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Abstract

The paper investigates the estimation bias of autoregressive models for bounded

near-integrated stochastic processes and the performance of the standard proce-

dures in the literature that aim to correct the estimation bias. In some cases, the

bounded nature of the stochastic processes worsens the estimation bias e¤ect. The

paper extends two popular autoregressive estimation bias correction procedures to

cover bounded stochastic processes. Monte Carlo simulations reveal that account-

ing for the bounded nature of the stochastic processes leads to improvements in

the estimation of autoregressive models. Finally, an illustration is given using the

unemployment rate of the G7 countries.
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I. Introduction

Since the seminal paper by Nelson and Plosser (1982), time series data-based analysis

has frequently begun with the study of the time properties of the variables. This usually

implies the use of some unit root tests, and the statistical inference drawn from their

application is important for subsequent analyses. For instance, a quite popular practice

is to determine the persistence degree of shocks by means of estimating autoregressive

models. This provides very interesting insights about the evolution of the variable being

studied, including the analysis of persistence in variables such as real exchange rates,

where some practitioners have studied the number of periods that a shock takes to van-

ish �see Balli et al. (2014), among others. Similarly, Watson (2014) studies the e¤ect

of the Great Recession on in�ation persistence. This type of analysis, however, is not

straightforward given that we should take into account that the ordinary least-squares

(OLS) estimator is consistent but biased in �nite samples, and this bias must be removed

in order to appropriately measure the degree of persistence. There are various proposals

in the literature which try to correct this �nite sample bias. We can cite here the con-

tributions of Andrews (1993), Andrews and Chen (1994), Kilian (1998), Hansen (1999),

Rossi (2005) and Perron and Yabu (2009a), among others, which develop di¤erent valid

techniques to remove the estimation bias.

However, some commonly employed variables may be a¤ected by the presence of

bounds. Macroeconomic variables such as nominal interest rates, unemployment rates,

exchange rates and the great ratios, among others, are bounded by de�nition, preventing

them from exhibiting a large variance. This feature generates tension in the statistical

inference associated with standard unit root tests and, hence, the estimation of the degree

of persistence of shocks. The standard order of integration analysis of time series considers

that an I(1) non-stationary stochastic process can vary freely within the limit, that is,

the constraints that impose the existence of bounds are ignored. The behavior of these

types of variables might seem to be stationary when, in fact, they are non-stationary. In

this regard, Cavaliere (2005) and Cavaliere and Xu (2014) show that standard unit root

tests might reach misleading conclusions if the bounded nature of the time series is not

accounted for. Therefore, it is recommendable to analyze the in�uence of these bounds

on the determination of time series properties.

The goal of this paper is to assess whether the use of bias-corrected autoregressive

parameter estimates allows us to obtain more accurate empirical economic analyses that

build upon the computation of statistics such as shock persistence measures or long-run

variance (LRV) estimates. To address this issue, the paper investigates the performance

of some of the popular estimation bias correction methods mentioned above when applied

to bounded near-integrated stochastic processes. First, we focus on some standard pro-

cedures, showing that, in general, the amount of estimation bias that is corrected is small
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when the bounded nature of the time series is ignored. This suggests the need to extend

these standard procedures to incorporate the e¤ect of the bounds on the estimation of

autoregressive models for persistent time series.

The paper proceeds as follows. Section II. describes the model for bounded (near-

integrated and integrated) stochastic processes. Section III. motivates the analysis show-

ing that standard bias correction methods give poor estimates when applied to bounded

stochastic processes. This leads us to propose in Section IV. an extension of bias cor-

rection methods that considers this feature. Section V. analyzes the �nite sample per-

formance of the suggested approaches. Section VI. provides an empirical illustration,

focusing on the unemployment rate persistence of the G7 countries. Finally, Section VII.

sets out the conclusions. The proofs and supplementary material are collected in the

appendix.

II. The model

Let xt be a stochastic process with a data generating process (DGP) given by:

xt = �+ yt (1)

yt = �yt�1 + ut (2)

t = 1; : : : ; T , where xt 2
�
b; b
�
almost surely for all t, y0 = Op (1), and

�
b; b
�
denote

the boundaries that a¤ect the time series. The autoregressive parameter is set as � =

exp (��=T ) � 1��=T , with � � 0 being the non-centrality parameter, so that the model
speci�cation covers both the case in which the time series is a near-integrated process �

i.e., a NI(1) process with � > 0 �and an I(1) non-stationary process �when � = 0. The

disturbance term ut is assumed to admit the decomposition:

ut = "t + �t � �t (3)

and the variables �t and �t are non-negative processes (regulators) such that �t > 0 if

and only if �yt�1 + "t < b� � and �t > 0 if and only if �yt�1 + "t > b� �. The following
assumptions are assumed to be satis�ed by the stochastic processes in (3).

Assumption 1: "t = C (L) �t, where C (L) =
P1

j=0 cjL
j with

P1
j=0 j

s jcjj < 1,
for some s � 1, and �t is a martingale di¤erence sequence adapted to the �ltration

Ft = ��field f�t�j; j � 0g. The LRV of "t is given by (a) �2 = limT!1E[T
�1(
PT

t=1 "t)
2]

= �2�C (1)
2, (b) �2� = limT!1 T

�1PT
t=1E (�

2
t ) < 1 8t, and (c) E j�rt j < 1 for some

r > 4.

Assumption 2 : f�tgTt=1and
�
�t
	T
t=1
satisfy restrictions to ensure that maxt=1;:::;T j�tj =

op
�
T 1=2

�
and maxt=1;:::;T j�tj = op

�
T 1=2

�
.
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Assumption 3 : (b� �) = c�T 1=2+o (1) and
�
b� �

�
= c�T 1=2+o (1), c � 0 � c, c 6= c.

Based on these assumptions, we can de�ne the (standardized) bounds that a¤ect yt
as: "

(b� �)

�T 1=2
;

�
b� �

�
�T 1=2

#
= [c; c] + o (1) (4)

with c � 0 � c, c 6= c. Note that the model speci�cation can be particularized to

stochastic processes that are only limited below �i.e., xt 2 [b;1] �or only limited above
�i.e., xt 2

�
�1; b

�
�but also covers the case of unbounded processes �i.e., xt 2 [�1;1].

For this near-integrated set-up the following theorem shows that the OLS estimator of �

in the system de�ned by (1) and (2) is consistent.

Theorem 1 Let fxtgTt=1 be the bounded stochastic process given by (1) to (3). Under
Assumptions 1 to 3 and as T !1, the OLS estimator is:

(�̂� �)
p! 0

where
p! denotes convergence in probability.

The proof is given in the appendix. Although the OLS estimator is a consistent

estimator of � when dealing with bounded stochastic processes, it is to be expected that

some estimation bias would appear in �nite samples. Thus, the goal of this paper is to

study the extent of this estimation bias distortion and how some popular estimation bias

correction procedures perform in practice.

Finally, it is worth emphasizing that the paper deals with NI(1) and I(1) stochastic

processes, and that the bounds are de�ned according to this framework, i.e.,
�
b; b
�
=

O
�
T 1=2

�
. In principle, it would be possible to design a framework for bounded I(0)

stochastic processes with �xed bounds given by
�
(b� �) =�;

�
b� �

�
=�
�
= [c; c] + o (1),

so that
�
b; b
�
= O (1). However, the OLS estimator of � would lead to inconsistent

estimates.

III. Estimation bias correction methods

The estimation of autoregressive models is at the heart of popular practices in empirical

economics such as order of integration analysis and the computation of shock persistence

measures. However, it is well known that OLS estimation provides biased estimates in

�nite samples, although the bias disappears asymptotically. The literature has provided

di¤erent estimation bias correction methods such as those found in Andrews (1993),

Andrews and Chen (1994), Kilian (1998) and Hansen (1999) �which rely on simulation

techniques � and Roy and Fuller (2001) and Perron and Yabu (2009a) �which apply

a correction function to the OLS estimate. In what follows, we focus on two of these
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approaches: (i) the median-unbiased (MU) estimation procedure suggested in Andrews

(1993) and Andrews and Chen (1994) and (ii) the truncated and super-e¢ cient estimator

advocated in Perron and Yabu (2009a). The selection of these approaches is driven by two

reasons. First, preliminary simulations, not reported here to save space, reveal that the

MU procedure outperforms the proposals in Kilian (1998) and Hansen (1999). Second,

we take into account that the Perron and Yabu (2009a) method builds upon the Roy and

Fuller (2001) approximation, so it can be seen as an enhanced estimation procedure. The

discussion below focuses on the standard implementation of these proposals and their

performance when they are applied to bounded stochastic processes.

The median-unbiased estimation method

The estimation bias correction approach in Andrews (1993) deals with AR(1) stochastic

processes:

xt = f (t) + �xt�1 + et (5)

where f (t) denotes the deterministic component � i.e., f (t) = 0, f (t) = � or f (t) =

�+ �t. The MU estimation technique is based on establishing a correspondence between

the OLS estimation of the autoregressive parameter � in (5) �denoted as �̂ �and the

median of the empirical distribution that is obtained by means of the Imhof routine

under the assumption that � = �̂. This de�nes the so-called median-unbiased autore-

gressive estimator of � �henceforth, �̂MU . Andrews (1993) provides look-up tables for

the AR(1) case that can be used to approximate �̂MU . Andrews and Chen (1994) extend

the procedure to AR(p) stochastic processes of the form:

xt = f (t) + �xt�1 +

p�1X
j=1

 j�xt�j + et (6)

although in this case the look-up tables are time-series-dynamic-speci�c, and the authors

suggest the use of a simple iterative procedure that yields an approximate �̂MU �see

Pesavento and Rossi (2006) for further details. As can be seen, the MU-based approach is

a computationally-intensive procedure, especially for high-order autoregressive processes.

Weighted symmetric least-squares estimation

The truncated and super-e¢ cient estimator of Perron and Yabu (2009a) �henceforth,

PY �accounts for the fact that the bias of the autoregressive parameter estimates in

the near-integrated and I(1) non-stationary areas worsens when compared to the bias

obtained for moderate persistent processes. Roy and Fuller (2001) and Perron and Yabu

(2009a) suggest the use of the modi�ed estimator �hereafter, the truncated weighted
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(TW) estimator �given by:

�̂TW = �̂W + C (�̂W ) �̂W (7)

where �̂W denotes the weighted symmetric least-squares (WSLS) estimate of the autore-

gressive parameter � in the model:

xt = (1� �)�+ �xt�1 +
kX
j=1

 j�xt�j + ek;t (8)

x̂t = �x̂t�1 + êk;t

with x̂ = Mx and êk = Mek, with M = IT�k � Z (Z 0Z)�1 Z 0 being the idempotent

projection matrix de�ned with Z = [zk+1; : : : ; zT ]
0 and zt = (1;�xt�1; : : : ;�xt�k) =

(1; �0t). The WSLS estimator proposed in Fuller (1996) is:

�̂W =

PT
t=k+2 x̂tx̂t�1PT�1

t=k+2 x̂
2
t + T�1

PT
t=k+1 x̂

2
t

and

�̂2W =

PT
t=k+2 (x̂t � �̂W x̂t�1)

2

(T � k � 1)
hPT�1

t=k+2 x̂
2
t + T�1

PT
t=k+1 x̂

2
t

i
so that:

�̂W =
�̂W � 1
�̂W

(9)

is the pseudo t-ratio statistic to test the null hypothesis that � = 1 in (8). The limiting

distribution of �̂W under the null hypothesis of unit root can be found in Fuller (1996),

pp. 570 and following.

The modi�cation in (7) requires the de�nition of C (�̂W ) that is given by the discon-

tinuous function:

C (�̂W ) =

8>>>><>>>>:
��̂W if �̂W > � pct

Ik+1T
�1�̂W � 2 [�̂W +K (�̂W + A)]�1 if � A < �̂W � � pct

Ik+1T
�1�̂W � 2 [�̂W ]�1 if � (2T )1=2 < �̂W � �A

0 if �̂W � � (2T )1=2

(10)

with K = [(1 + Ik+1T
�1) � pct (� pct + A)]

�1 �
2� Ik+1T

�1� 2pct
�
, Ik+1 = b(k + 2) =2c , b�c

being the integer part, while k denotes the order of the autoregressive correction in (8)

�note that for an AR(p) process k = p � 1 �and � pct is a percentile of the limiting
distribution of �̂W when � = 1. The percentile � pct is either set at the median (� 50) or

at the 85th percentile (� 85) of the distribution of �̂W , which are reported in the last row

of Table 1. Finally, the function K depends on the deterministic speci�cation used in
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(1) �i.e., a constant or a linear time trend.1 The value of the constant A is empirically

chosen in Roy and Fuller (2001) after conducting simulation experiments, which is set at

A = 5 for unbounded stochastic processes.2 Taking into account �̂TW , Perron and Yabu

(2009a) de�ned the super-e¢ cient estimator:

�̂PY =

(
�̂TW if j�̂TW � 1j > T�1=2

1 if j�̂TW � 1j � T�1=2
(11)

an estimator that is aimed at correcting the downward estimation bias of � when it is

near one.

This type of estimator has become popular in the literature since it can be used for

other purposes such as testing for a linear trend in the presence of autoregressive processes.

Although this framework is outside the scope of the paper, it should be mentioned that

Roy et al. (2004) build upon the truncated estimator in Roy and Fuller (2001) to test

for a linear time trend in autoregressive processes. However, Perron and Yabu (2012)

documented errors in both the theoretical and simulation results reported in Roy et al.

(2004) that, in fact, were supporting the method suggested by Perron and Yabu (2009a).

Extensions of the use of the super-e¢ cient estimator to test for the presence of one or

multiple structural breaks a¤ecting a linear time trend can be found in Perron and Yabu

(2009b) and Kejriwal and Perron (2010). Therefore, the contribution of this paper also

shows that the super-e¢ cient estimator can be useful when dealing with bounded nearly-

integrated stochastic processes.

Performance of the standard bias correction methods for bounded

stochastic processes

To motivate interest in the proposal developed in this paper, this section examines

whether dealing with bounded stochastic processes presents any di¤erent features com-

pared to unbounded situations. This is addressed through a simulation experiment

with the DGP de�ned by (1) to (3) with � = 0, � = 1 � �=T , � = f0; 1; 2; : : : ; 30g,
�c = c = f0:3; 0:5; 0:7g, x0 = 0, "t � iidN (0; 1), T = 200 and 1,000 replications.

Throughout the paper, we use the algorithm described in Cavaliere (2005) and Cavaliere

and Xu (2014) to generate the bounded stochastic processes. Sub�gure A in Figure 1

presents the mean of the OLS estimated autoregressive parameter for an AR(1) model

for di¤erent values of � and c. The upper-straight solid line represents the true value of

�. As can be seen, the smaller c and �, the bigger the estimation bias. Furthermore, the

1See Roy and Fuller (2001) for the function that corresponds to the linear time trend. It is worth
noting that Perron and Yabu (2009b) use the same function when testing for multiple shifts in the trend.

2Roy and Fuller (2001) also set A = 5 for the linear time trends, whereas Perron and Yabu (2009b)
specify A = 10.
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estimation bias does not reduce as � increases.

The results of the application of the MU, TW and PY estimation bias correction proce-

dures discussed above are depicted in sub�gures B to D of Figure 1 for c = f0:3; 0:5; 0:7g,
respectively. The three procedures lead to an improvement of the OLS estimation of

the autoregressive parameter, with MU being more conservative than the TW and PY

methods for I(1) and NI(1) �with � � 10 for c = 0:5 and � � 5 for c = 0:7 �stochastic
processes. However, MU tends to produce slightly better results than TW as c and �

increase �see the results with � > 10 for c = 0:5 and � > 5 for c = 0:7 �although the

di¤erences are small. In general, the PY estimator tends to over-estimate � as c and �

(� 20) increase, although all corrections produce almost the same outcome for � > 20.

These features indicate that the bounded nature of time series should be accounted for

when estimating autoregressive model speci�cations. In what follows, we discuss how the

bias correction procedures described above can be modi�ed to consider that xt 2
�
b; b
�
.

IV. Estimation bias correction methods for bounded

stochastic processes

The extension of Andrews (1993) and Andrews and Chen (1994) to cover the case of

bounded stochastic processes requires consideration of the restriction that xt 2
�
b; b
�

when the empirical distribution of � is approximated by means of simulation experiments.

Thus, once �̂ is obtained from the OLS estimation of either (5) or (6), the Monte Carlo

simulation used to compute the empirical distribution of �, under the assumption that

� = �̂, will use simulated stochastic processes that satisfy xt 2
�
b; b
�
�or, equivalently,

��1T�1=2 (xt � �) 2 [c; c]. This generates an intensive computational problem since look-
up tables have to be obtained for di¤erent combinations of [c; c] values, for di¤erent values

of p and for speci�c values of T when working on �nite samples. To solve this problem, a

Matlab code is available from the authors to compute look-up tables for any combinations

of set bounds, p and T values.

The WSLS-based estimation procedures of Roy and Fuller (2001) and Perron and

Yabu (2009a) depend on the bias correction term C (�̂W ) de�ned in (10), which involves

two important elements: (i) the percentile (� pct) of the distribution of �̂W and (ii) the

constant A. As for � pct, the limiting distribution of �̂W was derived by Fuller (1996)

for the case of unbounded stochastic processes so that � pct can be approximated by

simulation. However, Cavaliere (2005) shows that the limiting distribution of unit root

statistics depends on the presence of bounds �Cavaliere (2015) and Cavaliere and Xu

(2014) analyze the unit root statistics in Phillips and Perron (1988) and Ng and Perron

(2001). The following theorem provides the limiting distribution for the �̂W statistic

de�ned in (9) generalized to bounded NI(1) and I(1) stochastic processes.
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Theorem 2 Let fxtgTt=1 be the stochastic process given by (1) to (3), with � = exp (��=T ),
� � 0. Following Chang and Park (2002), let k in (8) be chosen in such a way that

1=k + k2=T ! 0 as T ! 1. The pseudo t-ratio statistic de�ned in (9) converges as
T !1 to:

�̂W )
1
2

�
V c;�
c (1)2 � 1

�
�
R 1
0
V c;�
c (r)2 drqR 1

0
V c;�
c (r)2 dr

where ) denotes weak convergence towards the associated measure of probability and

V c;�
c (r) = J c;�c (r) � r

R 1
0
J c;�c (s) ds de�nes a demeaned regulated Ornstein-Uhlenbeck

process.

The proof can be found in the appendix. Table 1 summarizes selected percentiles

of the distribution of �̂W for di¤erent values of (symmetric) bound parameters under

the null hypothesis of unit root (� = 0). As mentioned above, the last row shows the

percentiles for unbounded stochastic processes. As can be seen, the limiting distribution

of �̂W depends on the bounds. The more a limiting distribution is shifted to the left, the

narrower the range of variation de�ned by the bounds. This clearly a¤ects the de�nition

of the bias correction term C (�̂W ) given in (10).

Let us now focus on the constant A that also appears in the bias correction term

C (�̂W ) and consider the median of the distribution (� 0:5) as the percentile used in the

bias correction. First, note that setting A = 5, as is done for the unbounded stochastic

process case, does not cause incongruence for the de�nition of C (�̂W ) since �A < � 0:5.3

However, Table 1 shows that � 0:5 moves away from -1.21 as the range of variation de�ned

by the bounds decreases, which might produce a poor performance of the correction when

c < 0:5.4 In this regard, an extensive simulation experiment has been conducted to assess

the sensitivity of �̂TW to the constant A = f5; 6; : : : ; 15g. Results available upon request
indicate that �̂TW shows a good performance when A = 5 and c > 0:1, and only marginal

di¤erences are found for the other values of A. Besides, for small values of the bound

parameter (c � 0:1), we �nd that A = 10 gives good results.
Taking into account the �̂TW estimator generalized for bounded stochastic processes,

we can proceed to compute the super-e¢ cient estimator �̂PY in Perron and Yabu (2009a),

de�ned in (11), to correct the downward estimation bias of � when it is near one.

3This is also valid for the linear time trend case, for which Roy and Fuller (2001) estimated �0:5 =
�1:96 and A = 5, as mentioned above. Note that the consideration of slope trend shifts in Perron and
Yabu (2009b) led them to specify A = 10 for the one break case � it is well known that the limiting
distribution of �̂W shifts to the left as the number of structural breaks increases.

4Our guess is based on the fact that Roy and Fuller (2001) de�ne A = 5 for the linear time trend
case, for which the median of the distribution of �̂W is �0:5 = �1:96. Consequently, we might expect
that A = 5 is also valid for cases where c � 0:5, although it should be borne in mind that the K function
involved in the correction depends on the deterministic speci�cation.
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Implementation of the estimation procedures

In practice, the empirical computation of the bias correction methods for bounded time

series that we propose needs some additional steps. Given a time series with known

theoretical limits b and b, we can proceed to estimate the bounds as:

�
ĉ; ĉ
�
=

"
b� D̂t

�̂T 1=2
;
b� D̂t

�̂T 1=2

#

which requires an estimation of the deterministic component (Dt) and the long-run vari-

ance (�2). Following Cavaliere and Xu (2014), the deterministic component is estimated

under the null hypothesis of unit root so that D̂t = x0. The estimation of the long-run

variance deserves further attention because its estimation might su¤er from estimation

bias problems through the autoregressive parameter estimates. To address this issue we

suggest implementing the following iterative estimation method:

(i) Estimate the LRV ignoring the bounds. In this regard, we can use the parametric

estimation method proposed in Ng and Perron (2001) and Perron and Qu (2007),

which also allows us to select the optimal lag of the autoregressive model.

(ii) Compute an initial educated estimate of the bounds:

�
ĉ0; ĉ0

�
=

�
b� x0
�̂0T 1=2

;
b� x0
�̂0T 1=2

�
where the subscript 0 in ĉ0, ĉ0 and �̂0 indicates the initial estimate of the corre-

sponding quantity.

(iii) Estimate � according to one of these procedures:

(a) For the MU-based procedure, compute the look-up tables corresponding to�
ĉ0; ĉ0

�
by simulation and obtain �̂MU .

(b) For the truncated WSLS-based procedure, compute the percentiles of the �̂W
distribution corresponding to

�
ĉ0; ĉ0

�
by simulation �see Table 1 for the sym-

metric bounds case �and obtain �̂TW or �̂PY de�ned above.

(iv) Use �̂m, m = fMU; TW;PY g, from the previous step to estimate the LRV again

as follows,

yt � �̂myt�1 = �+
kX
j=1

 j�yt�j + "t (12)

�̂21 =
T�1

PT
t=1 "̂

2
t

(1� �̂m)2

where �̂m is imposed in (12), but the other parameters are freely estimated by OLS.
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(v) Update bounds estimates as:

�
ĉ1; ĉ1

�
=

�
b� x0
�̂1T 1=2

;
b� x0
�̂1T 1=2

�

(vi) Iterate until
���PT

t=1 "̂
2
t;l �

PT
t=1 "̂

2
t;l�1

��� < Tol, where Tol is the desired level of toler-

ance and l the step of iteration.

The implementation of the procedure can be done without performing iterations (steps

(i) to (iii), i.e., non-iterative scheme) or carrying out multiple iterations (steps (i) to (vi))

�we denote by �̂�m, m = fMU; TW;PY g , the resulting estimators. The potential gain
of the multiple iterative estimation method is assessed through Monte Carlo simulation

experiments in the next section.

V. Monte Carlo simulations

This section analyzes the performance of the di¤erent bias correction methods discussed

above using a DGP based on equations (1) to (3):

xt = �+ yt

yt = �yt�1 +  �yt�1 + ut + �ut�1 (13)

with � = 0, � = 1� �=T , � = f0; 1; 2; : : : ; 30g and "t � iid N (0; 1). The simulation ex-

ercise focuses on three stochastic processes: (i) AR(1) when imposing  = � = 0 in (13),

(ii) AR(2) when setting  = 0:5 and � = 0 in (13) and (iii) ARMA(1,1) when �xing  = 0

and � = f�0:8;�0:4g in (13). Symmetric bounds are de�ned as [c; c] = [�c; c], c = f0.3,
0.5, 0.7, 0.9g, and we consider the general case of unknown p so that k in (8) is estimated
using the BIC information criterion specifying a maximum of kmax =

�
12(T=100)1=4

�
lags.5 This implies that the MU estimation procedure implemented is the one described

in Andrews and Chen (1994). Two sample sizes are used, T = f50; 200g, and 1,000 repli-
cations are conducted throughout all simulation experiments. The discussion is organized

according to whether [c; c] are treated as known or unknown �note, however, that in the

latter case
�
b; b
�
are assumed to be known.

The AR(1) case

Figure 2.a presents the mean of the empirical distribution of the di¤erent estimators

studied for the AR(1) case when [c; c] are known. The result based on the iterative

5This maximum number of lags is set throughout the simulation experiment section. Simulations
available upon request also assessed the MAIC information criterion proposed in Ng and Perron (2001),
although the use of the BIC gives a better overall performance.
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algorithm to estimate [c; c] appears below.6 Note that all �gures include two solid straight

lines that designate the true value of � for each T . The general conclusion is that

the downward estimation bias shown by �̂ is clearly corrected by �̂MU , �̂TW and �̂PY ,

although their relative performance depends on c, � and T .

First, for T = 50 we can see that �̂MU leads to higher bias correction than �̂TW and

�̂PY when c = 0:3, whereas the opposite is found when using �̂PY for c > 0:3. If we

compare the estimators, �̂MU and �̂TW produce similar results, but with �̂TW outper-

forming �̂MU in the unit root case. However, �̂MU seems to feature a mild (increasing)

over-estimation distortion for � � 20, while �̂TW and �̂PY are only slightly above �.

Additional simulations using � = f0, 0.1, 0.2, ..., 1g, not reported here to save space,
con�rm these results when dealing with less persistent processes.

Second, �̂MU outperforms �̂TW and �̂PY for T = 200 and c = 0:3, although the former

tends to over-estimate � when � � 10. The converse situation is found for c > 0:3, with
�̂PY almost (c = 0:5) and fully (c > 0:5) correcting the estimation bias for � = 0, and

leading to mild over-estimates of � for 0 < � � 20. �̂MU and �̂TW behave in a similar

way. Interestingly, �̂PY tends to be located slightly below � for � > 20, whereas �̂MU

shows the over-estimation distortions mentioned above. These features are also found for

smaller values of �.

Figure 2.b shows the simulation results when [c; c] are unknown. For ease of compar-

ison, we also include the results that assume that [c; c] are known.7 At �rst sight, we can

establish a clear distinction in the performance of the estimators depending on whether

c = 0:3 or c > 0:3. First, for c = 0:3 and T = 50, both estimators lead to lower bias

corrections compared to the known c situation when � � 5. �̂�TW and �̂�PY follow the

same pattern and show an over-estimation distortion for � > 15, whereas this feature is

found for �̂�MU when � > 25. The performance improves for T = 200, with �̂
�
MU giving

lower estimates of � than �̂MU , whereas �̂
�
PY improves with respect to �̂PY . Note that

�̂�TW is encompassed by �̂�PY when � � 15, and they become equivalent for � > 15. If we
compare �̂�MU and �̂

�
PY , we conclude that �̂

�
MU outperforms �̂

�
PY when � � 15. However,

�̂�MU shows a mild over estimation bias for � > 15, whereas �̂�PY (and �̂
�
TW ) is placed

below �.

As c increases, the predominance of �̂�PY over �̂
�
MU becomes evident when T = 50,

since �̂�PY provides similar (c = 0:5) or better (c > 0:5) bias corrections than �̂
�
MU when

� � 10. The two estimators can hardly be distinguished in the range 10 < � � 25, but
�̂�PY (and �̂

�
TW ) outperforms �̂

�
MU when � > 25. For T = 200 the dominance of �̂�PY

is clear when � � 5, although it tends to over-estimate � when 5 < � � 15, a range

6Similar results were obtained with the use of �pct = �85 so that, in order to save space, in what
follows we only focus on �50. Consequently, unless required, we remove the reference to the percentile in
the supscript to simplify the notation.

7The TW estimator is excluded to reduce the number of curves in the �gures, although some comments
are provided �the complete set of �gures is available in the appendix.
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in which �̂�MU produces better results. Finally, �̂
�
MU leads to a mild over-estimation

distortion, while �̂�PY (and �̂
�
TW ) does not.

All in all, and regardless of whether [c; c] are assumed to be known or unknown, the

MU approach outperforms the TW and PY approaches for narrow ranges of variation

(c = 0:3), even though �̂MU leads to mild over-estimates when � � 20. TW and PY

outperform MU when c > 0:3, although PY tends to over-estimate � for 0 < � � 20, a
distortion that is clearly corrected for � > 20. This phenomenon can be attributed to

the inherent super-e¢ cient correction device introduced by the PY procedure. Finally,

the results for the AR(2) case are qualitatively similar to those obtained for the AR(1)

model. They are available from the authors upon request.

The ARMA(1,1) case

Figures 3 and 4 show the simulation results for the ARMA (1,1) case. As can be seen, the

introduction of a MA(1) component causes a downward bias of the � estimate, regardless

of c and the estimation method. The estimation bias is more severe, �rst, the smaller

� is and, second, as �� approaches �. The latter is to be expected since in these cases
we are near to the common factor situation. Note that there is a common factor when

� = ��, in which case the estimated autoregressive coe¢ cient should approach zero. It
is worth studying this situation with more detail using the �nearly white noise - nearly

integrated�framework described in Nabeya and Perron (1994), with the DGP given by

(1), but with a slight modi�cation of (2) to accommodate a local to unit MA root:8

yt = �yt�1 + ut + �Tut�1 (14)

where � = exp (��=T ), � � 0, �T = �1+�=T 1=2, � � 0, with y0 = Op (1) and u0 = Op (1).

The following theorem provides the limiting distribution of the OLS estimator in this case.

Theorem 3 Let fxtgTt=1 be the stochastic process given by (1), (3) and (14), with � =
exp (��=T ), � � 0, and �T = �1 + �=T 1=2, � � 0. Then, as T !1

�̂)
u;1 + �2�2

R 1
0
V c;�
c (r)2 dr

�2u + �2�2
R 1
0
V c;�
c (r)2 dr

The proof is given in the appendix. As can be seen, the OLS estimator converges

towards a random variable, unless � = 0. However, even in such a case �̂
p! u;1=�

2
u 6= 0

when � = 0, with u;1 and �2u being the �rst autocovariance and variance of ut, re-

spectively. Therefore, under the near common factor situation, �̂ is not a consistent

8While the use of the �nearly white noise� concept in Nabeya and Perron (1994) is �ne, it is not
appropriate in our framework since, in general, ut is not white noise when dealing with bounded stochastic
processes.

13



estimator of �. Besides, �̂
p! 1 when � !1 regardless of whether the stochastic process

is bounded, which explains why �̂ is a consistent estimator of � in the NI(1) and I(1)

scenarios. These features can help to interpret the performance of the di¤erent estimators

investigated.

Consider �rst the known [c; c] case, for which Figure 3.a depicts the results when

� = �0:4. Since �̂TW and �̂PY give almost equivalent results, in what follows we only

refer to �̂PY . For T = 50 and except for c = 0:3, �̂PY outperforms �̂MU when � = 0,

whereas the opposite is found when � > 0. For T = 200 the bias correction of both

methods improves, with �̂PY being superior to �̂MU for 0 < � � 10, and the other way
around for � > 10. Note that with � = �0:4 we are far from the common factor situation
so that all estimators are close to � in the unit root region, as predicted by Theorem 3.

Both methods produce poor results when � = �0:8, although now we have to bear in
mind that we are close to the common factor situation for high values of � �see Figure

4.a. For T = 50, �̂PY gives better results than �̂MU when � = 0, but it tends to deviate

more than �̂MU from � as � increases. The performance of both methods improves as T

increases, with �̂PY giving better results than �̂MU for small values of � �say, � � 5 �
whereas the converse situation is found for � > 5.

Let us now focus on the unknown [c; c] case with results depicted in Figures 3.b and

4.b for � = �0:4 and � = �0:8, respectively. Again, the performance of the statistics
depends on �, c and T . When � = �0:4 and T = 50, both �̂�MU and �̂

�
PY produce lower

bias corrections than �̂MU and �̂PY , although these di¤erences disappear when T = 200.

�̂�MU is superior to �̂
�
PY when T = 50 and c � 0:5, although the converse is found for

c > 0:5. As T increases to T = 200, �̂�PY is equally good (c = 0:3) or clearly outperforms

(c > 0:3) �̂�MU when � � 5. There is a range of � values for which �̂�MU and �̂
�
PY render

equivalent results, but �̂�MU starts dominating �̂
�
PY when � > 15.

In general, similar conclusions are found for � = �0:8, although now the di¤erences
between �̂MU=�̂PY and �̂

�
MU=�̂

�
PY persist even when T = 200, �̂MU and �̂PY showing

the better results. This might be due to the fact that now we are close to the common

factor situation, which might imply a poorer estimation of the long-run variance required

to approximate [c; c]. Contrary to what has been found for � = �0:4, now �̂�MU seems

to be superior to �̂�PY when T = 50 and � � 10, although its behavior deteriorates for

� > 10, with a performance that is worse than that shown by the OLS estimator. �̂�PY
is equally good or even better than the OLS estimator. Note that this feature is found

regardless of c. A neater picture is reached when T increases to T = 200, since now �̂�PY

outperforms �̂�MU when � = 0. Further, we can observe a region de�ned by small values

of � where both estimators are equally good. Finally, �̂�MU clearly gives better results

than �̂�PY for � � 5.
All these elements lead to the conclusion that, in large samples and regardless of

whether [c; c] are assumed to be known or unknown, the PY procedure corrects bias
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distortions more satisfactorily than the MU for small values of � � in particular, for

� = 0. As we move away from the unit root, the MU approach seems to outperform the

PY, although the former over-estimates � as � increases �this characteristic has become

evident for AR(1) and AR(2) stochastic processes. Besides, �̂PY does not su¤er from this

problem, providing very good estimates for large T in those cases.

VI. Empirical illustration

The estimation methods proposed above have been applied in a study of the persistence

in the unemployment rate of the G7 economies. Annual harmonized unemployment rates

covering the period from 1955 (or later, depending on the country) to 2018 have been

obtained from the OECD Stat database �see Figure 5 for a visual inspection. Although

there is a �urry of papers in the economic literature addressing unemployment persistence,

the available results are scarcely robust. Due to the high inertia of unemployment rates

and their limited nature, these series are especially suitable for illustrating the estimation

bias for bounded near-integrated processes. Furthermore, with the exception of Cavaliere

(2005), most of the empirical contributions ignore the potential presence of bounds, which

might lead to misleading conclusions about the degree of unemployment persistence. The

model that has been estimated for each of the G7 economies is given by:

unemi;t = �i + �iunemi;t�1 +

kiX
j=1

 i;j�unemi;t�j + "i;t (15)

i = 1; : : : ; 7 and t = T0; : : : ; 2018, where T0 aims for the initial year that varies depending

on the country. The order of the autoregressive correction in (15) has been selected using

the BIC with a maximum of kmax =
�
(12(T=100)1=4

�
lags.

The results presented in Table 2 re�ect heterogeneous estimates for the G7 countries.

When the bounds are ignored, we can observe that the range of variation of the OLS

estimates goes from 0.71 (USA) to 0.96 (Japan). The use of the MU estimators slightly

raises the estimated persistence and the range now goes from 0.74 (USA) to 1 (Japan

and Germany). Finally, similar results are obtained for �̂�PY , which provides estimates

between 0.75 (USA) and 0.97 (Japan).9 As a consequence, the omission of bounds would

lead us to consider that the persistence of the unemployment rate is relatively low, except

for Germany and Japan.

The picture changes when the presence of bounds is accounted for, since unemploy-

ment persistence clearly increases in all cases. It should be mentioned that we have

conducted the analysis using two di¤erent sets of boundaries
�
b; b
�
. First, we have the

boundaries that derive from the unemployment rate de�nition, i.e.,
�
b; b
�
= [0; 100]. The

9We only report the results using �50 since they are equivalent to the ones based on �85.
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second set of boundaries is established following the strategy set out in Herwartz and

Xu (2008), who consider a potential set of boundaries arising from the observed country-

speci�c minimum (bi = min (unemi;t)) and maximum (bi = max (unemi;t)) values of

unemt �which de�nes
�
ĉi; ĉi

�
=
h
(bi � D̂i;t)=(�̂iT

1=2); (bi � D̂i;t)=(�̂iT
1=2)
i
, i = 1; : : : ; 7.

In addition, following Herwartz and Xu (2008), we increase this initial range up to 300

per cent in absolute value �i.e.,
�
ĉi � �!i=2; ĉi + �!i=2

�
, !i = jĉi � ĉij and � = f0; 0:1;

0:2; 0:3; : : : ; 1; 1:5; 2; 2:5; 3g �so that the robustness of the analysis can be tested using
di¤erent sets of bounds. The key issue here is how to select among these values of bounds.

The suggestion in Herwartz and Xu (2008) is based on the p-values of the augmented

Dickey-Fuller (ADF) unit root test, so that the bounds are selected in such a way that the

p-values of the ADF statistic with and without bounds equalize �the so-called �break-

even�boundaries, which are denoted by
�
bi; bi

�
= [b�i ; b

�
i ], warrant a minimum range under

which the standard ADF unit root test does not su¤er from over-sizing.

In any event, the results are quite similar regardless of the boundaries used. We

observe that the USA unemployment rate again exhibits the lowest persistence, with

the estimation of the autoregressive parameter never exceeding 0.78. The opposite cases

are Germany and Japan, for which the estimations of the autoregressive parameters

are always 1. The rest of the cases show mixed results in that �̂�PY also equals one.

By contrast, the use of the median-unbiased corrections provides lower estimated values.

Consequently, these results are in line with the evidence described in the previous sections

and, basically, illustrate that ignoring the bounded nature of some economic variables

reduces the estimated degree of persistence. When these bounds are taken into account

the results clearly change, leading to higher persistence estimates.

VII. Conclusions

This paper addresses the issue of the estimation of autoregressive models when the sto-

chastic process being studied is in�uenced by the presence of bounds that regulate its

evolution. We consider standard techniques proposed in the literature aimed at correcting

the �nite sample estimation bias of autoregressive parameters. Initial motivating sim-

ulation experiments show that the presence of bounds clearly distorts the performance

of these types of estimators when bounds are ignored. The more limited the stochas-

tic process � i.e., the narrower the �uctuation bands � the higher the estimation bias

distortion. In order to remove this e¤ect, we have modi�ed the methods proposed by

Andrews (1993), Andrews and Chen (1994), and Perron and Yabu (2009a) to account for

the bounded nature of time series.

Simulation experiments have evidenced that these extensions are quite helpful in order

to appropriately determine shock persistence for bounded stochastic processes. All the

procedures investigated in the paper outperform the OLS estimation. Although the
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di¤erences among the bounds-generalized procedures are minimal, we have found that the

Perron and Yabu (2009a) proposal produces better results for highly persistent stochastic

processes, whereas the median-unbiased approach tends to be preferred when we move

away from the unit root neighborhood. Finally, we have applied these new methods to

the analysis of the unemployment shock persistence for the G7 countries. Our results

show that the use of the proposed methods improves our knowledge of the stochastic

properties of the variables under study, allowing us to carry out more accurate shock

persistence analysis.

Appendix A: Mathematical appendix

Lemma 1 Let fytgTt=1 be a stochastic process generated according to (2) and (3) with
� = exp (��=T ), � � 0, and satisfying Assumptions 1 to 3. As T ! 1, ��1T�1=2yt )
J c;�c (r), with c � 0 � c, c 6= c, where J c;�c (r) = J� (r) + L (r)� U (r) denotes a standard

regulated Ornstein-Uhlenbeck (OU) process being J� (r) =
R r
0
exp (�� (r � s)) dB (s) a

standard OU process, B (r) a standard Brownian motion, and L (r) = �f0 ^ inf0�r0�r
(J� (r0)� c)g and U (r) = f0 ^ inf0�r0�r(c� J� (r0))g the two side regulator processes.

See Theorems 1 and 4 in Cavaliere (2005) for the proof.

Proof of Theorem 1

The model given in (1) and (2) can be written as:

xt � � = � (xt�1 � �) + ut

xt = (1� �)�+ �xt�1 + ut

so that the OLS estimator of � is given by �̂ =
�
x̂0�1x̂�1

��1
x̂0�1x̂, where x̂ = x � �x,

x̂�1 = x�1� �x�1, x�1 = (x1; : : : ; xT�1)0 and x = (x2; : : : ; xT )0. In terms of estimation bias
we have:

�̂� � =
�
x̂0�1x̂�1

��1
x̂0�1û

=
�
x̂0�1x̂�1

��1
x̂0�1("̂+ �̂ � �̂) (Appendix A:.1)
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Under Assumptions 1 to 3, and using Lemma 1 and the Functional Central Limit Theorem

(FCLT), we can see that:

T�1=2x̂t = T�1=2 (xt � �x)

) �

�
J c;�c (r)� r

Z 1

0

J c;�c (s) ds

�
� �V c;�

c (r)

with V c;�
c (r) = J c;�c (r) � r

R 1
0
J c;�c (s) ds being a demeaned regulated OU process. Sim-

ilarly, T�2
PT�1

t=2 x̂
2
t ) �2

R 1
0
V c;�
c (r)2 dr and T�1

PT
t=2 x̂t�1ût ) �2

R 1
0
V c;�
c (r) dV c;�

c (r),

so that

T (�̂� �) = Op (1)

and hence (�̂� �)
p! 0, with

p! denoting convergence in probability. �

Proof of Theorem 2

Following Fuller (1996), we can derive the expression of �̂W in (8) working with the

moments of the projected variable x̂ =Mx.10 Note that:

x̂t = xt � zt (Z
0Z)

�1
Z 0x

= xt � zt
�
T�1Z 0Z

��1
T�1Z 0x

with zt = (1;�xt�1; : : : ;�xt�k) so that:

T�1Z 0Z =

266664
1 T�1

PT
t=k�xt�1 � � � T�1

PT
t=k�xt�k+1

T�1
PT

t=k�x
2
t�1 � � � T�1

PT
t=k�xt�1�xt�k+1

. . .
...

T�1
PT

t=k�x
2
t�k+1

377775 =
"
1 Op

�
T�1=2

�
��x

#

where ��x = T�1�0� denotes the covariance matrix of the �rst k lags of �x, and:

T�3=2Z 0x =

266664
T�3=2

PT
t=k+1 xt

T�3=2
PT

t=k+1�xt�1xt
...

T�3=2
PT

t=k+1�xt�k+1xt

377775 =
266664

Op (1)

Op
�
T�1=2

�
...

Op
�
T�1=2

�

377775
10Although we could work with the model given in (8), derivations using the orthogonal projected

variable are neater. In any event, both ways are asymptotically equivalent as mentioned in Fuller (1996,
pp. 416) when dealing with the unknown constant case.
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since T�3=2
PT

t=k+1 xt ) �
R 1
0
J c;�c (r) dr. Using these elements and the FCLT, we can see

that:

T�1=2x̂t = T�1=2xt � zt
�
T�1Z 0Z

��1
T�3=2Z 0x

) �

�
J c;�c (r)� r

Z 1

0

J c;�c (s) ds

�
� �V c;�

c (r)

The numerator of the �̂W statistic is given by:

�̂W � 1 =

PT
t=k+2 x̂tx̂t�1PT�1

t=k+2 x̂
2
t + T�1

PT
t=k+1 x̂

2
t

� 1

=

PT
t=k+2 x̂

2
t�1 +

PT
t=k+2 x̂t�1êk;tPT�1

t=k+2 x̂
2
t + T�1

PT
t=k+1 x̂

2
t

� 1

=

PT
t=k+2 x̂

2
t�1 +

PT
t=k+2 x̂t�1êk;t �

PT�1
t=k+2 x̂

2
t � T�1

PT
t=k+1 x̂

2
tPT�1

t=k+2 x̂
2
t + T�1

PT
t=k+1 x̂

2
t

which, once it has been properly rescaled, in the limit converges to:

T (�̂W � 1))
R 1
0
V c;�
c (r) dV c;�

c (r)�
R 1
0
V c;�
c (r)2 drR 1

0
V c;�
c (r)2 dr

=
1
2

�
V c;�
c (1)2 � 1

�
�
R 1
0
V c;�
c (r)2 drR 1

0
V c;�
c (r)2 dr

provided that T�2
PT�1

t=k+2 x̂
2
t ) �2

R 1
0
V c;�
c (r)2 dr and T�1

PT
t=k+2 x̂t�1êk;t ) �2

R 1
0
V c;�
c (r)

dV c;�
c (r). If we now focus on the variance of �̂W :

�̂2W =

PT
t=k+2 (x̂t � �̂W x̂t�1)

2

(T � k � 1)
hPT�1

t=k+2 x̂
2
t + T�1

PT
t=k+1 x̂

2
t

i
we have that:

T 2�̂2W )
�Z 1

0

V c;�
c (r)2 dr

��1
provided that (T � k � 1)�1

PT
t=k+2 (x̂t � �̂W x̂t�1)

2 p! �2. Consequently, in the limit the

�̂W statistic converges to:

�̂W =
�̂W � 1
�̂W

=
T (�̂W � 1)p

T 2�̂2W

)
1
2

�
V c;�
c (1)2 � 1

�
�
R 1
0
V c;�
c (r)2 drqR 1

0
V c;�
c (r)2 dr

which proofs the theorem. �
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Proof of Theorem 3

We can write the model de�ned by (1) and (14) in equivalent terms as:

xt = (1� �)�+ �xt�1 + ut + �Tut�1

so that:

xt =
�
1� �t

�
�+ �tx0 +

tX
j=1

exp (�� (t� j) =T )
�
uj � uj�1 + �T�1=2uj�1

�
=

�
1� �t

�
�+ �tx0 +

�
1� �T�1=2

�
exp (�=T )ut

+
�
1� exp (�=T )

�
1� �T�1=2

�� tX
j=1

exp (�� (t� j) =T )uj

= �+ (x0 � �)�t + aTut + bTXt

with aT =
�
1� �T�1=2

�
exp (�=T ), bT =

�
1� exp (�=T )

�
1� �T�1=2

��
�that, as can be

seen, aT ! 1 and T 1=2bT ! � as T ! 1 �and Xt =
Pt

j=1 exp (�� (t� j) =T )uj. Note

that in this case in the limit:

T�1
TX
t=1

xt ) �+ (x0 � �) ��+Mu + �

Z 1

0

J c;�c (r) dr

with �� = T�1
PT

t=1 �
t 2 [0; 1] for � � 0. Consider the second order moment of x̂t = xt��x:

T�1
TX
t=1

(xt � �x)2 = T�1
TX
t=1

�
(x0 � �)

�
�t � ��

�
+ aT (ut � �u) + bT

�
Xt � �X

��2
= T�1

TX
t=1

�
(x0 � �)

�
�t � ��

��2
+ a2TT

�1
TX
t=1

(ut � �u)2

+Tb2TT
�2

TX
t=1

�
Xt � �X

�2
+2 (x0 � �) aTT

�1
TX
t=1

�
�t � ��

�
(ut � �u)

+2 (x0 � �)T 1=2bTT
�3=2

TX
t=1

�
�t � ��

� �
Xt � �X

�
+2aTT

1=2bTT
�3=2

TX
t=1

�
Xt � �X

�
(ut � �u)

where T�1
PT

t=1 (�
t � ��)2 ! 0, since �! 1 and ��! 1 as T !1, a2TT�1

PT
t=1 (ut � �u)

2 p!
�2u, and T

�2PT
t=1

�
Xt � �X

�2 ) �2
R 1
0
V c;�
c (r)2 dr. Further, note that

PT
t=1 (�

t � ��) (ut � �u)
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= Op
�
T 1=2

�
and

PT
t=1 (�

t � ��)
�
Xt � �X

�
= Op (T ) and

PT
t=1

�
Xt � �X

�
(ut � �u) = Op (T ).

Therefore, in the limit we have:

T�1
TX
t=1

(xt � �x)2 ) �2u + �2�2
Z 1

0

V c;�
c (r)2 dr

Now consider the cross-product A = T�1
PT

t=1 (xt�1 � �x�1) ((ut � �u) � (ut�1 � �u�1)
+ �T�1=2 (ut�1 � �u�1)):

A = T�1
TX
t=1

�
(x0 � �)

�
�t�1 � ��

�
+ aT (ut�1 � �u�1) + bT

�
Xt�1 � �X�1

�
�
(ut � �u)� (ut�1 � �u�1) + �T�1=2 (ut�1 � �u�1)

��
that is,

A = (x0 � �)T�1
TX
t=1

�
�t�1 � ��

�
(ut � �u)

� (x0 � �)
�
1� �T�1=2

�
T�1

TX
t=1

�
�t�1 � ��

�
(ut�1 � �u�1)

+aTT
�1

TX
t=1

(ut�1 � �u�1) (ut � �u)� aT
�
1� �T�1=2

�
T�1

TX
t=1

(ut�1 � �u�1)2

+bTT
�1

TX
t=1

�
Xt�1 � �X�1

�
(ut � �u)

�bT
�
1� �T�1=2

�
T�1

TX
t=1

�
Xt�1 � �X�1

�
(ut�1 � �u�1)

Taking into account the previous elements, the �rst two terms on the right hand side of A

are Op
�
T 1=2

�
, whereas T�1

PT
t=1 (ut�1 � �u�1) (ut � �u)

p! u;1, T
�1PT

t=1 (ut�1 � �u�1)
2 p!

�2u,
PT

t=1

�
Xt�1 � �X�1

�
(ut � �u) = Op (T ), T�1

PT
t=1

�
Xt�1 � �X�1

�
(ut�1 � �u�1) = Op (T ).

Since aT ! 1 and bT ! 0 as T !1, we have in the limit:

T�1
TX
t=1

(xt�1 � �x�1)
�
(ut � �u)� (ut�1 � �u�1) + �T�1=2 (ut�1 � �u�1)

� p! u;1 � �2u

Since the OLS estimator is given by:

�̂ = �+

PT
t=1 (xt�1 � �x�1)

�
(ut � �u)� (ut�1 � �u�1) + �T�1=2 (ut�1 � �u�1)

�PT
t=1 (xt�1 � �x)

2
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we have that in the limit:

�̂)
u;1 + �2�2

R 1
0
V c;�
c (r)2 dr

�2u + �2�2
R 1
0
V c;�
c (r)2 dr

provided that � = 1, an expression that would be equivalent to the one obtained in

Theorem 1 of Nabeya and Perron (1994) if the stochastic process were to be unbounded,

with � = 0 and "t � iid (0; �2"). However, whereas in Nabeya and Perron (1994) �̂
p! 0

when � = 0, here we have �̂
p! u;1=�

2
u 6= 0. Besides, �̂

p! 1 when � ! 1 regardless

of whether the stochastic process is bounded. In this case, this result coincides with the

one in Nabeya and Perron (1994). �
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Figure 1. OLS and standard bias corrected autoregressive parameter estimates for unat-
tended bounded processes
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TABLE 1
Percentiles of the limiting distribution of �̂W for di¤erent (symmetric) bounds

(c; c) 1% 2.5% 5% 7% 7.5% 10% 15% 50% 85%
(�0:1; 0:1) -9.16 -9.01 -8.88 -8.82 -8.80 -8.74 -8.64 -8.25 -7.89
(�0:2; 0:2) -5.39 -5.18 -5.02 -4.94 -4.93 -4.86 -4.76 -4.38 -4.07
(�0:3; 0:3) -4.58 -4.21 -3.94 -3.82 -3.79 -3.70 -3.56 -3.11 -2.80
(�0:4; 0:4) -4.17 -3.85 -3.58 -3.44 -3.41 -3.28 -3.09 -2.52 -2.17
(�0:5; 0:5) -3.75 -3.49 -3.27 -3.15 -3.13 -3.02 -2.85 -2.22 -1.79
(�0:6; 0:6) -3.37 -3.14 -2.95 -2.86 -2.84 -2.74 -2.60 -2.04 -1.56
(�0:7; 0:7) -3.15 -2.89 -2.70 -2.61 -2.59 -2.50 -2.38 -1.89 -1.42
(�0:8; 0:8) -3.11 -2.81 -2.56 -2.45 -2.43 -2.33 -2.20 -1.74 -1.32
(�0:9; 0:9) -3.10 -2.79 -2.54 -2.40 -2.38 -2.26 -2.08 -1.59 -1.20
(�1:0; 1:0) -3.14 -2.81 -2.55 -2.40 -2.38 -2.25 -2.06 -1.46 -1.08
(�1:5; 1:5) -3.13 -2.81 -2.53 -2.39 -2.36 -2.23 -2.03 -1.20 -0.49
(�1;1) -3.12 -2.80 -2.53 -2.39 -2.37 -2.24 -2.04 -1.21 -0.24
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(b) Iterative approach

Figure 2. OLS and bias corrected autoregressive parameter estimates for bounded
processes. AR(1) case
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(b) Iterative approach

Figure 3. OLS and bias corrected autoregressive parameter estimates for bounded
processes. ARMA(1,1) case with � = �0:4
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(b) Iterative approach

Figure 4. OLS and bias corrected autoregressive parameter estimates for bounded
processes. ARMA(1,1) case with � = �0:8
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TABLE 2
Unemployment rate persistence for the G7 countries

Bounds ignored Bounds considered
[�1;1] [0; 100] [bmin; b

max
] [b�; b

�
]

k̂ �̂ �̂MU �̂PY �̂MU �̂�PY �̂MU �̂�PY �̂MU �̂�PY
Canada 2 0.84 0.89 0.89 0.92 1 0.95 1 0.92 1
France 2 0.82 0.86 0.85 0.94 1 1 1 0.94 1
Germany 2 0.92 1 0.95 1 1 1 1 1 1
Italy 2 0.83 0.86 0.86 0.94 1 0.97 1 0.94 1
Japan 2 0.96 1 0.97 1 1 1 1 1 1
UK 2 0.87 0.91 0.93 0.99 1 1 1 0.99 1
USA 2 0.71 0.74 0.75 0.76 0.75 0.77 0.75 0.76 0.75

Note: The computation of �̂PY is based on the �50 percentile.
�
b; b
�
= [bmin; b

max
] denote the

bounds de�ned by the minimum and maximum of the observed values of the unemi;t time series.�
b; b
�
= [b�; b

�
] denote the �break-even�bounds.
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Appendix B: Supplementary material. Addi-
tional Monte Carlo simulations
results

This section provides simulation results for the di¤erent estimation bias correction pro-

cedures that consider the bounded nature of time series. Instead of focusing on the

near-integrated area, these results allow us to analyze the performance of the generalized

methods using a discrete set of values for the autoregressive parameter given by � = f0,
0.1, 0.2, ..., 1g for the AR(1) case. The rest of the simulation set-up is described in the
paper.
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(a) AR(1), known [c; c]
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(b) AR(2), known [c; c]

Figure B.1. OLS and bias corrected autoregressive parameter estimates for bounded
processes. Iterative estimation for the AR(1) and AR(2) cases
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(a) ARMA(1,1), � = �0:4
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(b) ARMA(1,1), � = �0:8

Figure B.2. OLS and bias corrected autoregressive parameter estimates for bounded
processes. Iterative estimation for the ARMA(1,1) case
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