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A multimodal deep learning approach for food tray recognition

by Joan Peracaula Prat

Food recognition, object detection and classification applied to the food domain,
is the main topic of this work. We have studied the problem of recognising food
instances in tray images of self-service restaurants and have proposed a novel
multimodal deep learning approach. From images and daily menus, the model
presented uses two state of the art models in object detection and classification
and a multimodal neural network to make significantly refined predictions com-
pared to the baseline object detection model, achieving a class weighted average
F1-score of 0.862. An ensemble model built from the proposed and the base-
line models, also presented in this work, improves the results achieving a class
weighted average F1-score of 0.877.

El reconeixement de menjar, detecció i classificació d’objectes aplicat al terreny
del menjar, és el tema principal d’aquest treball. Hem estudiat el problema de
reconèixer instàncies de menjar en imatges de safates de restaurants d’autoservei
i hem proposat una nova aproximació basada en aprenentatge profund amb mul-
tiples modalitats. A partir d’imatges i menús diaris, el model presentat utilitza
dos models de l’estat de l’art actual en detetecció d’objectes i classificació, i una
xarxa neuronal multi-modal per fer prediccions significativament més refinades
que el model de detecció d’objectes agafat com a base, aconseguint una mitjana
ponderada per classes de F1-scores de 0.862. En aquest treball també presentem
un model "conjunt", construït a partir del model proposat i del model base, el qual
millora els resultats aconseguint una mitjana ponderada per classes de F1-scores
de 0.877.
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Chapter 1

Introduction

1.1 Motivation

Eating is one of the few things we all have in common, we must eat to live, but
farther from being a mere survival habit, eating has become much more in the
current society. Eating can be a way to personal well-being. Eating can be a
pleasant activity. And most important eating is one of the principle socialising
activities. We eat with our family, with friends, with work mates, at home, at
bars, at restaurants, in the street...

Eating is an important daily activity in our society, and restaurants are one of the
principle meeting points for this activity. Restaurants can have different objec-
tives apart from serving food, for example giving clients a pleasant time with high
quality food, offering a good environment for meetings, serving food fast, etc. Re-
garding self-service restaurants, what differentiate them from other restaurants is
that, in general, they don’t have waiters and is the client who serves him/herself.

After that, there’s a worker who checks and charges the client for the food taken.
Due to human action, the check out process may lead to some problems such as
slowness, long queues of clients, errors in the payment process, etc. What is more,
in supermarkets and fast food restaurants they already have automatic ordering
and payment machines that let them avoid workers for these tasks. So, the ques-
tion that arises is: is it possible to avoid human labour in the check out process of
a self-service restaurant? In that case it would certainly avoid the problems men-
tioned before as well as it will suppress the contact between worker and clients,
which, unfortunately, in 2020 due to the pandemic of COVID-19 is an important
thing to consider.

It is clear that the problem is not about the payment process, but the process of
checking the food taken. As food dishes are not products with bar codes that can
be scanned, the optimal way, the most automatic one, to recognize the food is
through visual recognition. Then, the generic objective of this work is to present
a system able to recognise food in tray images of self-service restaurants.

More technically we are talking of object detection and recognition/classification.
The two of them are (and have been since years ago) important problems that the
research area of Computer Vision tries to solve. Artificial Intelligence algorithms,
which intuitively are algorithms designed to give certain "knowledge" to a ma-
chine in order to execute a concrete task the optimal way, have helped Computer
Vision advance greatly in recent time.
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The breakthrough of Deep learning and Convolutional Neural Networks in re-
cent years has made an important contribution to the research in those fields.
Based on advances and techniques from the state of the art, we aim with this
work to present a novel model alternative and competitive to actual models in
the concrete domain of food recognition.

More precisely, the main objective of this essay is to provide a model capable
of detecting and recognising food dishes on self-service restaurant tray images.
Given an image of a tray with multiple food dishes/pieces and the daily menu,
we expect the model to detect a bounding box for each piece of food and return
a label of the food class it has recognised. Fig. 1.1 is an example of what we
expected as an output of the model.

FIGURE 1.1: Expected output of the model.

The model proposed is a multimodal neural network which is based on two ex-
isting models that excel in concrete tasks: one in object detection and the other in
image classification. Starting with two different modalities inputs, RGB images of
food trays and categorical data of the daily menu, we use those models in order
to extract valuable data and combine it in a final multimodal neural network.

Apart from the model, in this work we also present a model ensemble of our
proposed model and a state of the art object recognition model. Our aim is to
explore and improve food recognition in tray images, by proposing a combination
of models that potentially improves the baseline food recognition model.

Finally, we would like to say that, although not being an objective for this work,
we have developed these models with the intention that they could be applied to
real restaurants in the near future.
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1.2 Thesis organization

In the following sections of the Introduction we are going to introduce the study
fields and domain of this work. In Chapter 2 we will explain the state of the art for
each of the study fields and related work. In Chapter 3 we are going to define the
terminology used along this work and explain the background and components
of neural networks in order to understand our model.

A full explanation of the proposed model as well as the model ensemble men-
tioned before can be found in Chapter 4. In Chapter 5 we will see the results of
the proposed model, results of some model variations tested and results of the
model ensemble. Finally, in Chapter 6 we will give conclusions of the research
done and in Chapter 7 we will discuss future work based on our contributions.

1.3 Deep Learning and Convolutional Neural Networks

As mentioned in the previous section, in order to detect and recognise food dishes
on self-service restaurant tray images we have chosen the deep learning approach.
Particularly, the proposed model is a multimodal neural network built upon a
classification Convolutional Neural Network (CNN) and an object detection net-
work, giving as a result a Deep Neural Network with multiple inputs of different
modality.

In the State of the Art chapter (Chapter 2), we will see that the state of the art of
our objectives rely on Deep learning and CNNs. This is due to the fact that in
the literature it is proven that this type of models perform much better than the
classical computer vision algorithms. For that reason we chose the Deep learning
approach in order to solve the problem contemplated.

As said in advance before, our proposed model makes use of an existing powerful
CNN model which performs very well in single instances images classification.
Discussed and introduced in chapter 2, our chosen CNN for this work is Inception-
ResNetV2 (Szegedy et al., 2016). However, when presenting the model structure
in section 4.1, we will see that the task this CNN does in our model is indepen-
dent of the chosen model, making it model-agnostic. This independence makes
the model adaptable to new and better classification CNNs that may appear in
future years.

1.4 Multimodal Learning

The majority of the well-known deep learning models have only one input type
of data. For example, the most common types are CNNs with images as single in-
put or the Natural Language Processing models with text as single input. In some
occasions it is possible to extract from the source of the data multiple features of
different modality. The machine learning research area that studies how to inte-
grate these different modality data inputs in order to learn intrinsic characteristic
between them is called Multimodal Learning.

In our case, the source of the data let us extract not only the food tray images of
the restaurant, but also the daily menu. Therefore, for each tray image, that con-
tains several food dishes/pieces, we know the corresponding menu of that day
and, that presents a correlation between them since, in general, the food dishes
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from the image must be also in the daily menu. This connection between food
in the image and food in the menu, simple for our human logic, may be not that
simple for an algorithm. Multimodal Learning helps in that direction and thus
the machine will be able to learn this and more complex connections between
different modality inputs.

Multimodal Learning is an approach or technique for complex tasks in Computer
Vision. It is not linked to a concrete domain, but used in multiple domains and for
multiple tasks. Multimodal Learning can be used for combining image and audio
inputs (Mroueh, Marcheret, and Goel, 2015, is an example for speech recognition)
or other combination of different modalities inputs. For example in Jin et al., 2018,
they used time series signals and clinical text to predict in-hospital mortality risk.

1.5 Object Detection and Recognition

It is known as Object Detection the task, related to computer vision and image
processing, that consists of identifying and locating instances of a certain object
class. Examples of applications are face detection (Sun, Wu, and Hoi, 2018), auto-
matic image annotation (N. Murthy, Maji, and Manmatha, 2015) and pedestrian
detection (Gavrila, 2000). In our context, the raw data we have is a single image
of a tray with several food dishes or pieces, so the first step would be locating all
instances of food in the image.

FIGURE 1.2: Instances of food located in the image

What we want is to detect objects of multiple classes. We expect the model to be
able to locate the instances and to tell us the class of each instance detected. This
combination of object detection plus classification is what is called object recog-
nition, although sometimes in the literature the word detection is used referring
to recognition. In the same line, in our context, we do not only want to locate all
instances of food in the image, but also recognise the class of each one.
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Fortunately, in the literature, there are methods that perform very well in the
object recognition task. And so, nowadays, we do not need to detect and classify
separately. In this work, we have chosen the You Only Look Once (YOLO) model
version 3 (Redmon and Farhadi, 2018). A farther explanation can be found in the
State of the Art chapter (Chapter 2) and in the Methodology chapter (Chapter 3).

More precisely, we will use as a baseline model the YOLOv3 model implemented
and trained for food detection by Bora, Bolaños, and Radeva, 2020. In their work,
they used YOLOv3 to detect initial food candidates and then apply filtering and
menu based enhancement processes to them. Our proposed model is, so, an al-
ternative to theirs that departs from the their food candidates detection model.

1.6 Food recognition

Food recognition, object recognition applied to food, is in its whole a current
line of research due to the multiple applications it can provide and difficulties
it presents. From a single food image, extracting information about calories and
nutrition or the ingredients and recipe of the dish, are two of the most promis-
ing food recognition applications. In our context, the self-service restaurants, a
good application of food recognition would be the independence of a human that
checks the food chosen for the payment step, i.e. having a self-checkout system.

FIGURE 1.3: Instances of food located and recognized in the image

In regard of the difficulties, food is a vast domain of a lot of ingredients and cook-
ing techniques that merged together create, with its varieties between culture,
dish presentation and recipe variation, an almost infinity (if not infinity) quantity
of different food dishes. That makes this study case a very challenging one, even
taking a small portion of the food classes into account.

In Chapter 4, the Results Chapter, we will present the experiments done with our
model and a dataset built from a real world self-service restaurant. We will also
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see that the food considered in the dataset consists of 95 classes of food from the
Spanish cuisine. The dataset used is not currently public and was build specifi-
cally for the food tray recognition task by Bora, Bolaños, and Radeva, 2020.

1.7 Contributions

The principle contributions that our project presents are:

• A novel multimodal food recognition model for tray images of self-service
restaurants, which takes as an input a global RGB image of the food tray
and a description of the daily menu.

• An ensemble of our model and the state of the art object detection YOLO
model.

• Experimental results of our food recognition model and the ensemble model
with data from a real world self-service restaurant of Spanish cuisine.
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Chapter 2

State of the Art

In this chapter we will go through different works in the literature regarding dif-
ferent study fields related to our work. In section 2.1 we are going to discuss
several relevant convolutional neural networks. In section 2.2 we will present ap-
proaches for multimodal learning. In section 2.3 we will see different models for
generic object detection and recognition tasks, and in section 2.4 we are going to
focus on the food domain and see related work to ours.

2.1 Deep Learning and Convolutional Neural Networks

Starting with Krizhevsky, Sutskever, and Hinton, 2012 work, Convolutional Neu-
ral Networks have provided a powerful tool for image classification problems.
Later it was seen that the depth of a network was very important in order to
achieve better classification results. VGGNet by Simonyan and Zisserman, 2014
and GoogLeNet or Inception-v1 by Szegedy et al., 2014. These two, were the pio-
neers of the "very deep" networks, which motivated the research in deeper net-
works.

Residual connections and the ResNet architecture presented by He et al., 2015,
produced another breakthrough in the field, as it was seen that introducing resid-
ual connections to deep networks made a significant improvement in training
speed. The ResNet152 was able to achieve a Top-1 Accuracy of 76.6% and Top-
5 Accuracy of 93.1% on ImageNet (Deng et al., 2009). Later on, a refined sec-
ond version of ResNet using Identity Mappings (He et al., 2016) were presented,
ResNet152V2, and it achieved a Top-1 Accuracy of 78.0% and Top-5 Accuracy of
94.2% on ImageNet.

The GoogLeNet/Inception-v1 network was refined to a new network called In-
ceptionV2 with the introduction of batch normalization (Ioffe and Szegedy, 2015).
The same network was later improved to Inception-v3 (Szegedy et al., 2015) and
to Inception-v4 and Inception-ResNet-v2 (Szegedy et al., 2016), the last one achiev-
ing a Top-1 Accuracy of 80.3% and Top-5 Accuracy of 95.3% on ImageNet and
becoming one of the best in the recent years.%

Finally, a more recent network that has beaten the Inception-ResNet-V2 results
is NASNetLarge (Zoph et al., 2017) with a Top-1 Accuracy of 82.7% and Top-5
Accuracy of 96.2% on ImageNet.
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2.2 Multimodal Learning

Learning from data of different modalities is used in multiple domains and for
multiple applications: recognising affect emotion from audio and visual sources
Gunes and Piccardi, 2005, emotion recognition from video sources Kahou et al.,
2015 or named entity recognition from images and text on social media posts
Moon, Neves, and Carvalho, 2018.

There are multiple techniques explored in order to combine different modality
data. Early fusions, also known as feature based, and late fusions, also known
as decision based, were studied by Snoek, Worring, and Smeulders, 2005, and
Gunes and Piccardi, 2005. Hybrid fusions (Atrey et al., 2010) as well as model
ensembles (Dietterich, 2000) are other multimodal techniques.

More recently techniques are joint training methods based on deep neural net-
works. Joint training methods are neural networks which join features from dif-
ferent modalities inside the network and use the combined features to make pre-
dictions. The fusion operation can differ, but most common are addition, concate-
nation and multiplication. Some works that use this technique are Ngiam et al.,
2011, and Bolaños et al., 2017.

Finally, another approach based also on deep learning is Liu et al., 2018. They
proposed a method which first makes decisions for each of the modalities sepa-
rately to then combine them in a multiplicative way. Their method is based on
the idea that depending on the sample, possibly, not all the modalities are equally
important.

2.3 Object Detection and Recognition

Regarding the object detection and recognition tasks, the first framework that
provided competitive real-time results, based on Haar-like features, was named
Viola-Jones object detection framework and was presented by Viola and Jones, 2001.
Another early approach was scale-invariant feature transform (SIFT) published by
Lowe, 2001, which is a feature detection and descriptor algorithm for image used
in object recognition and other computer vision applications.

Another important machine learning approach is Histogram of oriented gradients
(HOG) published by Dalal and Triggs, 2005. HOG is a feature descriptor algo-
rithm based on counting the number of gradient orientations in local areas of an
image.

One of the first deep learning approaches for object detection named R-CNN was
Girshick et al., 2013, which was based on generating region proposals using a
selective search algorithm, then applying a CNN for extracting features and fi-
nally classifying them with Support Vector Machines (SVM). Later, an improved
version of R-CNN was published by Girshick, 2015, and called Fast R-CNN. As
its name, Fast R-CNN is a faster version of the R-CNN achieved by applying the
CNN to the whole image to extract features and then generate region proposals
from the feature maps with a selective search method.

A more refined version called Faster R-CNN by Ren et al., 2015, improved even
more the speed by changing the search method for a neural network to generate
proposal regions. More recently appeared a fourth refined version called Libra
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R-CNN (Pang et al., 2019) that aims to solve the imbalance in sample, feature and
objective levels during the training process.

Finally, You Only Look Once (YOLO) is the name of a model that supposed a
breakthrough in its first publication (Redmon et al., 2015) due to the great im-
provements in speed without losing accuracy. It was achieved because of a novel
algorithm that uses a single convolutional network. More refined versions of
the YOLO algorithm appeared one after another (YOLOv2, Redmon and Farhadi,
2016 and YOLOv3, Redmon and Farhadi, 2018) until the latest official to this date
being YOLOv4 (Bochkovskiy, Wang, and Liao, 2020).

2.4 Food recognition and Related Work

In the particular domain of food, the first works that appeared intended to tackle
the binary classification problem of food/no food. Kitamura, Yamasaki, and
Aizawa, 2009 was the first approach using machine learning and tested on a small
dataset. Nowadays, with deep learning neural networks, it has been possible to
get great results in several food datasets regarding the binary classification prob-
lem (McAllister et al., 2018).

About the food recognition problem, Bossard, Guillaumin, and Van Gool, 2014, is
one of the firsts. They built a new dataset named Food-101 and using a machine
learning approach based on random forests, they got a top-1 accuracy of 56.4%.
On the same dataset, a model published by Liu et al., 2016, and named DeepFood
achieved a top-1 accuracy of 77%. Later on, Martinel, Foresti, and Micheloni,
2016, work, based on a CNN with two branches, one with a residual structure and
another with a simple slice convolution layer, concatenated at the end, achieved a
top-1 accuracy of 90.27% on Food-101, becoming the best performance on a public
dataset.

In the context of restaurants, two works that need to be mentioned are Bettada-
pura et al., 2015, and Beijbom et al., 2015. The first one used extra information
of the restaurants, such as the geo-location, in order to improve the recognition
task. The second one was based on the idea that the same class food dishes tend to
have the same visually aspect within the same restaurant, and so they proposed
a restaurant-based CNN.

Now, in the same field of study as ours, food detection and recognition in food
trays of self-service restaurants, one related work is Aguilar et al., 2017. The
model they presented applies in parallel a CNN for semantically segmenting
food (binary segmentation: food/no food) and on the other side they applied
YOLOv2 in order to detect and recognise food classes. Combining both, the seg-
mentation helping to filter bounding boxes, plus using background subtraction
and non-maximum suppression algorithm they get the final output. Tested in
UNIMIB2016 (Ciocca, Napoletano, and Schettini, 2017), a public dataset with
2000 images of canteen food trays with a total of 15 different food classes, they
achieved a F1-score of 90%.

Finally, Bora, Bolaños, and Radeva, 2020, is probably the most related work to
ours. Their contribution consists of a pipeline based on YOLOv3 and several
menu-enhancement methods built upon, in order to filter and adapt the YOLO
results to different restaurant environments. They built a new dataset with food
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tray images captured from a real self-service restaurant and achieved 83% preci-
sion and 93% recall detecting dishes present on testing tray images.
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Chapter 3

Methodology

In this chapter we are going to define the terminology and theoretical background
of the work. An expert reader can skip this chapter.

In section 3.1 we will define neural network basic concepts as well as some of
the most important CNN layers, activations and optimizers. In section 3.2 we
will explain the Non-Maximum Suppression (NMS) algorithm, a data processing
algorithm commonly used after object detection models. Finally, in sections 3.3
and 3.4 we are going to explain the characteristics of two state of the art networks
our model uses.

3.1 Terminology and theoretical background

The following explanations are basically based in the book Deep Learning by Good-
fellow, Bengio, and Courville, 2016. We encourage this source of information for
farther reading and more detailed theory.

3.1.1 Neural Networks Basics

Neural Networks are one type of machine learning algorithms inspired by the
biological neural networks that constitute the human brain. We call machine
learning algorithm to a computer algorithm capable of learning from experience.
Mitchell, 1997, defines computer learning this way: "A computer program is said
to learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with ex-
perience E."

In general, the task of a neural network consists of approximating some function
f ∗. One example of a common task for a neural network is classification. We call
classifier to a neural network with a classification task. The goal of a classifier
is to approximate the function y = f ∗(x), which maps an input x to class label
y. In order to achieve it, the neural network defines a function f (x; θ) that takes
an input x and a series of parameters θ. Through experience, the neural network
updates the parameters θ giving a better approximation of f ∗. From now on we
will sometimes omit to write the parameters θ aiming for a simpler notation, but
we want to remark that they are present.

We should understand experience as a series of iterations of a dataset, where a
dataset is a collection of examples. An example is a collection of features quanti-
tatively extracted or measured from an element of data. For instance, one image
is an element of data that can be seen as a three-dimensional matrix of RGB pixel
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values (collection of features); so the image interpreted as a matrix is an example
of the dataset. The examples are inputs x of the function f mentioned before, that
usually are vectors x ∈ Rn or matrices x ∈ Rm ×Rn ×R3. Note that each ex-
ample x has associated a corresponding class label y, that is also included in the
dataset.

The term networks in the name of this type of algorithm is due to the fact that the
defined function f is a composition of several functions: f (x) = ( f (d) ◦ ... ◦ f (2) ◦
f (1))(x), where d ∈ N is called depth of the network. Each of these intermediate
functions are called layers, so f (1) is the first layer or input layer, f (2) is the sec-
ond layer and f (d) is the last layer or the output layer. The layers that are not the
first nor the last, are called also hidden layers because we do not interact directly
with them and the middle-outputs and weights are hidden to us.

Note that we are not defining domains for the layer functions, since it is not nec-
essary that all the layers have the same domain. The only requirement is that the
composition of layers is well defined in terms of domain dimensions and corre-
spondence. Actually, in the literature there are multiple predefined layers that
have different effects on the network. We will see some of the most important in
the next subsection.

More terminology, we call tensors to the n-dimensional matrices that are inputs
and at the same time outputs of layers. Each of the layers has its own parameters
array θ, also known as weights and biases. A neural network with more than
one hidden layer is called deep neural network.

The term neural stands for the resemblance to the neural structure in biology. We
can visualize a hidden layer as an array of units that act in parallel and each
represents a vector-to-scalar function. That way, each unit receives multiple in-
puts from previous units and computes a single output value that is, at the same
time, an input for the next array of deeper units. This behavior is, in general, the
same for all kinds of layers, the difference among them is the intrinsic operation
applied.

3.1.2 Layers

In the literature there have been a large number of layers studied. In this subsec-
tion, we are going to explain some of the most common that are also important in
our model.

Fully Connected

The Fully Connected Layer or Dense layer is the most straightforward and prin-
ciple of the layers. Given an input tensor and a number of units, it computes the
following operation:

O = I ·W + B,

where O is the output tensor, I is the input tensor, · is the product of matrices,
W is the weights matrix of dimensions (input tensor dimension, number of units)
and B is the bias tensor of length number of units. Depending on the size of the
input, weights and biases can be multi-dimensional matrices. The weights and
biases values are initialized as random but are updated at each batch iteration.
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Taking the weights matrix as a variable, remember that our goal is to optimize
the weights values through iterations in order to get the desired output, we can
see that the operation is a linear function, being the bias vector the independent
term. Using bias, in general, is optional but it helps to adjust better the output.

Note that in the Fully Connected layer, all the input tensor values are connected to
all the units giving a large number of weight values needed and the more number
of parameters a network has, the slower it becomes. Reducing the number of
weights to train, and so the computing time, is one of the purposes of other layers.
One example of layer with a lot of weights is the Convolutional layer, a layer
appropriate for image inputs, where the dimension of the input is considerably
large.

Convolutional Layer

The Convolutional Layer is quite similar to the Fully Connected layer, in the
sense that the operation it computes has the same structure:

F = I ∗ K + B,

where F is the output tensor named feature map, I is the input tensor, ∗ is the
convolution operator, K is the weights matrix of small dimensions named kernel
and B is the bias tensor. The weights and biases values are initialized as random,
but are updated at each batch iteration.

The principle difference is the operation between the input and the weights ma-
trix or kernel. The convolution operation, intuitively and in this discrete context,
consists of a local dot product of these two matrices. It can also be seen as a local
weighted average of values in the input matrix being weights the values in the
kernel matrix. The locality means that the convolution is done element-wise, tak-
ing the input and kernel matrices of small dimensions and with the element at its
center.

The formal definition of the convolution operation in our context, being a three-
dimensional image I our input, is:

F(i, j) = (I ∗ K)(i, j) =
3

∑
c=1

m

∑
di=−m

n

∑
dj=−n

I(i + di, j + dj, c) K(di, dj, c),

for each pixel (i, j) in the image. The values m and n are the height and width
of the kernel matrix, and c represents the channel of the image and kernel. The
kernel matrix K in this case is also three-dimensional.

There are two more important parameters that take part in the convolution layer:
stride and padding. The stride is the convolution frequency between pixels, in
another words, the number of pixels - 1 skipped between each convolution. So we
expect two integers, one for the height stride and the other for the width stride.

Padding means whether or not to frame with zeros the input image when com-
puting the convolution for pixels in the edges. In case of not using padding, the
values in the right or bottom edge, which make the centered kernel not to fit for a
proper convolution, are dropped. Note that using stride and padding may result
in an output of smaller dimensions.
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Embedding

The Embedding Layer is, commonly, the first layer of a network with a categor-
ical input and its goal is to map positive integers, indexes of categorical classes,
to dense vectors of fixed size in an Euclidean space. This process is called entity
embedding (Guo and Berkhahn, 2016), and it can be applied to text or indexed
categorical data. Once the categorical data is transformed to vector, then it is
ready for being input of other layers. The parameters needed for this layer are
the input dimension (vocabulary size) and the output dimension (dimension of
the dense embedding).

Instead of the embedding one could think that a good option is to convert the
categorical data to one-hot encoding vectors, in other words, create a Euclidean
space of dimension size of the vocabulary. That would work, but with a big vo-
cabulary, the space would be very large requiring a lot of parameters to learn.
Entity embedding not only reduces memory usage and number of parameters
to learn, but also, and more importantly, maps similar categorical data closer in
the embedding space revealing intrinsic features of the categorical variables. This
last property helps the network in speed and performance.

In essence, the embedding layer is a matrix of dimensions: vocabulary size ×
embedding size. Then, for each input index, the embedding returns its corre-
sponding row. The vocabulary size is a fixed parameter and the embedding size
is a hyperparameter that varies from different models and needs to be adjusted,
but must be a value between 1 and the vocabulary size. Finally, the embedding
vectors are initialized as random, but are updated during training.

Merge Layer

The Merge Layer is an important layer for multimodal learning and, in general,
networks with multiple inputs, since it is the key to combine them. It supports
various merge operations, such as: summation, multiplication, concatenation,
maximum, minimum, average, subtraction or dot product. Depending on the
operation, the output will be a tensor with the same dimensions as the input ten-
sors or a single output value.

Time Distributed Layer

The Time Distributed Layer is wrapping layer that allows the network to apply
any layer to every temporal slice of an input. This layer can only be used with
three or greater dimensional inputs, and assumes the temporal slice is at axis 1.
The time distributed layer is useful for video inputs or multiple related images
inputs.

3.1.3 Activations

Following the biological influence in the design of these networks, it can be seen
that each of the units or neurons specializes in concrete features of the inputs. It
can be color, edges, corners, forms... the deeper the neuron, the more complex its
task is. Although these specializations are hidden or not easily understandable
for us humans, exist some software that gives us a little intuition of the neurons
behaviour. One example of software for a simple CNN is the work of Wang et al.,
2020 and their CNN Explainer Live Demo.
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The purpose of this introduction is that due to the neurons specialized behaviour,
depending of the input, there will be neurons more important than the others,
so it is interesting to enhance the output of those and neglect the output of the
others. We can achieve it using an activation function after a layer.

The most important activation functions are the following:

The function defined as
f (x) = x+ = max(0, x)

is called, in the artificial neural networks context, the rectified function and the
unit that computes it a rectified linear unit (ReLU). We can see that the rectified
function sets negative inputs to zero while leaves positive values untouched.

Another common activation function is the hyperbolic tangent (tanh)

f (x) = tanh(x) =
e2x − 1
e2x + 1

that, unlike ReLu, it has a range of (−1, 1) and the particularity of pushing positive
values to 1 and negative values to -1.

The logistic function or sigmoid

f (x) =
1

1 + e−x

has a range of (0, 1) and that makes it useful for binary classification problems,
because the output value can be interpreted as a probability.

The softmax function

f (x)i =
exi

∑K
j=1 exj

for i = 1, ... , K and x = (x1, ... , xK) ∈ Rn

is a generalization of the sigmoid in a multi-dimensional context. It is commonly
used as the last layer in a multi-class classification neural network, since the val-
ues of the output vector are values between 0 and 1 that sum together 1. Thus,
we get for input x the probability of being an element of classes 1, ... , K.

3.1.4 Optimizer and Cost Function

An optimizer algorithm together with a suitable cost function are the elements
in charge of the learning and so, the weights update. A cost function measures
the performance of the model and the optimizer updates the model parameters
in order to minimize the error obtained from the cost function, which essentially
measures the error between the model prediction and the expected value (called
ground truth). The cost function is also called loss function or, simply, loss.

Cost functions

There are several loss functions, each of them more appropriate for a certain prob-
lem. Next, we will see the three more common loss functions.
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The Mean Squared Error (MSE)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2,

where n is the number of data, yi is the i-ground truth value in the data set and ŷi
its corresponding prediction. This is a good loss function for regression problems,
as we want an error based on quantitative data.

For classification problems, where the data is qualitative and the predicted out-
puts are probability values between 0 and 1, the loss function recommended is
Cross-Entropy, also known as logarithmic loss. This loss function is suitable be-
cause the error increases if the predicted probability is close to zero for the ground
truth class.

In binary classification, where the number of classes is two (0 or 1),

Binary Cross-Entropy = −(y log p + (1− y) log (1− p).

In the formula, y denotes the true class label (0 or 1) and p is the probability of
prediction being of class 1 given by the model. So, if the ground truth class is 1,
the probability of the prediction is p, whereas if the ground truth class is 0, the
probability of the prediction is 1− p.

For multi-class classification, the cross-entropy loss is calculated by the sum of
the separate loss for each class label,

Categorical Cross-Entropy = −
M

∑
c=1

yc log pc,

where M is the number of classes, p is the predicted probability of class c and yc
is a binary indicator that is 1 if class label c equals to the ground truth label or is
0 otherwise.

Note that for binary classification we expect a single output probability value,
so sigmoid is usually used as the last layer activation, while for multi-class clas-
sification, we expect a vector output with the probability distribution for all the
classes, thus softmax activation is suitable for the last layer. Finally, say that the
formulas mentioned before apply for a single observation. In order to have a loss
value for all the model, we need to average the observations losses.

Stochastic Gradient Descent

The basic algorithm and predecessor of newer and improved optimizers is Stochas-
tic Gradient Descent (SGD). SGD is a variation of the classical numerical method
Gradient Descent. The difference between them is that while classical Gradient
Descent uses all the training dataset to calculate the gradient of the loss function
and then steps toward the opposite direction, SGD divides the dataset in small
batches of data and for each batch computes the gradient from a random exam-
ple in the batch and steps toward the opposite direction of the gradient.

We can see that SGD is able to speed up the gradient calculation and make more
steps for one step of the classical Gradient Descent. It is true that the Gradient
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Descent method is more accurate, but through multiple iterations, also known as
epochs, SGD converges much faster.

A compromised variation between classical Gradient Descent and SGD is the
Mini-batch Gradient Descent, which instead of picking a random example from
the small batch as SGD does, it computes the average of gradients for all or a
subset of examples in the small batch.

The equation that SGD uses for updating the weights of the neural network is:

θt+1 = θt − η · ∇θC(θt; x, y),

where θ is a parameter of the model (could be weight or bias), t denotes the num-
ber of iteration, η is the learning rate, a small factor that determines the size of
the step and ∇ is the gradient of the cost function C(θt; x, y) at point (x, y) and
parameter θt. Depending on the cost function, the variables x, y will be ground
truth and prediction values (for MSE), ground truth label and prediction proba-
bility (for binary cross-entropy) or ground truth and predictions probability dis-
tribution vectors (for categorical cross-entropy).

Momentum

Momentum is known as a variation in the weights update equation of SGD that
contributes with faster convergence in the algorithm. This variation consists of
adding an extra term in the equation formed by the velocity in the previous step
multiplied by a constant factor γ, usually set to 0.9.

θt+1 = θt − η · ∇θC(θt; x, y) + γ · vt

The velocity vt is the update of the previous iteration.

vt = −η · ∇θC(θt−1; x, y) + γ · vt−1

The intuition behind this variation is that the momentum term increases the step
toward the optimal minimum of the cost function if the previous update was
significant, speeding the convergence and preventing to get stuck in local min-
imums. The γ factor helps giving more importance to recent velocity values in
time and less to old velocity values. For a detailed explanation of why the Mo-
mentum variation works, we recommend to read the Goh, 2017, article.

Adaptive Moment Estimation

The next and last optimizer we are going to explained in this essay is called Adap-
tive Moment Estimation (Adam) (Kingma and Ba, 2014), one of the state of the
art optimizers. Based on SGD, Adam also uses Momentum and Adaptive Learn-
ing Rate.

A common practice in machine learning problems is to adjust the learning rate
during training in order to speed up the convergence. In general, a too small
learning rate makes the model learn slowly, while a too large learning rate makes
the model diverge. One solution is to use a learning rate schedule, a pre-defined
schedule of learning rates. The most used schedulers are the time-based decay
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(the learning rate decays at each epoch by a decreasing factor), the step-based de-
cay (the learning rate decays by a factor every few epochs), the exponential decay
(the learning rate drops at exponential rate each epoch) and the cyclic scheduler
(the learning rate rotates every few epochs in a pre-fixed list of values).

The main inconvenience of learning rate schedules is that it needs to be defined
manually before the training and, as the learning rate is an hyperparameter, op-
timal learning rate values depend on the problem and the model implemented.
Some optimizers started to introduce ways to adjust automatically the learning
rate by some heuristics. This technique is called Adaptive Learning Rate and it
only requires a initial learning rate value. RMSProp (Dauphin et al., 2015) and
AdaGrad (Duchi, Hazan, and Singer, 2011) are two SGD-based optimizers that
include adaptive learning rate.

As they say in the Adam paper, Adam optimizer is created from the advantages
of RMSProp and AdaGrad:

"Our method is designed to combine the advantages of two recently
popular methods: AdaGrad (Duchi, Hazan, and Singer, 2011), which
works well with sparse gradients, and RMSProp (Tieleman and Hin-
ton, 2012), which works well in on-line and non-stationary settings".

Finally, the Adam weight update equation is

θt+1 = θt −
η · m̂t√
v̂t + ε

where η is the learning rate (recommended value in the paper is 0.001), ε is a
small term preventing division by zero (usually 10−7) and

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

,

where

mt = (1− β1)gt + β1mt−1 and vt = (1− β2)g2
t + β2vt−1 .

In these last equations, g denotes the gradient ∇θC(θt; x, y), β1 denotes the first
momentum term (recommended value is 0.9) and β2 denotes the second momen-
tum term (recommended value is 0.999).

In the original paper (Kingma and Ba, 2014), there are more details regarding the
update rule, the upper boundaries of the stepsize and the convergence proof.

Backpropagation

Last but not less important, it remains from this section computing the cost func-
tion gradients. Let us assume that in the neural network we have n weights and
biases we want to adjust. The gradient of the cost function is

∇C(w1, b1, ..., wn, bn) = (
∂C
∂w1

,
∂C
∂b1

, ...,
∂C

∂wn
,

∂C
∂bn

).
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Nowadays, most state of the art neural networks are significantly deep, meaning
that the number of parameters to train is huge (order of millions). Backpropaga-
tion is an algorithm that, making use of the derivative chain rule, computes the
partial derivatives of the cost function in a simply and fast way: from the end and
backwards to the beginning reusing previous calculations.

Given a simple neural network with several Fully Connected hidden layers, being
L the total number of layers, the equation in each layer number l > 1 is

a(l) = σ(w · al−1 + b),

where a(l) is the output vector of layer l, a(l−1) is the output vector of the previous
layer, σ is the activation function for layer l, w is the weights matrix of layer l and
b is the biases vector of layer l.

Now, given a weight or bias from the final layer, denoted w(L), the partial deriva-
tive of the cost function with respect to w(L) is

∂C
∂w(L)

=
∂C

∂a(L)
· ∂a(L)

∂z(L)
· ∂z(L)

∂w(L)
,

where
z(l) = w · al−1 + b.

Note that the partial derivatives ∂C
∂a(L) and ∂a(L)

∂z(L) are common for all the weights or
biases of layer L.

If we assume that the weight or bias w we want to update is from layer (L− 1),
denoted w(L−1), we have

∂C
∂w(L−1)

=
∂C

∂a(L)
· ∂a(L)

∂z(L)
· ∂z(L)

∂a(L−1)
· ∂a(L−1)

∂z(L−1)
· ∂z(L−1)

∂w(L−1)
.

Note that the partial derivatives ∂C
∂a(L) and ∂a(L)

∂z(L) appear also in the previous deriva-
tive with respect to w(L), meaning that they are already calculated. Note also that
the derivatives ∂a(L−1)

∂z(L−1) and ∂z(L−1)

∂w(L−1) are common for all the weights or biases of layer
(L− 1).

Recursively, and starting from the output layer, the backpropagation algorithm
gives us a way to compute all the cost function partial derivatives reusing previ-
ous calculations.

3.1.5 Regularization

One of the common problems deep learning models have is overfitting. We say
that a model is overfitted if it performs very well during training but distinctly
not that well in test data. This means that the model has learned too much in
detail the features of examples presented in the training process that then it is not
capable of extrapolating the learned connections to new images. Overfitting is
quite inevitable in deep learning especially when the dataset is small, containing
few examples per class. Despite this drawback, there are techniques that help
preventing it by making slight modifications to the model in order to help the
model generalize better and, thus, improve performance on unseen data. This
process is called Regularization.
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Weight Decay

The weight decay technique, also known as L2 regularization, consists of adding
an extra term to the cost function. This term is the L2-norm of the weights ma-
trix multiplied by a factor λ, an hyperparameter, that determines the strength of
regularization applied.

C(w, b) +
λ

2
‖w‖2

The intuition behind is that without the regularization term, the model can op-
timize the cost function without restrictions to weights giving as a result large
weights values (positive or negative) that makes the model function excessively
complex. By adding the L2-norm of the weights matrix in the objective function
we force the model to not only optimize the weights in order to minimize the cost
function, but also to do it with small weights values. Interpreting the measure of
complexity of a linear function f (x) = wTx by some norm of the weights matrix,
in this case ‖w‖2.

Dropout

The Dropout technique (Srivastava et al., 2014) is possibly the most used tech-
nique in deep neural networks for regularization. Defined as a layer, and given
a dropout rate parameter, it randomly drops out inputs of the next layer. Equiva-
lently, sets inputs of the next layer to 0. The dropout rate parameter is the rate of
units dropped out randomly at each iteration.

Dropout makes the training process less straightforward and more random or
noisy, forcing the nodes of the next layer to give attention to different inputs each
iteration. This makes the nodes not to rely too much on few inputs and instead
rely on many inputs and making the model more robust.

Batch Normalization

Deep neural networks are in essence the composition of several functions with
multiple parameters. During training, each of these parameters is updated by
the gradient. Once the gradient is computed all the parameters are updated si-
multaneously and under the assumption that the others remain constant. In a
model with a lot of hidden layers, and so parameters, it can result in unexpected
behaviours, such as vanishing gradients or exploding gradients, gradient de-
creasing exponentially to 0 or gradient increasing exponentially to infinity, re-
spectively. These problems make the model unstable and unable to learn prop-
erly.

Batch Normalization is a solution proposed by Ioffe and Szegedy, 2015. This
solution consists of a layer in the network that standardizes its inputs. In this
context also known as normalization, standardization means rescale data in order
to have a mean of 0 and a standard deviation of 1. Given a d-dimensional input,
the transformation that Batch Normalization layer applies is

x̂i
(k) =

x(k)i − µ
(k)
B√

σ
(k)
B

2
+ ε
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and
y(k)i = γ(k) x̂i

(k) + β(k) ,

where k ∈ [1, d], B refers to a concrete mini-batch of data of size m, i ∈ [1, m],

µ
(k)
B and σ

(k)
B

2
are the mean and variance respectively of dimension k, ε is a small

constant, γ(k) is a learned scaling factor (optional and initialized as 1) and β(k) is
a learned bias factor (optional and initialized as 0).

Batch Normalization has become a useful regularization technique to use instead
or together with Dropout. The weights standardization that Batch Normalization
provides, makes the network more robust to random initialization of weights and
higher learning rates, consequently reducing the training time.

3.2 Non-Maximum Suppression

The output of Object Detection algorithms is, in general, a list of proposal bound-
ing boxes with the corresponding list of classes labels and confidences scores for
each bounding box. Over the hundreds of candidates bounding boxes, due to
how the algorithms generate proposal bounding boxes, there are many repeated
that envelop the same object in the image. In order to filter and get a desired
output of one bounding box per object, it is commonly applied a Non-Maximum
Suppression (NMS) algorithm.

Given a list of proposal boxes B, the corresponding list of confidence scores S and
an overlap threshold T as inputs, the algorithm returns a filtered list of proposals
R. The algorithm is the following:

1. Initialize R as an empty list.

2. Take the bounding box with the highest confidence score from B. Remove it
from B and add it to R.

3. For each of the remaining proposals in B, compute the Intersection over
Union (IOU) against the selected bounding box. If the IOU is greater than
the threshold T, remove that proposal from B.

4. If list B is not empty yet, go back to step number 2.

The intersection over union (IOU) metric between two regions A and B in a
plane is defined as

IOU =
A ∩ B
A ∪ B

and measures the overlap between regions A and B.

3.3 You Only Look Once

As already introduced before in this work, You Only Look Once (YOLO) is a neu-
ral network for object detection and recognition. Presented originally by Redmon
et al., 2015, it supposed a breakthrough in object detection study field because it
was able to perform very well using a single neural network, while previous al-
gorithms used a pipeline composed of multiple separate steps. Authors say in the
paper: "We reframe the object detection as a single regression problem, straight
from image pixels to bounding box coordinates and class probabilites".
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In this section we will explain the intuition of this network, for farther details we
strongly recommend to read the original papers.

YOLO divides the input image into a grid of S × S cells. For each object in the
image, it is said that the cell responsible for predicting it is the cell that contains
the center of the object. Each cell in the grid makes B bounding boxes predic-
tions and C class probabilities for the cell. The bounding box is represented as
(x, y, w, h, c), where (x, y) are the coordinates normalized to [0, 1] that denote
the center of the box, w and h are the weight and height of the bounding box also
normalized to [0, 1] and c is what they call the confidence score.

The confidence score is defined as Pr(Object) · IOU(pred, truth), where P(Object)
is the probability of the object and IOU(pred, truth) is the intersection over union
metric between the prediction and the ground truth.

As said before, each grid cell makes C class predictions that are returned as class
probabilities computed with the conditional probability of object being of class i
if the cell is responsible for predicting it: Pr(Classi | Object). So the output with
the predictions is encoded as a tensor of dimensions S× S× (B · 5 + C).

In order to have class-specific confidence scores for each bounding box, they mul-
tiply the conditional class probabilities and the confidence of the bounding box:

Pr(Classi |Object) · Pr(Object) · IOU(pred, truth) = Pr(Classi) · IOU(pred, truth).

With the maximum of the class confidence scores, they finally obtain a single con-
fidence score and class prediction for each bounding box. After that they apply
a Non-Maximum Suppression algorithm to filter the number of final bounding
boxes, and obtaining the final detections.

Since the first version published, there have been continuous modifications to
different parts of model that have resulted in various versions, each faster and
better in performance than the previous one. For farther research, the YOLO
versions to this day are: YOLOv1 (Redmon et al., 2015), YOLOv2 (Redmon and
Farhadi, 2016), YOLOv3 (Redmon and Farhadi, 2018) and YOLOv4 (Bochkovskiy,
Wang, and Liao, 2020). Being version 4 the latest official version.

3.4 InceptionResNetV2

Inception v1 published by Szegedy et al., 2014, was the first of a series of promis-
ing classification convolutional neural networks through the years of research in
deep learning. The premise of this network is that, considering that the kernel
size of convolutional layers is relevant for the network performance, there are
images which have the crucial information for classification distributed globally,
so a larger kernel is preferred, and other images with the information distributed
more locally, and so a smaller kernel is more suitable.

Moreover, very deep networks are more likely to overfit and are computation-
ally expensive. Taking all into account, the solution presented with the Inception
v1 network was to make the network "wider" instead of "deeper". Intuitively, it
means that the convolutional layers of the network are substituted with a block
containing a series of parallel convolutional layers with different kernel sizes.
Those outputs are then concatenated and sent to the next inception block.
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After, two posterior versions of this network, Inception v2 and Inception v3, were
published by Szegedy et al., 2015. Those versions increased the accuracy and
reduced the computational complexity of the original network.

Years later, Inception v4 and Inception-ResNet v1 and v2, where presented in the
same paper by Szegedy et al., 2016. Focusing on the last ones, Inception-ResNet
v1 and v2t, are networks inspired by the ResNet and its residual blocks (He et al.,
2015).

Residual blocks are called to blocks of layers of the network, that instead of
strictly feeding the output of one layer directly to the next one, they addition-
ally feed into a fusion 2 or 3 layers away. Fig. 3.1 depicts it.

FIGURE 3.1: Example of a residual block.

It is believed that residual blocks produce many benefits in a neural network.
Their skip connections let the network the possibility to reduce the computational
complexity skipping dynamically certain layers. Residual blocks also help during
the backpropagation algorithm to reduce the vanishing gradient problem and
let larger gradients to reach to early weights of the network, thanks to the skip
connections.

Then, Inception-ResNet v1 and v2 builds the mentioned before inception blocks
with skip connections, and so, becoming an hybrid inception-residual block. These
versions of the Inception network were able to achieve better accuracy results in
lower epochs of training. The difference between versions 1 and 2 is only the
previous Inception network they are based on, Inception v3 and v4, respectively.
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Chapter 4

Multimodal Food Tray
Recognition

In this Chapter, in section 4.1 we are going to explain the architecture of the princi-
ple model we present, named Multimodal Food Tray Recognition (MFTR). In section
4.2 we will briefly explain how we have trained the network and in section 4.3 we
are going to present the second model proposed, which is an ensemble of YOLO
and MFTR models.

4.1 Proposed model

In self-service restaurants there are two sources of information we can make use
of: food tray images and the available dishes for that day (the daily menu). Our
model uses both of them and expects them to be in the format: RGB-image and
sentence with food classes as words for the menu. ”31 2 68 94 17 55” is an example
of a good menu input, where order is not important and each number denotes a
class of food in the menu for that day. Although these two are the true inputs
of the model, we will see that there is a certain adaptation of the data before the
multimodal structure that leads to a third input, the yolo predictions.

Fig. 4.1 is a general representation of our model, where we can see that there are
three differentiated parts of our model that summarized do the following:

1. Food candidates detection: Receiving a food tray image as input, this pro-
cess applies a pre-trained Food Detection network (YOLO) to the image and
then applies the NMS algorithm (with relaxed thresholds) in order to filter
repeated bounding boxes.

2. Features vectors extraction: Using a pre-trained classification CNN (Incep-
tionResnetV2), this process generates a feature vector for each of the pro-
posed bounding boxes, which contains visual features extracted from the
bounding box.

3. Multimodal neural network: This is the main process, which receives as
inputs the feature vectors from part 2, the YOLO predictions form part 1 and
the menu from the raw inputs. This multimodal neural network combines
these inputs in three different fusions obtaining two outputs. Finally, the
predictions of output 1 and 2 are merged into a single list of predictions,
the predicted background is discarded and a final more restrictive NMS
algorithm is applied to obtain the final output.
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FIGURE 4.1: Multi-modal Food Tray Recognition architecture.

In the next subsections we are going to explain in more detail each of the three
parts of the model.

4.1.1 Food candidates detection

Our model aims to improve the performance of food tray detection integrating
data from different modalities. We do not present our model as an alternative to
the powerful state of the art object detection models in food domain, in fact our
models benefits from them and is build upon them. This is the case of YOLO, a
powerful state of the art object detection model, that we use in order to extract
raw bounding boxes from the input image.

In fact, we use the YOLOv3 version pre-trained with images and classes of the
food domain. Despite being available the forth version of YOLO on the date of
publication of this work, when we started the state of the art version was the
third, and so it is the one we took.
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With a certain threshold, YOLO returns the list of bounding boxes, class labels
and confidence scores, which have a greater confidence than the threshold value.

Then, we apply the NMS algorithm twice with different IOU threshold values.
The first NMS only filters overlapped bounding boxes with the same class label
and the second NMS filters overlapped bounding boxes with strictly different
class labels. The reason why we apply two versions of NMS is because the IOU
threshold used is different, the first one inferior than the second, i.e. the first one
more restrictive than the second.

Note that, two bounding boxes of the same class need to be less overlapped than
two bounding boxes of different classes in order to take both into account. In
section 4.2, the section about training our model, we will discuss the threshold
values used and the reasons of their choice.

After the NMS, the outputs received are the final list of bounding boxes and the
class label that YOLO has given to each of the bounding boxes. From now on, we
will refer to these classes labels as YOLO predictions (YP). In this step we also
obtain the confidence score from YOLO for each of the predictions. Those are no
longer used in the model, but will be useful for the ensemble model proposed on
section 4.3.

In case that at the end of this process there are more than 20 bounding boxes /
predictions for an image, we keep the top 20 with highest confidence scores and
discard the rest.

4.1.2 Feature vectors extraction

This process simply transforms each of the bounding boxes to feature vectors. In
order to achieve it, we use a pre-trained CNN, in this case we have used the Incep-
tionResnetV2, a state of the art neural network which performs very well in image
classification problems. Having dropped the last layer of the CNN, the classifi-
cation layer, the output that results when predicting is a tensor which contains
intrinsic visual features of the image in question. So, repeating this process for
each of the bounding boxes, we get a list of feature vectors, which is one of the
inputs of the multimodal neural network.

Although YOLO is capable of doing very good predictions, it is not better than
a specialized CNN in classification when applied to single-object images. Then,
the reason of using a CNN is to get a "second opinion" based on visual properties
for each of the candidate bounding boxes.

4.1.3 Multimodal neural network

This is the most important part of the three, where the essence of the multimodal
learning is applied. Once in this point, we have three sources of data: the feature
vectors extracted from the bounding boxes images (visual modality), the predic-
tions made by YOLO for each of the candidate bounding boxes (categorical data
encoded as text: text modality) and the food classes that were in the menu the
day of the image (categorical data encoded as text: text modality).

Each of these three inputs is introduced to the model in different ways, through
what we have called input modules. Those are a series of layers that receive the
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input and prepare it for the features fusion. Since we have visual and text modal-
ities, the features module is significantly different from the other ones, that are at
the same time slightly different between them. Note that the YOLO predictions
input leads to two separate input modules, that is because we want to interpret
this input in two different ways, expecting to add more value to the model. In the
following paragraphs we are going to look into the four input modules.

FIGURE 4.2: Feature vectors (FV) input module structure.

Starting with the feature vectors input module, Fig. 4.2, the only of visual modal-
ity type, we can see that it is a very straightforward series of layers. The feature
vectors are introduced through an input layer and led to Batch Normalization,
ReLU activation, Dropout, Dense and Regularization layers, wrapped with Time
Distributed layers in order to apply these layers through the time dimension, i.e.
each feature vector separately. The number of units parameter of the Dense layer
is a fixed value that determines the number of features each vector will have be-
fore the fusion layer. This value is common with the other modules since we want
the inputs of the fusion layers to have the same dimensions.

FIGURE 4.3: YOLO predictions (YP) input module structure.

The YOLO predictions input module, Fig. 4.3, is the first of the text modal-
ity ones. The YOLO predictions input format is a sentence of the class labels,
numerical indexes of the classes, separated by blank characters. The number of
class labels is the same as the number of feature vectors, since they are one to
one related. ”6 13 68 94” is an example of YOLO predictions input, where 6 is
the YOLO-predicted class of the first feature vector (i.e. bounding box), 13 corre-
sponds to the second and etc.



4.1. Proposed model 29

Through an input layer, the YOLO predictions are inserted to the module and
led to an Embedding layer, which encodes the input into a tensor of dimensions
(batch size, max frame, embedding size), where batch size is the number of examples
to train/predict in the batch, max frame is the maximum number of bounding
boxes and predictions allowed and embedding size is an hyperparameter from the
Embedding layer which denotes the size of the embedding space. The importance
of the embedding layer is that it transforms each of the YOLO predictions into a
vector in an Euclidean space, understandable by the rest of the network.

Next, similarly as in the feature vectors module, the embedding output tensor is
led to the series of layers Batch Normalization, ReLU activation, Dropout, Dense
and Regularization, wrapped with Time Distributed layers. As said before, the
number of units of the Dense layer is the same as in the features vectors Dense,
so both output tensors are comparable in the posterior fusion layer.

FIGURE 4.4: Correlations (C) input module structure.

We can see that the correlations input module, Fig. 4.4, is quite similar to the
YOLO predictions one. Firstly, it is important to remark that the Embedding
layer of this module (and the same applies to the menu input module) is the
same layer being used in the YOLO predictions module. As the text vocabulary
for the menu and YOLO predictions are equal, using the same Embedding layer
forces the model to share the layer’s weights across the three input modules and,
so, the mapping from class labels to Euclidean vectors is the same independently
of the input source.

In spite of coming from the same input source, the main difference between the
YOLO predictions and correlations modules is how is treated the embedding out-
put tensor. In the YOLO predictions module the time slice of the input is main-
tained while in the correlations module we apply an average through time, re-
sulting in a single vector of length embedding size. This resulting vector is the
average of the encoded class labels vectors, aiming to obtain a vector that could
represent in a sense the correlations between the food classes predicted, having in
mind that the embedding layer maps intrinsically related classes to close vectors
in an Euclidean space.

In the menu input module, Fig. 4.5, we can see that it has the same structure as
the correlations module. What differentiates them is the input. In this case, with
the menu input we expect this module to produce a single vector average of the
encoded menu’s classes vectors and, thus, a vector representing the correlations
between the daily menu’s food classes. Note that the output has the same size as
the correlations module output, so they are comparable in the next fusion layer.
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FIGURE 4.5: Menu (M) input module structure.

In Fig. 4.6 we can see that the output tensors from modules feature vectors (FV)
and YOLO predictions (YP) on one side, correlations (C) and menu (M) on the
other, are merged in pairs in an additive fusion layer. Remember that the output
tensor from FV and YP maintain the time slice, and so the one-to-one relation,
while C and M do not. Therefore, the output of the first fusion (FV + YP) has for
each time slice t a vector that combines the features from FV[t] and YP[t] vectors.
This output tensor is then led to a series of Batch Normalization, ReLU, Dropout
and Dense layers, wrapped by Time Distributed layers. The number of units of
the Dense layer is the same as the total number of classes and the activation is
softmax, in order to obtain the first output of the model.

Inspired by GoogLeNet (Szegedy et al., 2014), also known as Inception v1, our
model has, as mentioned before, two outputs: one at the end and the other in
the middle of the network. It is a feature that worked well for the authors of
GoogLeNet and we thought it suitable in our case, because inputs FV and YP are
both together sufficient for making good predictions (in section 4.2 we will see
quantitative proof of this statement). Then, this output can be combined with a
farther output that includes the features extracted from C and M inputs.

Regarding correlations and menu, the output of the second fusion (C + M) is a
single vector that combines the features from C and M outputs. The resulting
vector is repeated max frame times and so converted to a tensor of dimensions
(batch size, max frame, num fusion features), same size as the output of fusion (FV +
YP).

Both fusion outputs are finally combined with a multiplicative fusion layer and
led to the second output of the model. Arrived in this point, for a single input
image, the outputs of the model are

Output 1: (p1
1, p1

2, ... , p1
R)

Output 2: (p2
1, p2

2, ... , p2
R),

where the super index denotes the output, R = max frame (maximum number of
bounding boxes and predictions allowed for image), and

po
i = (x1, x2, ... , xV), o ∈ {1, 2}, i ∈ [1, R],

is a vector containing the probability distribution for bounding box i and output
o. V is the total number of classes of the vocabulary.
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The merge of outputs 1 and 2 is computed as follows

Merged output: (pm
1 , pm

2 , ... , pm
R ),

where

pm
i = (max{p1

i [1], p2
i [1]}, max{p1

i [2], p2
i [2]}, ... , max{p1

i [V], p2
i [V]}).

Then, the class label predictions are

(ym
1 , ym

2 , ... , ym
R ) = (argmax(pm

1 ), argmax(pm
2 ), ... , argmax(pm

R ))

where argmax is the function that returns the argument/index of the maximum
value in the vector.

At this point we have prediction ym
1 for bounding box bb1, ym

2 for bb2 and etc. Now
the model discards bounding boxes and predictions that are empty (in case there
were less than max frame bounding boxes) or predicted as background. The remain-
ing ones go through a last NMS algorithm with little more restrictive thresholds
than the NMS in part 1, in order to definitively remove bounding boxes envelop-
ing the same food instance in the original image.

The final output is, then, a list of bounding boxes bb1, bb2, ... , bbS with their cor-
responding predictions y∗1, y∗2, ... , y∗S, where S is the total number of them,
different for each image.
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4.2 Training our model

4.2.1 Dataset

The dataset used for training and testing our model was originally created by
Bora, Bolaños, and Radeva, 2020, in their work and is property of LogMeal, a
private API for Artificial Intelligence tasks applied to food. The dataset consists
of a collection of food tray images taken on 95 different days at a restaurant in a
real environment. Each image has its own annotations that are bounding boxes
with class labels. Also, the dataset contains the menu for each of the days of the
images.

FIGURE 4.7: Example of images from the dataset.

First paella, sopa de cocido
Second salchichas al horno, croquetas caseras

Side Dish
ensalada, patatas al horno, patatas hervidas, patatas fritas, tomate,
verduras con patatas, judias hervidas, judias blancas

Dessert
manzana, melon, flan, natillas, macedonia, platano, yogur, pastel,
naranja, sandia, arroz con leche, uvas, kiwi

Drink agua
Soft Drink coca cola
Bread pan

TABLE 4.1: Example of a daily menu

We have split the dataset in training and testing splits. The partition was done
day-wise, the images of a whole day are in train or test, but not divided. There-
fore, the training split contains 74 days that are a total of 11648 images that contain
food of 95 different classes which are pieces of food, such as bread or apple, and
dishes from the Spanish cuisine, such as albóndigas en salsa or macarrones boloñesa.

The test split is composed of 21 days that are a total of 4067 images of food from
56 classes (contained also in the training split). Although in the dataset there is
a considerable high number of images, the also high number of different classes
and the unfortunate class imbalance depicted in Fig. 4.8, it was not able to create
a validation split, which would be the ideal for measuring performance during
training with a separate collection of data. Therefore, we have used the test set
for the validation and test phases.

4.2.2 Food candidates detection

The YOLO model we used was the same one trained by Bora, Bolaños, and
Radeva, 2020, with the dataset they built in their work. As stated before, our
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FIGURE 4.8: Number of instances per class in train and test splits.

work intents to be an alternative multimodal model to theirs solution, using the
same base model for generating the candidates.

In this part, for extracting the candidates from YOLO we have used a threshold of
0.001, meaning that the returned bounding boxes from YOLO have a confidence
of 0.001 or greater. Being 1.0 the maximum value of confidence, a threshold of
0.001 is quite low. It is true, but the purpose of our model is to not leave any food
away, in spite of the amount of background gathered with this trade-off, since we
expect our model to detect well background and discard it.

For the NMS section, we have used an IOU threshold of 0.6 for overlapped
bounding boxes of the same class and an IOU threshold of 0.95 for overlapped
bounding boxes of strictly different class. Meaning that we are more restrictive
with the firsts and more permissive with the seconds.

These three threshold values were chosen after a grid search with the criterion
of leaving few or none not detected food and having, in average, a workable
number of candidate bounding boxes. After that, we decided the total number of
bounding boxes allowed per image. We called it max frame (for the resemblance
of frames in videos) and set it to 20. There were few images with more than 20
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bounding boxes, but those discarded had a very low confidence and almost all
were false positives bounding boxes of background or repeated bounding boxes,
and so not of much interest.

After the NMS process, we did a little process of data preparation which basi-
cally consists of cropping the bounding boxes, save them in folders and write on
files the paths to: the bounding boxes, the YOLO predictions, the menu and the
ground truth derived. About the ground truth, in order to train the classifica-
tion CNN and the Multimodal neural network, we need to create annotations for
each of the bounding boxes based on the annotations of the original image. The
way we did that was looping over the predictions sorted by YOLO confidence
and compare each of those with the true annotations. In case the there’s a match
(overlap with more than 0.5 IOU), the ground truth for that predicted bounding
box is the label of the original annotation. In the negative case, the ground truth
is set to 0, the background class.

4.2.3 Feature vectors extraction

The CNN network used to extract the feature vectors was an InceptionResnetV2,
initialized with ImageNet (Deng et al., 2009) weights, plus a final Fully Connected
layer. First, the CNN was fine-tuned with the training bounding boxes generated
from the previous step and validated with the bounding boxes from the test split.
The fine-tuning process was done in 50 epochs with a batch size of 24, Adam
optimizer, initial learning rate of 0.0001 and using step-based learning rate decay
for the last epochs.

Taken the model’s epoch with the highest accuracy (number of correct predictions
over the total number of predictions), in order to generate the feature vectors we
load the weights of the best epoch, drop the last Dense layer and make predictions
with this model for all the bounding boxes images in the dataset, training and test.
It results in vectors of size 1536 that contain intrinsic visual features of the image.
Those vectors are saved in a file, and as well a file containing the paths to each of
them is created.

The implementation, training and testing of this CNN, the variation for extract-
ing the feature vectors and the Multimodal neural network (explained in the next
subsection) was done using the library Multimodal Keras Wrapper version 2.1.3,
which is a, quoting the creators: "Wrapper for Keras with support to easy multi-
modal data and models loading and handling." Moreover, the models were exe-
cuted in a GPU using Tensorflow as backend, all isolated inside a Docker Compose
image.

4.2.4 Multimodal neural network

For training the Multimodal neural network, we used an embedding size of 50 for
the text modality inputs. There is no rule for the choice of the embedding size, but
taking into account that it denotes the dimension of the output Euclidean space
and that the number of classes of our dataset is almost 100, it seemed good to
us reducing the dimension of the space to the half. We did some tests and there
wasn’t a big difference among embedding sizes close the 50.

About the number of features for the middle tensors in the network, after a few
tests with different values, a number of 200 features worked the best. The same
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applies to the structure and operations of the fusions. After trying fusions with
multiple inputs combinations and the element-wise sum, product and concate-
nation operations, the configuration with the best results is the one chosen in the
model and drawn in figures above. The concrete variations tested are explained
in section 5.3 of Results chapter.

About the multi-output, we saw that the feature vectors and YOLO predictions
inputs, apart from being related one-to-one, are the most relevant inputs as they
come from two powerful networks (YOLO and InceptionResnetV2). A previous
tested model with only a fusion of those two inputs gave pretty good results, so
we thought it was interesting to preserve this output in the final model and make
a combined prediction from two outputs.

The way of combining the predictions of the two outputs is the most straight-
forward way, giving equal importance to them. That is because we thought that
although the second output has more information, in some cases it can be noisy
and become in worse predictions.

Finally, the last NMS algorithm uses more restrictive thresholds than the previous
NMS algorithm. The IOU threshold for overlapped bounding boxes with the
same class is 0.4 and for bounding boxes of strictly different class is 0.9. Those
hyperparameters were the pair of parameters that gave a higher metric as a result
in a grid search with several values.

One last comment regarding the training of the Multimodal neural network is
that during training we used Regularization, Batch Normalization and Dropout
layers, and weight decay of 0.0001. These techniques were used only in the train-
ing process, not during prediction, and helped preventing the model to overfit.
The Multimodal neural network was trained during 50 epochs with a batch size
of 24, Adam optimizer, initial learning rate of 0.0001 and using a step-based learn-
ing rate decay.

4.3 Constructing the MFTR and YOLO models ensemble

Our second contribution in this work is the definition and construction of an en-
semble of models Multimodal Food Tray Recognition (MFTR) and YOLO. The
model structure is the same as MFTR, explained before. The ensemble is pro-
duced during prediction in the merge outputs step, which now interferes a third
agent: the predictions from YOLO. Fig. 4.9 is a representation of the model.

For this ensemble, before the merging step, we need to have the classes labels
and confidence scores that YOLO gives for each bounding box, the ones that in
MFTR are discarded in the second NMS process of Food candidates detection
part. Remember that in Food candidates detection part we apply NMS twice:
first discarding overlapped bounding boxes with the same class and then discard-
ing overlapped bounding boxes with strictly different classes. Thus, it is needed
to save the bounding boxes with class labels and confidences that we get at the
middle of the two NMS algorithm.

Then, in the Merge Outputs step of part 3, we read those previously saved YOLO
predictions and adapt the YOLO data in order to match the outputs format and
order of bounding boxes. After that, we have in hand the following elements:



4.3. Constructing the MFTR and YOLO models ensemble 37

FIGURE 4.9: MFTR and YOLO models ensemble structure.

1. Output 1 predicted labels and probabilities distributions:

(y1
1, y1

2, ... , y1
R) and (p1

1, p1
2, ... , p1

R).

2. Output 2 predicted labels and probabilities distributions:

(y2
1, y2

2, ... , y2
R) and (p2

1, p2
2, ... , p2

R).

3. YOLO predicted labels and confidence scores:

(yY
1 , yY

2 , ... , yY
R) and (pY

1 , pY
2 , ... , pY

R).

Remember that yo
i = argmax(po

i ) where o ∈ {1, 2, Y} denotes the number of
output or YOLO for Y and i ∈ [1, R] denotes the index of the bounding box.

Now, looping over i, i.e. over bounding boxes, we have two cases:

1. Case 1: At least 2 of the predictions y1
i , y2

i and yY
i are equal.

In that case, we return the prediction label of the majority and the highest
probability value between the majority ones.

2. Case 2: All three prediction labels are different.
We do the following:

First, consider the vector of maximum probabilities between output 1 and 2
for prediction i

pm
i = (max{p1

i [1], p2
i [1]}, max{p1

i [2], p2
i [2]}, ... , max{p1

i [V], p2
i [V]}).
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Name ym
i the label of the maximum probability from the model:

ym
i = argmax(pm

i ).

And name probm
i the maximum probability value of the model:

probm
i = max(pm

i ).

Note that probm
i is the probability of the model’s prediction ym

i .

Doing the same for YOLO predictions we have:

yY
i = argmax(pY

i ) and probY
i = max(pY

i ).

Then, we retrieve the probability that MFTR gives to the YOLO prediction.
Say j = yY

i ,
probYM

i = pm
i [j].

Summarizing, we have:

(a) MFTR’s best prediction ym
i with probability probm

i .

(b) YOLO’s best prediction yY
i with confidence score probY

i .

(c) MFTR’s probability of YOLO’s best prediction: probYM
i .

Now, if
probm

i < probY
i + probYM

i (4.1)

we return the YOLO’s best prediction yY
i with probability maximum be-

tween probY
i and probYM

i . Otherwise, we return the model’s best prediction
ym

i with probability probm
i .

The intuition behind case 2, is that if the YOLO prediction is strong enough, not
only having a high confidence but also requiring to be sufficiently present in
the model’s probabilities, then we should rely on this prediction instead of the
model’s prediction.

The strength of the YOLO prediction measured as said before is compared with
the model’s best probability. Despite the fact that the right term can be greater
than 1, and, so, not being a fair comparison of probabilities, we found plausible to
use it. Because we do not expect it to be a comparison of probabilities, but instead
a certain comparison of confidence in the predictions: "Is the YOLO prediction
strong enough in two models compared to the probability of the MFTR’s best prediction?".
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Chapter 5

Results

In this chapter we are going to present some of the results obtained from our
models. First, in section 5.1 we are going to define the metrics used to evaluate
numerically our models. In section 5.2 we will introduce the Baseline model we
used to compare our models with. In section 5.3 we will explain different model
variations considered during the development process. Sections 5.4 and 5.5 con-
tain, respectively, quantitatively and qualitative results. Finally, in section 5.6 we
are going to discuss the limitations of our models presented in the previous sec-
tions.

5.1 Metrics

Before going deep into the results, we are going to define the metrics used to
measure the performance of models in our context. Those metrics are basically
Average F1-score and Weighted Average F1-score. In order to define these two we
need to previously define other terms and metrics that lead to the mentioned
metrics.

• True positive: We say that a prediction is a true positive (TP) if the predicted
value is equal to the ground truth.

• True positive: We say that an element is a true negative (TN) if the model
did not make a prediction for this element nor was it a ground truth.

• False positive: We say that a prediction is a false positive (FP) if the model
has made a prediction of an element that doesn’t appear in the ground truth
annotations or has a different value (in multi-class classification problems).

• False negative: Elements annotated in the ground truth that not predicted
or predicted wrong by the model are called false negatives (FN).

• Accuracy: Accuracy is the rate of number of correct predictions over the
total number of predictions. Equivalently,

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision: Precision is the number of correct predictions labeled as the pos-
itive class divided by the total number of predictions labeled as the positive
class.

Precision =
TP

TP + FP
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• Recall: Recall is the number of correct predictions labeled as the positive
class divided by the actual number of elements that belong to the positive
class.

Recall =
TP

TP + FN

• F1-score: The F1-score is a metric that combines the precision and recall
metrics by an harmonic mean.

F1-score = 2 · Precision · Recall
Precision + Recall

Particularly inn our context problem, multi-class classification, we are interested
in computing the metrics class-wise, obtaining Precision and Recall metrics for
each of the classes. With them calculated, we have considered:

• Average Precision (Recall): which is computed as the mean of all classes
Precision (Recall) values.

Average Precision =
∑N

i=1 Pi

N

Average Recall = ∑N
i=1 Ri

N
where N is the total number of classes tested, Pi is the Precision of class
i ∈ {1, ... , N} and Ri is the Recall of class i.

• Support: The support is the number of elements for each class that are an-
notated in the ground truth. Si is the support of class i.

• Weighted Average Precision (Recall): It is the weighted mean of all classes
Precision (Recall) values. Weights are the support for each class.

Weighted Average Precision =
∑N

i=1 Si · Pi

∑N
i=1 Si

Weighted Average Recall = ∑N
i=1 Si · Ri

∑N
i=1 Si

• Average F1-score: It is the F1-score of Average Precision and Average Re-
call.

• Weighted Average F1-score: It is the F1-score of Weighted Average Preci-
sion and Weighted Average Recall.

In the following section we will see that the support among classes is uneven,
making it clear the presence of class imbalanced. Due to that problem, the Weighted
Average F1-score metrics, which accounts for class imbalance, is considered for us
a more suitable metric to measure and more fair in order to compare between
models. In the next comparisons we have calculated both metrics, but we have
given more relevance to Weighted Average F1-score.
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5.2 Baseline

As explained in section 4.1, our model is based on the predictions that YOLO
does of our images. If we consider the whole part 1 of our model MFTR, which
consists of the YOLO and NMS filtering algorithms, it is able of making very good
predictions (remember that YOLO is a state of the art object detection network).
Thus, we could say that YOLO + NMS filtering or MFTR part 1 is our baseline
model and the one which we are going to compare with.

In section 4.2.2 we also explained that we have used very relaxed threshold val-
ues in order to discard the less relevant data, despite having to deal with more
amount of background data. On the other hand, we have searched for the best
configuration of parameters for this model and computed a measure of the per-
formance with those parameters.

Therefore, using the testing data split, we did grid search of parameters:

• Minimum YOLO confidence, which we named simply thresh. Possible val-
ues: 0.01, 0.1, 0.2, 0.3, 0.4, 0.5

• IOU threshold for overlapped bounding boxes of the same class, which we
named NMS. Possible values: 0.2, 0.3, 0.4, 0.5, 0.6

• IOU threshold for overlapped bounding boxes of strictly different classes,
which we named CNMS. Possible values: 0.8, 0.85, 0.9, 0.95, 0.99

After the grid search, the best configuration of parameters was thresh = 0.2,
NMS = 0.4 and CNMS = 0.95, which gave an Average F1-score = 0.7587 and
a Weighted Average F1-score = 0.8114. Those two are our baseline metrics and
those we will compare our model with. From now on, we will refer to YOLO
plus NMS filtering algorithms with paramaters thresh = 0.2, NMS = 0.4 and
CNMS = 0.95 as Baseline model, because we consider it the baseline model we
compare with. However, remember that for training our model, MFTR, we used
lower parameters for generating the food candidates (section 4.2).

In figure 5.1 can be found the food classes that appear in the test split together
with their support and F1-score. First, note that there’s a certain class imbalance:
on one hand, there are classes like pan or patatas fritas with more than a thousand
instances, and on the other hand there are classes such as macarrones con queso or
agua with less than twenty instances in the test set. A comparison of number of
food instances in train and test splits can be found in Fig. 4.8. The class imbal-
ance is a consequence of the nature of the dataset: extracted from real self-service
restaurant.

Secondly, the baseline model performs quite well in the majority of the classes,
we can see it in the table but also with the Average F1-score of 0.7587. It is not
rare since the baseline model chosen not only is a state of the art model for object
detection, but also because we consider it with a post-filtering process. However,
note that there are certain classes with poor performance. For example salmón,
patatas hervidas and kiwi are three classes with a F1-score of 0.

Regarding this classes with a F1-score of 0, note that the three have a very low
support (less than 50 instances) and, thus, have little affect to the Weighted Av-
erage F1-score, the metric we think is more relevant because it accounts for class
imbalance.
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FIGURE 5.1: Support and F1-score per class of baseline model.

5.3 Model variations tested

Regarding the part 3 of our model, before choosing the final structure of in-
put fusions, we implemented and tested different variations of the final MFTR
model. Following the same notation used previously, we are going to use these
abbreviations: FV for the Feature vectors input module, YP for the YOLO pre-
dictions input module, C for the correlations input module and M for the menu
input module. About the fusion operations, we will use + for the additive type
fusion, · for the multiplicative type fusion and concat for the concatenate type
fusion. With this notation, the part 3 of our MFTR model can be expressed as
(FV + YP) · (C + M).

The variations implemented with single output are:

• FV model

• FV + C model

• FV + YP model

• FV + M model

• FV + YP + C model

• FV + C + M model

• FV + YP + C + M model
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The variations implemented with two outputs, the first output always after the
first fusion and the second output at the final fusion, are:

• (FV + YP + C) + M model

• (FV + YP) + (C + M) model

• (FV + YP) + (C ·M) model

• (FV + YP) concat (C + M) model

• (FV + YP) · (C ·M) model

• (FV + YP + C) + (C + M) model

• (FV + YP + C) + (C ·M) model

• (FV + YP + C) · (C ·M) model

Regarding the models ensemble, we would like to add that we have tested dif-
ferent comparison statements such as, following the same notation explained in
section 4.3:

• Fixed thresholds: probm
i < threshold.

• Comparison between MFTR’s probability and YOLO’s confidence score:
probm

i < probY
i .

• Maximum of YOLO’s confidence score and MFTR’s probability of YOLO’s
best prediction: probm

i < max{probY
i , probYM

i }.

After testing these and other statements, the one with greater results was the
statement 4.1 of the ensemble model.

5.4 Quantitative results

The first comparison of results is among the model variations. For each of the
variation we have trained the model during 50 epochs and evaluated the model
with the test split 5 times. The metrics computed correspond to the Average F1-
score and the Weighted Average F1-score. After the 5 executions, we calculated the
mean and median for each of the metrics mentioned.

We will consider the median, and specially the median of the Weighted Average
F1-score, as the most representative metric since, unlike the mean, the median
corresponds to the measure of performance of an existing execution. And so, we
will consider the mean as an extra informative metric.

In table 5.1 we can see the evaluation results for the single output variations of
the model. Starting with the FV model, a model with only the feature vectors as
input, it achieves a Weighted Average F1-score of 0.8445, surpassing its baseline
equivalent metric. Note that regarding the double input models, the secondary
input which contributes more is, as expected, the YOLO predictions input making
the model surpass the 0.85 threshold.

On the other hand the correlations and menu inputs alone do not provide signif-
icant information, specially the menu, being FV + M the model variation with
the worst results. Note, that FV + YP variation is even better than the three
or four-input variations. Our deduction is that, due to the one-to-one relation
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between the future vectors and YOLO predictions, the network is able to learn
stronger correlations than the models that doesn’t have the pair FV + YP. Regard-
ing FV +YP + C and FV +YP + C + M variations, we think that the correlations
and menu inputs may be producing some kind of noise that doesn’t let the net-
work to learn better, nor equally, than FV + YP.

After noticing these behaviours of the variations, and particularly the good re-
sults of FV + YP, we thought it was interesting to have a middle-output from
the FV + YP fusion in next model variations. These results also gave us a first
intuition that probably the best structure would be with a FV + YP fusion on
one hand and correlations and menu fusioned together on the other hand. De-
spite having this intuition, we decided to also test other fusion structures for the
multi-output variations.

In table 5.2 we can see the evaluation results for the multi output variations of
the model. Remember that the first output is after the first fusion expressed with
parenthesis. The first thing to notice from the three figures is that all of the multi
output models have better results than the single output models. Consequently
we could say that the double output structure and the output merging step is
working well.

Looking to the median weighted average F1-score of these models, we can see
that in general the structure of modules FV and YP fusioned together on one
side and modules C and M fusioned together on the other side, independently
of the fusion operations, perform better than other fusion structures. Between
them, the top two variations are (FV +YP) + (C + M) and (FV +YP) · (C + M),
MFTR in the table, which are considerably better than the others, but with slight
differences in results between the two. However, MFTR has better results in all
four metrics considered: mean and median of average F1-score and weighted
average F1-score.

Moreover, notice that MFTR, (FV + YP) · (C + M) variation, has the best results
in the four metrics among all the variations. That is the reason why this is the
structure of part 3 of our model MFTR.

Now, with the best variation taken, we have evaluated the MFTR and YOLO
models ensemble explained in detail in section 4.3. The evaluation process done
for this model is the same done to the variations. The results are presented in
table 5.3.

Table 5.3 is the important comparison. First, taking the median metrics, note that
MFTR model is able to surpass both of the baseline metrics. Weighted average
F1-score is surpassed by more than 0.05 units, which is a great difference in deep
learning context, but average F1-score is slightly surpassed.

Regarding the MFTR+YOLO ensemble, note that, respect the baseline metrics,
both median metrics of the ensemble are significantly better: average F1-score is
more than 0.03 units greater and weighted average F1-score is more than 0.065
units greater. Comparing with MFTR, the difference between weighted average
F1-scores is of more than 0.01 and between average F1-scores is of more than
0.035, both also relevant differences.

A table of per class F1-scores for baseline YOLO model, MFTR model and MFTR
+ YOLO models ensemble is presented in table 5.4. In that table, the best F1-score
per class is marked in bold and the second best is marked in italics. Note: the
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Baseline model MFTR model MFTR + YOLO ensemble

AVG F1 W-AVG F1 AVG F1 W-AVG F1 AVG F1 W-AVG F1

0.7587 0.8114 Mean 0.7613 0.8624 0.7970 0.8770

Exec. 1 0.7621 0.8630 0.7934 0.8750
Exec. 2 0.7580 0.8617 0.7924 0.8767
Exec. 3 0.7679 0.8641 0.8043 0.8777
Exec. 4 0.7610 0.8620 0.7986 0.8780
Exec. 5 0.7575 0.8610 0.7962 0.8774

TABLE 5.3: Table of evaluation results comparison between the
baseline YOLO model, the MFTR model and the MFTR + YOLO
ensemble. The median of the average and weighted average F1-

scores are marked in bold.

F1-scores of the table are those corresponding to the execution of the model with
the weighted average F1-score equal to the median of the executions.

The first analysis we can make of table 5.4 is that our model, MFTR, performs
better than the baseline model in 34 classes out of 56, which is more than 60% of
the classes.

Secondly, the MFTR+YOLO ensemble model is better than the baseline model in
38 classes (67.86%) and also is better than both, the baseline model and MFTR, in
30 classes (53.57%).

Thirdly, the baseline model is the best model of the three in 18 classes (32.14%).
This means that, although the MFTR model and the MFTR+YOLO ensemble
model exceed the baseline model in average F1-score and weighted average F1-
score, in classes terms there is yet an almost one third of possible improvement.

Finally, we would like to remark some of the metrics values per classes in different
senses.

• agua, lomo a la brasa and sopa de cocido are examples of classes with high
F1-scores in the baseline model but very low scores in the other models.

• salmón and patatas hervidas are examples of classes that have very low F1-
scores in the three models. None of our both models was able to improve
the F1-score of 0 of the baseline model.

• kiwi, empanadillas and calamares a la romana are three examples of classes in
which our both models we able to improve significantly the F1-score of the
baseline model. In particular, the class kiwi improved from 0 to 0.560 and
0.480.
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Baseline model MFTR model MFTR+YOLO ensemble

F1-score per class F1-score per class F1-score per class

ensalada 0.889 0.900 0.917

flan 0.757 0.826 0.806

pescado en salsa 0.708 0.607 0.630

patatas fritas 0.861 0.913 0.923

yogur 0.798 0.868 0.866

pan 0.717 0.887 0.882

estofado de legumbre 0.400 0.514 0.594

salchichas al horno 0.810 0.914 0.925

macarrones boloñesa 0.973 0.982 0.974

agua 0.706 0.000 0.167

natillas 0.773 0.805 0.808

manzana 0.784 0.817 0.817

espaguetis 0.919 0.878 0.924

librito de york y queso 0.898 0.910 0.924

pescado blanco 0.768 0.753 0.765

coliflor y patata al vapor 0.857 0.947 0.982

melon 0.828 0.963 0.968

coca cola 0.716 0.857 0.911

sandia 0.585 0.885 0.909

arroz con leche 0.812 0.800 0.801

patatas al horno 0.807 0.787 0.781

macedonia 0.683 0.868 0.857

pollo al horno 0.920 0.939 0.960

verduras con patatas 0.929 0.898 0.952

paella 0.957 0.962 0.979

tomate 0.615 0.783 0.800

ensalada campera 0.914 0.909 0.941

croquetas caseras 0.877 0.912 0.928

sopa de cocido 0.809 0.387 0.485

platano 0.708 0.914 0.914

naranja 0.888 0.955 0.964

lomo a la brasa 0.818 0.323 0.397

huevos revueltos 0.700 0.789 0.850

ensalada de quinoa 0.741 0.741 0.847

salmón 0.000 0.178 0.136

fideos a la cazuela 0.655 0.508 0.610

carne con salsa 0.839 0.760 0.779

pastel 0.790 0.885 0.917

patatas hervidas 0.000 0.054 0.056

albóndigas en salsa 0.959 0.820 0.904

lentejas 0.968 0.962 0.957

pechuga de pollo a la plancha 0.723 0.533 0.587

crema de verduras 0.641 0.691 0.700

hamburguesa 0.737 0.638 0.729

calamares a la romana 0.655 0.949 0.961

ensalada con queso 0.845 0.625 0.730

escudella 0.893 0.489 0.815

empedrado 0.722 0.717 0.733

macarrones con queso 1.000 1.000 0.800

kiwi 0.000 0.560 0.480

arroz negro 0.902 0.938 0.941

guisantes con patatas 0.889 0.848 0.903

carrillada al horno 0.888 0.912 0.902

empanadillas 0.562 0.896 0.896

ensaladilla rusa 0.784 0.488 0.545

fideuá 0.939 0.923 0.935

canelones 0.928 0.806 0.889

TABLE 5.4: Table of classes F1-score for each model.
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5.5 Qualitative results

Once seen the qualitative results, in this section are presented several predictions
that are result of our models. In Fig. 5.2 we can see three images that are exam-
ples of good detection and recognition of food done by our models, MFTR and
MFTR+YOLO ensemble.

There are some cases that the baseline model predicts as food an unusual object
of the background, such as a purse or a mobile phone. In order to prevent this,
as explained in Chapter 4, our model was trained with background and as a re-
sult both of our models are often able to discard these candidates. Fig. 5.3 is an
example.

In other cases the baseline model misses predictions due to its restrictive param-
eters and its bad performance in some classes, as seen in the previous section.
Our model, which gets the candidates predictions from a baseline model with re-
laxed parameters, is able to detect food candidates that are missed by the baseline
model we compare with. In Fig. 5.4 we present an example of this case. Baseline
model misses arroz con leche and empanadillas, but MFTR and ensemble models
detect correctly them.

Although our model has a menu input, it has learned not to depend exclusively
on it. In Fig. 5.5 we can see that all three models detect librito de york y queso,
a food dish that in that day it wasn’t in the menu of the restaurant and, even
though, it was correctly predicted.

In some cases, due to the differences in performance of our models among classes,
the baseline model recognises correctly a bounding box and MFTR recognises it
as a wrong class, or the other way around. Fig 5.6 shows an example of the
effectiveness of the ensemble model regarding these cases, which based on the
decision process explained in 4.3 is able to change the wrong prediction of MFTR
to the correct one made by the baseline model.

On the other hand, the quantitative results show that the results of our models are
not perfect. We have also seen that there are some classes in which the baseline
performs better than our proposed models. We have seen, in particular, that sopa
de cocido is an example of these classes. Fig 5.7 is a visual example of that. The
baseline models predicts it but our models do not. Most likely, the bounding box
had been predicted as background and, so, discarded. In the previous Fig. 4.8
we can see that there are few instances of this class in the dataset, what makes it
difficult for the model to generalize well.

Similarly, in Fig. 5.8 we can see that a background object, a pack of tissues, is
predicted as yogur in MFTR and ensemble models. We deduce that in this case,
the fact of having low parameters did create a bounding box of it as a candidate.
However, compared to mobile phones and wallets that are common non-food
objects, a pack of tissues is more rare and possibly the model during training
did see none or few examples of it, making it difficult to learn to associate it as
background.

Finally, more visual results can be found in the Appendix A.
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(A) MFTR and MFTR+YOLO ensemble

(B) MFTR and MFTR+YOLO ensemble

(C) MFTR and MFTR+YOLO ensemble

FIGURE 5.2: Three examples of correct predictions results.
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(A) Baseline model

(B) MFTR model and MFTR+YOLO ensemble

FIGURE 5.3: Example of background correction.
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(A) Baseline model

(B) MFTR and MFTR+YOLO ensemble

FIGURE 5.4: Example of food missed by baseline, but predicted by
the MFTR and ensemble models. Arroz con leche and empanadillas

in this example.
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(A) Baseline, MFTR and ensemble models

FIGURE 5.5: Example of food that, even though not being in the
menu, has been predicted correctly. Librito de york y queso in this

example.
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(A) Baseline model

(B) MFTR model

(C) MFTR+YOLO ensemble

FIGURE 5.6: Example of wrong prediction by MFTR but corrected
by the ensemble
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(A) Baseline model

(B) MFTR model

(C) MFTR+YOLO ensemble

FIGURE 5.7: Example of food predicted by Baseline, but missed
by MFTR and ensemble models. Sopa de cocido in this example.
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(A) Baseline model

(B) MFTR model

(C) MFTR+YOLO ensemble

FIGURE 5.8: Example of wrong prediction by MFTR and ensemble
models.
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5.6 Limitations

The limitations of our models, showed in Fig. 5.7 and Fig. 5.8, are the principal
ones due to the dataset. It contains a large number of different food classes but
at the same time lacks in amount of data per class. Deep learning models, in
order to generalize well, they need to be provided with multiple diverse examples
for each class during the training process. This dataset contains classes with not
enough examples and most cases repeated, due to the nature of the dataset. The
dataset was created from a real restaurant with images captured automatically
(Bora, Bolaños, and Radeva, 2020). Those dataset problems, despite making it
more close to a real scenario, present some limitations to models that may be
considered.

Another problem we found in the dataset is that it contains wrong annotations,
making it harder to the model to learn during training and obtain worse measures
when evaluating. The causes of the wrong annotations are the human interfer-
ence and the close similarity between classes, which at the same time opens a
new problem: class merging. In Fig. 5.8, apart from the wrong detection of a
pack of tissues, MFTR models predicts ensalada con queso instead of ensalada de
quinoa, which are considered as different classes despite of the visual similarity.

Class merging is not an easy problem. In some cases merging some classes can
make the model to perform better because of the visual similarity and the incre-
mented amount of data for the class as a result. However, in other occasions the
little differences between merged classes can make the model to generalize too
much, giving as a result wrong predictions to completely different food with lit-
tle resemblance. In particular, in the food domain the class merging problem is
even more delicate due to different presentations and recipes of a same dish, such
as salads or meat with sauces.
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Chapter 6

Conclusions

The hypothesis of this work was that, in the context of self-service restaurants, a
multimodal model which combines an image of the whole food tray and a list of
dishes on the daily menu is able to achieve better results in food dishes detection
and recognition than a state of the art object detection model. Consequently, our
objective was to develop such a model and test it in a real scenario.

The model we propose in this work, which we have named Multi-modal Food
Tray Recognition (MFTR) is based on the state of the art object detection model
YOLOv3. Starting with YOLO and Non-Maximum Suppression filtering algo-
rithm, our model gets from the food tray image a set of proposal food bounding
boxes and a set of corresponding early class label predictions. After that, a state of
the art classification CNN, InceptionResNetV2, is applied to the bounding boxes in
order to extract visual features of those. Finally, a novel multimodal deep neural
network combines the visual features, the early predictions of the object detec-
tion model and the daily menu, giving a final set of food bounding boxes and the
corresponding class label predictions.

In this work we have also presented an ensemble model of YOLO and MFTR. The
ensemble is decision-based and aims to combine YOLO and MFTR predictions in
order to make better ones from the best of each.

We have trained and tested our models with a real scenario dataset. The data,
taken from a real self-service restaurant, was structured in days containing food
tray images and the daily menus. Using this dataset, we have compared our
models against a pre-trained YOLO model plus NMS filtering, with the best con-
figuration of parameters found, we called it our Baseline model. We have mea-
sured different metrics, but the more relevant one for us is the weighted average
of classes F1-scores. The Baseline model got a weighted average score of 0.8114.

Our models, MFTR and MFTR + YOLO ensemble, were trained and evaluated 5
times each, achieving a median of weighted average F1-score of 0.862 and 0.8774,
respectively. We can see MFTR model is able to improve significantly the pre-
dictions compared with the baseline model and the ensemble model performs
slightly better as it was expected.

In the qualitative results section we have seen that our model is good correct-
ing the background predictions, and so discarding them, that the Baseline model
wrongly generates. Also, our model is able to detect food that was missed by
the baseline model and doesn’t depend too much on the menu, meaning that it is
able to detected food that was accidentally missed in the daily menu. Regarding
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the ensemble model, we have seen that its decision-based predictions are able to
correct wrong predictions made by MFTR model.

On the other hand, we have also seen examples in which our models predictions
were erroneous, compared to the baseline model. We have discussed the possible
causes of them, which are mostly based on the data, and the challenge it supposes
to overcome those limitations in the food domain. Apart from the dataset, we
consider that there are changes to the model and different approaches to explore
that could lead to a better performance of our model. In the next section we will
briefly describe lines of research that take our contributions as a starting point.
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Future Work

Once finished, with results in hand, we did an analysis of the work done and
thought of possible changes in our model that could lead to better results. The
first line of future work we consider is a direct change to our model that we
strongly believe it would make it better. It consists of integrating part 2 of our
model structure, the feature vectors extraction with a state of the art CNN, to the
part 3 of our model, the multimodal neural network. That way, we could train the
whole model end-to-end forcing the parameters of the CNN and the parameters
of the multimodal neural network to be updated together using a linked struc-
ture and the same cost function. We believe that with an end-to-end training, the
visual features extracted will be less independent and more related to the whole
image and the features of the other inputs.

We have to say that, actually, integrating the CNN in the multimodal neural net-
work was our initial idea. However, due to technical and memory usage issues,
regarding the libraries used to develop our models, it hasn’t been possible to im-
plement it. In spite of the difficulty, we think that the future results may be worth
the effort.

During the development process we considered and tested different variations of
the model’s fusions and decision statements for the ensemble. However, multi-
modal learning and models ensembles are two well researched fields with mul-
tiple approaches. We chose two approaches that seemed to be suitable for our
problem and worked to optimize them in our context. In regard of the multi-
modal learning, a future work is to explore different multimodal approaches that
could improve the model compared to our feature fusion-based chosen approach.

As far as the models ensemble is concerned, we have seen that even though mak-
ing the per class F1-score metrics of MFTR to improve, there are certain classes
in which the baseline model performs better than both, MFTR and the ensemble
models. Therefore, as there is room for improvement, we consider interesting to
search for better decision statements and different models ensemble approaches
as future work.
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Appendix A

More visual results

In this appendix, we have inserted more visual examples of the results obtained
with our models. The images are extra examples of particularly interesting cases
discussed in 5.5.
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(A) Baseline model

(B) MFTR model

(C) MFTR+YOLO ensemble

FIGURE A.1: Example of wrong prediction by MFTR but corrected
by the ensemble.
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(A) Baseline model

(B) MFTR model

(C) MFTR+YOLO ensemble

FIGURE A.2: Example of wrong prediction by MFTR but corrected
by the ensemble.
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(A) Baseline model

(B) MFTR model

(C) MFTR+YOLO ensemble

FIGURE A.3: Example of missed prediction by Baseline and MFTR
but predicted correctly by the ensemble.
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(A) Baseline model

(B) MFTR model

(C) MFTR+YOLO ensemble

FIGURE A.4: Example of food, even though not being in the menu,
has been predicted correctly. Calamares a la romana in this example.
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(A) Baseline model

(B) MFTR model

(C) MFTR+YOLO ensemble

FIGURE A.5: Example of food, even though not being in the menu,
has been predicted correctly. Platano in this example.
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(A) Baseline model

(B) MFTR model

(C) MFTR+YOLO ensemble

FIGURE A.6: Example of food missed by Baseline, but predicted
by the MFTR and ensemble models. Albóndigas en salsa in this ex-

ample.
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(A) Baseline model

(B) MFTR model

(C) MFTR+YOLO ensemble

FIGURE A.7: Example of food missed by Baseline, but predicted
by the MFTR and ensemble models. Salchichas al horno in this ex-

ample.
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