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Statement

In the present study we apply gastropod (snail) metallothioneins at a lineage level as model
molecules, trying to track the evolution, structural / functional optimization and diversification
of metal-selectivity under the persistent influence of cadmium since early gastropod evolution.
To this aim, we applied an “Eco”-Metallomics approach including 74 MT sequences from 47
gastropod species, combining phylogenomic methods with molecular, biochemical, and
spectroscopic techniques. This allows us to demonstrate that Cd binding selectivity paired with
Cd-specific tasks has emerged repeatedly in Gastropoda clades since 430 million years. We
believe that our article may be particularly significant to metallomics, because it demonstrates
how differing techniques such as molecular and biochemical methods, combined with
ecological and evolutionary approaches, can prove how a rare metallic trace element like
cadmium has shaped the structure, metal-binding behavior and physiological function of an
important protein family.
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Abstract

The tiny contribution of cadmium (Cd) to the composition of the earth crust con@@*s@@-wiivi%;%ﬁﬁgﬁﬁ
biological significance, owing mainly to the competition of Cd with the essential zinc (Zn) for suitable
metal binding sites in proteins. In this context it was speculated that in several animal lineages, the protein
family of metallothioneins (MTs) has evolved to specifically detoxify Cd. Although the multi-
functionality and heterometallic composition of MTs in most animal species does not support such an
assumption, there are some exceptions from this role, particularly in animal lineages at the roots of animal
evolution. In order to substantiate this hypothesis and to further understand M T evolution, we have studied
MTs of different snails that exhibit clear Cd-binding preferences in a lineage-specific manner. By applying
a metallomics approach including 74 MT sequences from 47 gastropod species, and by combining
phylogenomic methods with molecular, biochemical, and spectroscopic techniques, we show that Cd
selectivity of snail MTs has resulted from convergent evolution of metal-binding domains that
significantly differ in their primary structure. We also demonstrate how their Cd selectivity and specificity
has been optimized by the persistent impact of Cd through 430 million years of MT evolution, modifying
them upon lineage-specific adaptation of snails to different habitats. Overall, our results support the role
of Cd for MT evolution in snails, and provide an interesting example of a vestigial abiotic factor directly
driving gene evolution. Finally, we discuss the potential implications of our findings for studies devoted
to the understanding of mechanisms leading to metal specificity in proteins, which is important when

designing metal-selective peptides.
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Introduction

With a tiny amount of about 0.00001%, the contribution of cadmium (Cd) to t@@‘c@ﬂﬁf@%ﬁ%ﬁgg
the earth crust is seemingly negligible '. In spite of this, the biological significance of Cd is distinctly
higher, owing to its particular patchy distribution, enrichment and circulation in the biosphere 2. In some
diatom marine algae, for example, Cd has achieved an essential importance as a constituent of the algal
enzyme carbonic anhydrase, a fact that has been explained by the relative preponderance of Cd at the cost
of lowly available Zn in oceanic environments inhabited by these algae 3. In most organisms, however,
Cd is highly toxic at very low concentrations, due to its physico-chemical similarity and competition with
zinc (Zn) >, one of the most important essential trace elements. Because of this, most organisms have
developed strategies for Cd handling and detoxification ¢, and it has been hypothesized that
metallothioneins (MTs), a ubiquitous protein family with a high affinity to transition metal ions, may have
been developed by organisms to clear this highly toxic metal 7. Yet, this hypothesis has been questioned
because of the apparent involvement of most MTs in a variety of functions, and their often heterometallic
and metamorphic composition with binding affinities to different metal ions 3-'°. However, MTs form a
huge and diverse gene superfamily present in most kingdoms of organisms, from bacteria through fungi,
plants and animals '!2. This suggests that their origins may go back to the primal evolutionary roots of
life on earth, although the metal preference of the ancestral MT remains unknown. In contrast to modern
vertebrates some MTs at the roots of, for example, Chordata are Cd-selective, as recently reported for MTs
of the tunicate Oikopleura dioica 3. Cd- and Cu-selective MTs have also been discovered in several
species of the ancient mollusk class of Gastropoda (snails and slugs) '4!3. This suggests that in early
evolution of life, Cd-selectivity of MTs might have been more common than today, and this feature has
evidently been preserved to the present in diverse animal clades while it disappeared in others.

To support this hypothesis, we have taken advantage of the Cd-specific gastropod MTs, which
provide an ideal model system to study the evolutionary influence of Cd on MT evolution along more of
400 million years (MY) of Gastropoda diversification. Unlike many other modern animals, snails possess
metal-selective MTs, such as Cd- (CAMTs) and Cu-selective (CuMTs) isoforms !° that perform Cd- or
Cu-specific tasks. Thereby they exhibit a straightforward relationship between metal binding features and
related physiological functions. Interestingly, Cd-specific snail MTs bind this metal with a strength and
exclusive preference hardly observed in any other protein family. They are expressed in a multitude of
isoforms that vary in a clade-specific manner allowing us to compare and evaluate similar proteins and
protein variants (and their metal-binding modifications) in a large number of species that have adapted to
different habitats. These spread from marine through terrestrial to freshwater environments with
significantly different Cd concentrations. This comparative approach is central to understand how MTs
have been optimized for Cd binding during gastropod evolution by the continuous impact of Cd, and how

its influence is modulated by habitat-specific environmental constraints.
2
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In our work, we applied a comprehensive metallomics approach by characterizing 74 novel or
known MT sequences from 47 species across all major gastropod clades '423. We used: @h?ilvgvé‘g;%i%g
methods based on next generation sequencing to obtain transcriptomic data for evolutionary analyses and
construction of phylogenetic trees. We also analyzed neutral DNA markers to compare the resulting
phylogenetic tree with MT-derived trees. In addition, we provide data on metal-selective features of
recombinant snail MTs and their metal-binding domains, based on molecular, biochemical and
spectroscopic methods. Our data indicate that Cd selectivity has evolved since 430 million years ago
(MYA) in gastropod MTs through convergent evolution of metal-binding domains with diverging primary
structures. We study the mechanisms by which their Cd binding features have been optimized, and
illustrate how they have diversified into different kinds with altered or even lost metal selectivity through
lineage-specific transition into novel habitats that differ in their natural Cd background concentrations.
Overall, we have been able to demonstrate a continuous impact of Cd on evolution of one of the most
important metal-binding protein families, and describe a paradigmatic case of how an abiotic factor
directly drives gene evolution. Finally, we discuss possible implications of our findings to better

understand how metal-selectivity has been achieved in nature, and how this knowledge can help in

designing metal-selectivity in synthetic peptides.

Material and methods

Animal collection, rearing and Cd exposure

A list of gastropod species involved in experimental work for the present study along with
methodical applications is reported in Table 1.

Individuals of Alinda biplicata and Deroceras reticulatum were collected in suburbs of Innsbruck
(Tyrol, Austria) in 2017 and 2018. Individuals of Patella vulgata were collected in Barcelona, Spain in
summer 2016. Snails of the helicid species Cornu aspersum were bought from a commercial dealer
(Wiener Schnecken Manufaktur, Vienna, Austria), as were the aquatic species Marisa cornuaretis,
Anentome helena, Physa acuta and Aplysia californica (Aquaristikzentrum Innsbruck, Tyrol, Austria).
Adult individuals of Lottia gigantea were collected and kindly provided to us by Dr. Douglas J. Eernisse
(California State University, Fullerton, Ca, USA).

For Cd exposure of Cornu aspersum, adult snails were acclimatized on garden earth substrate
containing lime powder (CaCOs;) in groups of 30 individuals each under stable conditions in a climate
chamber (18°C, 12h light/dark cycle) and were fed regularly with uncontaminated lettuce (Lactuca sativa)
under moistened conditions for one week. For Cd exposure, control snails were fed with uncontaminated

lettuce whereas Cd-exposed snails were fed with Cd-enriched lettuce which had been incubated for one
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hour in a CdCl,-solution containing 2 mg/l Cd** 24, After five days of exposure, five individuals of each
group were sacrificed. DO 10.1039/COMTO0255F

Individuals of Lymnaea stagnalis were collected from an unpolluted freshwater pond in the
Ternopil region, Ukraine (49049/ N, 25023/ E) and were kindly provided to us by Dr. Oksana B. Stoliar
and Dr. Halina I. Falfushynska (Ternopil National Pedagogical University, Ukraine). For metal exposure,
snails were kept in 80 1 tanks of aerated tap water during 14 days, and exposed to a Cd concentration of
15 pg/l (in tap water). Water and Cd solutions were renewed every two days, lettuce feed was provided
before water exchange. Control snails without Cd addition were kept in the same manner as exposed

individuals. At the end of the exposure, three individuals per goup were dissected for mRNA extraction

from midgut gland.

Dissection, RNA/DNA isolation and ¢cDNA synthesis

Snails were sacrificed and midgut gland tissue of individual snails (n = 3-5) (Patella vulgata, Lottia
gigantea, Anentome helena, Marisa cornuarietis, Aplysia californica, Cornu aspersum, Deroceras
reticulatum, Lymnaea stagnalis) or — due to the small size of some species — mixed tissue parts (A/inda
biplicata, Physella acuta) were dissected and stored in RNAlater® (Fisher Scientific, Vienna, Austria) at
-80 °C. For quantitative Real Time PCR (qPCR) after metal exposure, small aliquots of midgut gland
tissue (approx. 1 mg fresh weight) of control and Cd-exposed Cornu aspersum and Lymnaea stagnalis (n
= 3-5) were transferred to RNAlater® (Fisher Scientific, Vienna, Austria) whereas the remaining part of
the tissue was collected for metal measurement.

RNA tissue samples were homogenized with a Precellys® homogenizer (Bertin Instruments,
Montigny-le-Bretonneux, France). Total RNA was isolated using the RNeasy Plant Mini Kit (Qiagen,
Hilden, Germany) including the on-column DNase I digestion according to the manufacturer’s instructions
(Qiagen). RNA integrity was checked by agarose gel electrophoresis and concentrations were estimated
with Nanodrop (Thermo Fisher Scientific, Waltham, CA, USA). For gPCR, RNA samples were measured
in triplicates with the Quant-iT™ Ribogreen® RNA Assay Kit (Life Technologies Corporation, Carlsbad,
USA) applying the Victor™ X4 Multilable Reades (Perkin Elmer, Waltham, USA). 450 ng of total RNA
was transcribed to cDNA in a 50 ul approach with the RevertAid Reverse Transcriptase (Thermo Fisher
Scientific). For amplification of the multidomain MT sequences (Al/inda biplicata, Marisa cornuarietis)
AccuScript Hi-Fi Reverse transcriptase (Agilent, Santa Clara, CA, USA) was used in a 20 pl approach for
cDNA synthesis.

For phylogenetic reconstruction based on neutral markers, DNA of the same specimens mentioned
above was extracted using GenElute™ Mammalian Genomic DNA Miniprep Kit (Sigma Aldrich). A ~590
bp stretch of the mitochondrial gene Cytochrome C oxidase I (COI) was amplified using the standard
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primers LCO1490 and HCO2198 suggested by 2° and the degenerated primers LoboF1 and LoboR1 2 for
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some species. DOI: 10.1039/CIMTO0259F

PCR products of Neritina pulligera and Littorina littorea showed multiple bands and therefore
were cloned before sequencing using the pTZ57R/T InsTAclone Kit (Thermo Fisher, Waltham, USA).

To obtain ~1000 bp of 18SrDNA the following primers of 23 were used in various combinations:
18A1, 470F, 1155F 700R, 1500R, 1800. PCR products were purified and Sanger sequenced by the
facilities of Eurofins (MWG Operon, Germany). For Helix pomatia and Patella vulgate, only ~500 bp of
18SrDNA sequence were available; thus, full sequences were obtained from GenBank (FJ977750,
FJ977632, AF239734, AY 145373, MF544434, AY427527). Conditions for thermal cycling, polymerase
and PCR are shown in Table S1, newly generated sequences have been deposited at GenBank

(MK919674-MK919701).

RNA seq and transcriptome assembly

Isolated RNA from an individual midgut gland (Patella vulgata, Neritina pulligera, Littorina
littorea, Pomatias elegans, Pomacea bridgesii, Marisa cornuarietis, Anentome helena, Elysia crispata,
and Limax maximus) or of pooled soft-tissue (4linda biplicata) was sent to the Duke Center for Genomic
and Computational Biology (GBC, Duke University, Durham, NC, USA) and sequenced with Hi-Seq
4000 Illumina sequencing. A separate library was sequenced for each species. Raw data were assembled
using Trinity 27 version: v2.1.1 with default settings. Assemblies were provided for analysis on a local
BLAST server “SequenceServer” 28, where cDNA sequences encoding for diverse snail MTs were blasted
against the transcriptomic data sets to identify MT sequences. Raw sequence reads data were deposited as

Bioproject data base under the accession number PRINA604693.

Collection and processing of transcriptomic data

For the species Nacella polaris and Cepaea nemoralis, raw reads from the SRA database (NCBI)
were imported to Geneious R10 (Biomatters Ltd., Auckland, New Zealand) to assemble transcriptomes.
New MT sequences were identified by blasting already known MT sequences from close relatives against
the new transcriptomes. For most other species, MT peptide sequences of the diverse gastropod families

were identified using the blastn tool at the NCBI platform (https://blast.ncbi.nlm.nih.gov/Blast.cgi) against

the database transcriptome shotgun assembly for gastropod species (taxid: 6448).

MT sequence confirmation via long distance (LD) PCR and quantitative Real-time PCR
Gene-specific primers (Table S2A) were designed from identified MT sequences derived from
transcriptomic data (see above). For PCR, a 50ul approach was set up using the Advantage 2 PCR System

(Clontech, Takara Bio Europe, Saint-Germain-en-Laye, France) (TableS2B). PCR products were
5
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separated on a 1.5% agarose gel (Biozym, Hessisch Oldendorf, Germany) and gene specific bands were
excised. DNA was purified applying the QIAquick™ Gel Extraction Kit (Qiagen, Hilde&ﬁ‘r@é@ﬁgwﬁ%g
cleaned samples were sent to Microysnth AG (Balgach, Switzerland) for Sanger-sequencing. When
necessary, subsequent cloning was performed with the TOPO® TA Cloning® Kit for sequencing
(Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA). Insert containing plasmids were purified
using the QIAprep Spin Miniprep Kit (Qiagen, Hilden, Germany) and sent to Microysnth AG (Balgach,
Switzerland) for Sanger sequencing. Primer design and sequence analysis were performed applying CLC
Main workbench 6.9 (Quiagen, Aarhus, Denmark).

For CAMT quantification of Cornu aspersum, cDNA of the controls and Cd-exposed individuals
were measured in triplicates using a 7500 Real Time PCR Analyzer with Power SYBR® Green detection
(Applied Biosystems™ by ThermoFisher Scientific, USA). Details on primer design and concentrations

as well as establishment of the calibration curve are described in 2. Total RNA was used as a reference

for transcriptional quantification (see %°).

Phylogenetic analysis

Alignments of MT amino acid sequences were done with MUSCLE v3.8.31 3%, and manual
corrections were applied if deemed appropriate. Alignment length was variable and species-specific, with
protein lengths between 50 and 180 amino acids. All alignments applied for the present tree calculations
are reported as FASTA alignments (see Alignments S1-5). Phylogenetic tree reconstructions were
performed with RAXML v8.2.8 (maximum likelihood ML, 3!) and MrBayes v3.2.6 (Bayesian inference
BI, 3?). For ML with the model PROTGAMMAIWAG, 1000 - 10,000 inferences were calculated, and
1,000 bootstrap replicates. For BI, 10 million generations were calculated with rates=invgamma and
aamodelpr=mixed, average standard deviation of split frequencies.

In addition, phylogenetic trees were also computed with a maximum likelihood (ML) approach
with 500 bootstrap replicates, using the freely accessible programme platform SeaView (version 4.7) of
PRABI-Doua , using default settings. Overall topologies between BI and ML trees were very similar, and
the trees with the lowest number of polytomies are shown.

Mitochondrial COI sequences were manually aligned and checked for correct amino acid
translation; the ribosomal 18SrDNA sequences were aligned using the SINA Alignment tool v. 1.2.11,
based on the SILVA database 33 (Alignment S1). In all phylogenetic reconstructions gaps were treated as
missing data. Four partitions were defined in the concatenated data, one for each codon position of COI
and one for 18SrDNA. ML analysis was performed using IQ-tree 3* allowing for model estimation in each
partition; node supports were calculated using 1000 non-parametric UltraFast Bootstraps. For BI the best-
fitting substitution models were obtained with Modeltest 3.7. 33: GTR+I+G achieved the best AIC and

BIC values in all four partitions. BI was performed with MrBayes v3.2.6 allowing for unlinked parameter
6
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discard data prior to convergence of runs (standard deviation of split-frequencies below' 0013/ PheoMPbs

tree and the BI tree (data not shown) revealed the same topology.

Cloning and recombinant expression of M7 genes from Pomacea bridgesii and Lottia gigantea

Full-length synthetic cDNAs for PbMTI and LgMTI genes were synthesized by Integrated DNA
Technologies Company (Coralville, IA, USA) and by Synbiotech (Monmouth Junction NJ, USA),
respectively. Both cDNAs were cloned into the E. coli pGEX-4T-1 expression vector (GE Healthcare) as
described elsewhere '3 with minor modifications. Cloned PbMTI and LgMTI cDNAs were sequenced
with the Big Dye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) at the Scientific and
Technological Centers of the University of Barcelona (ABIPRISM 310, Applied Biosystems).

For heterologous expression of GST-MT fusion proteins, 500 mL of LB medium with 100 pg mL-!
ampicillin were inoculated with protease-deficient E. coli BL21 cells previously transformed with the
PbMTI pGEX-4T-1 or LgMTI pGEX-4T-1 recombinant plasmids. After overnight growth at 37 °C/250
rpm, the cultures were used to inoculate 5 L of fresh LB-100 ug mL-! ampicillin medium. Gene expression
was induced with 100 uM isopropyl-p-D-thiogalactopyranoside (IPTG) for 3 hours (h). After the first 30
minutes (min) of induction, cultures were supplemented with ZnCl, (300 uM), CdCl, (300 uM) or CuSQOy,
(500 uM) in order to generate metal-MT complexes. Cells were harvested by centrifugation for 5 min at
9100 g (7700 rpm), and bacterial pellets were suspended in 125 mL of ice-cold PBS (1.4 M NaCl, 27 mM
KCl, 101 mM Na,HPO,, 18 mM KH,PO, and 0.5% v/v B-mercaptoethanol). Resuspended cells were
sonicated (Sonifier Ultrasonic Cell Disruptor) 8 min at voltage 6 with pulses of 0.6 seconds, and then

centrifuged for 40 min at 17200 g (12000 rpm) and 4° C.

Purification of recombinant metal-MT complexes

Protein extracts containing GST-PbMT1 or GST-LgMT1 fusion proteins were incubated with
glutathione sepharose beads (GE Healthcare) for 1 h at room temperature with gentle rotation. GST-MT
fusion proteins bound to the sepharose beads were washed with 30 mL of cold 1xPBS bubbled with argon
to prevent oxidation. After three washes, GST-MT fusion proteins were digested with thrombin (GE
Healthcare, 25 U L! of culture) overnight at 17 °C, thus enabling separation of the metal-MT complexes
from the GST that remained bound to the sepharose matrix. The eluted metal-MT complexes were
concentrated with a 3 kDa Centripep Low Concentrator (Amicon, Merck), and fractionated on a Superdex-
75 FPLC column (GE Healthcare) equilibrated with 20 mM Tris—HCI, pH 7.0, and run at 0.8 mL min'.
The protein-containing fractions, identified by their absorbance at 254 nm, were pooled and stored at -80

°C until use.
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Analysis of recombinantly expressed metal-MT complexes

For determination of the molecular mass of the metal complex species in solutiom; 1%3%ﬁ§£§§
complexes produced by recombinant expression were analyzed by electrospray ionization mass
spectrometry (ESI-MS). For that purpose, a Micro Tof-Q Instrument (Bruker Daltonics Gmbh, Bremen,
Germany) with a time-of-flight analyzer (ESI-TOF MS) was utilized, calibrated with ESI-L Low
Concentration Tuning Mix (Agilent Technologies, Santa Clara, CA, USA), and interfaced with a Series
1100 HPLC pump (Agilent Technologies) equipped with an autosampler, both controlled by the Compass
Software. The experimental conditions for analysis of Zn and Cd proteins were as follows. 10-20 uL of
the sample were injected at 40 pL/min using the capillary-counter electrode voltage at 5.0 kV and the
desolvation temperature in the 90-110 °C range. For Cu containing samples the conditions used were
milder, applying the capillary-counter electrode voltage at 4.0 kV and the desolvation temperature at 80
°C. Spectra were collected throughout an m/z range from 800 to 2500. The liquid carrier was a 90:10

mixture of 15 mM ammonium acetate and acetonitrile, pH 7.0. All samples were injected in duplicates to

ensure reproducibility.

NMR and metal titration

Fully cadmium-loaded forms of Littorina littorea and Helix pomatia MTs were produced by
recombinant expression and uniformly '’N-labelled in E. coli cells as described previously 2°. To
demetallate the proteins their solutions were acidified in three buffer exchange steps, adding demetallation
solutions (pH 2.0, 10 or 20 mM MES or TRIS, 10 mM TCEP) using Amicon Ultra 3K Centrifugal Filter
Devices (EMD Millipore). All solutions were carefully purged with argon prior to use. Titrations were
performed in 20 or 50 mM MES (pH 6.0), MES (pH 7.0) and Tris (pH 7.0) buffers with 10 mM TCEP
yielding very similar results. Metallation was followed by recording ['°N,'H]-HSQC spectra or best-type
[N,'H]-HSQC spectra 3¢, Spectra were analyzed and peaks integrated applying the program CcpNmr
v.2.42.%7,

Measurements of °N transverse relaxation rates (R2) were performed using a HSQC-type version
of the Carr Purcell Meiboom Gill (CPMG) experiment 33, 32 scans were performed per increment and T2
delays of 0, 17, 34, 51, 68, 102, 119, 204 and 305 ms were used. The relaxation delay in all these
experiments was set to 2 s. Spectra were recorded using Zng- or Cdg-HpMT and Zng- or Cdy-LIMT
samples. Zn-loaded MTs were generated by adding Zn to demetallated MTs. Peaks were integrated
batchwise using the program SPSCAN and R2 rates extracted from least square fits to the standard
exponential decay function with gnuplot.

All spectra were recorded at 298 K on a Bruker NEON 600 MHz or 700 MHz NMR spectrometer

using a PRODIGY triple-resonance probe for samples at a concentration range of 0.1- 0.5 mM.
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Tissue sample digestion and metal analyses

For Cd analysis, midgut gland tissue samples and lettuce leaves (Lactuca sativa?%&@%ﬁﬁ%g
at 60°C. After dry weight (d.w.) determination, samples were wet-digested at 70°C with a mixture of
HNO; (suprapur, Merck, Darmstadt, Germany) and deionized water (1:1) in 12 ml screw-capped
polyethylene tubes (Greiner, Kremsmiinster, Austria). For complete oxidation, a few drops of H,O, were
added to the hot digested samples. They were filled up with deionized water to a final volume of 11.5 ml.
Cd concentrations were measured by flame (Model 2380, Perkin Elmer, Boston, MA) or graphite furnace
atomic absorption spectrophotometry with polarized Zeeman background correction (Model Z-8200,
Hitachi, Japan) and Pd(NO;), as a matrix modifier, depending on concentration levels in the samples.
Calibration was performed with diluted titrisol standard solutions (Merck) prepared with de-ionized water

and 5% HNOj; (suprapur, Merck). Lobster hepatopancreas powder (TORT-2, National Research Council,

Canada) was used as a standard reference material and processed in the same way as the samples (n = 5).

Preparation and chromatography of in vivo MTs

Purification and preparation of in vivo MTs for determination of molar metal ratios were performed
on centrifuged supernatants of midgut gland homogenates obtained from Cd-exposed snails (Helix
pomatia, Cornu aspersum) und slugs (4Arion vulgaris), by applying successive fractionation steps on gel
permeation chromatography, anion exchange chromatography, ultrafiltration and Reverse phase HPLC 2.
For each species, HPLC fractions of the eluted MT peak were pooled and diluted 1:10 with deionized
water under addition of 1% HNOj;. Metal concentrations (Cd, Cu, Zn) were analysed in triplicate in 1 ml
aliquots by graphite furnace atomic absorption spectrophotometry with polarized Zeeman background

correction (Model Z-8200, Hitachi, Japan) as described above.

Statistics

Data from q-RT-PCR and metal analyses were evaluated using SigmaPlot 12.5 (SYSTAT
software, San Jose, CA, USA). Values were tested for normal distribution with the Shapiro—Wilk
normality test and the equal variance test. Outliers of normally distributed data were assessed with the

Grubbs test (https:// www.graphpad.com/quickcalcs/Grubbs|.cfim). For not normally distributed data, non-

parametric methods (Mann-Whitney U test) were applied. Significance levels were set at p < 0.05.

Results and Discussion

In this work we propose that Cd acts as a driver in the evolution of gastropod metallothioneins. In
what follows we first describe the variety of gastropod MTs (section 1), structural features of MTs (section

2), and our phylogenetic analysis of how gastropod MTs changed during evolution to gain (section 3) or

9
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loose (section 4) Cd-binding selectivity. Moreover, we describe how Cd-selectivity was achieved during
View Article Online

evolution (section 5) and conclude with how changes in environmental Cd levels influeneed Cdselectivity

(section 6).

1. Gastropod diversity

Modern Gastropoda represent five distinct clades with about 80,000 species: Patellogastropoda,
Neritimorpha, Vetigastropoda, Caenogastropoda and Heterobranchia. Their phylogenetic relationships
25,39-44 gerved as a reference for this study. Interestingly, several gastropod lineages have independently
abandoned marine realms and successfully adapted to semi-terrestrial, terrestrial and freshwater
environments *°. This manifold colonization of non-marine habitats has promoted the huge diversity of
gastropod traits, including the structural and functional diversity of their MT genes and proteins. Species
and their MT sequences used for phylogenetic tree constructions of the present study are reported in Table

S3.

2. Gastropod MTs: Structures, domain organization and metal binding features

Examples of primary MT structures across all major gastropod clades are shown in Figure 1A-E.
Amino acid sequences of most gastropod MTs reflect a bipartite organization of one N-terminal metal-
binding domain linked to a distinctly different C-terminal metal-binding domain (Figure 1A, B, E). This
kind of structural organization has been confirmed by NMR studies and molecular modeling 646, 1t is
therefore assumed that the primordial gastropod MT was a bidominial MT. Both N-terminal and C-
terminal domains, contain nine Cys residues each which bind in a stoichiometric ratio, three divalent
(mainly Cd?*, Zn?"), or six monovalent (mainly Cu") metal ions, such that a prototypical two-domain snail
MT can accommodate six divalent or 12 monovalent metal ions, respectively '4. An exception from this
rule is observed in MTs of Patellogastropoda such as Lottia gigantea and Patella vulgata, which possess
a deviating N-terminal domain that contains 10 instead of nine Cys residues, most of them arranged in
form of double (Cys-Cys) motifs (Figure 1B). In addition to this, the N-terminal MT domain in some
snail species has been duplicated once or several times independently, as seen in Litforina littorea and
Pomatias elegans %20 (Figure 1B). In the land snail Alinda biplicata and in some other species, tandem
duplications generated multi-domain MTs (md-MTs) consisting of modular strings of up to nine N-
terminal domain repeats, always linked to a single C-terminal domain that has, to the best of our
knowledge, never been duplicated 47 (Figure 1C). Domain duplications were also reported from bivalve
MTs 48, which have probably emerged independently from those in gastropods. In gastropods, md-MTs
can bind additional metal ions according to the number of added domains within the protein chain. For
example, in In the three-domain MT of Littorina littorea, the metal binding ratio for Cd** has been

extended to a number of nine Cd?* ions as compared with six Cd?>* ions in normal bidominial snail MTs
10
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2022 Apart from this, N- and/or C-terminal domains are modified in some species by deletions at specific
positions or through premature chain truncations (Figure 1 D,E). DO 10.1039/COMTO0255F

Across all gastropod MTs, primary structures of C-terminal domains appear to be higher conserved
compared with N-terminal domains. A BLAST comparison of the N-terminal domain of Littorina littorea
with those of all other gastropod CdMTs reveals low degrees of homology in a clade-specific gradation
from Heterobranchia through Caenogastropoda to Patellogastropoda (Figure 2). In contrast, similarity
scores between C-terminal domains of the same MT sequences are much more significant. This clearly
demonstrates the higher degree of conservation of C-terminal against N-terminal metal binding domains,
which is also confirmed by a distance matrix derived from single domain alignments (Table S4). We used
Littorina littorea as a reference because this species possesses a well characterized CAMT 222 and
occupies a central position between ancient and modern Gastropoda #!.

The higher evolutionary pressure for sequence conservation of the C-terminal domain in snail MTs
is probably related to preferred Cd*" loading into that part of the protein. This is demonstrated by NMR
data of experiments, in which Cd?** equivalents were added stepwise to the apo-MT of Littorina littorea
(Figure 3). Unlike the Cd-loaded MT (Figure 3B), the apo-MT is unfolded and does not assume a specific
three-dimensional shape (Figure 3A) 4. Added Cd?" is initially cooperatively incorporated into the C-
terminal domain to build the C-terminal cluster (Figure 3C), before the two N-terminal domains form
simultaneously (Figure 3D). This proves a clear priority for Cd** uptake into the C-terminal domain.

So far, the tertiary structure of two snail MTs has been disclosed by solution NMR, namely for the
bidominial CAMT of the Roman snail, Helix pomatia *°, and for the three-domain CdMT of the periwinkle,
Littorina littorea *°. The tertiary structure of the Roman snail CdMT in its dumbbell shape reesembles the
very similar structures of vertebrate MTs 0!, However, the metal-binding stoichiometry of the snail MT
with six Cd?" ions for the entire protein and three Cd?" ions coordinated by nine Cys residues within each
of the two domains, respectively, differs from the well-known metal binding stoichiometry of MTs from
most other animal clades %. In mammalian MTs, four divalent metal ions are coordinated by 11 Cys
residues in the C-terminal cluster (called alpha domain), whereas three divalent metal ions are bound by
nine Cys residues in the N-terminal domain (called beta domain) °!. The MT of Littorina littorea is the
first reported animal MT ever that exhibits a three-domain partition 20,

Many snail MTs possess Cd- or Cu-selective binding preferences, and can be isolated as stable,
homometallic metal complexes from native snail tissues '4°2. Although the exact prerequisits for metal-
selectivity are not yet fully understood, it appears that the frequency and position of certain non-
coordinating amino acid residues in the primary sequence and their spatial arrangement in the tertiary
structure are crucial determinants in conferring metal-selectivity to snail MTs 131921,

The homometallic composition of metal-selective snail MTs was demonstrated by electrospray

ionization mass spectrometry (ESI-MS) in recombinantly expressed and purified MT proteins 522,
11
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Thereby, metal-selective MTs can be detected as homometallic complexes with their cognate metal ions
(mainly Cd*" or Cu") but appear as a heterometallic mixture of complexes with Variamelgwi%%@%%giﬁ
when forced to associate with non-cognate metal species '>!8. In contrast, metal-unspecific snail MTs
form heterometallic mixtures of complexes with variable stoichiometry in presence of any metal ions .
According to this definition, it appears that Cd-selective MTs have not equally evolved in all gastropod
clades. For example, vetigastropod species like Megathura crenulata possess an unspecific MT that
produces a mixture of sulfide containing heterometallic complexes with reduced stability when
recombinantly expressed in Cd-enriched media 7 (Figure 4). In contrast, recombinant CAMTs of some
Caenogastropoda (like Littorina littorea) and Heterobranchia (like Helix pomatia) form homometallic
Cd** complexes (Figure 5). MTs of Patellogastropoda are also Cd-selective. However, because of the
divergent primary structure of their N-terminal domain with 10 Cys residues (Figure 1B), CdAMTs of
Patellogastropoda bind seven instead of six Cd?* ions per protein molecule, as demonstrated for Lottia
gigantea (Figure 5). CAMTs of Helix pomatia and Arion vulgaris (Heterobranchia) bind six Cd?* ions per
protein molecule or nine Cd*>" ions in three-domain CdMTs like that of Littorina littorea
(Caenogastropoda) (Figure 5). All gastropod CdMTs are incapable to form homometallic Cu*™ complexes
(Figure 5). However, due to the chemical similarity between Zn and Cd, some recombinant gastropod
CdMTs can form homometallic complexes with divalent Zn?" ions. This Zn?>*-binding selectivity is low
in CdMTs of Patellogastropoda, as demonstrated for Lottia gigantea (Figure 5). In contrast, Zn preference
is high for Caenogastropoda CdMTs (Littorina littorea) and Stylommatophora CdMTs (Helix pomatia
and Arion vulgaris), which are able to form homometallic Zn>* complexes in the presence of excessive
Zn?" concentrations, with the same stoichiometry as for Cd?* (Figure 5). Interestingly, some evidence

indicates Zn specificity in MTs of some mussels (Bivalvia), the mollusk sister class of gastropods #+.

3. Phylogeny suggests convergent evolution of CAMTSs in early gastropod clades

The multitude of published and collected primary MT sequences from species across all clades of
Gastropoda (see Table S3) and basic knowledge about their structure and metal-binding features (see
above) fosters an attempt towards establishing a phylogeny of gastropod MTs and, in particular, Cd-
selective snail MTs. The smallness of most MT proteins and the fact that the abundance of conserved
cysteine residues and repeat motifs do not bear much phylogenetically evaluable information creates a
challenge in such an analysis. In the present study, we have developed a domain and metal-specific
approach to compensate somewhat for these handicaps.

Yet, confronting a phylogeny of neutral DNA markers with one based on Cd-selective MTs
(Figure 6) reflects the evolution of Cd selectivity in MTs of three gastropod clades: Patellogastropoda,
Caenogastropoda and Heterobranchia. It appears that Cd-selective MTs are predominantly observed in

species that have adapted to littoral and terrestrial environments (Figure 6). A closer phylogenetic view
12


https://doi.org/10.1039/c9mt00259f

Page 15 of 40 Metallomics

1
243

3
#44
5

445

in which MTs of Panpulmonata (a taxon of Heterobranchia comprising the lineages of Sacoglossa,
Syphonariodea, Hygrophila and Stylommatophora) 33 are rooted with MTs of Caneogmréwggvcgﬁféég‘g
7) reveals the loss of Cd-selective MTs in freshwater snails of Caenogastropoda and Heterobranchia, and
the initial emergence and subsequent loss of Cu-selective MT isoforms (CuMTs) in the lineage of
Stylommatophora (terrestrial snails and slugs). In that context it is of interest that it was previously shown
that snail CuMTs are involved in Cu regulation, possibly linked to hemocyanin synthesis 343

Chronograms show that Cd selectivity developed from ancestral MTs twice independently. CAMTs
evolved first in Patellogastropoda, about 430 million years (My) ago (Figure 8A). A second line of CdMTs
emerged in the two sister clades Caenogastropoda and Heterobranchia, before 418 My ago (Figure 8A).
Apart from the phylogenetic evidence, another clear indication of this independent evolution is the
emergence of a new kind of N-terminal metal-binding domain in CdMTs of Patellogastropoda (see above),
which differs fundamentally from N-terminal domains in CdMTs of all other gastropod lineages (Figure
1B). The two sister clades Caenogastropoda and Heterobranchia have shaped their CdMTs through
parallel evolution (Figure 8A, B). This is reflected by sequence similarities and homologous domain
organization across primary structures of their CdMTs (Figure 1B).

Also indicated in the chronogram are some of the main mass extinction events through the
evolutionary history of the earth (Figure 8B). Fluctuating emissions of Cd through continental and super-
volcanic emissions in combination with these catastrophic extinction events 2°%>% may have triggered
convergent evolution of Cd-selective MTs in gastropod clades since 430 My ago (Figure 8B). Evidence
for increased Cd emissions through geological eras is provided by elevated Cd concentrations in
worldwide bedrock formations of different geological origin, from Paleozoic %63 through Mesozoic 6364
and Cenozoic %.

Based on experimental data with recombinant proteins !7, it appears that Cd selectivity is lacking
in MTs of Vetigastropoda (Figures 8A), which forms a sister clade to Patellogastropoda 43. The metal-
specific character in MTs of Neritimorpha, on the other hand, is still unknown (Figure 8A). Since
Neritimorpha from a sister clade to Caenogastropoda and Heterobranchia 43, it could be speculated that
they share Cd-specific features with their two sister clades. On the other hand, a high degree of identity in
primary sequence and domain organization between MTs of Vetigastropoda and Neritimorpha (Figure
1A) suggests the possibility that Neritimorpha MTs share some of their metal-binding features with those
of Vetigastropoda. Future experiments through recombinant expression and ESI-MS analyses will
probably resolve this question. The supposed zinc (Zn) specificity in MTs of some mussels (Bivalvia), the
mollusk sister class of gastropods, is also indicated in Figure 8 A. However, this evidence is scarce, being

derived from one single experimental study #4.

4. Diversification and loss of cadmium selectivity during late gastropod radiation
13
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Since the Cretaceous period, Cd selectivity of MTs was apparently lost in snail lineages that
adapted to freshwater habitats. Accordingly, metal-binding features of MTs from p@m&zpavé%%é%ﬁﬁ
(family of Ampullariidae, Caenogastropoda) and Biomphalaria glabrata (Hygrophila, Heterobranchia)
resemble those of the unspecific Megathura crenulata MT 7 (Figure 4). As indicated by their primary
sequence and domain organization (Figure 1D, E), a loss of Cd selectivity may also have occurred in
caenogastropod species of freshwater Calyptreidae and Buccinidae (Figure 6). The loss of Cd selectivity
in these MTs is a derived character (Figure 7), suggesting that metal selectivity was no longer required in
MTs of freshwater snails. In some freshwater species of Caenogastropoda such as Pomacea canaliculata,
MTs have developed N-terminal repeats, similar to some snail CdAMTs (Figure 1C).

In terrestrial snails of Stylommatophora (Heterobranchia), gene duplications of the primordial
CdMT led to the emergence of three MT isoforms, each of them devoted to different, metal-specific tasks
14,55.66 First, a gene duplication of CdMT gave rise to Cu-selective MTs, which form homometallic Cu*
complexes at a ratio of 12 Cu* ions per protein molecule, but neither bind Cd?* nor Zn?* (Figure S1, S2).
In a second event of gene duplication, CuMT genes lost their Cu selectivity in the so-called CACuMT

isoforms 1319556668 (Figure S1 S2). Phylogenetic trees (Figure S3) support the chronological succession

of these evolutionary steps.

5. Evolutionary optimization of Cd selectivity and specificity

For the sake of clarity, we like to distinguish between Cd (or metal) selectivity and specificity of
MTs. We define Cd selectivity as the binding preference of an MT for Cd*" ions in presence of other metal
ions, mainly Zn?" and Cu’. We define Cd (or metal) specificity as the involvement of the respective MT
into a Cd- or metal-specific physiological function, which is often the consequence of its metal binding
selectivity. For example, Cd-selective snail MTs are predominantly involved in Cd-specific functions like
detoxification 146970,

Accordingly, we can observe that during gastropod evolution both, metal selectivity and
physiological specificity of snail CAMTs have been optimized in favor of Cd?". The CAMT of Littorina
littorea, for example, has been optimized for Cd*>* complexation to the disadvantage of Zn?* binding. This
can be concluded indirectly from the better fit of the protein backbone to the Cd vs the Zn cluster. To this
end we measured '’N dynamics NMR data that probe for rigidity of the polypeptide backbone. Transverse
relaxation (R2) rates of Zn**-loaded CAMTs are increased by 14 and 8 Hz in the N-terminal N1 and N2
domains of the CAMT of Littorina littorea, respectively, and by up to 5 Hz in the C-terminal domain of
the Helix pomatia CAMT (Figure 9) when compared to the Cd**-loaded forms. The increase in transverse
relaxation rates reflects additional contributions from conformational exchange only for the Zn?* species,
indicating that the complexes with the cognate Cd?* ion are conformationally more stable (Figure 9).

Similarly, NMR studies of the CAMT of Helix pomatia indicate a structural optimization for Cd** rather
14
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than Zn?* binding 6. Further evidence for an evolutionary optimization for Cd binding in these MTs comes
from the fact that Cd** ions are incorporated into these proteins cooperatively (Figur@@)wmg&%g%g
peaks in the [SN,'H]-HSQC spectra occur at the same positions as in the fully-metallated domains
indicates that no partially metallated domains form in situations of substoichiometric metal content.
Strikingly, the Cd-selective character of gastropod CdMTs is also maintained in the presence of Cu* ions
at equimolar concentrations with Cd?*, as demonstrated recently for the recombinantly produced CAMT
(AVMT1) of the terrestrial slug, Arion vulgaris »3. This is remarkable since the evolution of thiolate
proteins with an apparent preference for binding Cd?" over Cu' is a particular feature of snail CdAMTs
which is otherwise not observed in other animal MTs 463051 and seems to contradict the chemical rules
of the Irving Williams series 7!. These rules predict that the stability constants of transition-metal ion
complexes increase by a factor of 100 to 1000 from Cd- towards Cu-thiolates ">73. However, The Irving
Williams rules may not apply to metal-selective snail MTs, considering that they do not contain simple
binary metal-thiolate complexes. In the CdMTs of Littorina littorea and Helix pomatia, for example,
divalent Cd** ions are tetrahedrally coordinated 2946, forming Cd-thiolate clusters that most likely differ
in their structural configuration from the Cu-thiolate clusters of snail CuMTs 4. Importantly, it was
demonstrated that the replacement of a few amino acid positions in the near vicinity to the metal-
coordinating Cys residues can have a strong impact on the metal binding preferences of snail MTs 51921,
probably due to spatial and charge-dependent constraints upon formation of protein-metal complexes. We
suspect that such amino acid replacements must have gradually improved/modified the Cd-binding
selectivity of snail MTs during evolution. Apart from this, the capacity for Cd-loading of many snail
CdMTs has been increased through evolutionary multiplication of Cd-binding domains as demonstrated
for the littoral periwinkle, Littorina littorea, and the land snails Pomatias elegans and Alinda biplicata
16,20.47 ~ At the functional level, evolutionary optimization for Cd binding in CdMTs has resulted in Cd-
specific detoxification pathways within snail tissues. This is reflected by the fact that native purified
gastropod CdMTs contain mainly Cd?*, but only small amounts of Zn?>" or Cu® (Figure 10A).
Concomitantly, Cd inactivation in these species is enhanced by metal-dependent upregulation of the

respective CdMT genes (Figure 10B), and tissue or cell-specific expression of CdMT mRNA 236974,

6. Environmental Cd levels through the earth history: an important evolutionary driver

Cd is carcinogenic and highly toxic in animals, even at low concentrations 7°. The chemical
similarity of this metal and its frequent co-occurrence with Zn in ore deposits of the earth crust make Cd
a dangerous competitor for Zn-dependent cellular processes 3. Cd can also compete with calcium (Ca) 76,
and hence affect gastropods that depend on Ca pathways for bio-mineralization of their shells 7.

Gain of Cd-selective MTs may have provided an advantage particularly for gastropod lineages that

have adapted to littoral, semi-terrestrial, and terrestrial conditions. Recent natural Cd concentrations in
15
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seawater follow those of algal nutrients such as phosphate 3, displaying higher concentrations in deeper
oceanic waters and exhibit a depletion towards neritic surface waters down to concerﬁ@a@wﬁéj&%gﬁ%?;
1019 M 787 (Figure 11). Complex formation of Cd*" with inorganic and organic ligands further decreases
its biological availability in neritic seawater realms 8. The situation changes drastically in the littoral zone,
where marine habitats come into contact with the continental earth crust, in which natural Cd background
concentrations, at 10-® — 107 M, can be up to 100 times higher than those of superficial seawater 8! (Figure
11). Decreasing seawater salinities in the supra-littoral zone can even enhance the availability of Cd?* for
animals 8283,

Gastropods of these habitats have adapted to fluctuating environmental conditions 8 but also had
to cope with increasing Cd concentrations. Inactivation of Cd*" ions by metal-selective MTs would,
therefore, confer on them a physiological advantage ® over energy-consuming activities for continuously
re-adjusting intracellular Cd concentrations 8. Upon adaptation to terrestrial life, gastropods have learned
to cope with alternating and adverse environmental conditions #7-88. Hence, the conservation of Cd-
selective MTs may also be beneficial for land snails ¢ (Figure 11).

In contrast to terrestrial snails, freshwater species of Caenogastropoda and Heterobranchia have
lost their Cd binding selectivity, likely because natural Cd background concentrations in freshwater
habitats with about 10-1° — 1012 M are the lowest of any snail habitat on earth ¥ (Figure 11).

The multitude of metal-selective MT variants naturally occurring in snails offers the unique
possibility to apply them as models for optimization of MT metal binding features through experiments
in the laboratory. This may promote our understanding of about how amino acid replacements modify
metal selectivity in MTs, and could have implications for the design of novel artificial Cd-binding proteins
for the sake of basic research or for application in environmental bioremediation %!, It underscores once

more the true model character of metal-selective snail MTs.

7. Conclusions

Some important conclusions are derived from our findings: First, presence of Cd has been a
continuous evolutionary stimulus through the last 430 million years, driving convergent evolution and
optimization of Cd-selective MTs in gastropod clades. Second, the C-terminal domain of Cd-selective
gastropod MTs has been subjected to a high pressure for evolutionary conservation, which we attribute to
its important role for immobilizing Cd?**. Third, gastropod adaptation to habitats with different Cd
background levels has triggered MT diversification towards partial or complete loss of metal selectivity.
Fourth, the natural evolution in snails of an array of differently metal-selective MT variants designates

them MTs as model molecules and indicates that it is possible to design artificial Cd-selective peptides.
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756  Figure 1A-E: Sequence alignments of snail metalothioneins.
757  Cys positions are underlaid in pink, conserved non-Cys positions through sequences of both clades are underlaid in light blue. Identical amino acid positions between
758  pairwise aligned sequences are indicated by black stars. Domain boundaries of the N-terminal and the C-terminal domain (designated above the alignments with N
759  and C) are indicatd by bold red lines. The linker between the two domains is shown in black letters, its boundary is symbolized by a dotted line. The gaps between the
760  two domains were inserted indicating the lack of a second N-terminal domain (present in other gastropod MTs). MTs of species shown in red letters were sequenced
761  in this study for the first time while sequences in black letters were downloaded from publications or databases. Species for which metal selectivity features of
762  respective MTs were documented experimentally by us through MS or NMR methods elsewhere are framed in blue.
763
764 A
VETIGASTROPODA N Linker C
Megathura crenuata MT SGKN-=======] ITAEIKSDPIA‘;DS---IK.GEG-IAIT TEAKT T —======== === === m——m—mmm——m—mm = = S-M-E@(EGEWSG-lAslx
* kkk kkk khkkkk * kk*k%k * * * %k k
Haliotis diversicolor MT  SSPQ----- GPG.TAS'KSEPIA":‘TD-——IK'NPSD'P'T L SDG- |Q|GKG|TTGDI|K|DDS |s|
*k kK * kkk * % %k ke ko ke kkkkk dhhk & * % % %k * hhkkkhkdk & khkkdkkhk *
Haliotis discus hanai MT  SSPQ----- cacETGEExTD PEABGTD - - -ExEnroDEAED G e et PGS lElGKGlTSGETlKIDDS—.T.K
%k dkkkdk *k dkkkhk * * * % * % * ok * kk kkk * ok ok
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Neritina peloronta MT1 SDPK----~ GAS.TTE“DP.A.GTN--—“GSD-.T.SS B e e e e s-BaBcrelrersTEREDsG-EsER
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765  Metal-binding domain organization and amino acid sequence alignment of unspecific MTs from the gastropod clade of Vetigastropoda and MTs with still unknown
766  metal binding features from Neritimorpha. The bold red arrow on the right hand of the alignments points to sequence identities between MTs of Tegula atra
;gg (Vetigastropoda) and Neritina peloronta MT1 (Neritimorpha).
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B Metal-binding domain organization and amino acid sequence alignment of Cd-selective MTs from the gastropod clades of Patellogastropoda, Caenogastropoda and
Heterobranchia using the same annotations as described in Figure 1A. The bold red arrows on the right hand of the alignments points to sequence differences or
similarities between MTs of the three clades.
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Figure 4: ESI-MS spectra of metal-unselective gastropod MTs recombinantly produced in media
containing Cd, Zn and Cu ions. Data are shown for MTs from Megathura crenulata (Vetigastropoda),
Biomphalaria  glabrata  (freshwater Heterobranchia) and Pomacea bridgesii  (freshwater
Caenogastropoda). The corresponding charge state is indicated in the upper right corner. In Cu
productions, M denotes mixtures of Zn+Cu. Spectra of pomea bridgesii MT1 are shown here for the first
time and are marked with a red star. Spectra of other MTs are re-drawn from data reported in 172!,
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Figure S: ESI-MS spectra of Cd-selective gastropod MTs recombinantly produced in media
containing Cd, Zn and Cu ions. Data are shown for MTs from Lottia gigantea (Patellogastropoda),
Littorina littorea (Caenogastropoda), Helix pomatia (terrestrial snail, Heterobranchia) and Arion vulgaris
(terrestrial slug, Heterobranchia). The corresponding charge state is indicated in the upper right corner.
In Cu productions, M denotes mixtures of Zn+Cu. Spectra for which metal selectivity features are shown
here for the first time are marked with a red star. Spectra of other MTs are re-drawn from data reported

in 221523,
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Figure 6: Mirrored phylogenetic trees (Maximum Likelihood) of investigated species of the four major gastropod clades of Patellogastropoda, Neritimorpha,

987  Caenogastropoda and Heterobranchia. Right: phylogeny (Maximum Likelihood) showing the separated lineage clusters of only Cd-selective MTs. Bootstrap values
988 (500 replicates) are given at nodes. Left: neutral marker phylogeny based on concatenated CO1-18SrDNA data. Bootstrap values (1000 repetitions) are given at nodes.
989  Mirrored species possessing Cd-selective MTs are shown within red-colored frames. Identical species between the two mirroring trees are connected by dotted red
990 lines. On outside margins of the trees, habitats of the represented species are shown with colored bars. On the left outer margin of the neutral marker tree, major
991  taxonomic clades are indicated by black bold lines. Abbreviations: T, Terrestrial; Fresh, Freshwater; Patello, Patellogastropoda; N, Neritimorpha.
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Figure 7: Bayesian Inference tree with posterior probabilities of metal selectivity features in MTs of
Panpulmonata (a taxon of Heterobranchia) versus Caenogastropoda. Shown are the gain of Cd selectivity
(red triangle) in MTs at the root of Caenogastropoda and Heterobranchia, with species possessing Cd-selective
MTs underlaid in pink, and the gain of Cu selectivity (blue triangle) in MTs of Stylommatophora, with species
possessing Cu-selective MTs underlaid in blue. Also illustrated are the secondary loss of ancestral Cd
selectivity in MTs of Hygrophila (red hatched triangle), and the secondary loss of Cu selectivity (blue hatched
triangle) in CdCuMTs of Stylommatophora, with respective species clusters underlaid in blue. Bayesian
inference calculations were made based on a manually edited MUSCLE alignment (see alignment S4) using
the free software MrBayes (see Material and Methods).
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Figure 8: Phylogenetic tree (A) and chronogram (B) of Cd and Cu selectivity gain and loss in metallothioneins of Gastropoda. A (inset), phylogenetic tree of
Gastropoda (reconstructed after #'4%) with most probable relationships of gastropod clades (Patellogastropoda, Vetigastropoda, Neritimorpha, Caenogastropoda and
Heterobranchia), rooted against the Gastropod sister class of Bivalvia (mussels) °2. Gain of Cd and Cu selectivity is indicated by red and blue triangles. The kind of
metal selectivity in Neritimorpha MTs is still unknown. The possible gain of Zn selectivity in Bivalvia is indicated by an orange triangle with a query. Approximate
divergence times (with references) of gastropod lineages are given in million years. Marine (M), littoral (L), freshwater (F) and terrestrial (T) habitats are specified in
colored framed boxes. Metal selectivities are indicated by red (Cd-selective), blue (Cu-selective), orange (Zn-selective) and black (unselective) bars. B Chronogram
showing gains and losses of metal selectivity in MTs of the two gastropod sister clades Caenogastropoda and Heterobranchia (enhanced from grey area in A), with
their splits into major lineages, including investigated species. Cd-selective MTs (red triangle) appeared prior to the divergence of Canogastropoda and Heterobranchia,
and Cu selectivity (blue triangle) in MT isoforms of Stylommatophora. Cu selectivity was lost in novel MT isoforms of Stylommatophora (hatched blue triangle), and
Cd selectivity was lost (hatched red triangles) in freshwater lineages of Ampullariidae (Caenogastropoda) and Hygrophila (Heterobranchia). Approximate divergence
times of gastropod lineages are given in million years ago. Grey bars indicate published mean values for the divergence times (references a — ¢). Vertical, grey dashed
lines indicate four of the major mass extinction events. Elevated levels of toxic metals (including Cd) are indicated in grey boxes (references 1 — 6) above the time
axis. Chronogram construction was based on: a, 4!; b, ¥; ¢, %; d, %%; e, . (Additional references: 4043-93-95), Dating of increased volcanic Cd or metal emissions are
based on information from the following studies: 1, ©0; 2, 93; 3, 62; 4,38, 5 57; 6, 5° (Additional references: >%).
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Figure 10A: Zinc and copper content in native CdAMTs isolated from midgut gland preparations of Cd-
exposed snails. Values are given as molar ratios in % of Cd content. HpCdMT, Helix pomatia CdAMT;
CaCdMT, Cornu aspersum CAMT; AvMT1, Arion vulgaris AvMT1 (CAMT). MTs of species, for which metal
contents were analyzed for the first time in this study are marked with a red star. Molar ratios for HpCdMT
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Figure 10B: Cd accumulation and —fold induction of MT gene mRNA transcription in midgut gland of
Cd-exposed snails with unselective and with Cd-selective MTs. Left-hand part of the graph: Cd
accumulation (orange bars) and —fold MT mRNA induction (grey bars) in two freshwater snails (Lymnaea
stagnalis and Biomphalaria glabrata, both Hygrophila) with unspecific MTs. Right-hand part of the graph:
Cd accumulation (Cd) and —fold MT mRNA induction for snails possessing Cd-selective MTs, with respective
values for Arion vulgaris and Cornu aspersum belonging to the clade of Stylommatophora (black/green and
light green bars), and for Littorina littorea and Pomatias elegans belonging to the clade of Caenogastropoda
(black/blue and light blue bars). Cd contents and mRNA induction data of species analysed de novo for the
present study are marked with a red star. The other values were re-drawn from data reported in °¢, 23, °7 and '°.
Species abbreviations: L.s., Lymnaea stagnalis; B.g., Biomphalaria glabrata; A.v., Arion vulgaris; C.a.,
Cournu aspersum; L.1., Littorina littorea; P.e., Pomatias elegans.
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Table 1 — List of gastropod species and their use for different methodical applications (red check marks) within the present study. Reported are all species acquired
(first column) and their utilization for Cd exposure (second column), RNA sequencing and transcriptome assembly (second column), RNA isolation and cDNA
transcription (third column), quantitative Real-Time PCR (fourth column), Protein purification from tissues in vivo (fifth column), recombinant expression (sixth
column), MS analysis (seventh column), NMR analysis and metal titration (eighth column), and construction of neutral marker phylogeny (ninth column).

Animal collection, Cd RNA seq and RNA Quantitative | In vivo protein | Recombinant| MS |NMR and metal| Neutral
purchasing and exposure | transcriptome | isolation RT-PCR purification expression | analysis titration marker
rearing (Species) assembly and cDNA phylogeny

Lottia gigantea v v v '
Patella vulgata \ \ \
Neritina pulligera \ \ \
Littorina littorea \ \ \
Pomatias elegans \
Marisa cornuarietis \ \
Pomacea bridgesii \ \ \
Anentome helena \ \ \
Aplysia californica \ v
Elysia crispata \ \
Physella acuta \ \
Lymnaea stagnalis v \ \

Biomphalaria glabrata \
Arion vulgaris \ \ v \
Deroceras reticulatum \ v
Limax maximus v
Helix pomatia \ v \
Cepaea hortensis \ \
Cornu aspersum \ \ \ \ '
Alinda biplicata \ \ \
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