# Nearly unbiased estimation of autoregressive models for bounded near-integrated stochastic processes<sup>\*</sup>

# JOSEP LLUÍS CARRION-I-SILVESTRE<sup>†</sup> and MARÍA DOLORES GADEA<sup>‡</sup> and ANTONIO MONTAÑÉS<sup>§</sup>

<sup>†</sup>AQR-IREA, Department of Econometrics, Statistics, and Applied Economics, University of Barcelona, Av. Diagonal 690, 08034 Barcelona (e-mail: carrion@ub.edu)

<sup>‡</sup>Department of Applied Economics, University of Zaragoza, Gran Vía 4, 50005 Zaragoza, Spain (e-mail: lgadea@unizar.es)

<sup>§</sup>Department of Economic Analysis, University of Zaragoza, Gran Vía 4, 50005 Zaragoza, Spain (e-mail: amontane@unizar.es)

#### Abstract

The paper investigates the estimation bias of autoregressive models for bounded near-integrated stochastic processes and the performance of the standard procedures in the literature that aim to correct the estimation bias. In some cases, the bounded nature of the stochastic processes worsens the estimation bias effect. The paper extends two popular autoregressive estimation bias correction procedures to cover bounded stochastic processes. Monte Carlo simulations reveal that accounting for the bounded nature of the stochastic processes leads to improvements in the estimation of autoregressive models. Finally, an illustration is given using the unemployment rate of the G7 countries.

**JEL classification:** C22, C32, E32, Q43

**Keywords:** Bounded near-integrated stochastic processes, estimation bias, unit root tests, unemployment persistence

Word count: 6131

<sup>\*</sup>We thank the editor and two referees for helpful comments and suggestions. The authors gratefully acknowledge the financial support from the Spanish Ministerio de Ciencia y Tecnología, Agencia Española de Investigación (AEI) and European Regional Development Fund (ERDF, EU) under grants ECO2015-65967-R (A. Montañés), ECO2017-83255-C3-1-P (AEI/ERDF, EU) (J. L. Carrion-i-Silvestre and M. D. Gadea) and ECO2016-81901-REDT.

# I. Introduction

Since the seminal paper by Nelson and Plosser (1982), time series data-based analysis has frequently begun with the study of the time properties of the variables. This usually implies the use of some unit root tests, and the statistical inference drawn from their application is important for subsequent analyses. For instance, a quite popular practice is to determine the persistence degree of shocks by means of estimating autoregressive models. This provides very interesting insights about the evolution of the variable being studied, including the analysis of persistence in variables such as real exchange rates, where some practitioners have studied the number of periods that a shock takes to vanish – see Balli et al. (2014), among others. Similarly, Watson (2014) studies the effect of the Great Recession on inflation persistence. This type of analysis, however, is not straightforward given that we should take into account that the ordinary least-squares (OLS) estimator is consistent but biased in finite samples, and this bias must be removed in order to appropriately measure the degree of persistence. There are various proposals in the literature which try to correct this finite sample bias. We can cite here the contributions of Andrews (1993), Andrews and Chen (1994), Kilian (1998), Hansen (1999), Rossi (2005) and Perron and Yabu (2009a), among others, which develop different valid techniques to remove the estimation bias.

However, some commonly employed variables may be affected by the presence of bounds. Macroeconomic variables such as nominal interest rates, unemployment rates, exchange rates and the great ratios, among others, are bounded by definition, preventing them from exhibiting a large variance. This feature generates tension in the statistical inference associated with standard unit root tests and, hence, the estimation of the degree of persistence of shocks. The standard order of integration analysis of time series considers that an I(1) non-stationary stochastic process can vary freely within the limit, that is, the constraints that impose the existence of bounds are ignored. The behavior of these types of variables might seem to be stationary when, in fact, they are non-stationary. In this regard, Cavaliere (2005) and Cavaliere and Xu (2014) show that standard unit root tests might reach misleading conclusions if the bounded nature of the time series is not accounted for. Therefore, it is recommendable to analyze the influence of these bounds on the determination of time series properties.

The goal of this paper is to assess whether the use of bias-corrected autoregressive parameter estimates allows us to obtain more accurate empirical economic analyses that build upon the computation of statistics such as shock persistence measures or long-run variance (LRV) estimates. To address this issue, the paper investigates the performance of some of the popular estimation bias correction methods mentioned above when applied to bounded near-integrated stochastic processes. First, we focus on some standard procedures, showing that, in general, the amount of estimation bias that is corrected is small when the bounded nature of the time series is ignored. This suggests the need to extend these standard procedures to incorporate the effect of the bounds on the estimation of autoregressive models for persistent time series.

The paper proceeds as follows. Section II. describes the model for bounded (nearintegrated and integrated) stochastic processes. Section III. motivates the analysis showing that standard bias correction methods give poor estimates when applied to bounded stochastic processes. This leads us to propose in Section IV. an extension of bias correction methods that considers this feature. Section V. analyzes the finite sample performance of the suggested approaches. Section VI. provides an empirical illustration, focusing on the unemployment rate persistence of the G7 countries. Finally, Section VII. sets out the conclusions. The proofs and supplementary material are collected in the appendix.

## II. The model

Let  $x_t$  be a stochastic process with a data generating process (DGP) given by:

$$x_t = \mu + y_t \tag{1}$$

$$y_t = \alpha y_{t-1} + u_t \tag{2}$$

 $t = 1, \ldots, T$ , where  $x_t \in [\underline{b}, \overline{b}]$  almost surely for all  $t, y_0 = O_p(1)$ , and  $[\underline{b}, \overline{b}]$  denote the boundaries that affect the time series. The autoregressive parameter is set as  $\alpha = \exp(-\kappa/T) \approx 1 - \kappa/T$ , with  $\kappa \ge 0$  being the non-centrality parameter, so that the model specification covers both the case in which the time series is a near-integrated process – i.e., a NI(1) process with  $\kappa > 0$  – and an I(1) non-stationary process – when  $\kappa = 0$ . The disturbance term  $u_t$  is assumed to admit the decomposition:

$$u_t = \varepsilon_t + \underline{\xi_t} - \overline{\xi_t} \tag{3}$$

and the variables  $\underline{\xi}_t$  and  $\overline{\xi}_t$  are non-negative processes (regulators) such that  $\underline{\xi}_t > 0$  if and only if  $\alpha y_{t-1} + \varepsilon_t < \underline{b} - \mu$  and  $\overline{\xi}_t > 0$  if and only if  $\alpha y_{t-1} + \varepsilon_t > \overline{b} - \mu$ . The following assumptions are assumed to be satisfied by the stochastic processes in (3).

Assumption 1:  $\varepsilon_t = C(L)v_t$ , where  $C(L) = \sum_{j=0}^{\infty} c_j L^j$  with  $\sum_{j=0}^{\infty} j^s |c_j| < \infty$ , for some  $s \ge 1$ , and  $v_t$  is a martingale difference sequence adapted to the filtration  $F_t = \sigma - field \{v_{t-j}; j \ge 0\}$ . The LRV of  $\varepsilon_t$  is given by (a)  $\sigma^2 = \lim_{T\to\infty} E[T^{-1}(\sum_{t=1}^T \varepsilon_t)^2]$  $= \sigma_v^2 C(1)^2$ , (b)  $\sigma_v^2 = \lim_{T\to\infty} T^{-1} \sum_{t=1}^T E(v_t^2) < \infty \ \forall t$ , and (c)  $E|v_t^r| < \infty$  for some r > 4.

Assumption 2:  $\{\underline{\xi}_t\}_{t=1}^T$  and  $\{\overline{\xi}_t\}_{t=1}^T$  satisfy restrictions to ensure that  $\max_{t=1,\dots,T} |\underline{\xi}_t| = o_p(T^{1/2})$  and  $\max_{t=1,\dots,T} |\overline{\xi}_t| = o_p(T^{1/2})$ .

Assumption  $\Im: (\underline{b} - \mu) = \underline{c}\sigma T^{1/2} + o(1)$  and  $(\overline{b} - \mu) = \overline{c}\sigma T^{1/2} + o(1), \underline{c} \le 0 \le \overline{c}, \underline{c} \ne \overline{c}.$ 

Based on these assumptions, we can define the (standardized) bounds that affect  $y_t$  as:

$$\left[\frac{(\underline{b}-\mu)}{\sigma T^{1/2}}, \frac{(\overline{b}-\mu)}{\sigma T^{1/2}}\right] = [\underline{c}, \overline{c}] + o(1)$$
(4)

with  $\underline{c} \leq 0 \leq \overline{c}, \ \underline{c} \neq \overline{c}$ . Note that the model specification can be particularized to stochastic processes that are only limited below – i.e.,  $x_t \in [\underline{b}, \infty]$  – or only limited above – i.e.,  $x_t \in [-\infty, \overline{b}]$  – but also covers the case of unbounded processes – i.e.,  $x_t \in [-\infty, \infty]$ . For this near-integrated set-up the following theorem shows that the OLS estimator of  $\alpha$ in the system defined by (1) and (2) is consistent.

**Theorem 1** Let  $\{x_t\}_{t=1}^T$  be the bounded stochastic process given by (1) to (3). Under Assumptions 1 to 3 and as  $T \to \infty$ , the OLS estimator is:

$$(\hat{\alpha} - \alpha) \xrightarrow{p} 0$$

where  $\xrightarrow{p}$  denotes convergence in probability.

The proof is given in the appendix. Although the OLS estimator is a consistent estimator of  $\alpha$  when dealing with bounded stochastic processes, it is to be expected that some estimation bias would appear in finite samples. Thus, the goal of this paper is to study the extent of this estimation bias distortion and how some popular estimation bias correction procedures perform in practice.

Finally, it is worth emphasizing that the paper deals with NI(1) and I(1) stochastic processes, and that the bounds are defined according to this framework, i.e.,  $[\underline{b}, \overline{b}] = O(T^{1/2})$ . In principle, it would be possible to design a framework for bounded I(0) stochastic processes with fixed bounds given by  $[(\underline{b} - \mu) / \sigma, (\overline{b} - \mu) / \sigma] = [\underline{c}, \overline{c}] + o(1)$ , so that  $[\underline{b}, \overline{b}] = O(1)$ . However, the OLS estimator of  $\alpha$  would lead to inconsistent estimates.

## III. Estimation bias correction methods

The estimation of autoregressive models is at the heart of popular practices in empirical economics such as order of integration analysis and the computation of shock persistence measures. However, it is well known that OLS estimation provides biased estimates in finite samples, although the bias disappears asymptotically. The literature has provided different estimation bias correction methods such as those found in Andrews (1993), Andrews and Chen (1994), Kilian (1998) and Hansen (1999) – which rely on simulation techniques – and Roy and Fuller (2001) and Perron and Yabu (2009a) – which apply a correction to the OLS estimate. In what follows, we focus on two of these

approaches: (i) the median-unbiased (MU) estimation procedure suggested in Andrews (1993) and Andrews and Chen (1994) and (ii) the truncated and super-efficient estimator advocated in Perron and Yabu (2009a). The selection of these approaches is driven by two reasons. First, preliminary simulations, not reported here to save space, reveal that the MU procedure outperforms the proposals in Kilian (1998) and Hansen (1999). Second, we take into account that the Perron and Yabu (2009a) method builds upon the Roy and Fuller (2001) approximation, so it can be seen as an enhanced estimation procedure. The discussion below focuses on the standard implementation of these proposals and their performance when they are applied to bounded stochastic processes.

#### The median-unbiased estimation method

The estimation bias correction approach in Andrews (1993) deals with AR(1) stochastic processes:

$$x_t = f(t) + \alpha x_{t-1} + e_t \tag{5}$$

where f(t) denotes the deterministic component – i.e., f(t) = 0,  $f(t) = \mu$  or  $f(t) = \mu + \beta t$ . The MU estimation technique is based on establishing a correspondence between the OLS estimation of the autoregressive parameter  $\alpha$  in (5) – denoted as  $\hat{\alpha}$  – and the median of the empirical distribution that is obtained by means of the Imhof routine under the assumption that  $\alpha = \hat{\alpha}$ . This defines the so-called median-unbiased autoregressive estimator of  $\alpha$  – henceforth,  $\hat{\alpha}_{MU}$ . Andrews (1993) provides look-up tables for the AR(1) case that can be used to approximate  $\hat{\alpha}_{MU}$ . Andrews and Chen (1994) extend the procedure to AR(p) stochastic processes of the form:

$$x_{t} = f(t) + \alpha x_{t-1} + \sum_{j=1}^{p-1} \psi_{j} \Delta x_{t-j} + e_{t}$$
(6)

although in this case the look-up tables are time-series-dynamic-specific, and the authors suggest the use of a simple iterative procedure that yields an approximate  $\hat{\alpha}_{MU}$  – see Pesavento and Rossi (2006) for further details. As can be seen, the MU-based approach is a computationally-intensive procedure, especially for high-order autoregressive processes.

#### Weighted symmetric least-squares estimation

The truncated and super-efficient estimator of Perron and Yabu (2009a) – henceforth, PY – accounts for the fact that the bias of the autoregressive parameter estimates in the near-integrated and I(1) non-stationary areas worsens when compared to the bias obtained for moderate persistent processes. Roy and Fuller (2001) and Perron and Yabu (2009a) suggest the use of the modified estimator – hereafter, the truncated weighted (TW) estimator – given by:

$$\hat{\alpha}_{TW} = \hat{\alpha}_W + C\left(\hat{\tau}_W\right)\hat{\sigma}_W \tag{7}$$

where  $\hat{\alpha}_W$  denotes the weighted symmetric least-squares (WSLS) estimate of the autoregressive parameter  $\alpha$  in the model:

$$x_{t} = (1 - \alpha) \mu + \alpha x_{t-1} + \sum_{j=1}^{k} \psi_{j} \Delta x_{t-j} + e_{k,t}$$

$$\hat{x}_{t} = \alpha \hat{x}_{t-1} + \hat{e}_{k,t}$$
(8)

with  $\hat{x} = Mx$  and  $\hat{e}_k = Me_k$ , with  $M = I_{T-k} - Z (Z'Z)^{-1} Z'$  being the idempotent projection matrix defined with  $Z = [z_{k+1}, \ldots, z_T]'$  and  $z_t = (1, \Delta x_{t-1}, \ldots, \Delta x_{t-k}) = (1, \xi'_t)$ . The WSLS estimator proposed in Fuller (1996) is:

$$\hat{\alpha}_W = \frac{\sum_{t=k+2}^T \hat{x}_t \hat{x}_{t-1}}{\sum_{t=k+2}^{T-1} \hat{x}_t^2 + T^{-1} \sum_{t=k+1}^T \hat{x}_t^2}$$

and

$$\hat{\sigma}_W^2 = \frac{\sum_{t=k+2}^T \left( \hat{x}_t - \hat{\alpha}_W \hat{x}_{t-1} \right)^2}{(T-k-1) \left[ \sum_{t=k+2}^{T-1} \hat{x}_t^2 + T^{-1} \sum_{t=k+1}^T \hat{x}_t^2 \right]}$$

so that:

$$\hat{\tau}_W = \frac{\hat{\alpha}_W - 1}{\hat{\sigma}_W} \tag{9}$$

is the pseudo t-ratio statistic to test the null hypothesis that  $\alpha = 1$  in (8). The limiting distribution of  $\hat{\tau}_W$  under the null hypothesis of unit root can be found in Fuller (1996), pp. 570 and following.

The modification in (7) requires the definition of  $C(\hat{\tau}_W)$  that is given by the discontinuous function:

$$C(\hat{\tau}_W) = \begin{cases} -\hat{\tau}_W & \text{if } \hat{\tau}_W > \tau_{pct} \\ I_{k+1}T^{-1}\hat{\tau}_W - 2\left[\hat{\tau}_W + K\left(\hat{\tau}_W + A\right)\right]^{-1} & \text{if } -A < \hat{\tau}_W \le \tau_{pct} \\ I_{k+1}T^{-1}\hat{\tau}_W - 2\left[\hat{\tau}_W\right]^{-1} & \text{if } -(2T)^{1/2} < \hat{\tau}_W \le -A \\ 0 & \text{if } \hat{\tau}_W \le -(2T)^{1/2} \end{cases}$$
(10)

with  $K = [(1 + I_{k+1}T^{-1})\tau_{pct}(\tau_{pct} + A)]^{-1} [2 - I_{k+1}T^{-1}\tau_{pct}^2]$ ,  $I_{k+1} = \lfloor (k+2)/2 \rfloor$ ,  $\lfloor \cdot \rfloor$ being the integer part, while k denotes the order of the autoregressive correction in (8) – note that for an AR(p) process k = p - 1 – and  $\tau_{pct}$  is a percentile of the limiting distribution of  $\hat{\tau}_W$  when  $\alpha = 1$ . The percentile  $\tau_{pct}$  is either set at the median ( $\tau_{50}$ ) or at the 85th percentile ( $\tau_{85}$ ) of the distribution of  $\hat{\tau}_W$ , which are reported in the last row of Table 1. Finally, the function K depends on the deterministic specification used in (1) – i.e., a constant or a linear time trend.<sup>1</sup> The value of the constant A is empirically chosen in Roy and Fuller (2001) after conducting simulation experiments, which is set at A = 5 for unbounded stochastic processes.<sup>2</sup> Taking into account  $\hat{\alpha}_{TW}$ , Perron and Yabu (2009a) defined the super-efficient estimator:

$$\hat{\alpha}_{PY} = \begin{cases} \hat{\alpha}_{TW} & \text{if } |\hat{\alpha}_{TW} - 1| > T^{-1/2} \\ 1 & \text{if } |\hat{\alpha}_{TW} - 1| \le T^{-1/2} \end{cases}$$
(11)

an estimator that is aimed at correcting the downward estimation bias of  $\alpha$  when it is near one.

This type of estimator has become popular in the literature since it can be used for other purposes such as testing for a linear trend in the presence of autoregressive processes. Although this framework is outside the scope of the paper, it should be mentioned that Roy *et al.* (2004) build upon the truncated estimator in Roy and Fuller (2001) to test for a linear time trend in autoregressive processes. However, Perron and Yabu (2012) documented errors in both the theoretical and simulation results reported in Roy *et al.* (2004) that, in fact, were supporting the method suggested by Perron and Yabu (2009a). Extensions of the use of the super-efficient estimator to test for the presence of one or multiple structural breaks affecting a linear time trend can be found in Perron and Yabu (2009b) and Kejriwal and Perron (2010). Therefore, the contribution of this paper also shows that the super-efficient estimator can be useful when dealing with bounded nearlyintegrated stochastic processes.

# Performance of the standard bias correction methods for bounded stochastic processes

To motivate interest in the proposal developed in this paper, this section examines whether dealing with bounded stochastic processes presents any different features compared to unbounded situations. This is addressed through a simulation experiment with the DGP defined by (1) to (3) with  $\mu = 0$ ,  $\alpha = 1 - \kappa/T$ ,  $\kappa = \{0, 1, 2, ..., 30\}$ ,  $-\underline{c} = \overline{c} = \{0.3, 0.5, 0.7\}$ ,  $x_0 = 0$ ,  $\varepsilon_t \sim iidN(0, 1)$ , T = 200 and 1,000 replications. Throughout the paper, we use the algorithm described in Cavaliere (2005) and Cavaliere and Xu (2014) to generate the bounded stochastic processes. Subfigure A in Figure 1 presents the mean of the OLS estimated autoregressive parameter for an AR(1) model for different values of  $\kappa$  and  $\overline{c}$ . The upper-straight solid line represents the true value of  $\alpha$ . As can be seen, the smaller  $\overline{c}$  and  $\kappa$ , the bigger the estimation bias. Furthermore, the

<sup>&</sup>lt;sup>1</sup>See Roy and Fuller (2001) for the function that corresponds to the linear time trend. It is worth noting that Perron and Yabu (2009b) use the same function when testing for multiple shifts in the trend.

<sup>&</sup>lt;sup>2</sup>Roy and Fuller (2001) also set A = 5 for the linear time trends, whereas Perron and Yabu (2009b) specify A = 10.

estimation bias does not reduce as  $\kappa$  increases.

The results of the application of the MU, TW and PY estimation bias correction procedures discussed above are depicted in subfigures B to D of Figure 1 for  $\bar{c} = \{0.3, 0.5, 0.7\}$ , respectively. The three procedures lead to an improvement of the OLS estimation of the autoregressive parameter, with MU being more conservative than the TW and PY methods for I(1) and NI(1) – with  $\kappa \leq 10$  for  $\bar{c} = 0.5$  and  $\kappa \leq 5$  for  $\bar{c} = 0.7$  – stochastic processes. However, MU tends to produce slightly better results than TW as  $\bar{c}$  and  $\kappa$ increase – see the results with  $\kappa > 10$  for  $\bar{c} = 0.5$  and  $\kappa > 5$  for  $\bar{c} = 0.7$  – although the differences are small. In general, the PY estimator tends to over-estimate  $\alpha$  as  $\bar{c}$  and  $\kappa$ ( $\leq 20$ ) increase, although all corrections produce almost the same outcome for  $\kappa > 20$ . These features indicate that the bounded nature of time series should be accounted for when estimating autoregressive model specifications. In what follows, we discuss how the bias correction procedures described above can be modified to consider that  $x_t \in [\underline{b}, \overline{b}]$ .

# IV. Estimation bias correction methods for bounded stochastic processes

The extension of Andrews (1993) and Andrews and Chen (1994) to cover the case of bounded stochastic processes requires consideration of the restriction that  $x_t \in [\underline{b}, \overline{b}]$ when the empirical distribution of  $\alpha$  is approximated by means of simulation experiments. Thus, once  $\hat{\alpha}$  is obtained from the OLS estimation of either (5) or (6), the Monte Carlo simulation used to compute the empirical distribution of  $\alpha$ , under the assumption that  $\alpha = \hat{\alpha}$ , will use simulated stochastic processes that satisfy  $x_t \in [\underline{b}, \overline{b}]$  – or, equivalently,  $\sigma^{-1}T^{-1/2}(x_t - \mu) \in [\underline{c}, \overline{c}]$ . This generates an intensive computational problem since lookup tables have to be obtained for different combinations of  $[\underline{c}, \overline{c}]$  values, for different values of p and for specific values of T when working on finite samples. To solve this problem, a Matlab code is available from the authors to compute look-up tables for any combinations of set bounds, p and T values.

The WSLS-based estimation procedures of Roy and Fuller (2001) and Perron and Yabu (2009a) depend on the bias correction term  $C(\hat{\tau}_W)$  defined in (10), which involves two important elements: (i) the percentile  $(\tau_{pct})$  of the distribution of  $\hat{\tau}_W$  and (ii) the constant A. As for  $\tau_{pct}$ , the limiting distribution of  $\hat{\tau}_W$  was derived by Fuller (1996) for the case of unbounded stochastic processes so that  $\tau_{pct}$  can be approximated by simulation. However, Cavaliere (2005) shows that the limiting distribution of unit root statistics depends on the presence of bounds – Cavaliere (2015) and Cavaliere and Xu (2014) analyze the unit root statistics in Phillips and Perron (1988) and Ng and Perron (2001). The following theorem provides the limiting distribution for the  $\hat{\tau}_W$  statistic defined in (9) generalized to bounded NI(1) and I(1) stochastic processes. **Theorem 2** Let  $\{x_t\}_{t=1}^T$  be the stochastic process given by (1) to (3), with  $\alpha = \exp(-\kappa/T)$ ,  $\kappa \ge 0$ . Following Chang and Park (2002), let k in (8) be chosen in such a way that  $1/k + k^2/T \to 0$  as  $T \to \infty$ . The pseudo t-ratio statistic defined in (9) converges as  $T \to \infty$  to:

$$\hat{\tau}_W \Rightarrow \frac{\frac{1}{2} \left[ V_{\underline{c}}^{\overline{c},\kappa} \left( 1 \right)^2 - 1 \right] - \int_0^1 V_{\underline{c}}^{\overline{c},\kappa} \left( r \right)^2 dr}{\sqrt{\int_0^1 V_{\underline{c}}^{\overline{c},\kappa} \left( r \right)^2 dr}}$$

where  $\Rightarrow$  denotes weak convergence towards the associated measure of probability and  $V_{\underline{c}}^{\overline{c},\kappa}(r) = J_{\underline{c}}^{\overline{c},\kappa}(r) - r \int_{0}^{1} J_{\underline{c}}^{\overline{c},\kappa}(s) ds$  defines a demeaned regulated Ornstein-Uhlenbeck process.

The proof can be found in the appendix. Table 1 summarizes selected percentiles of the distribution of  $\hat{\tau}_W$  for different values of (symmetric) bound parameters under the null hypothesis of unit root ( $\kappa = 0$ ). As mentioned above, the last row shows the percentiles for unbounded stochastic processes. As can be seen, the limiting distribution of  $\hat{\tau}_W$  depends on the bounds. The more a limiting distribution is shifted to the left, the narrower the range of variation defined by the bounds. This clearly affects the definition of the bias correction term  $C(\hat{\tau}_W)$  given in (10).

Let us now focus on the constant A that also appears in the bias correction term  $C(\hat{\tau}_W)$  and consider the median of the distribution  $(\tau_{0.5})$  as the percentile used in the bias correction. First, note that setting A = 5, as is done for the unbounded stochastic process case, does not cause incongruence for the definition of  $C(\hat{\tau}_W)$  since  $-A < \tau_{0.5}$ .<sup>3</sup> However, Table 1 shows that  $\tau_{0.5}$  moves away from -1.21 as the range of variation defined by the bounds decreases, which might produce a poor performance of the correction when  $\bar{c} < 0.5$ .<sup>4</sup> In this regard, an extensive simulation experiment has been conducted to assess the sensitivity of  $\hat{\alpha}_{TW}$  to the constant  $A = \{5, 6, \ldots, 15\}$ . Results available upon request indicate that  $\hat{\alpha}_{TW}$  shows a good performance when A = 5 and  $\bar{c} > 0.1$ , and only marginal differences are found for the other values of A. Besides, for small values of the bound parameter ( $\bar{c} \leq 0.1$ ), we find that A = 10 gives good results.

Taking into account the  $\hat{\alpha}_{TW}$  estimator generalized for bounded stochastic processes, we can proceed to compute the super-efficient estimator  $\hat{\alpha}_{PY}$  in Perron and Yabu (2009a), defined in (11), to correct the downward estimation bias of  $\alpha$  when it is near one.

<sup>&</sup>lt;sup>3</sup>This is also valid for the linear time trend case, for which Roy and Fuller (2001) estimated  $\tau_{0.5} = -1.96$  and A = 5, as mentioned above. Note that the consideration of slope trend shifts in Perron and Yabu (2009b) led them to specify A = 10 for the one break case – it is well known that the limiting distribution of  $\hat{\tau}_W$  shifts to the left as the number of structural breaks increases.

<sup>&</sup>lt;sup>4</sup>Our guess is based on the fact that Roy and Fuller (2001) define A = 5 for the linear time trend case, for which the median of the distribution of  $\hat{\tau}_W$  is  $\tau_{0.5} = -1.96$ . Consequently, we might expect that A = 5 is also valid for cases where  $\bar{c} \ge 0.5$ , although it should be borne in mind that the K function involved in the correction depends on the deterministic specification.

#### Implementation of the estimation procedures

In practice, the empirical computation of the bias correction methods for bounded time series that we propose needs some additional steps. Given a time series with known theoretical limits  $\underline{b}$  and  $\overline{b}$ , we can proceed to estimate the bounds as:

$$\left[\underline{\hat{c}}, \overline{\hat{c}}\right] = \left[\frac{\underline{b} - \hat{D}_t}{\hat{\sigma}T^{1/2}}, \frac{\overline{b} - \hat{D}_t}{\hat{\sigma}T^{1/2}}\right]$$

which requires an estimation of the deterministic component  $(D_t)$  and the long-run variance  $(\sigma^2)$ . Following Cavaliere and Xu (2014), the deterministic component is estimated under the null hypothesis of unit root so that  $\hat{D}_t = x_0$ . The estimation of the long-run variance deserves further attention because its estimation might suffer from estimation bias problems through the autoregressive parameter estimates. To address this issue we suggest implementing the following iterative estimation method:

- (i) Estimate the LRV ignoring the bounds. In this regard, we can use the parametric estimation method proposed in Ng and Perron (2001) and Perron and Qu (2007), which also allows us to select the optimal lag of the autoregressive model.
- (ii) Compute an initial educated estimate of the bounds:

$$\left[\underline{\hat{c}}_{0}, \overline{\hat{c}}_{0}\right] = \left[\frac{\underline{b} - x_{0}}{\hat{\sigma}_{0} T^{1/2}}, \frac{\overline{b} - x_{0}}{\hat{\sigma}_{0} T^{1/2}}\right]$$

where the subscript 0 in  $\underline{\hat{c}}_0$ ,  $\overline{\hat{c}}_0$  and  $\hat{\sigma}_0$  indicates the initial estimate of the corresponding quantity.

- (iii) Estimate  $\alpha$  according to one of these procedures:
  - (a) For the MU-based procedure, compute the look-up tables corresponding to  $[\underline{\hat{c}}_0, \overline{\hat{c}}_0]$  by simulation and obtain  $\hat{\alpha}_{MU}$ .
  - (b) For the truncated WSLS-based procedure, compute the percentiles of the  $\hat{\tau}_W$  distribution corresponding to  $[\hat{c}_0, \bar{c}_0]$  by simulation see Table 1 for the symmetric bounds case and obtain  $\hat{\alpha}_{TW}$  or  $\hat{\alpha}_{PY}$  defined above.
- (iv) Use  $\hat{\alpha}_m$ ,  $m = \{MU, TW, PY\}$ , from the previous step to estimate the LRV again as follows,

$$y_t - \hat{\alpha}_m y_{t-1} = \mu + \sum_{j=1}^k \psi_j \Delta y_{t-j} + \varepsilon_t$$

$$\hat{\sigma}_1^2 = \frac{T^{-1} \sum_{t=1}^T \hat{\varepsilon}_t^2}{(1 - \hat{\alpha}_m)^2}$$
(12)

where  $\hat{\alpha}_m$  is imposed in (12), but the other parameters are freely estimated by OLS.

(v) Update bounds estimates as:

$$\left[\underline{\hat{c}}_{1}, \overline{\hat{c}}_{1}\right] = \left[\frac{\underline{b} - x_{0}}{\hat{\sigma}_{1}T^{1/2}}, \frac{\overline{b} - x_{0}}{\hat{\sigma}_{1}T^{1/2}}\right]$$

(vi) Iterate until  $\left|\sum_{t=1}^{T} \hat{\varepsilon}_{t,l}^2 - \sum_{t=1}^{T} \hat{\varepsilon}_{t,l-1}^2\right| < Tol$ , where Tol is the desired level of tolerance and l the step of iteration.

The implementation of the procedure can be done without performing iterations (steps (i) to (iii), i.e., non-iterative scheme) or carrying out multiple iterations (steps (i) to (vi)) – we denote by  $\hat{\alpha}_m^*$ ,  $m = \{MU, TW, PY\}$ , the resulting estimators. The potential gain of the multiple iterative estimation method is assessed through Monte Carlo simulation experiments in the next section.

# V. Monte Carlo simulations

This section analyzes the performance of the different bias correction methods discussed above using a DGP based on equations (1) to (3):

$$x_t = \mu + y_t$$
  

$$y_t = \alpha y_{t-1} + \psi \Delta y_{t-1} + u_t + \theta u_{t-1}$$
(13)

with  $\mu = 0$ ,  $\alpha = 1 - \kappa/T$ ,  $\kappa = \{0, 1, 2, ..., 30\}$  and  $\varepsilon_t \sim iid \ N(0, 1)$ . The simulation exercise focuses on three stochastic processes: (i) AR(1) when imposing  $\psi = \theta = 0$  in (13), (ii) AR(2) when setting  $\psi = 0.5$  and  $\theta = 0$  in (13) and (iii) ARMA(1,1) when fixing  $\psi = 0$  and  $\theta = \{-0.8, -0.4\}$  in (13). Symmetric bounds are defined as  $[\underline{c}, \overline{c}] = [-\overline{c}, \overline{c}], \overline{c} = \{0.3, 0.5, 0.7, 0.9\}$ , and we consider the general case of unknown p so that k in (8) is estimated using the BIC information criterion specifying a maximum of  $k_{\text{max}} = \lfloor 12(T/100)^{1/4} \rfloor$  lags.<sup>5</sup> This implies that the MU estimation procedure implemented is the one described in Andrews and Chen (1994). Two sample sizes are used,  $T = \{50, 200\}$ , and 1,000 replications are conducted throughout all simulation experiments. The discussion is organized according to whether  $[\underline{c}, \overline{c}]$  are treated as known or unknown – note, however, that in the latter case  $[\underline{b}, \overline{b}]$  are assumed to be known.

#### The AR(1) case

Figure 2.a presents the mean of the empirical distribution of the different estimators studied for the AR(1) case when  $[\underline{c}, \overline{c}]$  are known. The result based on the iterative

<sup>&</sup>lt;sup>5</sup>This maximum number of lags is set throughout the simulation experiment section. Simulations available upon request also assessed the MAIC information criterion proposed in Ng and Perron (2001), although the use of the BIC gives a better overall performance.

algorithm to estimate  $[\underline{c}, \overline{c}]$  appears below.<sup>6</sup> Note that all figures include two solid straight lines that designate the true value of  $\alpha$  for each T. The general conclusion is that the downward estimation bias shown by  $\hat{\alpha}$  is clearly corrected by  $\hat{\alpha}_{MU}$ ,  $\hat{\alpha}_{TW}$  and  $\hat{\alpha}_{PY}$ , although their relative performance depends on  $\overline{c}$ ,  $\kappa$  and T.

First, for T = 50 we can see that  $\hat{\alpha}_{MU}$  leads to higher bias correction than  $\hat{\alpha}_{TW}$  and  $\hat{\alpha}_{PY}$  when  $\bar{c} = 0.3$ , whereas the opposite is found when using  $\hat{\alpha}_{PY}$  for  $\bar{c} > 0.3$ . If we compare the estimators,  $\hat{\alpha}_{MU}$  and  $\hat{\alpha}_{TW}$  produce similar results, but with  $\hat{\alpha}_{TW}$  outperforming  $\hat{\alpha}_{MU}$  in the unit root case. However,  $\hat{\alpha}_{MU}$  seems to feature a mild (increasing) over-estimation distortion for  $\kappa \geq 20$ , while  $\hat{\alpha}_{TW}$  and  $\hat{\alpha}_{PY}$  are only slightly above  $\alpha$ . Additional simulations using  $\alpha = \{0, 0.1, 0.2, ..., 1\}$ , not reported here to save space, confirm these results when dealing with less persistent processes.

Second,  $\hat{\alpha}_{MU}$  outperforms  $\hat{\alpha}_{TW}$  and  $\hat{\alpha}_{PY}$  for T = 200 and  $\bar{c} = 0.3$ , although the former tends to over-estimate  $\alpha$  when  $\kappa \geq 10$ . The converse situation is found for  $\bar{c} > 0.3$ , with  $\hat{\alpha}_{PY}$  almost ( $\bar{c} = 0.5$ ) and fully ( $\bar{c} > 0.5$ ) correcting the estimation bias for  $\kappa = 0$ , and leading to mild over-estimates of  $\alpha$  for  $0 < \kappa \leq 20$ .  $\hat{\alpha}_{MU}$  and  $\hat{\alpha}_{TW}$  behave in a similar way. Interestingly,  $\hat{\alpha}_{PY}$  tends to be located slightly below  $\alpha$  for  $\kappa > 20$ , whereas  $\hat{\alpha}_{MU}$ shows the over-estimation distortions mentioned above. These features are also found for smaller values of  $\alpha$ .

Figure 2.b shows the simulation results when  $[\underline{c}, \overline{c}]$  are unknown. For ease of comparison, we also include the results that assume that  $[\underline{c}, \overline{c}]$  are known.<sup>7</sup> At first sight, we can establish a clear distinction in the performance of the estimators depending on whether  $\overline{c} = 0.3$  or  $\overline{c} > 0.3$ . First, for  $\overline{c} = 0.3$  and T = 50, both estimators lead to lower bias corrections compared to the known  $\overline{c}$  situation when  $\kappa \leq 5$ .  $\hat{\alpha}_{TW}^*$  and  $\hat{\alpha}_{PY}^*$  follow the same pattern and show an over-estimation distortion for  $\kappa > 15$ , whereas this feature is found for  $\hat{\alpha}_{MU}^*$  when  $\kappa > 25$ . The performance improves for T = 200, with  $\hat{\alpha}_{MU}^*$  giving lower estimates of  $\alpha$  than  $\hat{\alpha}_{MU}$ , whereas  $\hat{\alpha}_{PY}^*$  improves with respect to  $\hat{\alpha}_{PY}$ . Note that  $\hat{\alpha}_{TW}^*$  is encompassed by  $\hat{\alpha}_{PY}^*$ , we conclude that  $\hat{\alpha}_{MU}^*$  outperforms  $\hat{\alpha}_{PY}^*$  when  $\kappa \leq 15$ . If we compare  $\hat{\alpha}_{MU}^*$  and  $\hat{\alpha}_{PY}^*$ , we conclude that  $\hat{\alpha}_{MU}^*$  outperforms  $\hat{\alpha}_{PY}^*$  (and  $\hat{\alpha}_{TW}^*$ ) is placed below  $\alpha$ .

As  $\bar{c}$  increases, the predominance of  $\hat{\alpha}_{PY}^*$  over  $\hat{\alpha}_{MU}^*$  becomes evident when T = 50, since  $\hat{\alpha}_{PY}^*$  provides similar ( $\bar{c} = 0.5$ ) or better ( $\bar{c} > 0.5$ ) bias corrections than  $\hat{\alpha}_{MU}^*$  when  $\kappa \leq 10$ . The two estimators can hardly be distinguished in the range  $10 < \kappa \leq 25$ , but  $\hat{\alpha}_{PY}^*$  (and  $\hat{\alpha}_{TW}^*$ ) outperforms  $\hat{\alpha}_{MU}^*$  when  $\kappa > 25$ . For T = 200 the dominance of  $\hat{\alpha}_{PY}^*$ is clear when  $\kappa \leq 5$ , although it tends to over-estimate  $\alpha$  when  $5 < \kappa \leq 15$ , a range

<sup>&</sup>lt;sup>6</sup>Similar results were obtained with the use of  $\tau_{pct} = \tau_{85}$  so that, in order to save space, in what follows we only focus on  $\tau_{50}$ . Consequently, unless required, we remove the reference to the percentile in the supscript to simplify the notation.

<sup>&</sup>lt;sup>7</sup>The TW estimator is excluded to reduce the number of curves in the figures, although some comments are provided – the complete set of figures is available in the appendix.

in which  $\hat{\alpha}_{MU}^*$  produces better results. Finally,  $\hat{\alpha}_{MU}^*$  leads to a mild over-estimation distortion, while  $\hat{\alpha}_{PY}^*$  (and  $\hat{\alpha}_{TW}^*$ ) does not.

All in all, and regardless of whether  $[\underline{c}, \overline{c}]$  are assumed to be known or unknown, the MU approach outperforms the TW and PY approaches for narrow ranges of variation  $(\overline{c} = 0.3)$ , even though  $\hat{\alpha}_{MU}$  leads to mild over-estimates when  $\kappa \geq 20$ . TW and PY outperform MU when  $\overline{c} > 0.3$ , although PY tends to over-estimate  $\alpha$  for  $0 < \kappa \leq 20$ , a distortion that is clearly corrected for  $\kappa > 20$ . This phenomenon can be attributed to the inherent super-efficient correction device introduced by the PY procedure. Finally, the results for the AR(2) case are qualitatively similar to those obtained for the AR(1) model. They are available from the authors upon request.

#### The ARMA(1,1) case

Figures 3 and 4 show the simulation results for the ARMA (1,1) case. As can be seen, the introduction of a MA(1) component causes a downward bias of the  $\alpha$  estimate, regardless of  $\overline{c}$  and the estimation method. The estimation bias is more severe, first, the smaller  $\theta$  is and, second, as  $-\theta$  approaches  $\alpha$ . The latter is to be expected since in these cases we are near to the common factor situation. Note that there is a common factor when  $\alpha = -\theta$ , in which case the estimated autoregressive coefficient should approach zero. It is worth studying this situation with more detail using the "nearly white noise - nearly integrated" framework described in Nabeya and Perron (1994), with the DGP given by (1), but with a slight modification of (2) to accommodate a local to unit MA root:<sup>8</sup>

$$y_t = \alpha y_{t-1} + u_t + \theta_T u_{t-1} \tag{14}$$

where  $\alpha = \exp(-\kappa/T), \kappa \ge 0, \theta_T = -1 + \delta/T^{1/2}, \delta \ge 0$ , with  $y_0 = O_p(1)$  and  $u_0 = O_p(1)$ . The following theorem provides the limiting distribution of the OLS estimator in this case.

**Theorem 3** Let  $\{x_t\}_{t=1}^T$  be the stochastic process given by (1), (3) and (14), with  $\alpha = \exp(-\kappa/T), \kappa \geq 0$ , and  $\theta_T = -1 + \delta/T^{1/2}, \delta \geq 0$ . Then, as  $T \to \infty$ 

$$\hat{\alpha} \Rightarrow \frac{\gamma_{u,1} + \delta^2 \sigma^2 \int_0^1 V_{\underline{c}}^{\overline{c},\kappa} \left(r\right)^2 dr}{\sigma_u^2 + \delta^2 \sigma^2 \int_0^1 V_{\underline{c}}^{\overline{c},\kappa} \left(r\right)^2 dr}$$

The proof is given in the appendix. As can be seen, the OLS estimator converges towards a random variable, unless  $\delta = 0$ . However, even in such a case  $\hat{\alpha} \xrightarrow{p} \gamma_{u,1} / \sigma_u^2 \neq 0$ when  $\delta = 0$ , with  $\gamma_{u,1}$  and  $\sigma_u^2$  being the first autocovariance and variance of  $u_t$ , respectively. Therefore, under the near common factor situation,  $\hat{\alpha}$  is not a consistent

<sup>&</sup>lt;sup>8</sup>While the use of the "nearly white noise" concept in Nabeya and Perron (1994) is fine, it is not appropriate in our framework since, in general,  $u_t$  is not white noise when dealing with bounded stochastic processes.

estimator of  $\alpha$ . Besides,  $\hat{\alpha} \xrightarrow{p} 1$  when  $\delta \to \infty$  regardless of whether the stochastic process is bounded, which explains why  $\hat{\alpha}$  is a consistent estimator of  $\alpha$  in the NI(1) and I(1) scenarios. These features can help to interpret the performance of the different estimators investigated.

Consider first the known  $[c, \bar{c}]$  case, for which Figure 3.a depicts the results when  $\theta = -0.4$ . Since  $\hat{\alpha}_{TW}$  and  $\hat{\alpha}_{PY}$  give almost equivalent results, in what follows we only refer to  $\hat{\alpha}_{PY}$ . For T = 50 and except for  $\bar{c} = 0.3$ ,  $\hat{\alpha}_{PY}$  outperforms  $\hat{\alpha}_{MU}$  when  $\kappa = 0$ , whereas the opposite is found when  $\kappa > 0$ . For T = 200 the bias correction of both methods improves, with  $\hat{\alpha}_{PY}$  being superior to  $\hat{\alpha}_{MU}$  for  $0 < \kappa \leq 10$ , and the other way around for  $\kappa > 10$ . Note that with  $\theta = -0.4$  we are far from the common factor situation so that all estimators are close to  $\alpha$  in the unit root region, as predicted by Theorem 3. Both methods produce poor results when  $\theta = -0.8$ , although now we have to bear in mind that we are close to the common factor situation for high values of  $\alpha$  – see Figure 4.a. For T = 50,  $\hat{\alpha}_{PY}$  gives better results than  $\hat{\alpha}_{MU}$  when  $\kappa = 0$ , but it tends to deviate more than  $\hat{\alpha}_{MU}$  from  $\alpha$  as  $\kappa$  increases. The performance of both methods improves as T increases, with  $\hat{\alpha}_{PY}$  giving better results than  $\hat{\alpha}_{MU}$  for small values of  $\kappa$  – say,  $\kappa \leq 5$  – whereas the converse situation is found for  $\kappa > 5$ .

Let us now focus on the unknown  $[\underline{c}, \overline{c}]$  case with results depicted in Figures 3.b and 4.b for  $\theta = -0.4$  and  $\theta = -0.8$ , respectively. Again, the performance of the statistics depends on  $\theta$ ,  $\overline{c}$  and T. When  $\theta = -0.4$  and T = 50, both  $\hat{\alpha}_{MU}^*$  and  $\hat{\alpha}_{PY}^*$  produce lower bias corrections than  $\hat{\alpha}_{MU}$  and  $\hat{\alpha}_{PY}$ , although these differences disappear when T = 200.  $\hat{\alpha}_{MU}^*$  is superior to  $\hat{\alpha}_{PY}^*$  when T = 50 and  $\overline{c} \leq 0.5$ , although the converse is found for  $\overline{c} > 0.5$ . As T increases to T = 200,  $\hat{\alpha}_{PY}^*$  is equally good ( $\overline{c} = 0.3$ ) or clearly outperforms ( $\overline{c} > 0.3$ )  $\hat{\alpha}_{MU}^*$  when  $\kappa \leq 5$ . There is a range of  $\kappa$  values for which  $\hat{\alpha}_{MU}^*$  and  $\hat{\alpha}_{PY}^*$  render equivalent results, but  $\hat{\alpha}_{MU}^*$  starts dominating  $\hat{\alpha}_{PY}^*$  when  $\kappa > 15$ .

In general, similar conclusions are found for  $\theta = -0.8$ , although now the differences between  $\hat{\alpha}_{MU}/\hat{\alpha}_{PY}$  and  $\hat{\alpha}_{MU}^*/\hat{\alpha}_{PY}^*$  persist even when T = 200,  $\hat{\alpha}_{MU}$  and  $\hat{\alpha}_{PY}$  showing the better results. This might be due to the fact that now we are close to the common factor situation, which might imply a poorer estimation of the long-run variance required to approximate  $[\underline{c}, \overline{c}]$ . Contrary to what has been found for  $\theta = -0.4$ , now  $\hat{\alpha}_{MU}^*$  seems to be superior to  $\hat{\alpha}_{PY}^*$  when T = 50 and  $\kappa \leq 10$ , although its behavior deteriorates for  $\kappa > 10$ , with a performance that is worse than that shown by the OLS estimator.  $\hat{\alpha}_{PY}^*$ is equally good or even better than the OLS estimator. Note that this feature is found regardless of  $\overline{c}$ . A neater picture is reached when T increases to T = 200, since now  $\hat{\alpha}_{PY}^*$ outperforms  $\hat{\alpha}_{MU}^*$  when  $\kappa = 0$ . Further, we can observe a region defined by small values of  $\kappa$  where both estimators are equally good. Finally,  $\hat{\alpha}_{MU}^*$  clearly gives better results than  $\hat{\alpha}_{PY}^*$  for  $\kappa \geq 5$ .

All these elements lead to the conclusion that, in large samples and regardless of whether  $[\underline{c}, \overline{c}]$  are assumed to be known or unknown, the PY procedure corrects bias

distortions more satisfactorily than the MU for small values of  $\kappa$  – in particular, for  $\kappa = 0$ . As we move away from the unit root, the MU approach seems to outperform the PY, although the former over-estimates  $\alpha$  as  $\kappa$  increases – this characteristic has become evident for AR(1) and AR(2) stochastic processes. Besides,  $\hat{\alpha}_{PY}$  does not suffer from this problem, providing very good estimates for large T in those cases.

# VI. Empirical illustration

The estimation methods proposed above have been applied in a study of the persistence in the unemployment rate of the G7 economies. Annual harmonized unemployment rates covering the period from 1955 (or later, depending on the country) to 2018 have been obtained from the OECD Stat database – see Figure 5 for a visual inspection. Although there is a flurry of papers in the economic literature addressing unemployment persistence, the available results are scarcely robust. Due to the high inertia of unemployment rates and their limited nature, these series are especially suitable for illustrating the estimation bias for bounded near-integrated processes. Furthermore, with the exception of Cavaliere (2005), most of the empirical contributions ignore the potential presence of bounds, which might lead to misleading conclusions about the degree of unemployment persistence. The model that has been estimated for each of the G7 economies is given by:

$$unem_{i,t} = \mu_i + \alpha_i unem_{i,t-1} + \sum_{j=1}^{k_i} \psi_{i,j} \Delta unem_{i,t-j} + \varepsilon_{i,t}$$
(15)

i = 1, ..., 7 and  $t = T_0, ..., 2018$ , where  $T_0$  aims for the initial year that varies depending on the country. The order of the autoregressive correction in (15) has been selected using the BIC with a maximum of  $k_{\text{max}} = \left[ (12(T/100)^{1/4}) \right]$  lags.

The results presented in Table 2 reflect heterogeneous estimates for the G7 countries. When the bounds are ignored, we can observe that the range of variation of the OLS estimates goes from 0.71 (USA) to 0.96 (Japan). The use of the MU estimators slightly raises the estimated persistence and the range now goes from 0.74 (USA) to 1 (Japan and Germany). Finally, similar results are obtained for  $\hat{\alpha}_{PY}^*$ , which provides estimates between 0.75 (USA) and 0.97 (Japan).<sup>9</sup> As a consequence, the omission of bounds would lead us to consider that the persistence of the unemployment rate is relatively low, except for Germany and Japan.

The picture changes when the presence of bounds is accounted for, since unemployment persistence clearly increases in all cases. It should be mentioned that we have conducted the analysis using two different sets of boundaries  $[\underline{b}, \overline{b}]$ . First, we have the boundaries that derive from the unemployment rate definition, i.e.,  $[\underline{b}, \overline{b}] = [0, 100]$ . The

<sup>&</sup>lt;sup>9</sup>We only report the results using  $\tau_{50}$  since they are equivalent to the ones based on  $\tau_{85}$ .

second set of boundaries is established following the strategy set out in Herwartz and Xu (2008), who consider a potential set of boundaries arising from the observed country-specific minimum ( $\underline{b}_i = \min(unem_{i,t})$ ) and maximum ( $\overline{b}_i = \max(unem_{i,t})$ ) values of  $unem_t$  – which defines  $[\underline{\hat{c}}_i, \overline{\hat{c}}_i] = [(\underline{b}_i - \hat{D}_{i,t})/(\hat{\sigma}_i T^{1/2}), (\overline{b}_i - \hat{D}_{i,t})/(\hat{\sigma}_i T^{1/2})]$ ,  $i = 1, \ldots, 7$ . In addition, following Herwartz and Xu (2008), we increase this initial range up to 300 per cent in absolute value – i.e.,  $[\underline{\hat{c}}_i - \delta \omega_i/2, \overline{\hat{c}}_i + \delta \omega_i/2]$ ,  $\omega_i = |\overline{\hat{c}}_i - \underline{\hat{c}}_i|$  and  $\delta = \{0, 0.1, 0.2, 0.3, \ldots, 1, 1.5, 2, 2.5, 3\}$  – so that the robustness of the analysis can be tested using different sets of bounds. The key issue here is how to select among these values of bounds. The suggestion in Herwartz and Xu (2008) is based on the p-values of the augmented Dickey-Fuller (ADF) unit root test, so that the bounds are selected in such a way that the p-values of the ADF statistic with and without bounds equalize – the so-called "break-even" boundaries, which are denoted by  $[\underline{b}_i, \overline{b}_i] = [\underline{b}_i^*, \overline{b}_i^*]$ , warrant a minimum range under which the standard ADF unit root test does not suffer from over-sizing.

In any event, the results are quite similar regardless of the boundaries used. We observe that the USA unemployment rate again exhibits the lowest persistence, with the estimation of the autoregressive parameter never exceeding 0.78. The opposite cases are Germany and Japan, for which the estimations of the autoregressive parameters are always 1. The rest of the cases show mixed results in that  $\hat{\alpha}_{PY}^*$  also equals one. By contrast, the use of the median-unbiased corrections provides lower estimated values. Consequently, these results are in line with the evidence described in the previous sections and, basically, illustrate that ignoring the bounded nature of some economic variables reduces the estimated degree of persistence. When these bounds are taken into account the results clearly change, leading to higher persistence estimates.

## VII. Conclusions

This paper addresses the issue of the estimation of autoregressive models when the stochastic process being studied is influenced by the presence of bounds that regulate its evolution. We consider standard techniques proposed in the literature aimed at correcting the finite sample estimation bias of autoregressive parameters. Initial motivating simulation experiments show that the presence of bounds clearly distorts the performance of these types of estimators when bounds are ignored. The more limited the stochastic process – i.e., the narrower the fluctuation bands – the higher the estimation bias distortion. In order to remove this effect, we have modified the methods proposed by Andrews (1993), Andrews and Chen (1994), and Perron and Yabu (2009a) to account for the bounded nature of time series.

Simulation experiments have evidenced that these extensions are quite helpful in order to appropriately determine shock persistence for bounded stochastic processes. All the procedures investigated in the paper outperform the OLS estimation. Although the differences among the bounds-generalized procedures are minimal, we have found that the Perron and Yabu (2009a) proposal produces better results for highly persistent stochastic processes, whereas the median-unbiased approach tends to be preferred when we move away from the unit root neighborhood. Finally, we have applied these new methods to the analysis of the unemployment shock persistence for the G7 countries. Our results show that the use of the proposed methods improves our knowledge of the stochastic properties of the variables under study, allowing us to carry out more accurate shock persistence analysis.

# Appendix A: Mathematical appendix

**Lemma 1** Let  $\{y_t\}_{t=1}^T$  be a stochastic process generated according to (2) and (3) with  $\alpha = \exp(-\kappa/T), \ \kappa \ge 0$ , and satisfying Assumptions 1 to 3. As  $T \to \infty, \ \sigma^{-1}T^{-1/2}y_t \Rightarrow J_{\underline{c}}^{\overline{c},\kappa}(r)$ , with  $\underline{c} \le 0 \le \overline{c}, \ \underline{c} \ne \overline{c}$ , where  $J_{\underline{c}}^{\overline{c},\kappa}(r) = J^{\kappa}(r) + L(r) - U(r)$  denotes a standard regulated Ornstein-Uhlenbeck (OU) process being  $J^{\kappa}(r) = \int_0^r \exp(-\kappa(r-s)) \ dB(s)$  a standard OU process, B(r) a standard Brownian motion, and  $L(r) = -\{0 \land \inf_{0 \le r' \le r} (J^{\kappa}(r') - \underline{c})\}$  and  $U(r) = \{0 \land \inf_{0 \le r' \le r} (\overline{c} - J^{\kappa}(r'))\}$  the two side regulator processes.

See Theorems 1 and 4 in Cavaliere (2005) for the proof.

#### Proof of Theorem 1

The model given in (1) and (2) can be written as:

$$x_t - \mu = \alpha (x_{t-1} - \mu) + u_t$$
  
 $x_t = (1 - \alpha) \mu + \alpha x_{t-1} + u_t$ 

so that the OLS estimator of  $\alpha$  is given by  $\hat{\alpha} = (\hat{x}'_{-1}\hat{x}_{-1})^{-1}\hat{x}'_{-1}\hat{x}$ , where  $\hat{x} = x - \bar{x}$ ,  $\hat{x}_{-1} = x_{-1} - \bar{x}_{-1}, x_{-1} = (x_1, \dots, x_{T-1})'$  and  $x = (x_2, \dots, x_T)'$ . In terms of estimation bias we have:

$$\hat{\alpha} - \alpha = (\hat{x}'_{-1}\hat{x}_{-1})^{-1}\hat{x}'_{-1}\hat{u} = (\hat{x}'_{-1}\hat{x}_{-1})^{-1}\hat{x}'_{-1}(\hat{\varepsilon} + \hat{\xi} - \hat{\xi})$$
(Appendix A:.1)

Under Assumptions 1 to 3, and using Lemma 1 and the Functional Central Limit Theorem (FCLT), we can see that:

$$T^{-1/2}\hat{x}_t = T^{-1/2} \left( x_t - \bar{x} \right)$$
  

$$\Rightarrow \sigma \left( J_{\underline{c}}^{\bar{c},\kappa} \left( r \right) - r \int_0^1 J_{\underline{c}}^{\bar{c},\kappa} \left( s \right) ds \right)$$
  

$$\equiv \sigma V_{\underline{c}}^{\bar{c},\kappa} \left( r \right)$$

with  $V_{\underline{c}}^{\overline{c},\kappa}(r) = J_{\underline{c}}^{\overline{c},\kappa}(r) - r \int_{0}^{1} J_{\underline{c}}^{\overline{c},\kappa}(s) \, ds$  being a demeaned regulated OU process. Similarly,  $T^{-2} \sum_{t=2}^{T-1} \hat{x}_{t}^{2} \Rightarrow \sigma^{2} \int_{0}^{1} V_{\underline{c}}^{\overline{c},\kappa}(r)^{2} \, dr$  and  $T^{-1} \sum_{t=2}^{T} \hat{x}_{t-1} \hat{u}_{t} \Rightarrow \sigma^{2} \int_{0}^{1} V_{\underline{c}}^{\overline{c},\kappa}(r) \, dV_{\underline{c}}^{\overline{c},\kappa}(r)$ , so that

$$T\left(\hat{\alpha} - \alpha\right) = O_p\left(1\right)$$

and hence  $(\hat{\alpha} - \alpha) \xrightarrow{p} 0$ , with  $\xrightarrow{p}$  denoting convergence in probability.  $\Box$ 

#### Proof of Theorem 2

Following Fuller (1996), we can derive the expression of  $\hat{\tau}_W$  in (8) working with the moments of the projected variable  $\hat{x} = Mx$ .<sup>10</sup> Note that:

$$\hat{x}_{t} = x_{t} - z_{t} (Z'Z)^{-1} Z'x$$
  
=  $x_{t} - z_{t} (T^{-1}Z'Z)^{-1} T^{-1}Z'x$ 

with  $z_t = (1, \Delta x_{t-1}, \dots, \Delta x_{t-k})$  so that:

$$T^{-1}Z'Z = \begin{bmatrix} 1 & T^{-1}\sum_{t=k}^{T} \Delta x_{t-1} & \cdots & T^{-1}\sum_{t=k}^{T} \Delta x_{t-k+1} \\ T^{-1}\sum_{t=k}^{T} \Delta x_{t-1}^{2} & \cdots & T^{-1}\sum_{t=k}^{T} \Delta x_{t-1}\Delta x_{t-k+1} \\ & \ddots & & \vdots \\ & & T^{-1}\sum_{t=k}^{T} \Delta x_{t-k+1}^{2} \end{bmatrix} = \begin{bmatrix} 1 & O_{p}\left(T^{-1/2}\right) \\ & \Sigma_{\Delta x} \end{bmatrix}$$

where  $\Sigma_{\Delta x} = T^{-1} \xi' \xi$  denotes the covariance matrix of the first k lags of  $\Delta x$ , and:

$$T^{-3/2}Z'x = \begin{bmatrix} T^{-3/2}\sum_{t=k+1}^{T} x_t \\ T^{-3/2}\sum_{t=k+1}^{T} \Delta x_{t-1}x_t \\ \vdots \\ T^{-3/2}\sum_{t=k+1}^{T} \Delta x_{t-k+1}x_t \end{bmatrix} = \begin{bmatrix} O_p(1) \\ O_p(T^{-1/2}) \\ \vdots \\ O_p(T^{-1/2}) \end{bmatrix}$$

<sup>&</sup>lt;sup>10</sup>Although we could work with the model given in (8), derivations using the orthogonal projected variable are neater. In any event, both ways are asymptotically equivalent as mentioned in Fuller (1996, pp. 416) when dealing with the unknown constant case.

since  $T^{-3/2} \sum_{t=k+1}^{T} x_t \Rightarrow \sigma \int_0^1 J_{\underline{c}}^{\overline{c},\kappa}(r) dr$ . Using these elements and the FCLT, we can see that:

$$\begin{aligned} T^{-1/2} \hat{x}_t &= T^{-1/2} x_t - z_t \left( T^{-1} Z' Z \right)^{-1} T^{-3/2} Z' x \\ &\Rightarrow \sigma \left( J_{\underline{c}}^{\overline{c},\kappa} \left( r \right) - r \int_0^1 J_{\underline{c}}^{\overline{c},\kappa} \left( s \right) ds \right) \\ &\equiv \sigma V_c^{\overline{c},\kappa} \left( r \right) \end{aligned}$$

The numerator of the  $\hat{\tau}_W$  statistic is given by:

$$\hat{\alpha}_{W} - 1 = \frac{\sum_{t=k+2}^{T} \hat{x}_{t} \hat{x}_{t-1}}{\sum_{t=k+2}^{T-1} \hat{x}_{t}^{2} + T^{-1} \sum_{t=k+1}^{T} \hat{x}_{t}^{2}} - 1$$

$$= \frac{\sum_{t=k+2}^{T} \hat{x}_{t-1}^{2} + \sum_{t=k+2}^{T} \hat{x}_{t-1} \hat{e}_{k,t}}{\sum_{t=k+2}^{T-1} \hat{x}_{t}^{2} + T^{-1} \sum_{t=k+1}^{T} \hat{x}_{t}^{2}} - 1$$

$$= \frac{\sum_{t=k+2}^{T} \hat{x}_{t-1}^{2} + \sum_{t=k+2}^{T} \hat{x}_{t-1} \hat{e}_{k,t} - \sum_{t=k+2}^{T-1} \hat{x}_{t}^{2} - T^{-1} \sum_{t=k+1}^{T} \hat{x}_{t}^{2}}{\sum_{t=k+2}^{T-1} \hat{x}_{t}^{2} + T^{-1} \sum_{t=k+1}^{T} \hat{x}_{t}^{2}}$$

which, once it has been properly rescaled, in the limit converges to:

$$T\left(\hat{\alpha}_{W}-1\right) \Rightarrow \frac{\int_{0}^{1} V_{\underline{c}}^{\bar{c},\kappa}\left(r\right) dV_{\underline{c}}^{\bar{c},\kappa}\left(r\right) - \int_{0}^{1} V_{\underline{c}}^{\bar{c},\kappa}\left(r\right)^{2} dr}{\int_{0}^{1} V_{\underline{c}}^{\bar{c},\kappa}\left(r\right)^{2} dr} = \frac{\frac{1}{2} \left[V_{\underline{c}}^{\bar{c},\kappa}\left(1\right)^{2}-1\right] - \int_{0}^{1} V_{\underline{c}}^{\bar{c},\kappa}\left(r\right)^{2} dr}{\int_{0}^{1} V_{\underline{c}}^{\bar{c},\kappa}\left(r\right)^{2} dr}$$

provided that  $T^{-2} \sum_{t=k+2}^{T-1} \hat{x}_t^2 \Rightarrow \sigma^2 \int_0^1 V_{\underline{c}}^{\overline{c},\kappa}(r)^2 dr$  and  $T^{-1} \sum_{t=k+2}^T \hat{x}_{t-1} \hat{e}_{k,t} \Rightarrow \sigma^2 \int_0^1 V_{\underline{c}}^{\overline{c},\kappa}(r) dV_{\underline{c}}^{\overline{c},\kappa}(r)$ . If we now focus on the variance of  $\hat{\alpha}_W$ :

$$\hat{\sigma}_W^2 = \frac{\sum_{t=k+2}^T (\hat{x}_t - \hat{\alpha}_W \hat{x}_{t-1})^2}{(T-k-1) \left[ \sum_{t=k+2}^{T-1} \hat{x}_t^2 + T^{-1} \sum_{t=k+1}^T \hat{x}_t^2 \right]}$$

we have that:

$$T^{2}\hat{\sigma}_{W}^{2} \Rightarrow \left[\int_{0}^{1} V_{\underline{c}}^{\overline{c},\kappa}\left(r\right)^{2} dr\right]^{-1}$$

provided that  $(T - k - 1)^{-1} \sum_{t=k+2}^{T} (\hat{x}_t - \hat{\alpha}_W \hat{x}_{t-1})^2 \xrightarrow{p} \sigma^2$ . Consequently, in the limit the  $\hat{\tau}_W$  statistic converges to:

$$\hat{\tau}_W = \frac{\hat{\alpha}_W - 1}{\hat{\sigma}_W} = \frac{T\left(\hat{\alpha}_W - 1\right)}{\sqrt{T^2 \hat{\sigma}_W^2}}$$
$$\Rightarrow \frac{\frac{1}{2} \left[ V_{\underline{c}}^{\overline{c},\kappa} \left( 1 \right)^2 - 1 \right] - \int_0^1 V_{\underline{c}}^{\overline{c},\kappa} \left( r \right)^2 dr}{\sqrt{\int_0^1 V_{\underline{c}}^{\overline{c},\kappa} \left( r \right)^2 dr}}$$

which proofs the theorem.  $\Box$ 

#### Proof of Theorem 3

We can write the model defined by (1) and (14) in equivalent terms as:

$$x_t = (1 - \alpha) \mu + \alpha x_{t-1} + u_t + \theta_T u_{t-1}$$

so that:

$$x_{t} = (1 - \alpha^{t}) \mu + \alpha^{t} x_{0} + \sum_{j=1}^{t} \exp(-\kappa (t - j) / T) (u_{j} - u_{j-1} + \delta T^{-1/2} u_{j-1})$$
  
$$= (1 - \alpha^{t}) \mu + \alpha^{t} x_{0} + (1 - \delta T^{-1/2}) \exp(\kappa / T) u_{t}$$
  
$$+ (1 - \exp(\kappa / T) (1 - \delta T^{-1/2})) \sum_{j=1}^{t} \exp(-\kappa (t - j) / T) u_{j}$$
  
$$= \mu + (x_{0} - \mu) \alpha^{t} + a_{T} u_{t} + b_{T} X_{t}$$

with  $a_T = (1 - \delta T^{-1/2}) \exp(\kappa/T)$ ,  $b_T = (1 - \exp(\kappa/T)(1 - \delta T^{-1/2}))$  – that, as can be seen,  $a_T \to 1$  and  $T^{1/2}b_T \to \delta$  as  $T \to \infty$  – and  $X_t = \sum_{j=1}^t \exp(-\kappa(t-j)/T) u_j$ . Note that in this case in the limit:

$$T^{-1}\sum_{t=1}^{T} x_t \Rightarrow \mu + (x_0 - \mu)\,\bar{\alpha} + M_u + \sigma \int_0^1 J_{\underline{c}}^{\overline{c},\kappa}\left(r\right)dr$$

with  $\bar{\alpha} = T^{-1} \sum_{t=1}^{T} \alpha^t \in [0, 1]$  for  $\kappa \ge 0$ . Consider the second order moment of  $\hat{x}_t = x_t - \bar{x}$ :

$$T^{-1}\sum_{t=1}^{T} (x_t - \bar{x})^2 = T^{-1}\sum_{t=1}^{T} \left( (x_0 - \mu) \left( \alpha^t - \bar{\alpha} \right) + a_T \left( u_t - \bar{u} \right) + b_T \left( X_t - \bar{X} \right) \right)^2$$
  
$$= T^{-1}\sum_{t=1}^{T} \left( (x_0 - \mu) \left( \alpha^t - \bar{\alpha} \right) \right)^2 + a_T^2 T^{-1} \sum_{t=1}^{T} \left( u_t - \bar{u} \right)^2$$
  
$$+ T b_T^2 T^{-2} \sum_{t=1}^{T} \left( X_t - \bar{X} \right)^2$$
  
$$+ 2 \left( x_0 - \mu \right) a_T T^{-1} \sum_{t=1}^{T} \left( \alpha^t - \bar{\alpha} \right) \left( u_t - \bar{u} \right)$$
  
$$+ 2 \left( x_0 - \mu \right) T^{1/2} b_T T^{-3/2} \sum_{t=1}^{T} \left( \alpha^t - \bar{\alpha} \right) \left( X_t - \bar{X} \right)$$
  
$$+ 2 a_T T^{1/2} b_T T^{-3/2} \sum_{t=1}^{T} \left( X_t - \bar{X} \right) \left( u_t - \bar{u} \right)$$

where  $T^{-1} \sum_{t=1}^{T} (\alpha^t - \bar{\alpha})^2 \to 0$ , since  $\alpha \to 1$  and  $\bar{\alpha} \to 1$  as  $T \to \infty$ ,  $a_T^2 T^{-1} \sum_{t=1}^{T} (u_t - \bar{u})^2 \xrightarrow{p} \sigma_u^2$ , and  $T^{-2} \sum_{t=1}^{T} (X_t - \bar{X})^2 \Rightarrow \sigma^2 \int_0^1 V_{\underline{c}}^{\bar{c},\kappa}(r)^2 dr$ . Further, note that  $\sum_{t=1}^{T} (\alpha^t - \bar{\alpha}) (u_t - \bar{u})^2 = \sigma^2 \int_0^1 V_{\underline{c}}^{\bar{c},\kappa}(r)^2 dr$ .

 $= O_p\left(T^{1/2}\right) \text{ and } \sum_{t=1}^T \left(\alpha^t - \bar{\alpha}\right) \left(X_t - \bar{X}\right) = O_p\left(T\right) \text{ and } \sum_{t=1}^T \left(X_t - \bar{X}\right) \left(u_t - \bar{u}\right) = O_p\left(T\right).$ Therefore, in the limit we have:

$$T^{-1}\sum_{t=1}^{T} (x_t - \bar{x})^2 \Rightarrow \sigma_u^2 + \delta^2 \sigma^2 \int_0^1 V_{\underline{c}}^{\bar{c},\kappa} (r)^2 dr$$

Now consider the cross-product  $A = T^{-1} \sum_{t=1}^{T} (x_{t-1} - \bar{x}_{-1}) ((u_t - \bar{u}) - (u_{t-1} - \bar{u}_{-1}) + \delta T^{-1/2} (u_{t-1} - \bar{u}_{-1}))$ :

$$A = T^{-1} \sum_{t=1}^{T} \left( (x_0 - \mu) \left( \alpha^{t-1} - \bar{\alpha} \right) + a_T \left( u_{t-1} - \bar{u}_{-1} \right) + b_T \left( X_{t-1} - \bar{X}_{-1} \right) \right. \\ \left. \left( (u_t - \bar{u}) - (u_{t-1} - \bar{u}_{-1}) + \delta T^{-1/2} \left( u_{t-1} - \bar{u}_{-1} \right) \right) \right)$$

that is,

$$A = (x_0 - \mu) T^{-1} \sum_{t=1}^{T} (\alpha^{t-1} - \bar{\alpha}) (u_t - \bar{u})$$
  
-  $(x_0 - \mu) (1 - \delta T^{-1/2}) T^{-1} \sum_{t=1}^{T} (\alpha^{t-1} - \bar{\alpha}) (u_{t-1} - \bar{u}_{-1})$   
+  $a_T T^{-1} \sum_{t=1}^{T} (u_{t-1} - \bar{u}_{-1}) (u_t - \bar{u}) - a_T (1 - \delta T^{-1/2}) T^{-1} \sum_{t=1}^{T} (u_{t-1} - \bar{u}_{-1})^2$   
+  $b_T T^{-1} \sum_{t=1}^{T} (X_{t-1} - \bar{X}_{-1}) (u_t - \bar{u})$   
-  $b_T (1 - \delta T^{-1/2}) T^{-1} \sum_{t=1}^{T} (X_{t-1} - \bar{X}_{-1}) (u_{t-1} - \bar{u}_{-1})$ 

Taking into account the previous elements, the first two terms on the right hand side of A are  $O_p(T^{1/2})$ , whereas  $T^{-1} \sum_{t=1}^{T} (u_{t-1} - \bar{u}_{-1}) (u_t - \bar{u}) \xrightarrow{p} \gamma_{u,1}, T^{-1} \sum_{t=1}^{T} (u_{t-1} - \bar{u}_{-1})^2 \xrightarrow{p} \sigma_u^2, \sum_{t=1}^{T} (X_{t-1} - \bar{X}_{-1}) (u_t - \bar{u}) = O_p(T), T^{-1} \sum_{t=1}^{T} (X_{t-1} - \bar{X}_{-1}) (u_{t-1} - \bar{u}_{-1}) = O_p(T).$ Since  $a_T \to 1$  and  $b_T \to 0$  as  $T \to \infty$ , we have in the limit:

$$T^{-1} \sum_{t=1}^{T} \left( x_{t-1} - \bar{x}_{-1} \right) \left( \left( u_t - \bar{u} \right) - \left( u_{t-1} - \bar{u}_{-1} \right) + \delta T^{-1/2} \left( u_{t-1} - \bar{u}_{-1} \right) \right) \xrightarrow{p} \gamma_{u,1} - \sigma_u^2$$

Since the OLS estimator is given by:

$$\hat{\alpha} = \alpha + \frac{\sum_{t=1}^{T} (x_{t-1} - \bar{x}_{-1}) \left( (u_t - \bar{u}) - (u_{t-1} - \bar{u}_{-1}) + \delta T^{-1/2} (u_{t-1} - \bar{u}_{-1}) \right)}{\sum_{t=1}^{T} (x_{t-1} - \bar{x})^2}$$

we have that in the limit:

$$\hat{\alpha} \Rightarrow \frac{\gamma_{u,1} + \delta^2 \sigma^2 \int_0^1 V_{\underline{c}}^{\overline{c},\kappa} \left(r\right)^2 dr}{\sigma_u^2 + \delta^2 \sigma^2 \int_0^1 V_{\underline{c}}^{\overline{c},\kappa} \left(r\right)^2 dr}$$

provided that  $\alpha = 1$ , an expression that would be equivalent to the one obtained in Theorem 1 of Nabeya and Perron (1994) if the stochastic process were to be unbounded, with  $\mu = 0$  and  $\varepsilon_t \sim iid(0, \sigma_{\varepsilon}^2)$ . However, whereas in Nabeya and Perron (1994)  $\hat{\alpha} \xrightarrow{p} 0$ when  $\delta = 0$ , here we have  $\hat{\alpha} \xrightarrow{p} \gamma_{u,1}/\sigma_u^2 \neq 0$ . Besides,  $\hat{\alpha} \xrightarrow{p} 1$  when  $\delta \to \infty$  regardless of whether the stochastic process is bounded. In this case, this result coincides with the one in Nabeya and Perron (1994).  $\Box$ 

# References

- Andrews, D. W. K. (1993): Exactly Median-Unbiased Estimation of First Order Autoregressive /Unit Root Models. *Econometrica*, Vol. 61, pp. 139-165.
- [2] Andrews, D. W. K. and Chen, H. Y. (1994): Approximately Median-Unbiased Estimation of Autoregressive Models. *Journal of Business and Economic Statistics*, Vol. 12, pp. 187-204.
- [3] Balli, H. O., Murray, Ch. J. and Papell, D. H. (2014): Median-unbiased estimation of structural change models: an application to real exchange rate persistence. *Journal* of Applied Economics, Vol. 46, pp. 3300-3311.
- [4] Cavaliere G. (2005): Limited time series with a unit root. *Econometric Theory* 21, pp. 907-945.
- [5] Cavaliere, G. and Xu, F. (2014): Testing for Unit Roots in Bounded Nonstationary Time Series. *Journal of Econometrics*, Vol. 178, pp. 259-272.
- [6] Chang, Y. and Park, G.Y. (2002): On the Asymptotics of ADF Tests for Unit Roots. *Econometric Reviews*, Vol. 21, pp. 431-447.
- [7] Fuller, W. A. (1996): Introduction to Statistical Time Series, 2nd ed. Wiley, New York, NY.
- [8] Hansen, B. E. (1999): Bootstrapping the Autoregressive Model. Review of Economics and Statistics, Vol. 81, pp. 594–607.
- [9] Herwartz, H. and Xu, F. (2008): Reviewing the Sustainability/Stationarity of Current Account Imbalances with Tests for Bounded Integration. *The Manchester School*, Vol. 76, pp. 267-278.

- [10] Kejriwal, M. and Perron, P. (2010): A Sequential Procedure to Determine the Number of Breaks in Trend with an Integrated or Stationary Noise Component. *Journal* of Time Series Analysis, Vol. 31, pp. 305-328.
- [11] Kilian, L. (1998): Small-Sample Confidence Intervals for Impulse Response Functions. *Review of Economics and Statistics*, Vol. 80, pp. 218-230.
- [12] Nabeya, S. and Perron P. (1994): Local Asymptotic Distribution Related to the AR(1) Model with Dependent Errors. *Journal of Econometrics*, Vol. 62, pp. 229-264.
- [13] Nelson, C. R. and Plosser, C. I. (1982): Trends and Random Walks in Macroeconomic Time Series. *Journal of Monetary Economics*, Vol. 10, pp. 139-162.
- [14] Ng S. and Perron P. (2001): Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power. *Econometrica*, Vol. 69, pp. 1519-1554.
- [15] Perron P. and Qu Z. (2007): A Simple Modification to Improve the Finite Sample Properties of Ng and Perron's Unit Root Tests. *Economics Letters*, Vol. 94, pp. 12-19.
- [16] Perron, P. and Yabu, T. (2009a): Estimating Deterministic Trends with an Integrated or Stationary Noise Component. *Journal of Econometrics, Vol.* 151, pp. 56-69.
- [17] Perron, P. and Yabu, T. (2009b): Testing for Shifts in Trend with an Integrated or Stationary Noise Component. *Journal of Business & Economics Statistics*, Vol. 27, pp. 369-396.
- [18] Perron, P. and Yabu, T. (2012): Testing for Trend in the Presence of Autoregressive Error: A Comment. Journal of the American Statistical Association, Vol. 107, pp. 844-844.
- [19] Pesavento, E. and Rossi, B. (2006): Small-sample Confidence Intervals for Multivariate Impulse Response Functions at Long Horizons. *Journal of Applied Econometrics*, Vol. 21, pp. 1135-1155.
- [20] Phillips, P. C. B. and Perron, P. (1988): Testing for a Unit Root in Time Series Regression. *Biometrika*, Vol. 75, pp. 335-346.
- [21] Roy, A. and Fuller, W. A. (2001): Estimation for Autoregressive Time Series with a Root Near 1. Journal of Business & Economics Statistics, Vol. 19, pp. 482-493.

- [22] Roy, A., Falk, B. and Fuller, W. A. (2004): Testing for Trend in the Presence of Autoregressive Errors. *Journal of the American Statistical Association*, Vol. 99, pp. 1082-1091.
- [23] Watson, M. W. (2014): Inflation Persistence, the NAIRU, and the Great Recession. American Economic Review, Vol. 104, pp. 31-36.



Figure 1. OLS and standard bias corrected autoregressive parameter estimates for unattended bounded processes

TABLE 1

|                             | TAB          | LE 1                |               |             |        |
|-----------------------------|--------------|---------------------|---------------|-------------|--------|
| Percentiles of the limiting | distribution | of $\hat{\tau}_W$ j | for different | (symmetric) | bounds |

|                                 | •     | 6     |       |       |       |       | ( 8   | /     |       |
|---------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $(\underline{c}, \overline{c})$ | 1%    | 2.5%  | 5%    | 7%    | 7.5%  | 10%   | 15%   | 50%   | 85%   |
| (-0.1, 0.1)                     | -9.16 | -9.01 | -8.88 | -8.82 | -8.80 | -8.74 | -8.64 | -8.25 | -7.89 |
| (-0.2, 0.2)                     | -5.39 | -5.18 | -5.02 | -4.94 | -4.93 | -4.86 | -4.76 | -4.38 | -4.07 |
| (-0.3, 0.3)                     | -4.58 | -4.21 | -3.94 | -3.82 | -3.79 | -3.70 | -3.56 | -3.11 | -2.80 |
| (-0.4, 0.4)                     | -4.17 | -3.85 | -3.58 | -3.44 | -3.41 | -3.28 | -3.09 | -2.52 | -2.17 |
| (-0.5, 0.5)                     | -3.75 | -3.49 | -3.27 | -3.15 | -3.13 | -3.02 | -2.85 | -2.22 | -1.79 |
| (-0.6, 0.6)                     | -3.37 | -3.14 | -2.95 | -2.86 | -2.84 | -2.74 | -2.60 | -2.04 | -1.56 |
| (-0.7, 0.7)                     | -3.15 | -2.89 | -2.70 | -2.61 | -2.59 | -2.50 | -2.38 | -1.89 | -1.42 |
| (-0.8, 0.8)                     | -3.11 | -2.81 | -2.56 | -2.45 | -2.43 | -2.33 | -2.20 | -1.74 | -1.32 |
| (-0.9, 0.9)                     | -3.10 | -2.79 | -2.54 | -2.40 | -2.38 | -2.26 | -2.08 | -1.59 | -1.20 |
| (-1.0, 1.0)                     | -3.14 | -2.81 | -2.55 | -2.40 | -2.38 | -2.25 | -2.06 | -1.46 | -1.08 |
| (-1.5, 1.5)                     | -3.13 | -2.81 | -2.53 | -2.39 | -2.36 | -2.23 | -2.03 | -1.20 | -0.49 |
| $(-\infty,\infty)$              | -3.12 | -2.80 | -2.53 | -2.39 | -2.37 | -2.24 | -2.04 | -1.21 | -0.24 |



Figure 2. OLS and bias corrected autoregressive parameter estimates for bounded processes. AR(1) case



Figure 3. OLS and bias corrected autoregressive parameter estimates for bounded processes. ARMA(1,1) case with  $\theta = -0.4$ 



Figure 4. OLS and bias corrected autoregressive parameter estimates for bounded processes. ARMA(1,1) case with  $\theta = -0.8$ 

| (       | 2110      | Jmpi0          | gnichi              | ruic p              |                     | ice joi               |                          | count                  | 1103                |                       |  |  |  |  |  |  |
|---------|-----------|----------------|---------------------|---------------------|---------------------|-----------------------|--------------------------|------------------------|---------------------|-----------------------|--|--|--|--|--|--|
|         |           | Bou            | nds igr             | nored               | Bounds considered   |                       |                          |                        |                     |                       |  |  |  |  |  |  |
|         |           | [              | $-\infty, \infty$   | 0]                  | [0, 1]              | [00]                  | $[\underline{b}^{\min},$ | $\overline{b}^{\max}]$ | $[\underline{b}^*,$ | $\overline{b}^*]$     |  |  |  |  |  |  |
|         | $\hat{k}$ | $\hat{\alpha}$ | $\hat{\alpha}_{MU}$ | $\hat{\alpha}_{PY}$ | $\hat{\alpha}_{MU}$ | $\hat{\alpha}_{PY}^*$ | $\hat{\alpha}_{MU}$      | $\hat{\alpha}_{PY}^*$  | $\hat{\alpha}_{MU}$ | $\hat{\alpha}_{PY}^*$ |  |  |  |  |  |  |
| Canada  | 2         | 0.84           | 0.89                | 0.89                | 0.92                | 1                     | 0.95                     | 1                      | 0.92                | 1                     |  |  |  |  |  |  |
| France  | 2         | 0.82           | 0.86                | 0.85                | 0.94                | 1                     | 1                        | 1                      | 0.94                | 1                     |  |  |  |  |  |  |
| Germany | 2         | 0.92           | 1                   | 0.95                | 1                   | 1                     | 1                        | 1                      | 1                   | 1                     |  |  |  |  |  |  |
| Italy   | 2         | 0.83           | 0.86                | 0.86                | 0.94                | 1                     | 0.97                     | 1                      | 0.94                | 1                     |  |  |  |  |  |  |
| Japan   | 2         | 0.96           | 1                   | 0.97                | 1                   | 1                     | 1                        | 1                      | 1                   | 1                     |  |  |  |  |  |  |
| UK      | 2         | 0.87           | 0.91                | 0.93                | 0.99                | 1                     | 1                        | 1                      | 0.99                | 1                     |  |  |  |  |  |  |
| USA     | 2         | 0.71           | 0.74                | 0.75                | 0.76                | 0.75                  | 0.77                     | 0.75                   | 0.76                | 0.75                  |  |  |  |  |  |  |

TABLE 2Unemployment rate persistence for the G7 countries

Note: The computation of  $\hat{\alpha}_{PY}$  is based on the  $\tau_{50}$  percentile.  $[\underline{b}, \overline{b}] = [\underline{b}^{\min}, \overline{b}^{\max}]$  denote the bounds defined by the minimum and maximum of the observed values of the  $unem_{i,t}$  time series.  $[\underline{b}, \overline{b}] = [\underline{b}^*, \overline{b}^*]$  denote the "break-even" bounds.





# Appendix B: Supplementary material. Additional Monte Carlo simulations results

This section provides simulation results for the different estimation bias correction procedures that consider the bounded nature of time series. Instead of focusing on the near-integrated area, these results allow us to analyze the performance of the generalized methods using a discrete set of values for the autoregressive parameter given by  $\alpha = \{0, 0.1, 0.2, ..., 1\}$  for the AR(1) case. The rest of the simulation set-up is described in the paper.

| Dues collected estimated asting incounsed estimation: The CIU(1) case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Andrews $\hat{\alpha}_{MU}$ Andrews and Chen $\hat{\alpha}_{MU}$ , k known Andrews and Chen $\hat{\alpha}_{MU}$ , k known Andrews and Chen $\hat{\alpha}_{MU}$ , k $(BIC)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BIC)                                  |
| $T  \alpha \  \  \  \  \  \  \  \  \  \  \  \  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0 \\ 1 \end{array}$ |
| <u>50 0 0.07 0.06 0.07 0.06 0.06 0.06 0.06 0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90.09                                 |
| $0.1  0.13 \ 0.13 \ 0.13 \ 0.13 \ 0.13 \ 0.13 \ 0.13 \ 0.13 \ 0.13 \ 0.14 \ 0.14 \ 0.14 \ 0.14 \ 0.14 \ 0.14 \ 0.14 \ 0.14 \ 0.14 \ 0.14 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0.15 \ 0$       | 15  0.15                              |
| 0.2  0.21  0.21  0.21  0.21  0.21  0.21  0.21  0.21  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.23  0.23  0.22  0.23  0.22  0.23  0.22  0.23  0.22  0.23  0.22  0.23  0.22  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0                                                                                                                                                                                                                                                                                                            | 22 0.22                               |
| 0.3  0.31  0.30  0.30  0.30  0.30  0.30  0.30  0.30  0.32  0.31  0.31  0.31  0.32  0.31  0.31  0.31  0.31  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0.32  0                                                                                                                                                                                                                                                                                                            | 31 0.32                               |
| 0.4  0.41  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.42  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0                                                                                                                                                                                                                                                                                                            | 11 0.41                               |
| 0.5  0.51  0.50  0.49  0.49  0.50  0.49  0.49  0.49  0.54  0.52  0.51  0.51  0.52  0.51  0.52  0.51  0.52  0.51  0.52  0.51  0.51  0.52  0.51  0.51  0.52  0.51  0.51  0.51  0.51  0.52  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0                                                                                                                                                                                                                                                                                                            | $51 \ 0.51$                           |
| 0.6  0.61  0.60  0.59  0.59  0.59  0.59  0.59  0.59  0.66  0.63  0.62  0.62  0.61  0.62  0.62  0.62  0.63  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0.62  0                                                                                                                                                                                                                                                                                                            | $52 \ 0.62$                           |
| 0.7  0.7  0.72  0.71  0.69  0.69  0.69  0.69  0.69  0.78  0.75  0.73  0.73  0.72  0.72  0.72  0.72  0.78  0.75  0.73  0.73  0.72  0.72  0.72  0.72  0.72  0.73  0.73  0.73  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.72  0.                                                                                                                                                                                                                                                                                                            | $72 \ 0.72$                           |
| 0.8  0.80  0.81  0.80  0.80  0.79  0.79  0.79  0.79  0.88  0.87  0.85  0.84  0.83  0.83  0.83  0.88  0.87  0.85  0.84  0.83  0.83  0.83  0.83  0.87  0.85  0.84  0.84  0.83  0.83  0.83  0.83  0.83  0.84  0.84  0.83  0.83  0.83  0.83  0.83  0.84  0.84  0.83  0.83  0.83  0.83  0.83  0.84  0.84  0.83  0.83  0.83  0.83  0.83  0.84  0.84  0.83  0.83  0.84  0.84  0.83  0.83  0.84  0.84  0.83  0.83  0.84  0.84  0.83  0.83  0.84  0.84  0.84  0.83  0.83  0.84  0.84  0.84  0.83  0.83  0.84  0.84  0.84  0.83  0.83  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0.84  0                                                                                                                                                                                                                                                                                                            | 33 0.83                               |
| $0.85\ 0.82\ 0.84\ 0.85\ 0.84\ 0.84\ 0.84\ 0.84\ 0.91\ 0.92\ 0.91\ 0.90\ 0.89\ 0.89\ 0.89\ 0.89\ 0.91\ 0.91\ 0.91\ 0.90\ 0.89\ 0.89\ 0.80\ 0.91\ 0.91\ 0.91\ 0.90\ 0.89\ 0.89\ 0.89\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80\ 0.80$      | 39 0.88                               |
| $0.9  0.84 \ 0.86 \ 0.87 \ 0.89 \ 0.89 \ 0.89 \ 0.89 \ 0.92 \ 0.95 \ 0.95 \ 0.95 \ 0.94 \ 0.94 \ 0.94 \ 0.93 \ 0.92 \ 0.95 \ 0.95 \ 0.94 \ 0.94 \ 0.93 \ 0.95 \ 0.95 \ 0.95 \ 0.94 \ 0.94 \ 0.93 \ 0.95 \ 0.95 \ 0.95 \ 0.94 \ 0.94 \ 0.94 \ 0.93 \ 0.95 \ 0.95 \ 0.95 \ 0.94 \ 0.94 \ 0.94 \ 0.93 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.94 \ 0.94 \ 0.94 \ 0.93 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.94 \ 0.94 \ 0.94 \ 0.93 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0$       | 3 0.93                                |
| $0.95\ 0.86\ 0.87\ 0.88\ 0.90\ 0.91\ 0.92\ 0.92\ 0.93\ 0.96\ 0.97\ 0.98\ 0.97\ 0.97\ 0.97\ 0.97\ 0.93\ 0.96\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97$      | 70.076                                |
| $1 \qquad 0.89 \ 0.91 \ 0.91 \ 0.92 \ 0.92 \ 0.93 \ 0.94 \ 0.94 \ 0.94 \ 0.97 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.94 \ 0.97 \ 0.98 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 0.9$ | 99 0.99                               |
| $200 \overline{0}$ 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.060                                 |
| 0.1  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0                                                                                                                                                                                                                                                                                                            | [3 0.13                               |
| 0.2  0.20  0.20  0.20  0.20  0.20  0.20  0.20  0.20  0.20  0.20  0.20  0.20  0.20  0.20  0.20  0.20  0.22  0.21  0.22  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.21  0.22  0.22  0.21  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0                                                                                                                                                                                                                                                                                                            | 22 0.21                               |
| 0.3  0.30  0.30  0.30  0.30  0.30  0.30  0.29  0.30  0.30  0.30  0.30  0.30  0.30  0.30  0.30  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0.31  0                                                                                                                                                                                                                                                                                                            | 31 0.31                               |
| 0.4  0.40  0.40  0.40  0.40  0.40  0.40  0.39  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0.41  0                                                                                                                                                                                                                                                                                                            | 11 0.41                               |
| 0.5  0.50  0.50  0.50  0.50  0.50  0.50  0.49  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0.51  0                                                                                                                                                                                                                                                                                                            | $51 \ 0.50$                           |
| 0.6  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0                                                                                                                                                                                                                                                                                                            | $30 \ 0.60$                           |
| 0.7 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70 0.70                               |
| 0.8  0.79  0.79  0.79  0.79  0.79  0.79  0.79  0.79  0.81  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0.80  0                                                                                                                                                                                                                                                                                                            | 30 0.80                               |
| $0.85\ 0.85\ 0.85\ 0.85\ 0.84\ 0.84\ 0.84\ 0.84\ 0.86\ 0.86\ 0.86\ 0.86\ 0.85\ 0.85\ 0.85\ 0.85\ 0.86\ 0.86\ 0.86\ 0.86\ 0.85\ 0.85\ 0.80\ 0.86\ 0.86\ 0.85\ 0.85\ 0.85\ 0.86\ 0.86\ 0.86\ 0.85\ 0.85\ 0.85\ 0.86\ 0.86\ 0.85\ 0.85\ 0.85\ 0.86\ 0.86\ 0.85\ 0.85\ 0.85\ 0.86\ 0.86\ 0.86\ 0.85\ 0.85\ 0.85\ 0.86\ 0.86\ 0.86\ 0.85\ 0.85\ 0.85\ 0.86\ 0.86\ 0.85\ 0.85\ 0.85\ 0.85\ 0.86\ 0.86\ 0.86\ 0.85\ 0.85\ 0.85\ 0.85\ 0.86\ 0.86\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.86\ 0.86\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.86\ 0.86\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85\ 0.85$      | 35 0.85                               |
| 0.9  0.91  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0.91  0                                                                                                                                                                                                                                                                                                            | 0.01                                  |
| $0.95\ 0.95\ 0.95\ 0.95\ 0.95\ 0.95\ 0.95\ 0.95\ 0.95\ 0.95\ 0.98\ 0.97\ 0.97\ 0.97\ 0.96\ 0.96\ 0.96\ 0.96\ 0.97\ 0.97\ 0.97\ 0.97\ 0.96\ 0.96\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97\ 0.97$      | 96 0.96                               |
| $1  0.97 \ 0.98 \ 0.98 \ 0.98 \ 0.98 \ 0.98 \ 0.98 \ 0.99 \ 0.99 \ 0.99 \ 0.99 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.00 \ 1.0$       | 00 1.00                               |

TABLE B.1 Bias corrected estimator using median-unbiased estimator. The AR(1) case

1

| TABLE B.2 TABLE b.2 $n$ of the distribution of $\hat{\alpha}_{TW}^{\tau_{50}}$ . |           | The $AR($                                                   |
|----------------------------------------------------------------------------------|-----------|-------------------------------------------------------------|
|                                                                                  | TABLE B.2 | in of the distribution of $\hat{\alpha}_{TW}^{\tau_{50}}$ . |

| lean of the distribution of $\hat{\alpha}_{PY}^{\tau_{50}}$ . The $AR(1)$ case | k known k $(BIC)$ | 5  0.6  0.7  0.8  0.9  1  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1 | 00  0.00  0.00  0.00  0.00  0.00  0.05  0.04  0.04  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0.03  0. | 10  0.10  0.10  0.10  0.10  0.10  0.14  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0.13  0. | 20  0.20  0.20  0.20  0.20  0.20  0.23  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0.22  0. | $30 \ \ 0.30 \ \ 0.30 \ \ 0.30 \ \ 0.30 \ \ 0.30 \ \ 0.30 \ \ 0.32 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.31 \ \ 0.3$ | 40  0.40  0.40  0.40  0.40  0.40  0.40  0.41  0.41  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0.40  0. | 49  0.49  0.49  0.49  0.49  0.49  0.49  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0.50  0. | 59  0.59  0.59  0.59  0.59  0.59  0.58  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0.59  0. | 68 0.68 0.68 0.68 0.68 0.68 0.67 0.68 0.68 0.68 0.68 0.68 0.68 0.68 | 78 0.79 0.79 0.79 0.79 0.79 0.79 0.75 0.77 0.78 0.79 0.79 0.79 0.79 0.79 | $83 \ \ 0.85 \ \ 0.85 \ \ 0.85 \ \ 0.85 \ \ 0.85 \ \ 0.85 \ \ 0.85 \ \ 0.84 \ \ 0.84 \ \ 0.85 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.8$ | 87 0.89 0.90 0.90 0.90 0.90 0.79 0.83 0.87 0.89 0.90 0.90 0.90 | 88  0.91  0.93  0.94  0.94  0.94  0.81  0.84  0.88  0.91  0.93  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0. | 91  0.93  0.95  0.96  0.97  0.97  0.83  0.87  0.91  0.93  0.95  0.96  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0. | 00 -0.00 -0.00 -0.00 -0.00 0.05 0.05 0.0 | 10  0.10  0.10  0.10  0.10  0.10  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0.14  0. | 20  0.20  0.20  0.20  0.20  0.20  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0.23  0. | $30 \hspace{0.2cm} 0.30 \hspace{0.2cm} 0.30 \hspace{0.2cm} 0.30 \hspace{0.2cm} 0.30 \hspace{0.2cm} 0.30 \hspace{0.2cm} 0.32 \hspace{0.2cm} 0.$ | 40  0.40  0.40  0.40  0.40  0.40  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0.42  0. | $50 \ 0.50 \ 0.50 \ 0.50 \ 0.50 \ 0.50 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.51 \ 0.$ | 60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0.60  0. | 70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0 | 80 0.80 0.80 0.80 0.80 0.80 0.80 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.80 | $84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.84 \ \ 0.8$ | 90  0.90  0.90  0.90  0.90  0.90  0.88  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0.90  0. | 97  0.97  0.97  0.97  0.97  0.97  0.93  0.96  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0.97  0. | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
|--------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| e distribu                                                                     | NWD               | 0.7 0.8                                                        | 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.20 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.30 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.40 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.49 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.59 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.68 0.68                                                           | 0.79 0.79                                                                | 0.85 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.90 0.90                                                      | $0.93$ $0.9_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.95 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00 -0.0                                | 0.10 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.20 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.30 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.40 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.50 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.60 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.70 0.70                               | 0.80 0.80                                                                | 0.84  0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.90 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.97 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00 1.00                                             |
| n of $th$                                                                      | $k  \mathrm{knc}$ | 0.6                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.68                                                                | 0.79                                                                     | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.89                                                           | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -00.0-                                   | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.70                                    | 0.80                                                                     | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.99                                                  |
| Mea                                                                            |                   | 0.5                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.68                                                                | 0.78                                                                     | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.87                                                           | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.00                                    | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.70                                    | 0.80                                                                     | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.99                                                  |
|                                                                                |                   | 0.4                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.68                                                                | 0.77                                                                     | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.83                                                           | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.00                                    | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.70                                    | 0.80                                                                     | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.98                                                  |
|                                                                                |                   | 0.3                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.66                                                                | 0.74                                                                     | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.78                                                           | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.00                                    | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.70                                    | 0.79                                                                     | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.95                                                  |
|                                                                                |                   | $\alpha \overline{c}$                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7                                                                 | 0.8                                                                      | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9                                                            | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                        | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7                                     | 0.8                                                                      | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |
|                                                                                |                   | Н                                                              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20(                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |

|           | ~                                                     |
|-----------|-------------------------------------------------------|
|           | $AR_{(}$                                              |
|           | The                                                   |
| TABLE B.3 | the distribution of $\hat{\alpha}_{PV}^{\tau_{50}}$ . |
|           | ; t                                                   |
|           | <u>[</u> 0                                            |
|           | u u                                                   |



Figure B.1. OLS and bias corrected autoregressive parameter estimates for bounded processes. Iterative estimation for the AR(1) and AR(2) cases



Figure B.2. OLS and bias corrected autoregressive parameter estimates for bounded processes. Iterative estimation for the ARMA(1,1) case