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Context matters—consensus molecular subtypes of
colorectal cancer as biomarkers for clinical trials
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The Colorectal Cancer Subtyping Consortium identified four gene expression consensus molecular subtypes, CMS1 (immune),
CMS2 (canonical), CMS3 (metabolic), and CMS4 (mesenchymal), using multiple microarray or RNA-sequencing datasets of
primary tumor samples mainly from early stage colon cancer patients. Consequently, rectal tumors and stage IV tumors
(possibly reflective of more aggressive disease) were underrepresented, and no chemo- and/or radiotherapy pretreated samples
or metastatic lesions were included. In view of their possible effect on gene expression and consequently subtype classification,
sample source and treatments received by the patients before collection must be carefully considered when applying the
classifier to new datasets. Recently, several correlative analyses of clinical trials demonstrated the applicability of this
classification to the metastatic setting, confirmed the prognostic value of CMS subtypes after relapse and hinted at differential
sensitivity to treatments. Here, we discuss why contexts and equivocal factors need to be taken into account when analyzing
clinical trial data, including potential selection biases, type of platform, and type of algorithm used for subtype prediction. This
perspective article facilitates both our clinical and research understanding of the application of this classifier to expedite
subtype-based clinical trials.
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Introduction

Colorectal cancer (CRC) is highly heterogeneous at the genomic

and transcriptomic levels [1]. Only a few genomic biomarkers,

namely microsatellite instability (MSI) and extended RAS and

BRAF mutational status, are routinely used for prognostication

and treatment prediction in clinical practice [2, 3]. Although sev-

eral multi-gene assays such as Oncotype DX, ColoPrint and

ColDX have demonstrated independent prognostic value in

early-stage CRC, their use is currently not recommended by

international guidelines due to unclear clinical utility over cur-

rent risk stratification factors and due to the lack of value in pre-

dicting treatment benefit [3]. Whether gene expression

signatures add clinically relevant information to existing clinical

subgroups in early or advanced stages is controversial.

Using a network-based approach to match six distinct classi-

fiers, we, along with other members of the CRC Subtyping

Consortium (CRCSC), identified four robust consensus

molecular subtypes (CMS): CMS1, enriched for inflammatory/

immune genes; CMS2, canonical; CMS3, metabolic; and CMS4,

mesenchymal [4]. Stage-independent prognostic value and sig-

nificant associations with multiple clinical and biological features

were demonstrated. These data were subsequently validated in

multiple retrospective analyses of prospectively collected clinical

trial samples [5–8]. Our group also demonstrated the potential

predictive value of molecular subtypes with respect to the

FOLFIRI (a combination of 5-flurouracil, leucovorin and irinote-

can) chemotherapy regimen and the anti-epidermal growth fac-

tor receptor (EGFR)-targeted agent cetuximab using our

previously published subtype classifier (CRCAssigner) that is

now reconciled into the CMS subtypes [9]. Similar findings have

been described in cell lines and retrospective clinical cases by

others [10, 11]. Recently, the CMS subtypes were evaluated as in-

dependent prognostic factors of survival demonstrating consist-

ent results in correlative studies of phase III clinical trials

(Table 1); however, conflicting results were shown when tested as
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predictive factors of benefit from standard treatments in the

metastatic setting [5, 6]. Therefore, although the CMS subtypes

show real promise for patient stratification to guide new

biomarker-enriched clinical trials, a number of potential flaws

and challenges must be accounted for when retrospectively ana-

lyzing studies or designing new ones. An in-depth contextual

analysis of each study will help better understand the potential

clinical usefulness of this new classifier. In addition, a precise esti-

mate of biomarker prevalence in a specific clinical context is fun-

damental to define the target population and the distribution of

each subtype. Incorrect estimates may result in unsuccessful

screening efforts, wasted resources, and possibly even disadvan-

tage to patients. In this perspective article, we compare several

features of the original CRCSC population with recently pub-

lished data and publicly available datasets to highlight context-

specific subtype characteristics and important equivocal factors

to ultimately facilitate realistic application by the oncology

community.

Context 1: stage

In the CRCSC analysis, the biological characteristics of a subset of

the samples were analyzed. The vast majority (2715/2952; 92% of

samples with available information) were representative of early-

stage tumors at diagnosis, the remaining 8% of samples belong to

patients diagnosed with stage IV disease [4]. In developed coun-

tries, up to 30% of CRC patients have metastatic disease at diag-

nosis [12]. Therefore, this population is underrepresented in the

CRCSC analysis, and this factor must be taken into account when

applying the CMS classification to the metastatic setting. As an

example, CMS4 enrichment could be expected in advanced stage

tumors, and this requires consideration when designing a study

that prospectively selects or stratifies patients for particular sub-

types. Furthermore, it is plausible to consider reclassifying

advanced stage tumors de novo; new subtypes with activated ex-

pression pathways different from early stage tumors could be

identified.

With this limitation in mind, Figure 1A and B shows the differ-

ent CMS distributions in early and metastatic diseases at diagno-

sis from the original CRCSC dataset [4]. The poor prognostic

CMS4 group is enriched in the advanced setting, while the MSI-

enriched subtypes (predominantly CMS1 and partially CMS3)

are of low prevalence in the same setting [13].

Context 2: sample source

The CRCSC dataset was built from multiple datasets limited to

primary tumor samples. While the majority of samples were

from the colon, 15% of samples were rectal cancers, probably

because rectal tumors are more frequently treated with neoad-

juvant chemoradiotherapy so are not included in untreated

datasets. With this caveat, the proportion of the four subtypes

in the rectum was very different from those arising in the colon,

with only 12 samples (0.1% of total) belonging to CMS1

(Figure 1C). Conversely, the CMS1 subtype predominated in

tumors arising on the right-sided colon, in line with the high

prevalence of MSI and BRAF mutant tumors at this site. A simi-

lar variable distribution between the right and left colon (which

also included rectal samples) was further confirmed in a cor-

relative analysis of the FIRE-3 clinical study in the first-line set-

ting (6).

In another example, we demonstrated that CRC liver metasta-

ses could be classified according to CRC subtypes (developed

using primary tumor samples) by applying the CRCAssigner clas-

sifier to publicly available data from the Khambata-Ford dataset

[9, 14]. Here, we reclassified the same dataset using the CMS al-

gorithm [4]. In Figure 1D, we show the subtype distribution after

removal of 29% of the mixed/undetermined samples. While the

proportion of CMS2 is similar to that found in the left colon

(more frequently metastatic to the liver via the hepatic portal sys-

tem), CMS4 replaces the majority of CMS1 and CMS3. This is in

line with the peritoneum (instead of the liver) being the preferen-

tial site of relapse for BRAF-mutant (CMS1) and mucinous

tumors [15, 16]. Surprisingly, despite mutant KRAS being identi-

fied in 30 out of 80 patients, only 1 patient (2%) was classified as

CMS3. This depletion of CMS3 was recently confirmed in the

Oslo Co-Met trial molecular analysis, where, out of 44 samples,

no CMS3 tumors were identified but 68% were classified as

CMS2 [17]. Whether this is an effect of chemotherapy-induced

molecular changes in the liver or an intrinsic biological character-

istic of this subtype requires further analysis. Also, the tolerogenic

hepatic microenvironment maintained by immunosuppressive

cytokines interleukin-10 and transforming growth factor-b
(TGF-b) (CMS4-activated pathway) may potentially interfere

with subtype classification [4, 18]. Particular caution and further

validation studies are required especially in consideration of the

fact that the CMS subtypes were developed in the context of pri-

mary CRC and its applicability to metastatic tissues (including

those from liver, lung and peritoneum) has not yet been fully

established.

Lastly, in recent analyses, Dunne et al. demonstrated discord-

ant subtyping results from different tumor areas potentially due

to intra-patient heterogeneity and/or differentially expressed

stromal genes [19]. The same authors also questioned the robust-

ness of CMS subtypes in tissue biopsies, demonstrating a high

proportion of unclassified samples [20]. Intra-tumoral hetero-

geneity and sampling errors remain major open challenges. The

concordance between biopsies and resection specimens was not

considered in the original CRCSC dataset, highlighting again

how sample source needs to be carefully selected for each patient

for robust biomarker assessment.

Context 3: trial versus off-trial, first-line, and

chemorefractory settings

Only one dataset was related to a clinical trial (PETACC-3) in

the CRCSC study [4, 21]. Trial inclusion criteria usually exclude

patients with poor performance status, comorbidities, or heav-

ily symptomatic conditions, leading to underrepresentation of

patients with high disease burden and/or aggressive disease.

Conversely, retrospective series may often harbor hidden selec-

tion bias. Recently, at least three clinical trials in the first-line

setting with similar inclusion criteria (CALGB 80405, FIRE-3,

and AGITG MAX) were presented at international conferences

[5–7]. The CMS subtype distribution was consistent across

studies, and the proportion of subtypes in these trials from the
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metastatic setting was unexpectedly similar to the proportion of

early-stage subtypes in the CRCSC study, which was predomin-

antly off-trial. Surprisingly, nearly 80% of patients enrolled in

CALGB/SWOG 80405 had synchronous metastases at diagnosis

of the primary tumor. Given that some patients with stage IV

disease at diagnosis do not receive palliative primary tumor re-

section, the primary tumor sample may not have been available

for correlative studies. On the other hand, it is more likely that

the primary tumor was available for patients with early-stage

disease at diagnosis. Extensive publications of these analyses

including comparisons with the original study population are

eagerly awaited.

With respect to the chemorefractory setting, a preliminary ana-

lysis of CMS subtypes in a subset of patients (281/760; 37%)

enrolled in the CORRECT trial (regorafenib or placebo in

patients progressing to standard chemotherapy) was presented at

the ASCO Annual Meeting 2015 [22]. The predominant subtype

in this heavily pretreated population was CMS2 (50%) followed

by CMS4 (30%), while CMS1 and CMS3 were less represented at

9% and 11%, respectively. The relatively consistent subtype dis-

tribution in the first-line trials may explain the enrichment of

CMS2 and CMS4 over CMS3 and CMS1 after relapse in chemore-

fractory setting. Only patients with favorable tumor biology after

relapse are likely to reach the chemorefractory setting and main-

tain the fitness to be enrolled in clinical trials. Extensive analysis

of the full CORRECT or similar trials is warranted to address the

above hypothesis.

Context 4: enrichment by genomic or

clinical variables

As discussed above, there exist significant associations between

certain CMS subtypes and genomic, clinical, and pathological

variables, e.g. BRAF mutations, MSI, high histological grade, and

female gender with CMS1; RAS mutations with CMS3; and

advanced stages with CMS4. Therefore, subtypes distribution

may be modified by genomic or clinical selection criteria. In fact,

in the FIRE-3 analysis presented recently, different proportions

of CMS3 (11% in KRAS wild-type versus 25% in KRAS mutant

population) and CMS2 (41% versus 27%) were shown when

KRAS wild-type and mutant patients were analyzed separately.

Nevertheless, there was no significant difference in the propor-

tion of CMS1 and CMS4 [6]. Therefore, during the design of mo-

lecularly selected clinical trials, the variables used as inclusion

criteria may affect the subtype distribution. Hence, this factor

needs to be taken into consideration for clinical trial design.

Equivocal factor 1: different methods of

predicting CMS subtypes

Two different algorithms for CMS classification are available on-

line in the R ‘CMSclassifier’ package: one suitable for population-

based studies (random forest classifier) and one suitable for

single-sample prediction (Pearson correlation-based classifier,

A B

C D
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16% CMS1

CMS2

CMS3

CMS4

26%

15%
43%

Stage IV at diagnosis
(n=236)

8%

40%

9%

43%

Right Colon Left Colon Rectum

244CMS4 327 125

193CMS3 129 57

269CMS2 690 210

313CMS1 81 12

100%

75%

50%

25%

0%

CMS1

CMS2

CMS3

CMS4

Location of tumors
(n=2651)

%
 o

f p
at

ie
nt

s

Liver metastases
(n=57)

7%

40%

2%

51%

Figure 1. (A and B) The proportions of each consensus molecular subtypes (CMS) colorectal cancer (CRC) subtype in (A) early stage (I–III) at
diagnosis, (B) stage IV at diagnosis, and (C) location of the tumors within the CRCSC dataset and (D) liver metastatic samples from the public-
ly available Khambata-Ford dataset [14].
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SSP) (4). The random forest classifier uses both different default

normalization and a different gene set to that of the SSP classifier.

Both provide two distinct subtyping results. First, the ‘predicted

CMS’ output includes the mixed/undetermined subtype along

with the four CMS subtypes. This classifier was used in reporting

the performance (such as sensitivity, specificity, and positive and

negative predictive values) described in the original publication.

The second is the ‘nearest CMS’ output, where each sample from

the undetermined/mixed group is forced into one of the four

CMS subtypes based on the dominant signature. Up to 13%

CRCSC samples were labeled as mixed/undetermined since they

did not classify into any of the four subtypes and did not repre-

sent a potentially distinct subtype. These may partially represent

low-quality samples; however, the majority of them are thought

to represent intra-tumoral heterogeneity, with more than one

subtype present in the same sample.

In order to understand whether the single-sample predictor

‘predicted’ or ‘nearest’ CMS subtype classifications affect prog-

nostication and prediction, we applied both to the well-used

Khambata-Ford dataset of metastatic patients treated with anti-

EGFR therapy [14]. Using the ‘predicted CMS’ subtyping, up to

29% of the samples (n¼ 23) remained mixed/undetermined

(Figure 2A), twice that of the CRCSC population (13% mixed/

undetermined). This may be attributed to the change in micro-

environment from the primary to secondary site (liver) or may

represent a technical artifact.

Conversely, using the ‘nearest CMS’, 52% (n¼ 12) of the pre-

viously mixed/undetermined 29% samples were classified as

CMS4. This subtype is enriched for mesenchymal and stromal

gene signatures, which may be derived from surrounding cells ra-

ther than being cancer specific. Further, 35% (n¼ 8) were classi-

fied as CMS2 (the most heterogeneous group). Interestingly, no

samples were relabeled as CMS3, again potentially due to liver

microenvironment or suggesting that the mixed/undetermined

group may include dominant CMS4 and CMS2 subtypes.

Recently, a new algorithm (CMScaller) optimized to apply the

CMS classification to pre-clinical models demonstrated 83% pre-

diction accuracy in primary CRC patient samples [23]. Based on

Khambata-Ford dataset
(predictedCMS)

(n=80)

Khambata-Ford dataset
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(n=80)
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Figure 2. (A and B) Pie charts distribution and Kaplan–Meier survival analyses for cetuximab progression-free survival in the Khambata-Ford
dataset [14] according to (A) predicted consensus molecular subtypes (CMS) subtype and (B) nearest CMS subtype. (C) The proportions of
each CMS in stage III colorectal cancer samples from the CRCSC dataset (top), the NSABP-C07 ancillary study (left bottom, modified from pre-
vious publication [15]), and the PETACC-8 ancillary study (right bottom, modified from previous publication [8]).
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cancer cell intrinsic signals, the authors did not yet recommend

its implementation in samples different than primary tumor re-

section specimens.

These examples highlight how the choice of which CMS pre-

dictor algorithm to use is crucial and the applicability of each al-

gorithm may be limited in certain contexts. While the majority

of publications have been based on single-sample predictor

‘predicted CMS’, quite a few use the ‘nearest CMS’ [24]. We be-

lieve that the use of predicted versus nearest CMS may have dif-

ferent consequences. For example, using the nearest CMS rather

than the predicted CMS loses the power to define significant

benefit from cetuximab treatment according to subtypes in the

Khambata-Ford dataset (Figure 2B). When mixed/undeter-

mined samples are forced into a CMS group, they cannot be dis-

tinguished from those with a definite CMS class and may

confound the result. This is likely to negatively impact on the

performance of the classifier and potentially mislead

investigators.

Equivocal factor 2: additional heterogeneity

leading to sub-classification

The proportion of canonical CMS2 subtype is the same in both

the early and advanced settings. Although not strongly associ-

ated with any of the common actionable genomic events in

CRC (such as RAS/BRAF mutations or MSI), this is possibly

the most heterogeneous gene expression subtype. In fact,

CMS2 includes two of our original CRCAssigner subtypes (en-

terocyte and Transit-Amplifying or TA) and three Marisa sub-

types (C1, C5, and C6) [4, 9, 25]. We and others demonstrated

diverse responses to anti-EGFR therapy in the TA subtype [9,

10]. More recently, in an intra-tumoral heterogeneity-based

analysis (in a small cohort of patient samples), we suggested

that the presence of TA sub-clones even in non-TA tumors is

associated with anti-EGFR therapy response [26]. Similarly,

potential differences in benefit between subtypes with and

without oxaliplatin-based adjuvant chemotherapy (survival

benefit in enterocyte versus the others) were suggested in an ex-

ploratory analysis of the NSABP-C07 trial; however, this was

not statistically significant in the validation cohort, although

similar trends were observed [27]. This heterogeneity was less

visible using the CMS classifier in the same cohort. Therefore,

it may be reasonable to subdivide the CMS2 to further under-

stand biological heterogeneity, stage distribution, and potential

personalized targets of this subtype. Similarly, in the PETACC-

8 subtype analysis, the authors demonstrated significantly dif-

ferent prognostic value when the CMS4 subtype was further

subdivided into CMS4-C4 (worse DFS and OS) and CMS4-not

C4, based on Marisa classification [8]. More recently, the same

authors demonstrated how 57% of 1779 profiled PETACC-8

samples showed intra-tumor heterogeneity assessed using an

in-silico deconvolution algorithm and this heterogeneity was

an independent predictor of relapse [28]. These examples high-

light how CMS subtypes define the overall profiles of major

CRC subgroups; however, even within each subtype, there may

be biological variability and important sub-subtypes with dis-

tinctive clinical/biological parameter that requires careful

consideration.

Equivocal factor 3: different platforms, gene

sets, and assays

The CRCSC analysis was originally performed using gene expres-

sion data derived from multiple platforms including Affymetrix

and Agilent microarrays, and RNA-sequencing [4]. In order to

accommodate a broader set of platforms, the consortium com-

bined classifiers trained on different platforms to classify samples

into CMS subtypes, thereby favoring the portability of the classi-

fier across platforms and maintaining high sensitivity, specificity,

and accuracy. Additionally, by virtue of good concordance of the

nCounter platform (NanoString Technologies, Seattle, WA,

USA) across multiple cancer types [29–31], several groups

including us have used this platform and a variable number of

genes to assay for subtypes [5, 8, 25, 32].

Initially, we selected a robust set of genes (n¼ 38) able to

classify samples into our CRCAssigner subtypes (originally

developed using 786 genes). We then optimized a low-cost

protocol for nCounter platform and validated the results using

matched RNAseq/microarray platform results [32]. After the

CRCSC collaboration, we further developed this assay to simul-

taneously classify samples into both CRCAssigner and CMS

subtypes [33]. We then demonstrated how the concordance be-

tween CRCAssigner and CMS classifiers using the nCounter

platform was maintained as per the multiplatform CRCSC

network.

Therefore, by virtue of the portability of the classifier initially

demonstrated by CRCSC and then validated by us, the type of

platform used is unlikely to affect the classification. However, the

number of genes in each assay and each gene’s contribution may

affect the subtype prediction and can explain differences between

studies.

The NSABP-C07 correlative study demonstrated a significant

recurrence-free survival advantage by adding oxaliplatin to

fluorouracil-leucovorin adjuvant therapy for the enterocyte sub-

type but not for the other subtypes [27]. In this study, the authors

used a custom nCounter platform assay (Colo-295), which was

designed before the publication of the CRCAssigner and CMS

gene expression subtypes. Up to 72 genes overlapped with our

original CRCAssigner-786 set. Similarly, the CMS subtypes

were defined based on 37 overlapping genes with the original 693

consensus genes. The CMS subtype distribution in this cohort

demonstrated enrichment for CMS1 (23%) and depletion of

CMS3 (8%) compared with the stage III CRCSC cohort

(Figure 2C) [4, 27].

A similar correlative phase III randomized trial in the same

setting (oxaliplatin, fluorouracil, and leucovorin with or with-

out cetuximab in patients with resected stage III colon cancer;

PETACC-8) was presented recently, with the extended publica-

tion awaited [8]. The NanoString assay was developed using

computational approaches and matched frozen and FFPE sam-

ples before being tested on a larger scale using the RNA

extracted from the PETACC-8 tissue biobank. Again, when

compared with the stage III CRCSC population, there was a sig-

nificantly lower proportion of the CMS3 subtype (only 4%) and

marked enrichment for CMS4 (45%). Similarly, when compar-

ing subtype distribution between the KRAS exon 2 wild-type

population in the correlative analyses of CALGB 80405 and

FIRE-3 first-line trials, the CMS3 NanoString subtype was
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present in 2% of samples (CALGB 80405) compared with 12%

of CMS3 microarray subtype (FIRE-3) [5, 6]. Therefore, the

proportion of CMS3 identified with different assays in these

cohorts requires further understanding. As previously men-

tioned, no definitive conclusions related to the role of the sub-

types in predicting benefit from bevacizumab or cetuximab can

be drawn from these two similar studies. While significant sur-

vival benefit was demonstrated in the CMS1-bevacizumab

group and in the CMS2-cetuximab group in the CALGB 80405,

no significant differences in the CMS1 group was shown and the

survival benefit associated with cetuximab seemed mainly

driven by the CMS4 group in the FIRE-3 [5, 6]. Given the previ-

ously discussed inter-platform consistency and the fact that the

same algorithm was used to predict the subtypes, the differences

in number and sets of genes analyzed may be a major contribu-

tor to inconsistent results.

Despite the potential clinical utility of CRCSC signatures for

outcome prediction or immune-targeted therapy development,

their clinical implementation is challenging due to lack of easy-

to-use and cost-effective assays suitable for paraffin tissues. As

previously indicated, different groups, including ours, are work-

ing on classifiers based on protein markers by immunohisto-

chemistry or gene expression signals using nCounter
VR

NanoString Technologies, for example, with overall accuracy

close to 90% when compared with the gold-standard CMS4 sig-

nature [32–35]. Technical validation has been proved for our

NanoString-based classifier, and clinical validation studies are

underway [32, 33]. In parallel, prospective molecularly stratified

clinical trials should be encouraged. One example is the

MoTriColor H2020 project, where mCRC patients with tumors

testing positive for a ‘TGF-b active’ or ‘MSI-like’ gene expression

signature in archived paraffin tissue are eligible to the combin-

ation of galunisertib (TGF-b receptor inhibitor) and capecitabine

or the combination of atezolizumab and bevacizumab, respect-

ively [36].

Conclusions and future directions

Molecular subtypes are context specific. The CMS subtypes

identify a further level of heterogeneity beyond standard gen-

omic biomarkers in CRC. To maximize their potential for per-

sonalized medicine, the contexts of application and equivocal

factors must be extensively considered to avoid misleading

results and premature rejection of a highly informative classifi-

cation system.
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