊢ B)
⊢∧ {Π} {A} {B} = equivalence ⇨ ⇦

where
⇦ : (Π ⊢ A × Π ⊢ B) → Π ⊢ A ∧ B
⇦ (fst , snd) = MP (MP ⊢A↝B↝A∧B fst) snd
⇨ : Π ⊢ A ∧ B → (Π ⊢ A × Π ⊢ B)
⇨ x = MP ⊢A∧B↝A x , MP ⊢A∧B↝B x

⊢A↝A∨B : ∀ {A B Π} → Π ⊢ A ↝ A ∨ B
⊢A↝A∨B = deduction ⇐ (deduction ⇐ (MP ⊢⊥↝A (MP (Ax here)

(Ax (there here)))))

K1 : ∀ {Π A} → Π ⊢ A ▷ (A ∨ ♢ A) × Π ⊢ (A ∨ ♢ A) ▷ A
K1 {Π} {A} = ⇨ , ⇦

where

232

⇨ : Π ⊢ A ▷ (A ∨ ♢ A)
⇨ = MP J1 (nec ⊢A↝A∨B)
⇦ : Π ⊢ (A ∨ ♢ A) ▷ A
⇦ = MP J3 (⊢∧ ⇐ (⊢A▷A , J5))

A↝B⇒□A↝□B : ∀ {A B Π} → [] ⊢ A ↝ B → Π ⊢ □ A ↝ □ B
A↝B⇒□A↝□B x = MP K (nec x)

A↔B⇒□A↔□B : ∀ {A B Π} → [] ⊢ A ↔ B → Π ⊢ □ A ↔ □ B
A↔B⇒□A↔□B x = ⊢∧ ⇐ (case ⊢∧ ⇒ x of λ {(fst , snd) → A↝B⇒□A↝□B fst ,
A↝B⇒□A↝□B snd})

⊢□⟦A∧B⟧↔⟦□A∧□B⟧ : ∀ {A B Π} → Π ⊢ □ (A ∧ B) ↔ (□ A ∧ □ B)
⊢□⟦A∧B⟧↔⟦□A∧□B⟧ {A} {B} {Π} = ⊢∧ ⇐ (⇨ , ⇦)

where
⇨ : Π ⊢ □ (A ∧ B) ↝ □ A ∧ □ B
⇨ = deduction ⇐ cut (MP (A↝B⇒□A↝□B ⊢A∧B↝A) (Ax here))
(cut (MP (A↝B⇒□A↝□B ⊢A∧B↝B) (Ax (there here)))

(⊢∧ ⇐ ((Ax (there here)) , (Ax here))))
⇦ : Π ⊢ □ A ∧ □ B ↝ □ (A ∧ B)
⇦ = deduction ⇐ MP (MP K (MP (A↝B⇒□A↝□B ⊢A↝B↝A∧B) (MP ⊢A∧B↝A (Ax

here))))
(MP ⊢A∧B↝B (Ax here))

A↝B⇒♢A↝♢B : ∀ {A B Π} → [] ⊢ A ↝ B → Π ⊢ ♢ A ↝ ♢ B
A↝B⇒♢A↝♢B x = deduction ⇐ (deduction ⇐
MP (Ax (there (here))) (MP (A↝B⇒□A↝□B (MP ⊢⟦A↝B⟧↝¬B↝¬A x)) (Ax here)))

A↔B⇒♢A↔♢B : ∀ {A B Π} → [] ⊢ A ↔ B → Π ⊢ ♢ A ↔ ♢ B
A↔B⇒♢A↔♢B x = ⊢∧ ⇐ (case ⊢∧ ⇒ x of λ {(fst , snd) → A↝B⇒♢A↝♢B fst ,
A↝B⇒♢A↝♢B snd})

⊢¬⟦A∧B⟧↔¬A∨¬B : ∀ {A B Π} → Π ⊢ ¬' (A ∧ B) ↔ ¬' A ∨ ¬' B
⊢¬⟦A∧B⟧↔¬A∨¬B {A} {B} {Π} = ⊢∧ ⇐ (⇨ , ⇦)

where
⇨ : Π ⊢ ¬' (A ∧ B) ↝ ¬' A ∨ ¬' B
⇨ = deduction ⇐ (deduction ⇐ MP (MP ⊢¬¬A↝A (Ax (there here)))
(MP ⊢¬¬A↝A (Ax here)))

⇦ : Π ⊢ ¬' A ∨ ¬' B ↝ ¬' (A ∧ B)
⇦ = deduction ⇐ (deduction ⇐ MP (MP (Ax (there here))
(MP ⊢A↝¬¬A (MP ⊢A∧B↝A (Ax here)))) (MP ⊢A∧B↝B (Ax here)))

L2 : ∀ {A B Π} → Π ⊢ □ (A ↝ B) ↝ (□ A ↝ □ B)
L2 = K

L4 : ∀ {Π A} → Π ⊢ □ (□ A ↝ A) ↝ □ A
L4 = L

⟦A∨¬'B⟧↝⟦A∧B∨¬'B⟧ : ∀ {A B Π} → Π ⊢ (A ∨ ¬' B) ↝ (A ∧ B ∨ ¬' B)
⟦A∨¬'B⟧↝⟦A∧B∨¬'B⟧ = deduction ⇐ (deduction ⇐ (deduction ⇐ (
(cut (MP C3 (Ax (there (there here))))

233

(cut (MP (Ax here) (Ax (there here)))
(cut (MP ⊢¬¬A↝A (Ax (there (there (there here)))))
(cut (MP (Ax here) (Ax (there here))) (MP (Ax here)
(Ax (there (there (there (there here)))))))))))))

All∈ : ∀ {ℓ₂} {P : Pred Fm ℓ₂} {L a} → a ∈ L → All P L → P a
All∈ (here' refl) (px ∷ ay) = px
All∈ (there' x) (px ∷ ay) = All∈ x ay

variable
ℓW ℓR ℓS : Level

module OrdSoundness
{W : Set lzero}
{R : Rel W lzero}
{S : Rel₃ W lzero}
{V : REL W Var lzero}
{M : O.Model W R S V}
(M,_⊩?_ : O.DecidableModel M)
(∈?S : Decidable₃ S)
where

open import OrdinaryVeltmanSemantics
using (Model; _,_⊩_; _,_⊮_; impl; rhd; bot; DecidableModel; _,_⊩*_)

open import OrdinaryVeltmanSemantics.Properties
using (⊩MP; ⊩¬; ⊮→¬⊩; ⊩□; ⊩♢; ⊮¬; module Extended; module Extended2)

open Extended M,_⊩?_ ∈?S
open Extended2 M,_⊩?_ ∈?S

soundness : ∀ {w A Π} → Π ⊢ A → M , w ⊩* Π → M , w ⊩ A
soundness {w} (C1 {A}) p = ⊩↝ ⇐ λ x → impl (inj₂ x)
soundness {w} (C2 {A} {B} {C}) p = ⊩↝ ⇐ λ x → ⊩↝ ⇐ λ y → ⊩↝ ⇐ λ z →

⊩MP (⊩MP x z) (⊩MP y z)
soundness {w} (C3 {A} {B}) p = ⊩↝ ⇐
λ {x → ⊩↝ ⇐ λ y → case x of λ { (impl (inj₁ x)) → ⊮¬ ⇒ x
; (impl (inj₂ z)) → ⊥-elim (⊮→¬⊩ (⊩¬ ⇒ z) y)}}

soundness {w} K p = ⊩K
soundness {w} L p = ⊩L
soundness {w} J1 p = ⊩J1
soundness {w} J2 p = ⊩J2
soundness {w} J3 p = ⊩J3
soundness {w} J4 p = ⊩J4
soundness {w} J5 p = ⊩J5
soundness {w} (MP x y) p = ⊩MP (soundness x p) (soundness y p)
soundness {w} (nec x) p = ⊩□ ⇐ λ {u} wRu → soundness x []
soundness {w} (Ax x) p = All∈ x p

module GenSoundness-All
{W : Set ℓW}

234

{S : REL₃ W W (Pred W ℓW) ℓS}
(T : ∀ {ℓW ℓS} (W : Set ℓW) → REL₃ W W (Pred W ℓW) ℓS → Set (lsuc ℓW

⊔ ℓS))
where
open import GeneralizedVeltmanSemantics.Properties using (module

PGeneric)
open PGeneric T
module Soundness

{W R S V}
{M : Model {lzero} {lzero} {lzero} W R S V}
(M,_*⊩?_ : MultiDecidableModel M)
(∈S? : Decidable₃ S)
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
(⊩J2 : ∀ {w A B C} → M , w ⊩ (A ▷ B ∧ B ▷ C) ↝ A ▷ C)
where

open Extended M,_*⊩?_ ∈S? ∈SV?
open Extended2 M,_*⊩?_ ∈S? ∈SV?

soundness : ∀ {w A Π} → Π ⊢ A → M , w ⊩* Π → M , w ⊩ A
soundness {w} (C1 {A}) p = ⊩↝ ⇐ λ x → impl (inj₂ x)
soundness {w} C2 p = ⊩↝ ⇐ λ x → ⊩↝ ⇐ λ y → ⊩↝ ⇐ λ z → ⊩MP (⊩MP x

z) (⊩MP y z)
soundness {w} C3 p = ⊩↝ ⇐ λ {x → ⊩↝ ⇐ λ y → case x of λ { (impl

(inj₁ x)) → ⊮¬ ⇒ x
; (impl (inj₂ z)) → ⊥-elim (⊮→¬⊩ (⊩¬ ⇒ z) y)}}

soundness {w} K p = ⊩K
soundness {w} L p = ⊩L
soundness {w} J1 p = ⊩J1
soundness {w} J2 p = ⊩J2
soundness {w} J3 p = ⊩J3
soundness {w} J4 p = ⊩J4
soundness {w} J5 p = ⊩J5
soundness {w} (MP x y) p = ⊩MP (soundness x p) (soundness y p)
soundness {w} (nec x) p = ⊩□ ⇐ λ {u} wRu → soundness x []
soundness {w} (Ax x) p = All∈ x p

module GenSoundness-L
{W R S V}
{M : G.Model {lzero} {lzero} {lzero} W R S V}
(M,_*⊩?_ : G.MultiDecidableModel M)
(∈S? : Decidable₃ S)
(∈SV? : ∀ {w u Y} → S w u Y → Decidable Y)
where
open import GeneralizedVeltmanSemantics.Properties using (module

Extended; module Extended2; module ExtendedT2; _,_⊩*_; _,_⊩_)
open import GeneralizedFrame using (module Trans-conditions)
open Trans-conditions using (Trans-L)

open ExtendedT2 M,_*⊩?_ ∈S? ∈SV?
open GenSoundness-All {W = W} {S = S} Trans-L using (module Soundness)

235

open Soundness M,_*⊩?_ ∈S? ∈SV? ⊩J2 renaming (soundness to s)

soundness : ∀ {w A Π} → Π ⊢ A → M , w ⊩* Π → M , w ⊩ A
soundness {w} A p = s A p

B.24. OrdinaryFrame
module OrdinaryFrame where

open import Agda.Builtin.Nat using (Nat; suc; _+_)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.List using (List)
open import Data.List.Relation.Unary.All using (All)
open import Data.Product using (Σ; proj₁; proj₂; _×_; _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Relation.Nullary using (yes; no; ¬_)
open import Function using (_∘_; case_of_; _$_)
open import Relation.Binary using (REL; Rel; Transitive; Reflexive)
renaming (Decidable to Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl;
subst; cong)
open import Relation.Nullary using (¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; {_}; _∩_;
⊆; Satisfiable)

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; var; ¬'_)
open import Base

private
variable
ℓW ℓR ℓS : Level

record Frame (W : Set ℓW) (R : Rel W ℓR) (S : Rel₃ W ℓS)
: Set (ℓW ⊔ ℓR ⊔ ℓS) where
constructor frame
field
witness : W
R-trans : Transitive R
R-noetherian : Noetherian R
Sw⊆R[w]² : ∀ {w u v} → S w u v → R w u × R w v
Sw-refl : ∀ {w u} → R w u → S w u u
Sw-trans : ∀ {w} → Transitive (S w)
R-Sw-trans : ∀ {w u v} → R w u → R u v → S w u v

B.25. OrdinaryVeltmanSemantics/Finite
module OrdinaryVeltmanSemantics.Finite where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)
open import Function.Bijection using (Bijective; Bijection)

236

open import Function.Surjection using (Surjective)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Fin using (Fin; fromℕ; inject₁; zero; suc; lower₁;
toℕ)
open import Data.Fin.Properties using (all?; any?; ¬∀⟶∃¬)
open import Data.List using (List; []; _∷_; map)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Relation.Unary.All using (All; _∷_; [])
open import Data.List.Relation.Unary.Any using (Any; here; there) renaming
(map to Any-map)
open import Data.Product using (∃; Σ; proj₁; proj₂; _×_) renaming (_,_
to _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive) renaming
(Decidable to Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl;
setoid; subst; subst₂; sym; cong; trans)
open import Relation.Binary.HeterogeneousEquality using (_≅_; ≅-to-
type-≡) renaming (subst to hsubst;
trans to htrans; sym to hsym; subst₂ to hsubst₂; refl to hrefl; cong

to hcong)
open import Relation.Nary using (substn)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Nullary.Negation using (¬∃⟶∀¬)
open import Relation.Unary using (Pred; Decidable; _∩_; _∪_; _⊆_; ∁)
renaming (_⇒_ to _P⇒_)
open import Relation.Unary.Properties using (_∩?_; _∪?_; _×?_; ∁?)

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; var; ⊤'; ¬'_; □_; ♢_;
∧; _∨_; car)
open import OrdinaryVeltmanSemantics using (Frame; Model; _,_⊮_; _,_⊩_;
impl;

var; rhd; bot; _*⊩_; _*⊮_; Valuation; model; DecidableModel)
open import OrdinaryVeltmanSemantics.Properties using (⊮→¬⊩; ⊩→¬⊮)
open import Base
open import OrdinaryFrame

private
variable
ℓW ℓR ℓS : Level

Finite : ∀ {W} {R} {S} → Pred (Frame {ℓW} {ℓR} {ℓS} W R S) ℓW
Finite {W = W} F = Σ Nat λ n → Bijection (setoid W) (setoid (Fin n))

module DecideModel

237

{W : Set ℓW}
{R : Rel W ℓR}
{S : Rel₃ W ℓR}
{V : REL W Var lzero}
(M : Model W R S V)
(fin : Finite (Model.F M))
(V? : Decidable₂ V)
(S? : Decidable₃ S)
(R? : Decidable₂ R) where
F = Model.F M
open Frame F

n : Nat
n = proj₁ fin

bij : Bijection (setoid W) (setoid (Fin n))
bij = proj₂ fin

f : W → Fin n
f w = Bijection.to bij ⟨$⟩ w

g : Fin n → W
g m = Surjective.from (Bijective.surjective (Bijection.bijective

bij)) ⟨$⟩ m

fg : ∀ x → f (g x) ≡ x
fg = Surjective.right-inverse-of (Bijective.surjective (Bijection.bijective

bij))

gf : ∀ x → g (f x) ≡ x
gf = Bijective.left-inverse-of (Bijection.bijective bij)

R' : Rel (Fin n) _
R' x y = R (g x) (g y)

R'? : Decidable₂ R'
R'? x y with R? (g x) (g y)
... | yes t = yes t
... | no n = no n

S' : Rel₃ (Fin n) _
S' x y z = S (g x) (g y) (g z)

S'? : Decidable₃ S'
S'? x y z with S? (g x) (g y) (g z)
... | yes p = yes p
... | no p = no p

fR : ∀ {w u} → R w u → R' (f w) (f u)
fR {w} {u} = subst₂ R (sym (gf w)) (sym (gf u))

238

fR2 : ∀ {w u} → R w u → R (g (f w)) (g (f u))
fR2 {w} {u} = subst₂ R (sym (gf w)) (sym (gf u))

R'-trans : Transitive R'
R'-trans = Frame.R-trans F

≡-subst₂-removable : ∀ {p a} {A : Set a} (R : Rel A p) {x y x' y'}
(eq1 : x ≡ y) (eq2 : x' ≡ y') z → subst₂ R eq1 eq2 z ≅ z

≡-subst₂-removable R₁ refl refl z = hrefl

g-chain : ∀ {a} → InfiniteChain R' a → InfiniteChain R (g a)
InfiniteChain.b (g-chain x) = g (InfiniteChain.b x)
InfiniteChain.a<b (g-chain x) = InfiniteChain.a<b x
InfiniteChain.tail (g-chain x) = g-chain (InfiniteChain.tail x)

R'-noetherian : Noetherian R'
R'-noetherian x = R-noetherian (g-chain x)

S'w⊆R[w]² : ∀ {w u v} → S' w u v → R' w u × R' w v
S'w⊆R[w]² = Frame.Sw⊆R[w]² F

S'w-refl : ∀ {w u} → R' w u → S' w u u
S'w-refl = Frame.Sw-refl F

S'w-trans : ∀ {w} → Transitive (S w)
S'w-trans = Frame.Sw-trans F

R'-S'w-trans : ∀ {w u v} → R' w u → R' u v → S' w u v
R'-S'w-trans = Frame.R-Sw-trans F

F' : Frame (Fin n) R' S'
F' = frame (f (Frame.witness F)) R'-trans R'-noetherian S'w⊆R[w]²

S'w-refl S'w-trans R'-S'w-trans

V' : Valuation F'
V' w x = V (g w) x

V'? : Decidable₂ V'
V'? x y with V? (g x) y
... | yes p = yes p
... | no p = no p

M' : Model (Fin n) R' S' V'
M' = model {V = V'} F'

g⊮ : ∀ {w A} → M' , w ⊮ A → M , g w ⊮ A
g⊩ : ∀ {w A} → M' , w ⊩ A → M , g w ⊩ A

g⊮ (var x) = var x
g⊮ (impl x y) = impl (g⊩ x) (g⊮ y)
g⊮ {w} (rhd {A} {B} (u , Ru , uA , snd)) = rhd (g u , Ru , g⊩ uA

239

, λ v → case snd (f v) of λ {
(inj₁ x) → inj₁ λ z → x (subst (S (g w) (g u)) (sym (gf _)) z) ;
(inj₂ y) → inj₂ (subst (M ,_⊮ B) (gf _) (g⊮ y))})

g⊮ bot = bot

g⊩ (var x) = var x
g⊩ (impl (inj₁ x)) = impl (inj₁ (g⊮ x))
g⊩ (impl (inj₂ y)) = impl (inj₂ (g⊩ y))
g⊩ (rhd {A} x) = rhd (λ {u} y → case x (aux y) of

λ { (inj₁ x) → inj₁ (subst (M ,_⊮ A) (gf u) (g⊮ x))
; (inj₂ (v , Sv , snd)) → inj₂ (g v , (aux' Sv , g⊩ snd))})
where
aux : ∀ {w u} → R (g w) u → R' w (f u)
aux = subst₂ R refl (sym (gf _))
aux' : ∀ {w u v} → S' w (f u) v → S (g w) u (g v)
aux' {w} {u} {v} = subst (λ a → S (g w) a (g v)) (gf u)

M',_⊩?D_ : Decidable₂ (M' ,_⊩_)
M',_⊮?D_ : Decidable₂ (M' ,_⊮_)
M',_⊩?_ : DecidableModel M'

M', w ⊩?D A with M', w ⊩? A
... | inj₁ p = yes p
... | inj₂ p = no (⊮→¬⊩ p)

M', w ⊮?D A with M', w ⊩? A
... | inj₁ p = no (⊩→¬⊮ p)
... | inj₂ p = yes p

M', w ⊩? var x with V'? w x
... | yes y = inj₁ (var y)
... | no n = inj₂ (var n)
M', w ⊩? ⊥' = inj₂ bot
M', w ⊩? (A ↝ B) with M', w ⊩? A | M', w ⊩? B
... | inj₂ y | b = inj₁ (impl (inj₁ y))
... | inj₁ x | inj₂ b = inj₂ (impl x b)
... | inj₁ x | inj₁ b = inj₁ (impl (inj₂ b))
M', w ⊩? (A ▷ B) = case A▷B of

λ { (yes p) → inj₁ (rhd (λ {u} r → case M', u ⊩? A of
λ { (inj₂ x) → inj₁ x
; (inj₁ y) → inj₂ (case p u of (

λ { (inj₁ (inj₁ x)) → ⊥-elim (x r)
; (inj₁ (inj₂ t)) → ⊥-elim (⊩→¬⊮ y t)
; (inj₂ t) → t}))})) ;

(no p) → inj₂ (rhd (case ¬∀⟶∃¬ n P' P? p of
λ { (u , snd) → u , (case aux P1? P2? snd of

λ { (p1 , p2) → case aux P11? P12? p1 of
λ { (fst , snd) → ¬¬-elim {u} {R' w} (R'? w) fst
, (case M', u ⊩? A of (

λ { (inj₁ x) → x ; (inj₂ y) → ⊥-elim (snd y)}))

240

, λ v → case aux2 (S'? w u) (M',_⊩?D B) (¬∃⟶∀¬ p2 v) of
λ { (inj₁ x) → inj₁ x ; (inj₂ y) → inj₂ (case M', v ⊩?

B of (
λ { (inj₁ x) → ⊥-elim (y x)

; (inj₂ y) → y})) }}})})) }
where
P11 P12 P2 : Pred (Fin n) _
P11 = ∁ (R' w)
P12 = M' ,_⊮ A
P1 = P11 ∪ P12
P2 = (λ u → ∃ (λ v → S' w u v × M' , v ⊩ B))
P1? : Decidable P1
P11? : Decidable P11
P11? = ∁? (R'? w)
P12? : Decidable P12
P12? = M',_⊮?D A
P1? = P11? ∪? P12?
P2? : Decidable P2
P2? = λ u → any? (S'? w u ∩? (M',_⊩?D B))
P' : Pred (Fin n) _
P' = P1 ∪ P2

P? : Decidable P'
P? = P1? ∪? P2?

aux : ∀ {u} → {P Q : Pred (Fin n) _} → Decidable P → Decidable Q
→ ¬ ((P ∪ Q) u) → ¬ P u × ¬ Q u

aux {u} P? Q? ¬u = (λ x → ¬u (inj₁ x)) , λ x → ¬u (inj₂ x)

aux2 : ∀ {u} → {P Q : Pred (Fin n) _} → Decidable P → Decidable Q
→ ¬ ((P ∩ Q) u) → ¬ P u ⊎ ¬ Q u

aux2 {u} P? Q? ¬u with P? u | Q? u
... | no p | _ = inj₁ p
... | yes p | no n = inj₂ (λ x → ¬u (p , x))
... | yes p | yes n = inj₁ (λ x → ¬u (x , n))

¬¬-elim : ∀ {u} → {P : Pred (Fin n) _} → Decidable P → ¬ ¬ P u → P u
¬¬-elim {u} P? k with P? u
... | yes p = p
... | no p = ⊥-elim (k p)

A▷B : Dec (∀ u → P' u)
A▷B = all? P?

-- Decides the original model
M,_⊩?_ : DecidableModel M
M, w ⊩? A with M', f w ⊩? A
... | inj₁ p = inj₁ (subst (M ,_⊩ A) (gf _) (g⊩ p))
... | inj₂ p = inj₂ (subst (M ,_⊮ A) (gf _) (g⊮ p))

241

B.26. OrdinaryVeltmanSemantics/Properties/M
module OrdinaryVeltmanSemantics.Properties.M where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product using (Σ; proj₁; proj₂; _×_) renaming (_,_ to
,)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_})
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym)

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; var; ⊤'; ¬'_; □_; ♢_;
∧; _∨_; car)
open import OrdinaryVeltmanSemantics using (Frame; Model; _,_⊮_; _,_⊩_;
impl; var; rhd; bot; _*⊩_; _*⊮_; Valuation; model; DecidableModel)
open import OrdinaryVeltmanSemantics.Properties using (module Extended;
⊩∧; ⊩□; R-Irreflexive
; ⊩→¬⊮)

open import Base using (_⇒_; _⇐_; Decidable₃)
import Principles as P

private
variable

ℓW ℓR ℓS : Level

M-condition : ∀ {W R S} → Frame {ℓW} {ℓR} {ℓS} W R S → Set (ℓW ⊔ ℓR ⊔
ℓS)
M-condition {W = W} {R = R} {S = S} F = ∀ {w x y z} → S w x y → R y z
→ R x z
where open Frame F

module M-soundness
{W R S V}
{M : Model {ℓW} {ℓR} {ℓS} W R S V}
(M,_⊩?_ : DecidableModel M)
(∈?S : Decidable₃ S)
where

242

open Model M
open Frame F
open Extended M,_⊩?_ ∈?S

⊩M : ∀ {w A B C} → M-condition (Model.F M) → M , w ⊩ A ▷ B ↝ (A ∧ □
C) ▷ (B ∧ □ C)

⊩M {w} {A} {B} {C} c = ⊩↝ ⇐ λ A▷B → ⊩▷ ⇐ λ Rwu x → case ⊩∧ ⇒ x of λ
{ (uA , u□C) →

case (⊩▷ ⇒ A▷B) Rwu uA of λ { (z , Swuz , snd) → z , Swuz , (⊩∧ ⇐
(snd , (⊩□ ⇐

(λ {v} Rzv → (⊩□ ⇒ u□C) (c Swuz Rzv)))))}}

module M-completeness
{W R S}
{F : Frame {lzero} {lzero} {lzero} W R S}
(_≟_ : Decidable₂ {_} {W} _≡_)
(R? : Decidable₂ R)
(∈?S : Decidable₃ S)
(dec : ∀ V → DecidableModel (model {V = V} F))
where
open Frame F

F*⊩M : Set _
F*⊩M = P.M (F *⊩_)

-- If a frame satisfies the M principle for any valuation, then it
must

-- satisfy the M condition.
⊩M : F⊩M → M-condition F
*⊩M f {w} {w₁} {w₂} {w₃} Sww₁w₂ Rw₂w₃ with R? w₁ w₃
... | yes y = y
... | no ¬Rw₁w₃ =
-- ⊥-elim (case (⊩▷ ⇒ (⊩↝ ⇒ (f (var a) (var b) (var c)) V w) w⊩A▷B)

Rww₁ w₁⊩A∧□C of
⊥-elim (case (⊩▷ ⇒ (⊩↝ ⇒ f V w) w⊩A▷B) Rww₁ w₁⊩A∧□C of
λ { (u , Sww₁w₂ , w₂⊩B∧□C) → case only-w₂⊩B (proj₁ (⊩∧ ⇒ w₂⊩B∧□C)

) of
λ {refl → let chk : model {V = V} F , w₂ ⊩ □ var c

chk = proj₂ (⊩∧ ⇒ w₂⊩B∧□C)
in ⊩→¬⊮ ((⊩□ ⇒ chk) Rw₂w₃) (var w₃⊮C)}

})
where
pattern a = 0
pattern b = 1
pattern c = 2
V : Valuation F
V z v with z ≟ w₁
... | yes refl = case v of λ { a → ⊤ ; (suc x) → ⊥}
... | no _ with z ≟ w₂
... | yes refl = case v of λ { a → ⊥ ; b → ⊤ ; (suc (suc x)) → ⊥}

243

... | no _ with z ≟ w₃

... | yes refl = ⊥

... | no _ with R? w₁ z

... | yes y = case v of λ {a → ⊥ ; b → ⊥ ; (suc (suc x)) → ⊤}

... | no _ = ⊥
open Extended (dec V) ∈?S
Rww₁ : R w w₁
Rww₁ = proj₁ (Sw⊆R[w]² Sww₁w₂)
w₃⊮C : c ∉ V w₃
w₃⊮C x with w₃ ≟ w₁
... | yes refl = x
... | no _ with w₃ ≟ w₂
... | yes refl = x
... | no _ with w₃ ≟ w₃
... | yes refl = x
... | no n = n refl
only-w₁⊩A : ∀ {u} → model {V = V} F , u ⊩ var a → u ≡ w₁
only-w₁⊩A {u} (var x) with u ≟ w₁
... | yes refl = refl
... | no _ with u ≟ w₂
... | yes refl = ⊥-elim x
... | no _ with u ≟ w₃
... | yes refl = ⊥-elim x
... | no _ with R? w₁ u
... | yes r = ⊥-elim x
... | no _ = ⊥-elim x
only-w₂⊩B : ∀ {u} → model {V = V} F , u ⊩ var b → u ≡ w₂
only-w₂⊩B {u} (var x) with u ≟ w₁
... | yes refl = ⊥-elim x
... | no _ with u ≟ w₂
... | yes refl = refl
... | no _ with u ≟ w₃
... | yes refl = ⊥-elim x
... | no _ with R? w₁ u
... | yes r = ⊥-elim x
... | no nr = ⊥-elim x
w₂⊩B : b ∈ V w₂
w₂⊩B with w₂ ≟ w₁
... | yes refl = ⊥-elim (¬Rw₁w₃ Rw₂w₃)
... | no _ with w₂ ≟ w₂
... | yes refl = tt
... | no n = ⊥-elim (n refl)
w⊩A▷B : model {V = V} F , w ⊩ var a ▷ var b
w⊩A▷B = ⊩▷ ⇐ λ {u} x uA → case only-w₁⊩A uA of λ { refl → w₂ ,

Sww₁w₂ , var w₂⊩B}
w₁⊩A : a ∈ V w₁
w₁⊩A with w₁ ≟ w₁
... | yes refl = tt
... | no n = ⊥-elim (n refl)
w₁⊩□C' : ∀ {u} → R w₁ u → c ∈ V u
w₁⊩□C' {u} x with u ≟ w₁

244

... | yes refl = ⊥-elim (R-Irreflexive F refl x)

... | no _ with u ≟ w₂

... | yes refl = ¬Rw₁w₃ (R-trans x Rw₂w₃)

... | no _ with u ≟ w₃

... | yes refl = ¬Rw₁w₃ x

... | no _ with R? w₁ u

... | yes r = tt

... | no nr = nr x
w₁⊩□C : model {V = V} F , w₁ ⊩ □ var c
w₁⊩□C = ⊩□ ⇐ λ Rw₁v → var (w₁⊩□C' Rw₁v)
w₁⊩A∧□C : model {V = V} F , w₁ ⊩ var a ∧ □ var c
w₁⊩A∧□C = ⊩∧ ⇐ (var w₁⊩A , w₁⊩□C)

B.27. OrdinaryVeltmanSemantics/Properties/M0

module OrdinaryVeltmanSemantics.Properties.M₀ where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product using (Σ; proj₁; proj₂; _×_) renaming (_,_ to
,)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_})
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym)

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; var; ⊤'; ¬'_; □_; ♢_;
∧; _∨_; car)
open import OrdinaryVeltmanSemantics using (Frame; Model; _,_⊮_; _,_⊩_;
impl; var; rhd; bot; _*⊩_; _*⊮_; Valuation; model; DecidableModel)
open import OrdinaryVeltmanSemantics.Properties using (module Extended;
⊩∧; ⊩□;
R-Irreflexive; ⊩♢; ⊩→¬⊮; ⊩MP)

open import Base using (_⇒_; _⇐_; Decidable₃)
import Principles as P

private
variable

ℓW ℓR ℓS : Level

245

M₀-condition : ∀ {W R S} → Frame {ℓW} {ℓR} {ℓS} W R S → Set (ℓW ⊔ ℓR ⊔
ℓS)
M₀-condition {W = W} {R = R} {S = S} F = ∀ {w x y z} → R w x → R x y →
S w y z → (∀ {u} → R z u → R x u)

where open Frame F

module M₀-soundness
{W R S V}
{M : Model {ℓW} {ℓR} {ℓS} W R S V}
(M,_⊩?_ : DecidableModel M)
(S? : Decidable₃ S)
where

open Model M
open Frame F
open Extended M,_⊩?_ S?

⊩M₀ : ∀ {w} → M₀-condition (Model.F M) → P.M₀ (M , w ⊩_)
⊩M₀ {w} c {A} {B} = ⊩↝ ⇐ λ A▷B → ⊩▷ ⇐ λ { {x} Rwx x∧ →

case ⊩∧ ⇒ x∧ of
λ { (x♢A , x□C) → case ⊩♢ ⇒ x♢A of λ { (y , Rxy , yA) →
case (⊩▷ ⇒ A▷B) (R-trans Rwx Rxy) yA of

λ { (z , Swyz , zB) → z , Sw-trans (R-Sw-trans Rwx Rxy) Swyz ,
⊩∧ ⇐ (zB , (⊩□ ⇐ (λ {p → (⊩□ ⇒ x□C) (c Rwx Rxy Swyz p)})))}}}}

module M₀-cond
{W R S}
{F : Frame {lzero} {lzero} {lzero} W R S}
(dec : ∀ V → DecidableModel (model {V = V} F))
(S? : Decidable₃ S)
where
open Frame F

F*⊩M₀ : Set₁
F*⊩M₀ = P.M₀ (F *⊩_)

pattern a = 0
pattern b = 1
pattern c = 2

⊩M₀ : F⊩M₀ → M₀-condition F
*⊩M₀ ⊩M₀ {w} {x} {y} {z} Rwx Rxy Swyz =

case (⊩▷ ⇒ ⊩MP (⊩M₀ Val w) w⊩a▷b) Rwx x⊩♢a∧□c of
λ { (z' , Swxz , snd) → case proj₁ (⊩∧ ⇒ snd) of
λ { (var refl) → (λ {Rzu → case (⊩□ ⇒ proj₂ (⊩∧ ⇒ snd)) Rzu of
λ {(var x₁) → x₁}})} }
where
Val : Valuation F
Val w a = w ≡ y
Val w b = w ≡ z

246

Val w c = R x w
Val w (suc (suc (suc _))) = ⊥
M = model {V = Val} F
open Extended {M = M} (dec Val) S?
[a] : ∀ {w} → M , w ⊩ var a ⇔ w ≡ y
[a] = equivalence (λ { (var x) → x}) λ {z → var z}
w⊩a▷b : M , w ⊩ var a ▷ var b
w⊩a▷b = ⊩▷ ⇐ λ { Rwy ya → case [a] ⇒ ya of
λ {refl → z , (Swyz , (var refl))}}

x⊩♢a∧□c : M , x ⊩ ♢ var a ∧ □ var c
x⊩♢a∧□c = ⊩∧ ⇐ (⊩♢ ⇐ (y , Rxy , var refl) , ⊩□ ⇐
λ {x₁ → var x₁})

B.28. OrdinaryVeltmanSemantics/Properties/P0

module OrdinaryVeltmanSemantics.Properties.P₀ where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product using (Σ; proj₁; proj₂; _×_) renaming (_,_ to
,)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_})
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym)

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; var; ⊤'; ¬'_; □_; ♢_;
∧; _∨_; car)
open import OrdinaryVeltmanSemantics using (Frame; Model; _,_⊮_; _,_⊩_;
impl;
var; rhd; bot; _*⊩_; _*⊮_; Valuation; model; DecidableModel)

open import OrdinaryVeltmanSemantics.Properties using (module Extended;
⊩∧; ⊩□;
R-Irreflexive; ⊩♢; ⊩→¬⊮; ⊩MP)

open import Base using (_⇒_; _⇐_; Decidable₃)
import Principles as P

private
variable

ℓW ℓR ℓS : Level

247

P₀-condition : ∀ {W R S} → Frame {ℓW} {ℓR} {ℓS} W R S → Set (ℓW ⊔ ℓR ⊔
ℓS)
P₀-condition {W = W} {R = R} {S = S} F = ∀ {w x y z u} → R w x → R x y
→ S w y z → R z u → S x y u

where open Frame F

module P₀-soundness
{W R S V}
{M : Model {ℓW} {ℓR} {ℓS} W R S V}
(M,_⊩?_ : DecidableModel M)
(S? : Decidable₃ S)
where

open Model M
open Frame F
open Extended M,_⊩?_ S?

⊩P₀ : ∀ {w} → P₀-condition (Model.F M) → P.P₀ (M , w ⊩_)
⊩P₀ {w} c {A} {B} = ⊩↝ ⇐ λ A▷♢B → ⊩□ ⇐ λ { {x} Rwx → ⊩▷ ⇐ λ { {y} Rxy

y⊩A
→ case (⊩▷ ⇒ A▷♢B) (R-trans Rwx Rxy) y⊩A of λ { (z , Swyz , z⊩♢B)

→ case ⊩♢ ⇒ z⊩♢B of
λ { (u , Rzu , uB) → u , (c Rwx Rxy Swyz Rzu) , uB}}}}

module P₀-cond
{W R S}
{F : Frame {lzero} {lzero} {lzero} W R S}
(dec : ∀ V → DecidableModel (model {V = V} F))
(S? : Decidable₃ S)
where
open Frame F

F*⊩P₀ : Set₁
F*⊩P₀ = P.P₀ (F *⊩_)

pattern a = 0
pattern b = 1

⊩P₀ : F⊩P₀ → P₀-condition F
*⊩P₀ ⊩P₀ {w} {x} {y} {z} {u} Rwx Rxy Swyz Rzu = case (⊩▷ ⇒ x⊩a▷b) Rxy

([a] ⇐ refl) of
λ { (z' , Sxyz , z⊩b) → case [b] ⇒ z⊩b of λ {refl → Sxyz}}
where
Val : Valuation F
Val w a = w ≡ y
Val w b = w ≡ u
Val w (suc (suc _)) = ⊥
M = model {V = Val} F
open Extended {M = M} (dec Val) S?

248

[a] : ∀ {w} → M , w ⊩ var a ⇔ w ≡ y
[a] = equivalence (λ { (var x) → x}) λ {z → var z}
[b] : ∀ {w} → M , w ⊩ var b ⇔ w ≡ u
[b] = equivalence (λ { (var x) → x}) λ {z → var z}
w⊩a▷♢b : M , w ⊩ var a ▷ ♢ var b
w⊩a▷♢b = ⊩▷ ⇐ λ { {x} Rwx x⊩a → case [a] ⇒ x⊩a of
λ { refl → z , Swyz , ⊩♢ ⇐ (u , Rzu , [b] ⇐ refl)} }

w⊩□a▷b : M , w ⊩ □ (var a ▷ var b)
w⊩□a▷b = ⊩MP (⊩P₀ Val w) w⊩a▷♢b
x⊩a▷b : M , x ⊩ var a ▷ var b
x⊩a▷b = (⊩□ ⇒ w⊩□a▷b) Rwx

B.29. OrdinaryVeltmanSemantics/Properties/R
module OrdinaryVeltmanSemantics.Properties.R where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product using (Σ; proj₁; proj₂; _×_) renaming (_,_ to
,)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable; Satisfiable;
⊆; _∩_; {_})
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl;
subst; trans; sym)

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; var; ⊤'; ¬'_; □_; ♢_;
∧; _∨_; car)
open import OrdinaryVeltmanSemantics using (Frame; Model; _,_⊮_; _,_⊩_;
impl;
var; rhd; bot; _*⊩_; _*⊮_; Valuation; model; DecidableModel)

open import OrdinaryVeltmanSemantics.Properties using (module Extended;
⊩∧; ⊩□;
R-Irreflexive; ⊩♢; ⊩→¬⊮; ⊩MP)

open import Base using (_⇒_; _⇐_; Decidable₃)
import Principles as P

private
variable

ℓW ℓR ℓS : Level

249

R-condition : ∀ {W R S} → Frame {ℓW} {ℓR} {ℓS} W R S → Set (ℓW ⊔ ℓR ⊔
ℓS)
R-condition {W = W} {R = R} {S = S} F = ∀ {w x y z u} → R w x → R x y
→ S w y z → R z u → S x y u

where open Frame F

module R-soundness
{W R S V}
{M : Model {ℓW} {ℓR} {ℓS} W R S V}
(M,_⊩?_ : DecidableModel M)
(S? : Decidable₃ S)
where

open Model M
open Frame F
open Extended M,_⊩?_ S?

⊩R : ∀ {w} → R-condition (Model.F M) → P.R (M , w ⊩_)
⊩R {w} c {A} {B} = ⊩↝ ⇐ λ A▷B → ⊩▷ ⇐ λ { {x} Rwx x⊩ → case ⊩◁ ⇒ x⊩ of

λ { (y , Rxy , yA , snd) → case (⊩▷ ⇒ A▷B) (R-trans Rwx Rxy) yA of
λ { (z , Swyz , z⊩B) → z , Sw-trans (R-Sw-trans Rwx Rxy) Swyz ,

⊩∧ ⇐ (z⊩B , ⊩□ ⇐
λ { {u} Rzu → snd (c Rwx Rxy Swyz Rzu)})}}}

module R-cond
{W R S}
{F : Frame {lzero} {lzero} {lzero} W R S}
(dec : ∀ V → DecidableModel (model {V = V} F))
(S? : Decidable₃ S)
where
open Frame F

F*⊩R : Set₁
F*⊩R = P.R (F *⊩_)

pattern a = 0
pattern b = 1
pattern c = 2

⊩R : F⊩R → R-condition F
*⊩R ⊩R {w} {x} {y} {z} {u} Rwx Rxy Swyz Rzu = case (⊩▷ ⇒ (⊩MP (⊩R Val

w) w⊩a▷b)) Rwx x⊩¬a▷¬c of
λ { (z' , Swxz , snd) → case ⊩∧ ⇒ snd of
λ { (fst , snd) → case [b] ⇒ fst of λ {refl → [c] ⇒ (⊩□ ⇒ snd)

Rzu}}}
where
Val : Valuation F
Val w a = w ≡ y
Val w b = w ≡ z
Val w c = S x y w

250

Val w (suc (suc (suc _))) = ⊥
M = model {V = Val} F
open Extended {M = M} (dec Val) S?
[a] : ∀ {w} → M , w ⊩ var a ⇔ w ≡ y
[a] = equivalence (λ { (var x) → x}) λ {z → var z}
[b] : ∀ {w} → M , w ⊩ var b ⇔ w ≡ z
[b] = equivalence (λ { (var x) → x}) λ {z → var z}
[c] : ∀ {w} → M , w ⊩ var c ⇔ S x y w
[c] = equivalence (λ { (var x) → x}) λ {z → var z}
w⊩a▷b : M , w ⊩ var a ▷ var b
w⊩a▷b = ⊩▷ ⇐ λ { Rwy y → case [a] ⇒ y of λ {refl → z , Swyz , var

refl}}
x⊩¬a▷¬c : M , x ⊩ ¬' (var a ▷ ¬' (var c))
x⊩¬a▷¬c = ⊩◁ ⇐ (y , Rxy , var refl , λ { Sxyv → var Sxyv})

B.30. OrdinaryVeltmanSemantics/Properties
module OrdinaryVeltmanSemantics.Properties where

open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)

open import Agda.Builtin.Nat using (Nat; suc; zero)
open import Agda.Builtin.Unit using (⊤; tt)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product renaming (_,_ to _,_)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function using (_∘_; const; case_of_; id)
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (REL; Rel; Transitive)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable)
open import Relation.Binary using (Irreflexive) renaming (Decidable to
Decidable₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; var; ⊤'; ¬'_; □_; ♢_;
∧; _∨_; car)
open import OrdinaryVeltmanSemantics
open import Base

private
variable

ℓW ℓR ℓS : Level
W : Set ℓW
R : Rel W ℓR
S : Rel₃ W ℓS
V : REL W Var lzero

module _
{M : Model W R S V} where

251

open Model M
open Frame F

⊩⊥ : ∀ {w} → ¬ (M , w ⊩ ⊥')
⊩⊥ = λ ()

⊮→¬⊩ : ∀ {w A} → M , w ⊮ A → ¬ (M , w ⊩ A)
⊮→¬⊩ (var x) (var x₂) = x x₂
⊮→¬⊩ (impl x y) (impl (inj₁ z)) = ⊮→¬⊩ z x
⊮→¬⊩ (impl x y) (impl (inj₂ z)) = ⊮→¬⊩ y z
⊮→¬⊩ (rhd (u' , wRu' , u'⊩A , snd)) (rhd z) with z wRu'
... | inj₁ u'⊮A with snd u'
... | inj₁ x = x (Sw-refl wRu')
... | inj₂ y = ⊮→¬⊩ u'⊮A u'⊩A
⊮→¬⊩ (rhd (u' , wRu' , mm , snd)) (rhd z) | inj₂ (v , u'Sv , vB) with

snd v
... | inj₁ ¬u'Sv = ¬u'Sv u'Sv
... | inj₂ r = ⊮→¬⊩ r vB

⊩→¬⊮ : ∀ {w A} → M , w ⊩ A → ¬ (M , w ⊮ A)
⊩→¬⊮ x y = ⊮→¬⊩ y x

⊩MP : ∀ {w A B} → M , w ⊩ A ↝ B → M , w ⊩ A → M , w ⊩ B
⊩MP (impl (inj₁ x)) y = ⊥-elim (⊩→¬⊮ y x)
⊩MP (impl (inj₂ x)) y = x

⊩¬ : ∀ {w A} → (M , w ⊩ ¬' A) ⇔ (M , w ⊮ A)
⊩¬ {w} {A} = equivalence ⇨ ⇦

where ⇨ : M , w ⊩ ¬' A → M , w ⊮ A
⇨ (impl (inj₁ x)) = x
⇦ : M , w ⊮ A → M , w ⊩ ¬' A
⇦ (var x) = impl (inj₁ (var x))
⇦ (impl x x₁) = impl (inj₁ (impl x x₁))
⇦ (rhd x) = impl (inj₁ (rhd x))
⇦ bot = impl (inj₁ bot)

⊩⊤ : ∀ {w} → M , w ⊩ ⊤'
⊩⊤ = impl (inj₁ bot)

⊮⊤ : ∀ {w} → ¬ (M , w ⊮ ⊤')
⊮⊤ (impl x x₁) = ⊩→¬⊮ x x₁

⊮¬ : ∀ {w A} → M , w ⊮ ¬' A ⇔ M , w ⊩ A
⊮¬ {w} {A} = equivalence ⇨ ⇦

where
⇨ : M , w ⊮ ¬' A → M , w ⊩ A
⇨ (impl x x₁) = x
⇦ : M , w ⊩ A → M , w ⊮ ¬' A
⇦ x = impl x bot

⊩¬¬ : ∀ {w A} → M , w ⊩ ¬' ¬' A ⇔ M , w ⊩ A

252

⊩¬¬ {w} {A} = equivalence ⇨ ⇦
where
⇨ : M , w ⊩ ¬' ¬' A → M , w ⊩ A
⇨ (impl (inj₁ (impl x x₁))) = x
⇦ : M , w ⊩ A → M , w ⊩ ¬' ¬' A
⇦ x = impl (inj₁ (impl x bot))

⊮¬¬ : ∀ {w A} → M , w ⊮ ¬' ¬' A ⇔ M , w ⊮ A
⊮¬¬ {w} {A} = equivalence ⇨ ⇦

where
⇨ : M , w ⊮ ¬' ¬' A → M , w ⊮ A
⇨ x = ⊩¬ ⇒ (⊮¬ ⇒ x)
⇦ : M , w ⊮ A → M , w ⊮ ¬' ¬' A
⇦ x = ⊮¬ ⇐ (⊩¬ ⇐ x)

⊩∧ : ∀ {w A B} → M , w ⊩ A ∧ B ⇔ (M , w ⊩ A × M , w ⊩ B)
⊩∧ {w} {A} {B} = equivalence ⇨ ⇦

where
⇨ : M , w ⊩ A ∧ B → M , w ⊩ A × M , w ⊩ B
⇨ (impl (inj₁ (impl x (impl x₁ y)))) = x , x₁
⇦ : M , w ⊩ A × M , w ⊩ B → M , w ⊩ A ∧ B
⇦ (fst , snd) = impl (inj₁ (impl fst (impl snd bot)))

⊮∧ : ∀ {w A B} → M , w ⊮ A ∧ B ⇔ (M , w ⊮ A ⊎ M , w ⊮ B)
⊮∧ {w} {A} {B} = equivalence ⇨ ⇦

where
⇨ : M , w ⊮ A ∧ B → (M , w ⊮ A ⊎ M , w ⊮ B)
⇨ (impl (impl (inj₁ x)) x₁) = inj₁ x
⇨ (impl (impl (inj₂ (impl (inj₁ x)))) x₁) = inj₂ x
⇦ : (M , w ⊮ A ⊎ M , w ⊮ B) → M , w ⊮ A ∧ B
⇦ (inj₁ x) = impl (impl (inj₁ x)) bot
⇦ (inj₂ y) = impl (impl (inj₂ (⊩¬ ⇐ y))) bot

⊩∨ : ∀ {w A B} → M , w ⊩ A ∨ B ⇔ (M , w ⊩ A ⊎ M , w ⊩ B)
⊩∨ {w} {A} {B} = equivalence ⇨ ⇦

where
⇨ : M , w ⊩ A ∨ B → (M , w ⊩ A ⊎ M , w ⊩ B)
⇨ (impl (inj₁ (impl x x₁))) = inj₁ x
⇨ (impl (inj₂ y)) = inj₂ y
⇦ : (M , w ⊩ A ⊎ M , w ⊩ B) → M , w ⊩ A ∨ B
⇦ (inj₁ x) = impl (inj₁ (⊮¬ ⇐ x))
⇦ (inj₂ y) = impl (inj₂ y)

⊩□ : ∀ {w A} → M , w ⊩ □ A ⇔ (∀ {v} → R w v → M , v ⊩ A)
⊩□ {w} {A} = equivalence ⇨ ⇦

where
⇨ : M , w ⊩ □ A → (∀ {v} → R w v → M , v ⊩ A)
⇨ (rhd f) wRv with f wRv
... | inj₁ k = ⊮¬ ⇒ k
⇦ : (∀ {v} → R w v → M , v ⊩ A) → M , w ⊩ □ A
⇦ x = rhd λ wRu → inj₁ (⊮¬ ⇐ (x wRu))

253

⊮□ : ∀ {w A} → M , w ⊮ □ A ⇔ (∃[u] (R w u × M , u ⊮ A))
⊮□ {w} {A} = equivalence ⇨ ⇦

where
⇨ : M , w ⊮ □ A → (Σ (W) λ u → R w u × M , u ⊮ A)
⇨ (rhd (u , wRu , u⊩¬A , snd)) = u , wRu , ⊩¬ ⇒ u⊩¬A
⇦ : (Σ (W) λ u → R w u × M , u ⊮ A) → M , w ⊮ □ A
⇦ (u , wRu , u⊮A) = rhd (u , (wRu , ⊩¬ ⇐ u⊮A , λ v → inj₂ bot))

⊩♢ : ∀ {w A} → M , w ⊩ ♢ A ⇔ (Σ (W) λ u → R w u × M , u ⊩ A)
⊩♢ {w} {A} = equivalence ⇨ ⇦

where
⇨ : M , w ⊩ ♢ A → Σ (W) λ u → R w u × M , u ⊩ A
⇨ (impl (inj₁ (rhd (u , m , u⊩¬¬A , snd)))) = u , m , ⊩¬¬ ⇒ u⊩¬¬A
⇦ : (Σ (W) λ u → R w u × M , u ⊩ A) → M , w ⊩ ♢ A
⇦ (u , wRu , snd) = impl (inj₁ (rhd (u , (wRu , ⊩¬¬ ⇐ snd , λ _ →

inj₂ bot))))

⊮♢ : ∀ {w A} → M , w ⊮ ♢ A ⇔ (∀ {u} → R w u → M , u ⊮ A)
⊮♢ {w} {A} = equivalence ⇨ ⇦
where
⇨ : M , w ⊮ ♢ A → (∀ {u} → R w u → M , u ⊮ A)
⇨ (impl (rhd x) y) wRu with x wRu
... | inj₁ u⊮¬¬A = ⊮¬¬ ⇒ u⊮¬¬A
⇦ : (∀ {u} → R w u → M , u ⊮ A) → M , w ⊮ ♢ A
⇦ x = impl (rhd (λ wRu → inj₁ (⊮¬¬ ⇐ (x wRu)))) bot

⊩4' : ∀ {w A} → M , w ⊩ □ A → M , w ⊩ □ □ A
⊩4' (rhd x) = ⊩□ ⇐ λ {u} wRu → rhd (λ {v} uRv →
case x {v} (R-trans wRu uRv) of λ { (inj₁ x) → inj₁ x})

⊩↝⇨ : ∀ {w A B} → M , w ⊩ A ↝ B → M , w ⊩ A → M , w ⊩ B
⊩↝⇨ (impl (inj₁ x)) y = ⊥-elim (⊮→¬⊩ x y)
⊩↝⇨ (impl (inj₂ b)) y = b

⊩▷⇨ : ∀ {w A B} → M , w ⊩ A ▷ B → (∀ {u} → R w u → M , u ⊩ A → Σ (W)
λ v → (S) w u v × M , v ⊩ B)

⊩▷⇨ (rhd x) {u} wRu uA with x wRu
⊩▷⇨ {M} (rhd x) {u} wRu uA | inj₁ x₁ = u , (Sw-refl wRu , ⊥-elim (⊩→¬⊮

uA x₁))
⊩▷⇨ (rhd x) {u} wRu uA | inj₂ (fst , fst₁ , snd) = fst , (fst₁ , snd)

R-Irreflexive : Frame W R S → Irreflexive _≡_ R
R-Irreflexive {R = R} F {x} refl Rxx = R-noetherian (infiniteRefl Rxx)

where open Frame F

-- This module contains the properties that can be proved with the
assumption
-- that we have a procedure to decide M , w ⊩ A
module Extended

{M : Model {ℓW} {ℓR} {ℓS} W R S V}

254

(M,_⊩?_ : DecidableModel M)
(∈S? : Decidable₃ (S))
where
open Frame (Model.F M)

⊩↝ : ∀ {w A B} → M , w ⊩ A ↝ B ⇔ (M , w ⊩ A → M , w ⊩ B)
⊩↝ {w} {A} {B} = equivalence ⊩↝⇨ ⇦

where
⇦ : (M , w ⊩ A → M , w ⊩ B) → M , w ⊩ A ↝ B
⇦ x with M, w ⊩? A
... | inj₁ z = impl (inj₂ (x z))
... | inj₂ y = impl (inj₁ y)

⊩▷ : ∀ {w A B} → M , w ⊩ A ▷ B ⇔
(∀ {u} → R w u → M , u ⊩ A → Σ (W) λ v → (S) w u v × M , v ⊩ B)

⊩▷ {w} {A} {B} = equivalence ⊩▷⇨ ⇦
where
⇦ : (∀ {u} → R w u → M , u ⊩ A → Σ W λ v → S w u v × M , v ⊩ B) → M

, w ⊩ A ▷ B
⇦ x = rhd (λ {u} wRu → [(λ x₁ → inj₂ (x wRu x₁)) , inj₁] (M, u

⊩? A))

⊩4 : ∀ {w A} → M , w ⊩ □ A ↝ □ □ A
⊩4 = ⊩↝ ⇐ ⊩4'

⊩⇔¬⊮ : ∀ {w A} → M , w ⊩ A ⇔ (¬ M , w ⊮ A)
⊩⇔¬⊮ {w} {A} = equivalence ⊩→¬⊮ ⇦

where
⇦ : (M , w ⊮ A → ⊥) → M , w ⊩ A
⇦ x = [id , (λ y → ⊥-elim (x y))] (M, w ⊩? A)

⊮⇔¬⊩ : ∀ {w A} → M , w ⊮ A ⇔ (¬ M , w ⊩ A)
⊮⇔¬⊩ {w} {A} = equivalence ⊮→¬⊩ ⇦

where
⇦ : ¬ M , w ⊩ A → M , w ⊮ A
⇦ x = [(λ y → ⊥-elim (x y)) , id] (M, w ⊩? A)

⊮▷ : ∀ {w A B} → M , w ⊮ A ▷ B ⇔ Σ W λ x → R w x × M , x ⊩ A
× (∀ {z} → S w x z → M , z ⊮ B)

⊮▷ {w} {A} {B} = equivalence ⇨ ⇦
where
⇨ : M , w ⊮ A ▷ B → Σ W λ x → R w x × M , x ⊩ A
× (∀ {z} → S w x z → M , z ⊮ B)

⇨ (rhd (y , fst₁ , fst₂ , snd)) = y , fst₁ , fst₂ , λ { {z} Sx →
case snd z of

λ { (inj₁ x) → ⊥-elim (x Sx) ; (inj₂ y) → y}}
⇦ : (Σ W λ x → R w x × M , x ⊩ A × (∀ {z} → S w x z → M , z ⊮ B)) →

M , w ⊮ A ▷ B
⇦ (y , Rwy , yA , snd) = rhd (y , Rwy , yA , (λ z → case ∈S? w y z of

λ { (yes p) → inj₂ (snd p); (no p) → inj₁ p}))

255

⊩◁ : ∀ {w A B} → M , w ⊩ ¬' (A ▷ ¬' B) ⇔ Σ W λ x → R w x × M , x ⊩ A
× ∀ {z} → S w x z → M , z ⊩ B

⊩◁ {w} {A} {B} = equivalence ⇨ ⇦
where
⇨ : M , w ⊩ ¬' (A ▷ ¬' B) → Σ W λ x → R w x × M , x ⊩ A
× ∀ {z} → S w x z → M , z ⊩ B

⇨ x = case ⊮▷ ⇒ (⊩¬ ⇒ x) of λ { (fst , fst₁ , fst₂ , snd) → fst ,
fst₁ , fst₂ ,

λ {x → ⊮¬ ⇒ (snd x)}}
⇦ : (Σ W λ x → R w x × M , x ⊩ A × ∀ {z} → S w x z → M , z ⊩ B) → M

, w ⊩ ¬' (A ▷ ¬' B)
⇦ (y , fst₁ , fst₂ , snd) = ⊩¬ ⇐ (⊮▷ ⇐ (y , fst₁ , fst₂ , λ {x → ⊮¬

⇐ snd x}))

⊩K : ∀ {w A B} → M , w ⊩ □ (A ↝ B) ↝ □ A ↝ □ B
⊩K {w} {A} {B} = ⊩↝ ⇐ λ x → ⊩↝ ⇐ λ y → ⊩□ ⇐

λ {u} wRu → ⊩MP ((⊩□ ⇒ x) wRu) ((⊩□ ⇒ y) wRu)

⊩J1 : ∀ {w A B} → M , w ⊩ □ (A ↝ B) ↝ A ▷ B
⊩J1 {w} {A} {B} = ⊩↝ ⇐ λ x → rhd (λ {u} z →

[(λ uA → inj₂ (u , Sw-refl z ,
⊩MP ((⊩□ ⇒ x) z) uA)) , inj₁] (M, u ⊩? A))

⊩J2 : ∀ {w A B C} → M , w ⊩ A ▷ B ∧ B ▷ C ↝ A ▷ C
⊩J2 {w} {A} {B} {C} = ⊩↝ ⇐ λ x → ⊩▷ ⇐ λ {u} wRu uA → case ⊩∧ ⇒ x of

λ { (wA▷B , snd) → case (⊩▷ ⇒ wA▷B) wRu uA of
λ { (v , Swuv , snd') → case (⊩▷ ⇒ snd)
(proj₂ (Sw⊆R[w]² Swuv)) snd' of
λ { (e , fst , snd) → e , Sw-trans Swuv fst , snd}}}

⊩J3 : ∀ {w A B C} → M , w ⊩ A ▷ C ∧ B ▷ C ↝ (A ∨ B) ▷ C
⊩J3 {w} {A} {B} {C} = ⊩↝ ⇐ λ x → ⊩▷ ⇐ λ Rwu uA∨B → case ⊩∧ ⇒ x of

λ {(a , b) → case ⊩∨ ⇒ uA∨B of
λ { (inj₁ uA) → (⊩▷ ⇒ a) Rwu uA ;
(inj₂ uB) → (⊩▷ ⇒ b) Rwu uB} }

⊩J4 : ∀ {w A B} → M , w ⊩ A ▷ B ↝ ♢ A ↝ ♢ B
⊩J4 = ⊩↝ ⇐ λ x → ⊩↝ ⇐ λ y → ⊩♢ ⇐ (case ⊩♢ ⇒ y of λ { (u , wRu , snd)

→ case (⊩▷ ⇒ x) wRu snd of λ { (v , fst₁ , snd)
→ v , (proj₂ (Sw⊆R[w]² fst₁)) , snd}})

⊩J5 : ∀ {w A} → M , w ⊩ ♢ A ▷ A
⊩J5 = ⊩▷ ⇐ λ {u} wRu u⊩♢A → case ⊩♢ ⇒ u⊩♢A of λ { (v , uRv , snd) →

v , R-Sw-trans wRu uRv , snd}

module Extended2
{M : Model {ℓW} {ℓR} {ℓS} W R S V}
(M,_⊩?_ : DecidableModel M)
(∈S? : Decidable₃ S)
where

256

open Frame (Model.F M)
open Extended M,_⊩?_ ∈S?

L-chain : ∀ {w u A} → R w u → M , u ⊮ A → M , w ⊩ □ (□ A ↝ A) →
InfiniteChain R w

InfiniteChain.b (L-chain {w} {u} Rwu uA uF) = u
InfiniteChain.a<b (L-chain {w} {u} Rwu uA uF) = Rwu
InfiniteChain.tail (L-chain {w} {u} Rwu u⊮A w⊩□⟨□A↝A⟩)

with (⊩□ ⇒ w⊩□⟨□A↝A⟩) Rwu
... | impl (inj₂ u⊩A) = ⊥-elim (⊩→¬⊮ u⊩A u⊮A)
... | impl (inj₁ x⊮□A) with ⊮□ ⇒ x⊮□A
... | (v , Ruv , v⊩A) = L-chain Ruv v⊩A ((⊩□ ⇒ ⊩4' w⊩□⟨□A↝A⟩) Rwu)

⊩L : ∀ {w A} → M , w ⊩ □ (□ A ↝ A) ↝ □ A
⊩L {w} {A} = ⊩↝ ⇐ λ w⊩□⟨□A→A⟩ → ⊩□ ⇐ λ {u} Rwu → ⊩⇔¬⊮ ⇐
λ {u⊮A → R-noetherian (L-chain Rwu u⊮A w⊩□⟨□A→A⟩)}

B.31. OrdinaryVeltmanSemantics
module _ where

open import Relation.Binary using (REL; Rel; Transitive; Reflexive)
open import Relation.Unary using (Pred; _∈_; _∉_; Decidable)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Relation.Nullary using (¬_)
open import Data.List using (map; List; []; _∷_)
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Agda.Builtin.Nat using (Nat; suc; _+_)
open import Data.Product
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function using (_∘_)
open import Data.Empty using (⊥; ⊥-elim)

open import Formula using (Fm; Var; _↝_; ⊥'; _▷_; var; ¬'_)
open import Base using (Noetherian; Rel₃)
open import OrdinaryFrame using (Frame) public

private
variable

ℓW ℓR ℓS : Level
W : Set ℓW
R : Rel W ℓR
S : Rel₃ W ℓS
V : REL W Var lzero

Valuation : Frame {ℓW} {ℓR} {ℓS} W R S → Set (lsuc lzero ⊔ ℓW)
Valuation {W = W} F = REL W Var lzero

record Model (W : Set ℓW) (R : Rel W ℓR) (S : Rel₃ W ℓS) (V : REL W
Var lzero)

: Set (ℓW ⊔ ℓR ⊔ ℓS) where

257

constructor model
field

F : Frame {ℓW} {ℓR} {ℓS} W R S

-- {-# NO_POSITIVITY_CHECK #-}
-- data _,_⊩'_ (M : Model) (w : MW M) : Fm → Set where
-- var : ∀ {a : Var} → a ∈ (Model.V M w) → M , w ⊩' var a
-- impl : ∀ {A B} → ((Nat → (M , w ⊩' A)) → (M , w ⊩' B)) → M , w ⊩'
(A ↝ B)
-- rhd : ∀ {A B} →
-- (∀ {u} → (MR M) w u → M , u ⊩' A → (Σ (MW M) λ v → (MS M) w u v
× (M , v ⊩' B)))
-- → M , w ⊩' A ▷ B

infix 5 _,_⊩_
data _,_⊩_ (M : Model {ℓW} {ℓR} {ℓS} W R S V) (w : W)

: Fm → Set (ℓW ⊔ ℓR ⊔ ℓS)

infix 5 _,_⊮_
data _,_⊮_ (M : Model {ℓW} {ℓR} {ℓS} W R S V) (w : W)

: Fm → Set (ℓW ⊔ ℓR ⊔ ℓS)

data _,_⊩_ {W = W} {R = R} {S = S} {V = V} M w where
var : {a : Var} → a ∈ V w → M , w ⊩ var a
impl : ∀ {A B} → M , w ⊮ A ⊎ M , w ⊩ B → M , w ⊩ A ↝ B
rhd : ∀ {A B} →

(∀ {u} → R w u → M , u ⊮ A ⊎ (∃[v] (S w u v × M , v ⊩ B)))
→ M , w ⊩ A ▷ B

data _,_⊮_ {W = W} {R = R} {S = S} {V = V} M w where
var : {a : Var} → a ∉ V w → M , w ⊮ var a
impl : {A B : Fm} → M , w ⊩ A → M , w ⊮ B → M , w ⊮ A ↝ B
rhd : {A B : Fm} →

∃[u] (R w u × M , u ⊩ A × ∀ v → (¬ S w u v) ⊎ M , v ⊮ B)
→ M , w ⊮ A ▷ B

bot : M , w ⊮ ⊥'

DecidableModel : Model {ℓW} {ℓR} {ℓS} W R S V → Set (ℓW ⊔ ℓR ⊔ ℓS)
DecidableModel M = ∀ w A → M , w ⊩ A ⊎ M , w ⊮ A

-- Frame validity
infix 5 _*⊩_
*⊩ : Frame {ℓW} {ℓR} {ℓS} W R S → Fm → Set (lsuc lzero ⊔ ℓW ⊔ ℓR ⊔
ℓS)
F *⊩ A = ∀ val w → model {V = val} F , w ⊩ A

-- infix 5 _*⊮_
*⊮ : Frame {ℓW} {ℓR} {ℓS} W R S → Fm → Set (lsuc lzero ⊔ ℓW ⊔ ℓR ⊔
ℓS)
*⊮ {W = W} F A = Σ (Valuation F × W) λ { (val , w) → model {V = val}
F , w ⊮ A}

258

,⊩*_ : Model {ℓW} {ℓR} {ℓS} W R S V → W → List Fm → Set (ℓW ⊔ ℓR ⊔
ℓS)
M , w ⊩* Π = All (M , w ⊩_) Π

B.32. Principles
module _ where

open import Agda.Builtin.Nat using (Nat; zero; suc; _+_)
open import Data.Fin using (Fin; zero; suc; fromℕ<)
open import Data.Nat.Base using (_≤_; _<_; s≤s)
open import Data.Nat.Properties using (≤-step; ≤-pred; ≤-reflexive)
open import Data.Product using (_×_; _,_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Unary using (Pred)

open import Formula

Principle : ∀ ℓ → Set _
Principle ℓ = (P : Pred Fm ℓ) → Set ℓ

M : ∀ {ℓ} → Principle ℓ
M P = ∀ {A B C} → P (A ▷ B ↝ (A ∧ □ C) ▷ (B ∧ □ C))

P : ∀ {ℓ} → Principle ℓ
P Pr = ∀ {A B} → Pr (A ▷ B ↝ □ (A ▷ B))

M₀ : ∀ {ℓ} → Principle ℓ
M₀ P = ∀ {A B C} → P (A ▷ B ↝ (♢ A ∧ □ C) ▷ (B ∧ □ C))

W : ∀ {ℓ} → Principle ℓ
W P = ∀ {A B} → P (A ▷ B ↝ A ▷ B ∧ □ (¬' A))

W⋆ : ∀ {ℓ} → Principle ℓ
W⋆ P = ∀ A B → P (A ▷ B ↝ A ▷ B ∧ □ (¬' A))

P₀-Fm : ∀ A B → Fm
P₀-Fm A B = A ▷ (♢ B) ↝ □ (A ▷ B)

P₀ : ∀ {ℓ} → Principle ℓ
P₀ P = ∀ {A B} → P (P₀-Fm A B)

R : ∀ {ℓ} → Principle ℓ
R P = ∀ {A B C} → P (A ▷ B ↝ (¬' (A ▷ ¬' C) ▷ (B ∧ □ C)))

R₁ : ∀ {ℓ} → Principle ℓ
R₁ P = ∀ {A B C D E} → P (

A ▷ B ↝ ((A ◁ C) ∧ (D ▷ ♢ E)) ▷ (B ∧ □ C ∧ (D ▷ E)))

259

R₂-Fm : ∀ {A B C D E F G} → Fm
R₂-Fm {A} {B} {C} {D} {E} {F} {G} =

A ▷ (B ∧ (C ▷ D)) ↝
(¬' (A ▷ ¬' E) ∧ (G ▷ ¬' (C ▷ ¬' F)))
▷
(B ∧ (C ▷ D) ∧ (□ E) ∧ (G ▷ C) ∧ (G ▷ D ∧ □ F))

R₂ : ∀ {ℓ} → Principle ℓ
R₂ P = ∀ {A B C D E F G} → (P (R₂-Fm {A} {B} {C} {D} {E} {F} {G}))

R⁰ : ∀ {ℓ} → Principle ℓ
R⁰ P = ∀ {A B C} → P (A ▷ B ↝ (A ◁ C) ▷ (B ∧ □ C))

R¹ : ∀ {ℓ} → Principle ℓ
R¹ P = ∀ {A B C D} → P (A ▷ B ↝ (♢ (D ◁ C) ∧ (D ▷ A)) ▷ (B ∧ □ C))

R² : ∀ {ℓ} → Principle ℓ
R² P = ∀ {A B C D E} → P (A ▷ B ↝ (♢ ((D ▷ E) ∧ ♢ (¬' (D ▷ ¬' C))) ∧
(E ▷ A)) ▷ (B ∧ □ C))

RⁿΩ RⁿU : (m u : Nat) → {u ≤ m} → {C : Fm} → {D : (i : Nat) → {i < suc
m} → Fm} → Fm
RⁿΩ m zero {p} {C} {D} = ¬' (D zero {s≤s p} ▷ ¬' C)
RⁿΩ m (suc k) {p} {C} {D} = (D k {≤-pred (≤-step (s≤s p))} ▷ D (suc k)
{s≤s p}

∧ RⁿU m k {≤-pred (≤-step p)} {C} {D})

RⁿU m zero {p} {C} {D} = ♢ (RⁿΩ m zero {p} {C} {D})
RⁿU m (suc k) {p} {C} {D} = ♢ (RⁿΩ m (suc k) {p} {C} {D})

Rⁿ-Fm : (n : Nat) → {A B C : Fm} {D : (i : Nat) → {i < n} → Fm} → Fm
Rⁿ-Fm zero {A} {B} {C} {D} = A ▷ B ↝ ¬' (A ▷ ¬' C) ▷ (B ∧ □ C)
Rⁿ-Fm (suc m) {A} {B} {C} {D} = A ▷ B ↝ (RⁿU m m {≤-reflexive refl}
{C} {D} ∧ (D m {≤-reflexive refl} ▷ A)) ▷ (B ∧ □ C)

Rⁿ : ∀ {ℓ} → Nat → Principle ℓ
Rⁿ r P = ∀ {A B C} → (D : (i : Nat) → {i < r} → Fm) → P (Rⁿ-Fm r {A}
{B} {C} {D})

260

C. Coq library code
Everything that is formalized and proved in Coq is in a single file:

From mathcomp Require Import all_ssreflect.
Require Import Coq.Relations.Relation_Definitions.
Require Import Coq.Program.Equality.

Module Base.

Record FromTo A B : Type :=
fromTo {

from : (A -> B);
to : (B -> A)

}.
Arguments from {A} {B}.
Arguments to {A} {B}.
Notation "a ⇔ b" := (FromTo a b) (at level 99).
Notation "⇒ x" := (from x) (at level 0).
Notation "⇐ x" := (to x) (at level 0).

Definition compose {A} {B} {C} (f : B -> C) (g : A -> B) x := f (g (x)).
Notation "f ∘ g" := (compose f g) (at level 9, right associativity).

Definition relation3 T := T -> relation T.
Notation "a × b" := (prod a b) (at level 96, right associativity).

CoInductive InfiniteChain {W : Type} (R : relation W) (a : W) : Prop
:=

infinite_chain {
b : W;
aRb : R a b;
tail : InfiniteChain R b;

}.

Definition Noetherian {W : Type} (R : relation W) : Prop
:= forall {a}, not (InfiniteChain R a).

End Base.

Module Fm.
Import eqtype.
Import Equality.
Definition Var : Type := nat.

Inductive Fm : Type :=
| var : Var -> Fm

261

| rhd : Fm -> Fm -> Fm
| impl : Fm -> Fm -> Fm
| bot : Fm.

Notation "⊥" := bot.
Notation "a → b" := (impl a b) (at level 80, right associativity).
Notation "a ▷ b" := (rhd a b) (at level 49, right associativity).
Notation "¬ a" := (a → ⊥) (at level 40).
Notation "a ∨ b" := ((¬ a) → b) (at level 70).
Notation "a ∧ b" := (¬ (a → ¬ b)) (at level 60).
Notation "□ a" := ((¬ a) ▷ ⊥) (at level 30, no associativity).
Notation "♢ a" := (¬ □ (¬ a)) (at level 30).

Fixpoint eqfm (a b : Fm) : bool :=
match a , b with
| var v , var v' => v == v'
| rhd a b , rhd a' b' => eqfm a a' && eqfm b b'
| impl a b , impl a' b' => eqfm a a' && eqfm b b'
| bot , bot => true
| _ , _ => false

end.
Check Pack.

End Fm.

Module OrdinaryFrame.

Import Base.

Record Frame (W : Type) (R : relation W) (S : relation3 W) : Type :=
frame {

witness: W;
R_trans : transitive _ R;
R_noetherian : Noetherian R;
Sw_inc_Rw : forall {w u v}, S w u v -> R w u × R w v;
Sw_refl: forall {w u}, R w u -> S w u u;
Sw_trans: forall {w}, transitive _ (S w);
R_Sw_trans: forall {w u v}, R w u -> R u v -> S w u v

}.
Arguments R_noetherian {W} {R} {S} f.
Arguments R_trans {W} {R} {S} f [x] [y] [z].
Arguments Sw_refl {W} {R} {S} f [w] [u].
Arguments Sw_inc_Rw {W} {R} {S} f [w] [u] [v].
Arguments Sw_trans {W} {R} {S} f [w] [x].
Arguments R_Sw_trans {W} {R} {S} f [w] [u] [v].

End OrdinaryFrame.

Module OrdinarySemantics.

Export Fm.

262

Import Base.
Export OrdinaryFrame.

Definition Valuation (W : Type) : Type := W -> Var -> Prop.

Record Model (W : Type) (R : relation W) (S : relation3 W) (V : Valuation
W) : Type :=

model {
frame : Frame W R S

}.
Arguments frame {W} {R} {S} {V}.

Notation "a ∈ P" := (P a) (at level 0, P at next level, no associativity,
only parsing).

Reserved Notation "M , w ⊩ A" (at level 0).
Reserved Notation "M , w ⊮ A" (at level 0).
Inductive forces {W R S V} (M : Model W R S V) (w : W) : Fm -> Prop :=

| fvar : forall {a : Var}, a ∈ (V w) -> M , w ⊩ (var a)
| fimp : forall {A B}, M , w ⊮ A \/ M , w ⊩ B -> M , w ⊩ (A → B)
| frhd : forall {A B}, (forall {u}, R w u -> M , u ⊮ A \/ (ex (fun v

=> (S w u v) × (M , v ⊩ B))))
-> M , w ⊩ (A ▷ B)

where "M , w ⊩ A" := (forces M w A)
with nforces {W R S V} (M : Model W R S V) (w : W) : Fm -> Prop :=
| nvar : forall {a : Var}, not (V w a) -> M , w ⊮ (var a)
| nimp : forall {A B}, M , w ⊩ A /\ M , w ⊮ B -> M , w ⊮ (A → B)
| nbot : M , w ⊮ ⊥
| nrhd : forall {A B},

ex (fun u => (R w u) × (M , u ⊩ A) ×
(forall v, (not (S w u v)) \/ M , v ⊮ B)) -> M , w ⊮ (A ▷ B)

where "M , w ⊮ A" := (nforces M w A).

Definition DecidableModel {W R S V} (M : Model W R S V) : Type :=
forall (w : W) (A : Fm), (M , w ⊩ A) \/ (M , w ⊮ A).

End OrdinarySemantics.

Module OrdinarySemanticsProperties.

Import OrdinarySemantics.
Import Base.
Import Fm.

Parameter W : Type.
Parameter R : relation W.
Parameter S : relation3 W.
Parameter V : Valuation W.
Parameter M : Model W R S V.
Parameter dec : DecidableModel M.

Local Notation "w ⊩? A" := (dec w A) (at level 0).

263

Definition frame : Frame W R S := frame M.

Definition forces_bot0 : not (is_true false) :=
fun a => match a with end.

Lemma forces_bot1 {w A} : (M , w ⊩ A) -> not (A = ⊥).
by case.

Qed.

Lemma forces_bot {w} : not (M , w ⊩ ⊥).
Proof using Type.

inversion 1. Qed.
Notation "⊩⊥" := forces_bot.

Lemma forces_bot2 {w} : not (M , w ⊩ ⊥).
by move => h; apply forces_bot1 in h.

Qed.

Lemma forces_var {v w} : M , w ⊩ (var v) -> V w v.
Proof using Type. inversion_clear 1 => //. Qed.

Lemma fimp_inv {w A B} : M , w ⊩ (A → B) -> M , w ⊮ A \/ M , w ⊩ B.
Proof using Type. inversion_clear 1 => //. Qed.

Lemma forces_rhd {w A B} :
M , w ⊩ (A ▷ B) ->

forall {u}, R w u -> nforces M u A \/ (ex (fun v => (S w u v) ×
(forces M v B))).
Proof using Type. inversion_clear 1 => //. Qed.

Lemma fimp_inv2 {w A B} : M , w ⊩ (A → B) -> M , w ⊮ A \/ M , w ⊩ B.
Proof using Type.

by move => h; inversion h.
Qed.

Lemma nforces_var {w p} : M , w ⊮ (var p) -> not (V w p).
Proof using Type.

by inversion_clear 1.
Qed.

Lemma nforces_rhd {w A B} :
M , w ⊮ (A ▷ B) ->

ex (fun u => (R w u) × (forces M u A) ×
(forall v, (not (S w u v)) \/ nforces M v B)).

Proof using Type. by inversion_clear 1 => //. Qed.

Lemma nimp_inv {w A B} :
M , w ⊮ (A → B) ->

forces M w A /\ nforces M w B.
Proof using Type. inversion_clear 1 => //. Qed.

264

Lemma nforces_to_not_forces {w A} : M , w ⊮ A -> not (M , w ⊩ A).
Proof using Type.

move: A w.
elim => [v w a na | A ihA B ihB w | A ihA B ihB w | w b].
+ dependent destruction a.
+ dependent destruction na => //.
+ move/nforces_rhd=> [u [Rwu [uA p]] /forces_rhd-wArhdB].

case: (wArhdB u Rwu) => [/ihA-h1 //| [z [Swuz zB]]].
+ case: (p z) => [//|/ihB //].

move/nimp_inv=> [wA wB /fimp_inv[/ihA //|/ihB //]].
inversion_clear 1.

Qed.

Lemma forces_to_not_nforces {w A} : M , w ⊩ A -> not (M , w ⊮ A).
Proof using Type.

move: A w.
elim => [v w /forces_var-a /nforces_var-na //

| A ihA B ihB w /forces_rhd-ArhdB /nforces_rhd[u [Rwu [uA pu]]
]

| A ihA B ihB w /fimp_inv-[nwA | wB] /nimp_inv[/ihA-wA /ihB-nwB
//]

| w].
case: (ArhdB _ Rwu) => [/ihA //|[v [Swuv /ihB]]].
case: (pu v) => [//|//].
inversion_clear 1.

Qed.

Notation "⊮→¬⊩" := nforces_to_not_forces.
Notation "⊩→¬⊮" := forces_to_not_nforces.

Lemma not_forces_to_nforces {w A} : not (M , w ⊩ A) -> M , w ⊮ A.
Proof using Type.

case (w ⊩? A) => [//|//].
Qed.

Lemma not_nforces_to_forces {w A} : not (M , w ⊮ A) -> M , w ⊩ A.
Proof using Type.

case (w ⊩? A) => [//|//].
Qed.

Lemma forces_fromto_not_nforces {w A} : (M , w ⊩ A) ⇔ (not (M , w ⊮
A)).
Proof using Type.

apply: fromTo.
apply: forces_to_not_nforces.
apply: not_nforces_to_forces.

Qed.
Notation "⊩⇔¬⊮" := forces_fromto_not_nforces.

Lemma not_forces_fromto_nforces {w A} : (not (M , w ⊩ A)) ⇔ (M , w ⊮

265

A).
Proof using Type.

apply: fromTo.
apply: not_forces_to_nforces.
apply: nforces_to_not_forces.

Qed.
Notation "¬⊩⇔⊮" := not_forces_fromto_nforces.

Lemma fimp_inv' {w A B} : (M , w ⊩ (A → B)) ⇔ (M , w ⊩ A -> M , w ⊩ B).
Proof using Type.

apply: fromTo => [/fimp_inv-[/(⇐ ¬⊩⇔⊮) //|//]
| AtoB].

apply: fimp.
case: (w ⊩? A) => [/AtoB-wB|].
apply: or_intror => //.
apply: or_introl => //.

Qed.
Notation "⊩→" := (fimp_inv').

Lemma forces_rhd' {w A B} :
(M , w ⊩ (A ▷ B)) ⇔

forall {u}, R w u -> forces M u A -> (ex (fun v => (S w u v) ×
(forces M v B))).
Proof using Type.

apply: fromTo => [/forces_rhd-a u Rwu uA|p].
case: (a _ Rwu) => [/(⇐ ¬⊩⇔⊮) //|//].
apply: frhd => [u Rwu].
case: (u ⊩? A) => [uA |nuA].
apply: or_intror. apply: p => //.
apply: or_introl => //.

Qed.
Notation "⊩▷" := (forces_rhd').

Lemma forces_neg {w A} : (M , w ⊩ ¬ A) ⇔ (M , w ⊮ A).
Proof using Type.

apply: fromTo => [/(⇒ ⊩→)-a|/(⇐ ¬⊩⇔⊮)-nwA].
case: (w ⊩? A) => [/a/⊩⊥//|//].
apply: (⇐ ⊩→) => //.

Qed.
Notation "⊩¬" := forces_neg.

Lemma nforces_neg {w A} : (M , w ⊮ ¬ A) ⇔ (M , w ⊩ A).
Proof using Type.

apply: fromTo => [/nimp_inv-[a //]|a].
apply: nimp. apply: conj => //. apply: nbot.

Qed.
Notation "⊮¬" := nforces_neg.

Lemma forces_box {w A} :
(M , w ⊩ (□ A)) ⇔ (forall {u}, R w u -> M , u ⊩ A).

Proof using Type.

266

apply: fromTo => [/forces_rhd-p u Rwu|a].
case: (p _ Rwu) => [/(⇒ ⊮¬)//|[v [_ /⊩⊥ //]]].
apply: frhd => [u Rwu]. apply: or_introl.
apply: (⇐ ⊮¬). apply: a => //.

Qed.
Notation "⊩□" := forces_box.

Lemma nforces_box {w A} :
(M , w ⊮ (□ A)) ⇔ (ex (fun v => (R w v) × (M , v ⊮ A))).

Proof using Type.
apply: fromTo => [/nforces_rhd-[u [Rwu [/(⇒ ⊩¬)uA pA]]]|[u [Rwu /(⇐

⊩¬)nuA]]].
exists u => //.
apply: nrhd. exists u. apply: conj => //. apply: conj => //.
move => v. apply: or_intror. apply: nbot.

Qed.
Notation "⊮□" := nforces_box.

Lemma forces_diamond {w A} :
(M , w ⊩ (♢ A)) ⇔ (ex (fun v => (R w v) × (M , v ⊩ A))).

Proof using Type.
apply: fromTo => [/(⇒ ⊩¬)/(⇒ ⊮□) [u [Rwu /(⇒ ⊮¬)-uA]]|[u [Rwu /(⇐

⊮¬)uA]]].
exists u => //. apply: (⇐ ⊩¬). apply: (⇐ ⊮□). exists u => //.

Qed.
Notation "⊩♢" := forces_diamond.

Lemma nforces_diamond {w A} :
(M , w ⊮ (♢ A)) ⇔ (forall {u}, R w u -> M , u ⊮ A).

Proof using Type.
apply: fromTo => [/(⇒ ⊮¬)/(⇒ ⊩□) p u Rwu|p].
apply: (⇒ ⊩¬). apply: p => //.
apply: (⇐ ⊮¬). apply: (⇐ ⊩□) => [u Rwu].
apply: (⇐ ⊩¬). apply: p => //.

Qed.
Notation "⊮♢" := nforces_diamond.

Lemma forces_and {w A B} :
(M , w ⊩ (A ∧ B)) ⇔ (M , w ⊩ A × M , w ⊩ B).

Proof using Type.
apply: fromTo => [/(fimp_inv) [/nimp_inv [a /(⇒ ⊮¬) b]|/⊩⊥ //]

|[a /(⇐ ⊮¬)b]].
apply: conj => //.
apply: fimp. apply: or_introl. apply: nimp. apply: conj => //.

Qed.
Notation "⊩∧" := forces_and.

Lemma nforces_and {w A B} : (M , w ⊮ (A ∧ B)) ⇔ (M , w ⊮ A \/ M , w ⊮
B).
Proof using Type.
apply: fromTo => [/nimp_inv-[/fimp_inv-[a|/(⇒ ⊩¬)b] _]|[a|/(⇐ ⊩¬)b]].

267

apply: or_introl => //. apply: or_intror => //.
apply: nimp. apply: conj. apply: fimp. apply: or_introl => //. apply:

nbot.
apply: nimp. apply: conj. apply: fimp. apply: or_intror => //. apply:

nbot.
Qed.
Notation "⊮∧" := nforces_and.

Lemma forces_or {w A B} :
(M , w ⊩ (A ∨ B)) ⇔ (M , w ⊩ A \/ M , w ⊩ B).

Proof using Type.
apply: fromTo => [/fimp_inv-[/(⇒ ⊮¬)a|b]|[/(⇐ ⊮¬)a|b]].
apply: or_introl => //.
apply: or_intror => //.
apply: fimp. apply: or_introl => //.
apply: fimp. apply: or_intror => //.

Qed.
Notation "⊩∨" := forces_or.

Lemma nforces_or {w A B} :
(M , w ⊮ (A ∨ B)) ⇔ (M , w ⊮ A × M , w ⊮ B).

Proof using Type.
apply: fromTo => [/nimp_inv-[/(⇒⊩¬)a b] |[/(⇐ ⊩¬)a b]].
apply: conj => //.
apply: nimp. apply: conj => //.

Qed.
Notation "⊮∨" := nforces_or.

Inductive subset {A} (P Q : A -> Prop) : Type :=
| ss : (forall {x}, (P x -> Q x)) -> subset P Q.

Arguments ss {A} {P} {Q}.

Lemma forces_J1 {w A B} : M , w ⊩ (□ (A → B) → A ▷ B).
Proof using Type.

apply: (⇐ ⊩→) => /(⇒ ⊩□)p.
apply: (⇐ ⊩▷) => [u Rwu uA].
exists u. apply: conj => //.
apply: (Sw_refl frame). apply: Rwu.
apply: ⇒⊩→(p _ Rwu)uA.

Qed.
Notation "⊩J1" := forces_J1.

Lemma forces_J2 {w A B C} : M , w ⊩ (A ▷ B ∧ B ▷ C → A ▷ C).
Proof using Type.

apply: (⇐ ⊩→) => /(⇒ ⊩∧) [/(⇒⊩▷)ab /(⇒⊩▷)bc].
apply: (⇐ ⊩▷) => [u Rwu uA].
pose proof (ab _ Rwu uA) as [v [Swuv vB]].
pose proof (Sw_inc_Rw frame Swuv) as [_ Rwv].
pose proof (bc v Rwv vB) as [z [Swvz zC]].
exists z. apply: conj => //.
apply: (Sw_trans frame). apply: Swuv. apply: Swvz.

268

Qed.
Notation "⊩J2" := forces_J2.

Lemma forces_J3 {w A B C} : M , w ⊩ (A ▷ C ∧ B ▷ C → (A ∨ B) ▷ C).
Proof using Type.

apply: (⇐ ⊩→) => /(⇒ ⊩∧)[/(⇒ ⊩▷)ac /(⇒ ⊩▷)bc].
apply: (⇐ ⊩▷) => [u Rwu /(⇒ ⊩∨)[uA|uB]].
apply: ac => //.
apply: bc => //.

Qed.

Lemma forces_J4 {w A B} : M , w ⊩ ((A ▷ B) → ♢ A → ♢ B).
Proof using Type.

apply: (⇐ ⊩→) => /(⇒ ⊩▷)p. apply: (⇐ ⊩→) => /(⇒ ⊩♢)[v [Rwv vA]].
apply: (⇐ ⊩♢).
pose proof (p _ Rwv vA) as [z [Swvz zB]].
pose proof (Sw_inc_Rw frame Swvz) as [_ Rwz].
exists z. apply: conj => //.

Qed.

Lemma forces_J5 {w A} : M , w ⊩ ((♢ A) ▷ A).
Proof using Type.

apply: (⇐ ⊩▷) => [u Rwu /(⇒ ⊩♢)[v [Ruv vA]]].
exists v. pose proof (R_Sw_trans frame Rwu Ruv) as Swuv.
apply: conj => //.

Qed.

Lemma forces_K {w A B} : M , w ⊩ ((□ (A → B)) → (□ A → □ B)).
Proof using Type.

apply: (⇐ ⊩→) => /(⇒⊩□)pab.
apply: (⇐ ⊩→) => /(⇒⊩□)pa.
apply: (⇐ ⊩□) => [u Rwu].
apply: (⇒⊩→)(pab u Rwu)(pa _ Rwu).

Qed.

Lemma forces_4 {w A} : M , w ⊩ (□ A) -> M , w ⊩ (□ (□ A)).
Proof using Type.

move=> /(⇒⊩□)boxA.
apply: ⇐ ⊩□ => u Rwu.
apply: ⇐ ⊩□ => v Ruv.
apply: boxA (R_trans frame Rwu Ruv).

Qed.

Lemma L_chain {w u A} : R w u -> M , u ⊮ A -> M , w ⊩ (□ (□ A → A)) ->
InfiniteChain R w.
Proof using Type.

move: w u A.
cofix h => w u A Rwu uA p.
pose proof fimp_inv((⇒ ⊩□ p) _ Rwu) as [nboxA|a].
pose proof (⇒ ⊮□ nboxA) as [v [Ruv nvA]].
apply: infinite_chain. apply: Rwu.

269

apply: h. apply: Ruv. apply: nvA.
apply: ⇒ ⊩□ (forces_4 p) _ Rwu.
exfalso. apply: (⇒ ⊩⇔¬⊮) a uA.

Qed.

Lemma forces_L {w A} : M , w ⊩ (□ (□ A → A) → □ A).
Proof using Type.

apply: (⇐⊩→) => p. apply: (⇐ ⊩□) => u Rwu.
case: (dec u A) => [//|nuA].
exfalso. apply: (R_noetherian frame).
apply: (L_chain Rwu nuA p).

Qed.

Lemma forces_C1 {w A B} : M , w ⊩ (A → B → A).
Proof using Type.

apply: (⇐ ⊩→) => wA. apply: (⇐ ⊩→) => //.
Qed.

Lemma forces_C2 {w A B C} : M , w ⊩ ((A → (B → C)) → ((A → B) → (A →
C))).
Proof using Type.
apply: (⇐ ⊩→) => wABC. apply: (⇐ ⊩→) => /(⇒ ⊩→)wAB. apply: (⇐ ⊩→) =>

wA.
apply: (⇒⊩→(⇒⊩→ wABC wA)(wAB wA)).

Qed.

Lemma forces_C3 {w A B} : M , w ⊩ ((¬ A → ¬ B) → B → A).
Proof using Type.

apply: (⇐⊩→) => /(⇒⊩∨)[a|/(⇐¬⊩⇔⊮ ∘ ⇒⊩¬)b]; apply: (⇐ ⊩→) => //.
Qed.

Inductive ILProof (Π : list Fm) : Fm -> Prop :=
(* | Ax : forall {A}, In A Π -> ILProof Π A *)
| C1 : forall {A B}, ILProof Π (A → (B → A))
| C2 : forall {A B C}, ILProof Π ((A → (B → C)) → ((A → B) → (A → C)))
| C3 : forall {A B}, ILProof Π ((¬ A → ¬ B) → B → A)
| K : forall {A B}, ILProof Π ((□ (A → B)) → (□ A → □ B))
| L : forall {A}, ILProof Π (□ (□ A → A) → □ A)
| J1 : forall {A B}, ILProof Π (□ (A → B) → (A ▷ B))
| J2 : forall {A B C}, ILProof Π (A ▷ B ∧ B ▷ C → (A ▷ C))
| J3 : forall {A B C}, ILProof Π (((A ▷ C) ∧ (B ▷ C)) → ((A ∨ B) ▷ C))
| J4 : forall {A B}, ILProof Π ((A ▷ B) → ♢ A → ♢ B)
| J5 : forall {A}, ILProof Π (♢ A ▷ A)
| MP : forall {A B}, ILProof Π (A → B) -> ILProof Π A -> ILProof Π B
| nec : forall {A}, ILProof nil A -> ILProof Π (□ A).

Notation "Π ⊢ A" := (ILProof Π A) (at level 50).

Lemma soundness {D} (w : W) (p : nil ⊢ D) : M , w ⊩ D.
Proof using Type.

elim: p w => [Π A B w

270

|Π A B C w
|Π A B w
|Π A B w
|Π A w
|Π A B w
|Π A B C w
|Π A B C w
|Π A B w
|Π A w
|Π A B _ hAB _ hA w
|Π A ilA h w].

apply: forces_C1.
apply: forces_C2.
apply: forces_C3.
apply: forces_K.
apply: forces_L.
apply: forces_J1.
apply: forces_J2.
apply: forces_J3.
apply: forces_J4.
apply: forces_J5.
apply: (⇒⊩→(hAB _) (hA _)).
apply: (⇐⊩□) => u Rwu. apply: h.

Qed.

End OrdinarySemanticsProperties.

271

D. Manuscript by Verbrugge: Set Veltman
frames and models

In the following pages we copy a scan of a manuscript by Verbrugge (see notes below). It has not
been processed or edited by us in any way. The original title, in Dutch, is Verzamelingen-Veltman
frames en modellen.

Annotations are probably from various authors, like Dick de Jongh and possibly others. Ver-
brugge commented in private correspondence that in particular the “English translation on Page
1a” on the first typed page is from her own hand and likely the “∖∅” and the two 𝑥’s on that
same page too while the accolades on handwritten Page 1a are not her handwriting. These
can most likely be attributed to Dick de Jongh together with the phrase = 𝐾𝑀1 on Page 2 of
the handwritten part. The double exclamations marks have an uncertain author and they are
possibly from somebody else altogether. Possibly the “Rineke Verbrugge, manuscript, 1992” at
the top of the first typed page is from Troelstra’s hand.

272

	Introduction
	Overview of interpretability logics
	Original contributions
	Notation
	Text
	Diagrams

	The language of modal interpretability
	Logic IL
	Veltman Semantics
	Ordinary Veltman semantics
	Generalized Veltman semantics

	Quasi-transitivity
	Monotonicity

	Generalized vs ordinary models
	From ordinary to generalized
	From generalized to ordinary
	From generalized to ordinary (a simpler approach)
	A proof in need of repair
	The details

	Frame conditions
	Introduction to principles and frame conditions
	The principle M
	Ordinary semantics
	Generalized semantics

	The principle M₀
	Ordinary semantics
	Generalized semantics

	The principle P₀
	Ordinary semantics
	Generalized semantics

	The principle R
	Ordinary semantics
	Generalized semantics

	The principle R₁
	Ordinary semantics
	Generalized semantics

	The principle R¹
	Generalized semantics

	The series of principles Rⁿ
	Ordinary semantics
	Generalized semantics

	Generic frame condition

	The logic of Agda
	Introduction to types
	The origins of types
	Untyped lambda calculus
	Simply typed lambda calculus
	Dependently typed lambda calculus

	Martin Löf's logical framework
	Basic definitions
	Rules for types and terms
	Families of types
	Introducing sets
	Function set
	Top set
	Bottom set
	Disjoint unions set
	Pairs set
	Dependent functions set
	Σ Pairs set
	Natural numbers set
	Identity set

	Main differences with Agda's type system

	Basic Agda
	Contexts, and typing rules
	Normalization
	Totality

	Agda tutorial
	BHK interpretation of propositional logic
	Booleans and case analysis
	Naturals and induction
	Universe hierarchy
	BHK interpretation of first order logic
	Equality
	Predicates as mathematical sets
	Extensionality
	Positivity

	Agda in the thesis
	Modal formulas
	Noetherian relations
	Ordinary Veltman semantics
	Generalized Veltman semantics
	A guided Agda proof

	Logic IL and syntactic proofs
	An eDSL for syntactic proofs

	Glossary and bibliography
	Glossary
	Bibliography

	Appendix
	Official Agda reference
	Function definitions and pattern matching
	Absurd patterns
	Implicit arguments and automatic inference
	datatype definitions and constructors
	Function types
	Record types
	Universes
	Universe example
	Universe polymorphism
	Level arithmetic

	Agda library code
	All
	Base
	Classical
	Formula
	GeneralizedFrame/Properties
	GeneralizedFrame
	GeneralizedVeltmanSemantics/Properties/GenericFrameCond
	GeneralizedVeltmanSemantics/Properties/Luka
	GeneralizedVeltmanSemantics/Properties/M
	GeneralizedVeltmanSemantics/Properties/M₀
	GeneralizedVeltmanSemantics/Properties/P₀
	GeneralizedVeltmanSemantics/Properties/R
	GeneralizedVeltmanSemantics/Properties/R¹
	GeneralizedVeltmanSemantics/Properties/R²
	GeneralizedVeltmanSemantics/Properties/Rⁿ
	GeneralizedVeltmanSemantics/Properties/R₁
	GeneralizedVeltmanSemantics/Properties/Verbrugge
	GeneralizedVeltmanSemantics/Properties/Vukovic
	GeneralizedVeltmanSemantics/Properties
	GeneralizedVeltmanSemantics
	IL
	IL/Edsl
	IL/Properties
	OrdinaryFrame
	OrdinaryVeltmanSemantics/Finite
	OrdinaryVeltmanSemantics/Properties/M
	OrdinaryVeltmanSemantics/Properties/M₀
	OrdinaryVeltmanSemantics/Properties/P₀
	OrdinaryVeltmanSemantics/Properties/R
	OrdinaryVeltmanSemantics/Properties
	OrdinaryVeltmanSemantics
	Principles

	Coq library code
	Manuscript by Verbrugge: Set Veltman frames and models

